IJCNLP 2017

The Eighth International Joint Conference
on Natural Language Processing

Proceedings of the Conference, Vol. 2 (Short Papers)

November 27 - December 1, 2017
Taipei, Taiwan

il

Gold Sponsors:

B @IHK%EET%

Aim for the Top University Project

% Ay &S

K I LA B G A F e

Silver Sponsors:

A.Ip @yber@n WiSGI’S %-JTIEI

Center for

Advanced Intelligence Project Advantage through Intelligence

@ TenMax

B 282 B & B

Bronze Sponsors:

‘= DETERARR 5/J\¢%ﬂﬂi%

Chunghwa Telecom Laboratories Nl U Tra ns

Supporters:

SBES 5

T

Ministry of Science and Technology

L 5
b7 ()
TAIPEI \

) S
. . 2E UNNE
Department sz Zﬁy%mmtwn/ and, Tourism u

il

(©2017 Asian Federation of Natural Language Processing

ISBN 978-1-948087-00-1 (Volume 1: Long Papers)
ISBN 978-1-948087-01-8 (Volume 2: Short Papers)

v

Preface

Welcome to the 8th International Joint Conference on Natural Language Processing (IJCNLP). IICNLP
was initiated in 2004 by the Asian Federation of Natural Language Processing (AFNLP) with the major
goal to provide a platform for researchers and professionals around the world to share their experiences
related to natural language processing and computational linguistics. In the past years, ICNLPs were
held in 7 different places: Hainan Island (2004), Jeju Island (2005), Hyderabad (2008), Singapore (2009),
Chiang Mai (2011), Nagoya (2013) and Beijing (2015). This year the 8th IJCNLP is held in Taipei
Nangang Exhibition Hall on November 27-December 1, 2017.

We are confident that you will find IJICNLP 2017 to be technically stimulating. The conference covers a
broad spectrum of technical areas related to natural language processing and computation. Besides main
conference, the program includes 3 keynote speeches, 6 tutorials, 17 demonstrations, 5 workshops, and
5 shared tasks (new event).

Before closing this brief welcome, we would like to thank the entire organizing committee for their
long efforts to create and event that we hope will be memorable for you. Program chairs Greg Kondrak
and Taro Watanabe coordinate the review process allowing for top quality papers to be presented at
the conference. Workshop chairs Min Zhang and Yue Zhang organize 5 nice pre-conference and post-
conference workshops. Tutorial chairs Sadao Kurohashi and Michael Strube select 6 very good tutorials.
Demo chairs Seong-Bae Park and Thepchai Supnithi recommend 17 demonstrations. Shared Task chairs
Chao-Hong Liu, Preslav Nakov and Nianwen Xue choose 5 interesting shared tasks. Sponsorship chairs
Youngkil Kim, Tong Xiao, Kazuhide Yamamoto and Jui-Feng Yeh design sponsor packages and find
financial supports. We thank all the sponsors. Publicity chairs Pushpak Bhattacharya, Xuanjing Huang,
Gina-Anne Levow, Chi Mai Loung and Sebastian Stiiker help circulate the conference information and
promote the conference. We would like to express our special thanks to publication chairs Lung-Hao
Lee and Derek F. Wong. After the hard work, they deliver an excellent proceeding to the participants.

Finally, we would like to thank all authors for submitting high quality research this year. We hope all of
you enjoy the conference program, and your stay at this beautiful city of Taipei.

General Chair

Chengqing Zong, Institute of Automation, Chinese Academy of Sciences, China

Organization Co-Chairs

Hsin-Hsi Chen, National Taiwan University, Taiwan
Yuen-Hsien Tseng, National Taiwan Normal University, Taiwan
Chung-Hsien Wu, National Cheng Kung University, Taiwan
Liang-Chih Yu, Yuan Ze University, Taiwan

Message from the Program Co-Chairs

Welcome to the 8th International Joint Conference on Natural Language Processing (IJCNLP 2017)
organized by National Taiwan Normal University and the Association for Computational Linguistics
and Chinese Language Processing (ACLCLP) and hosted by The Asian Federation of Natural Language
Processing (AFNLP).

Since the first meeting in 2004, IICNLP has established itself as a major NLP conference. This year, we
received 580 submissions (337 long and 243 short), which is by far the largest number ever for a stand-
alone IJCNLP conference. From these, 179 papers (103 long and 76 short) were accepted to appear at
the conference, which represents an acceptance rate of 31%. In particular, approximately 46% of the
accepted papers are from Asia Pacific, 30% from North America, and 20% from Europe.

Our objective is to keep the conference to three parallel sessions at any one time. 86 long papers and
21 short papers are scheduled as oral presentations, while 17 long papers and 55 short papers will be
presented as posters.

We are also very pleased to announce three exciting keynote talks by the renowned NLP researchers:
Rada Mihalcea (University of Michigan), Trevor Cohn (University of Melbourne) and Jason Eisner
(Johns Hopkins University).

The conference will conclude with the award presentation ceremony. The Best Paper Award goes
to Nikolaos Pappas and Andrei Popescu-Belis for their paper “Multilingual Hierarchical Attention
Networks for Document Classification.” The Best Student Paper award goes to “Roles and Success in
Wikipedia Talk Pages: Identifying Latent Patterns of Behavior” by Keith Maki, Michael Yoder, Yohan
Jo and Carolyn Rosé.

We would like to thank everyone who has helped make IJCNLP 2017 a success. In particular, the area
chairs (who are listed in the Program Committee section) worked hard on recruiting reviewers, managing
reviews, leading discussions, and making recommendations. The quality of the technical program reflects
the expertise of our 536 reviewers. All submissions were reviewed by at least three reviewers. The
review process for the conference was double-blind, and included an author response period, as well as
subsequent discussions.

We would like to acknowledge the help and advice from the General Chair Chengqing Zong, and the
Local Arrangements Committee headed by Liang-Chih Yu. We thank the Publication Chairs Lung-Hao
Lee and Derek F. Wong for putting together the conference proceedings and handbook, and all the other
committee chairs for their great work.

We hope you will enjoy IICNLP 2017!

LJCNLP 2017 Program Co-Chairs

Greg Kondrak, University of Alberta
Taro Watanabe, Google

vi

Organizing Committee

Conference Chair

Chengqing Zong, Institute of Automation, Chinese Academy of Sciences

Program Committee Co-Chairs

Greg Kondrak, University of Alberta
Taro Watanabe, Google

Workshop Co-Chairs

Min Zhang, Soochow University
Yue Zhang, Singapore University of Technology and Design

Tutorial Co-Chairs

Sadao Kurohashi, Kyoto University
Michael Strube, Heidelberg Institute for Theoretical Studies

Demo Co-Chairs

Seong-Bae Park, Kyungpook National University
Thepchai Supnithi, National Electronics and Computer Technology Center (NECTEC) of Thailand

Shared Task Workshop Co-Chairs

Chao-Hong Liu, ADAPT Centre, Dublin City University
Preslav Nakov, Qatar Computing Research Institute
Nianwen Xue, Brandies University

Publication Co-Chairs

Lung-Hao Lee, National Taiwan Normal University
Derek F. Wong, University of Macau

Sponsorship Co-Chairs

Youngkil Kim, ETRI

Tong Xiao, Northeast University

Kazuhide Yamamoto, Nagaoka University of Technology
Jui-Feng Yeh, National Chiayi University

Publicity Co-Chairs

Pushpak Bhattacharya, IITB

Xuanjing Huang, Fudan University

Gina-Anne Levow, University of Washington

Chi Mai Loung, Institute of Information Technology
Sebastian Stiiker, Karlsruhe Institute of Technology

vii

Financial Chair

Lun-Wei Ku, Institute of Information Sciences, Academia Sinica

Local Co-Chairs

Hsin-Hsi Chen, National Taiwan University
Yuen-Hsien Tseng, National Taiwan Normal University
Chung-Hsien Wu, National Cheng Kung University
Liang-Chih Yu, Yuan Ze University

viii

Program Committee

Program Committee Co-Chairs

Greg Kondrak, University of Alberta
Taro Watanabe, Google

Area Chairs

Mausam (Information Extraction and Text Mining Area)

Asli Celikyilmaz (Semantics Area)

Wenliang Chen (Syntax and Parsing Area)

Colin Cherry (Machine Translation Area)

Jackie Chi Kit Cheung (Summarization and Generation Area)
Monojit Choudhury (Resources and Tools Area)

Kevin Duh (Semantics Area)

Micha Elsner (Discourse, Dialogue, Pragmatics Area)

Manaal Faruqui (Machine Learning Area)

Jianfeng Gao (Information Retrieval and Question Answering Area)
Yvette Graham (Machine Translation Area)

Gholamreza Haffari (Machine Learning Area)

Liang Huang (Syntax and Parsing Area)

Minlie Huang (Sentiment Analysis and Opinion Mining Area)
Mans Hulden (Morphology, Segmentation and Tagging Area)
Nancy Ide (Resources and Tools Area)

Jing Jiang (Sentiment Analysis and Opinion Mining Area)

Daisuke Kawahara (Semantics Area)

Mamoru Komachi (NLP Applications Area)

Fei Liu (Web and Social Media Area)

Zhiyuan Liu (Web and Social Media Area)

Wei Lu (Information Extraction and Text Mining Area)

Ryo Nagata (NLP Applications Area) Mikio Nakano (Discourse, Dialogue, Pragmatics Area)
Jong-Hoon Oh (Information Retrieval and Question Answering Area)
Thamar Solorio (Sentiment Analysis and Opinion Mining Area)

Xu Sun (Morphology, Segmentation and Tagging Area)

Jun Suzuki (Machine Learning Area)

Xiaojun Wan (Summarization and Generation Area)

Tiejun Zhao (Machine Translation Area)

Reviewers

Alan Akbik, Chris Alberti, Enrique Alfonseca, David Alvarez-Melis, Silvio Amir, Daniel An-
drade, Marianna Apidianaki, Jun Araki, Yuki Arase, Yoav Artzi, Kristjan Arumae, Wilker Aziz
Niranjan Balasubramanian, Timothy Baldwin, Kalika Bali, Rafael E. Banchs, Srinivas Bangalore,
Timo Baumann, Kedar Bellare, Anja Belz, Steven Bethard, Chandra Bhagavatula, Suma Bhat,
Joachim Bingel, Or Biran, Yonatan Bisk, Johannes Bjerva, Dasha Bogdanova, Bernd Bohnet,
Danushka Bollegala, Florian Boudin, Chris Brockett, Julian Brooke, William Bryce, Paul Buite-
laar, Jill Burstein, Stephan Busemann, Miriam Butt

José G. C. de Souza, Deng Cai, Burcu Can, Zigiang Cao, Daniel Cer, Kai-Wei Chang, Ming-Wei
Chang, Baobao Chang, Wanxiang Che, Xinchi Chen, Tao Chen, Danqi Chen, Kuang-hua Chen,
John Chen, Boxing Chen, Pu-Jen Cheng, Hai Leong Chieu, laura chiticariu, KEY-SUN CHOI,

ix

Shamil Chollampatt, Christos Christodoulopoulos, Jennifer Chu-Carroll, Miriam Connor, John
Conroy, Matthieu Constant, Danish Contractor, Anna Corazza, Mark Core, Benoit Crabbé, Danilo
Croce, Paul Crook, Heriberto Cuayahuitl

Raj Dabre, Bharath Dandala, Kareem Darwish, Gerard de Melo, Luciano Del Corro, Leon Der-
czynski, Nina Dethlefs, Lipika Dey, Bhuwan Dhingra, Giuseppe Di Fabbrizio, Marco Dinarelli,
Daxiang Dong, Li Dong, Doug Downey, Lan Du, Nadir Durrani

Richard Eckart de Castilho, Steffen Eger, Yo Ehara, Patrick Ehlen, Vladimir Eidelman, Akiko
Eriguchi, TomaZ Erjavec, Ramy Eskander, Miquel Espla-Gomis

Licheng Fang, Geli Fei, Chong Feng, Oliver Ferschke, Andrew Finch, Orhan Firat, Margaret Fleck,
Markus Forsberg, George Foster, Dayne Freitag, Atsushi Fujii, Fumiyo Fukumoto, Kotaro Fu-
nakoshi

Matt Gardner, Tao Ge, Kallirroi Georgila, Pablo Gervés, Alfio Gliozzo, Dan Goldwasser, Kyle
Gorman, Isao Goto, Jiatao Gu, Camille Guinaudeau

Thanh-Le Ha, Christian Hadiwinoto, Masato Hagiwara, Dilek Hakkani-Tur, William L. Hamilton,
Chung-Wei Hang, Kazi Saidul Hasan, Sadid A. Hasan, Kazuma Hashimoto, Eva Hasler, Matthew
Hatem, Katsuhiko Hayashi, Luheng He, Matthew Henderson, Aurélie Herbelot, Ryuichiro Hi-
gashinaka, Cong Duy Vu Hoang, Chris Hokamp, Yu Hong, Kai Hong, Baotian Hu, Yuheng Hu,
Xuanjing Huang, Po-Sen Huang, Jen-Wei Huang

Michimasa Inaba, Kentaro Inui, Hitoshi Isahara

Guoliang Ji, Yangfeng Ji, Sittichai Jiampojamarn, Wenbin Jiang, Zhanming Jie, Melvin Johnson
Premkumar

Nobuhiro Kaji, Tomoyuki Kajiwara, Arzoo Katiyar, David Kauchak, Anna Kazantseva, Hideto
Kazawa, Casey Kennington, Sunghwan Mac Kim, Jung-Jae Kim, Norihide Kitaoka, Julien Kloet-
zer, Mamoru Komachi, Kazunori Komatani, Parisa Kordjamshidi, Zornitsa Kozareva, Julia Kreutzer,
Jayant Krishnamurthy, Lun-Wei Ku, Shankar Kumar, Jonathan K. Kummerfeld, Tsung-Ting Kuo
Sobha Lalitha Devi, Wai Lam, Man Lan, Ni Lao, Guy Lapalme, Carolin Lawrence, Joseph Le
Roux, Logan Lebanoff, John Lee, Hung-yi Lee, Kenton Lee, Lung-Hao Lee, Sungjin Lee, Els
Lefever, Gina-Anne Levow, Shaohua Li, Haibo Li, Haizhou Li, Sujian Li, Qing Li, Lishuang Li,
Yaliang Li, Sheng Li, Chenliang Li, Kexin Liao, Xiao Ling, Pierre Lison, Qun Liu, Shulin Liu,
Shujie Liu, Jiangming Liu, Yang Liu, Lemao Liu, Xiaohua Liu, Nikola Ljubesi¢, Chi-kiu Lo, Oier
Lopez de Lacalle, Annie Louis, Stephanie Lukin, Jiaming Luo, Franco M. Luque, Anh Tuan Luu
Xuezhe Ma, Tengfei Ma, Wei-Yun Ma, Wolfgang Macherey, Andreas Maletti, Benjamin Marie,
Yuichiroh Matsubayashi, Yuji Matsumoto, Takuya Matsuzaki, Diana McCarthy, Tara McIntosh,
Susan McRoy, Sameep Mehta, Edgar Meij, Arul Menezes, Helen Meng, Adam Meyers, Bonan
Min, Koji Mineshima, Amita Misra, Teruhisa Misu, Makoto Miwa, Daichi Mochihashi, Marie-
Francine Moens, Samaneh Moghaddam, Karo Moilanen, Luis Gerardo Mojica de la Vega, Manuel
Montes, Taesun Moon, Glyn Morrill, Alessandro Moschitti, Lili Mou, Aldrian Obaja Muis, Yugo
Murawaki

Seung-Hoon Na, Preslav Nakov, Courtney Napoles, Jason Naradowsky, Shashi Narayan, Alexis
Nasr, Mark-Jan Nederhof, Graham Neubig, Guenter Neumann, Vincent Ng, Dong Nguyen, Jian-
Yun NIE, Hiroshi Noji, Scott Nowson

Diarmuid O Séaghdha, Yusuke Oda, Stephan Oepen, Tim O’Gorman, Jong-Hoon Oh, Kiyonori
Ohtake, Hidekazu Oiwa, Naoaki Okazaki, Manabu Okumura, Naho Orita, Petya Osenova, Hiroki
Ouchi

Inkit Padhi, Sebastian Padé, Hamid Palangi, Aasish Pappu, Peyman Passban, Adam Pease, Nanyun
Peng, Gerald Penn, Juan Antonio Pérez-Ortiz, Peter Phandi, Karl Pichotta, Massimo Poesio, Maja
Popovié, Soujanya Poria, Daniel Preotiuc-Pietro, Matthew Purver

Ashequl Qadir, Xian Qian

Dinesh Raghu, Afshin Rahimi, A Ramanathan, Sudha Rao, Pushpendre Rastogi, Georg Rehm,
Martin Riedl, German Rigau, Brian Roark, Michael Roth, Alla Rozovskaya, Rachel Rudinger, At-
tapol Rutherford

Ashish Sabharwal, Kugatsu Sadamitsu, Markus Saers, Keisuke Sakaguchi, German Sanchis-Trilles,
Ryohei Sasano, Carolina Scarton, David Schlangen, Eva Schlinger, Allen Schmaltz, Djamé Sed-
dah, Satoshi Sekine, Lei Sha, Kashif Shah, Ehsan Shareghi, Shigi Shen, Shuming Shi, Tomo-
hide Shibata, Sayaka Shiota, Prasha Shrestha, Maryam Siahbani, Avirup Sil, Miikka Silfverberg,
Patrick Simianer, Sameer Singh, Sunayana Sitaram, Jan Snajder, Wei Song, Yang Song, Sa-kwang
Song, Virach Sornlertlamvanich, Matthias Sperber, Caroline Sporleder, Vivek Srikumar, Manfred
Stede, Mark Steedman, Pontus Stenetorp, Svetlana Stoyanchev, Karl Stratos, Kristina Striegnitz,
L V Subramaniam, Katsuhito Sudoh, Hiroaki Sugiyama, Huan Sun

Sho Takase, David Talbot, Liling Tan, Jiwei Tan, Niket Tandon, Takehiro Tazoe, Joel Tetreault,
Ran Tian, Takenobu Tokunaga, Gaurav Singh Tomar, Sara Tonelli, Fatemeh Torabi Asr, Ming-
Feng Tsai, Richard Tzong-Han Tsai, Masashi Tsubaki, Jun’ichi Tsujii, Yulia Tsvetkov, Zhaopeng
Tu, Cunchao Tu, Francis Tyers

Kiyotaka Uchimoto, Masao Utiyama

Tim Van de Cruys, Keith VanderLinden, Lucy Vanderwende, Vasudeva Varma, Eva Maria Vec-
chi, sriram venkatapathy, Marc Verhagen, David Vilar, David Vilares, Martin Villalba, Svitlana
Volkova, Ivan Vuli¢

Xuancong Wang, Longyue Wang, Pidong Wang, Wei Wang, Rui Wang, Baoxun Wang, William
Yang Wang, Mingxuan Wang, Leo Wanner, Bonnie Webber, Ingmar Weber, Julie Weeds, Furu
Wei, Aaron Steven White, Jason D Williams, Tak-Lam Wong, Kam-Fai Wong, Derek F. Wong,
Fangzhao Wu, Shih-Hung Wu, Joern Wuebker

Tong Xiao, Xinyan Xiao, Deyi Xiong, Wenduan Xu, Ruifeng Xu, Ying Xu

Bishan Yang, Yi Yang, Cheng Yang, Helen Yannakoudakis, Wenpeng Yin, Anssi Yli-Jyrd, Yuya
Yoshikawa, Naoki Yoshinaga, Koichiro Yoshino, Dianhai Yu, Mo Yu, Bei Yu, Jianfei Yu

Fabio Massimo Zanzotto, Sina Zarrief3, Xiaodong Zeng, Feifei Zhai, Min Zhang, Sheng Zhang,
Wei-Nan Zhang, Jian Zhang, Longtu Zhang, Hao Zhang, Meishan Zhang, Jiajun Zhang, Jian
ZHANG, Meishan Zhang, Lei Zhang, Chengzhi Zhang, Dongyan Zhao, Jun Zhao, Hai Zhao,
Alisa Zhila, Guangyou Zhou, Muhua Zhu, Heike Zinsmeister, Pierre Zweigenbaum

X1

Invited Talk: Words and People
Rada Mihalcea

University of Michigan

Abstract

What do the words we use say about us and about how we view the world surrounding us? And
what do we - as speakers of those words with our own defining attributes, imply about the words
we utter? In this talk, I will explore the relation between words and people and show how we can
develop cross-cultural word models to identify words with cultural bias — i.e., words that are used
in significantly different ways by speakers from different cultures. Further, I will also show how
we can effectively use information about the speakers of a word (i.e., their gender, culture) to build
better word models.

Biography

Rada Mihalcea is a Professor in the Computer Science and Engineering department at the Uni-
versity of Michigan. Her research interests are in computational linguistics, with a focus on
lexical semantics, multilingual natural language processing, and computational social sciences.
She serves or has served on the editorial boards of the Journals of Computational Linguistics,
Language Resources and Evaluations, Natural Language Engineering, Research in Language in
Computation, IEEE Transactions on Affective Computing, and Transactions of the Association for
Computational Linguistics. She was a program co-chair for the Conference of the Association for
Computational Linguistics (2011) and the Conference on Empirical Methods in Natural Language
Processing (2009), and a general chair for the Conference of the North American Chapter of the
Association for Computational Linguistics (2015). She is the recipient of a National Science Foun-
dation CAREER award (2008) and a Presidential Early Career Award for Scientists and Engineers
awarded by President Obama (2009). In 2013, she was made an honorary citizen of her hometown
of Cluj-Napoca, Romania.

Xii

Invited Talk: Learning Large and Small: How to Transfer NLP Successes to
Low-resource Languages

Trevor Cohn

University of Melbourne

Abstract

Recent advances in NLP have predominantly been based upon supervised learning over large cor-
pora, where rich expressive models, such as deep learning methods, can perform exceptionally
well. However, these state of the art approaches tend to be very data hungry, and consequently do
not elegantly scale down to smaller corpora, which are more typical in many NLP applications.

In this talk, I will describe the importance of small data in our field, drawing particular attention to
so-called “low-" or “under-resourced” languages, for which corpora are scarce, and linguistic an-
notations scarcer yet. One of the key problems for our field is how to translate successes on the few
high-resource languages to practical technologies for the remaining majority of the world’s lan-
guages. I will cover several research problems in this space, including transfer learning between
high- and low-resource languages, active learning for selecting text for annotation, and speech pro-
cessing in a low-resource setting, namely learning to translate audio inputs without transcriptions.
I will finish by discussing open problems in natural language processing that will be critical in
porting highly successful NLP work to the myriad of less-well-studied languages.

Biography

Trevor Cohn is an Associate Professor and ARC Future Fellow at the University of Melbourne,
in the School of Computing and Information Systems. He received Bachelor degrees in Software
Engineering and Commerce, and a PhD degree in Engineering from the University of Melbourne.
He was previously based at the University of Sheffield, and before this worked as a Research
Fellow at the University of Edinburgh. His research interests focus on probabilistic and statistical
machine learning for natural language processing, with applications in several areas including
machine translation, parsing and grammar induction. Current projects include translating diverse
and noisy text sources, deep learning of semantics in translation, rumour diffusion over social
media, and algorithmic approaches for scaling to massive corpora. Dr. Cohn’s research has been
recognised by several best paper awards, including best short paper at EMNLP in 2016. He will
be jointly organising ACL 2018 in Melbourne.

Xiii

Invited Talk: Strategies for Discovering Underlying Linguistic Structure
Jason Eisner

Johns Hopkins University

Abstract

A goal of computational linguistics is to automate the kind of reasoning that linguists do. Given
text in a new language, can we determine the underlying morphemes and the grammar rules that
arrange and modify them?

The Bayesian strategy is to devise a joint probabilistic model that is capable of generating the
descriptions of new languages. Given data from a particular new language, we can then seek
explanatory descriptions that have high prior probability. This strategy leads to fascinating and
successful algorithms in the case of morphology.

Yet the Bayesian approach has been less successful for syntax. It is limited in practice by our ability
to (1) design accurate models and (2) solve the computational problem of posterior inference. I
will demonstrate some remedies: build only a partial (conditional) model, and use synthetic data
to train a neural network that simulates correct posterior inference.

Biography

Jason Eisner is Professor of Computer Science at Johns Hopkins University, where he is also af-
filiated with the Center for Language and Speech Processing, the Machine Learning Group, the
Cognitive Science Department, and the national Center of Excellence in Human Language Tech-
nology. His goal is to develop the probabilistic modeling, inference, and learning techniques
needed for a unified model of all kinds of linguistic structure. His 100+ papers have presented
various algorithms for parsing, machine translation, and weighted finite-state machines; formaliza-
tions, algorithms, theorems, and empirical results in computational phonology; and unsupervised
or semi-supervised learning methods for syntax, morphology, and word-sense disambiguation. He
is also the lead designer of Dyna, a new declarative programming language that provides an in-
frastructure for Al research. He has received two school-wide awards for excellence in teaching.

X1V

Table of Contents

CKY-based Convolutional Attention for Neural Machine Translation
Taiki Watanabe, Akihiro Tamura and Takashi Ninomiya, 1

Supervised Attention for Sequence-to-Sequence Constituency Parsing
Hidetaka Kamigaito, Katsuhiko Hayashi, Tsutomu Hirao, Hiroya Takamura, Manabu Okumura and
Masaaki NaGatattt ettt e e e e e e e 7

Transferring Semantic Roles Using Translation and Syntactic Information
Maryam Aminian, Mohammad Sadegh Rasooliand MonaDiab 13

Neural Lattice Search for Domain Adaptation in Machine Translation
Huda Khayrallah, Gaurav Kumar, Kevin Duh, Matt Post and Philipp Koehn 20

Analyzing Well-Formedness of Syllables in Japanese Sign Language
Satoshi Yawata, Makoto Miwa, Yutaka Sasaki and Daisuke Hara 26

Towards Lower Bounds on Number of Dimensions for Word Embeddings
Kevin Patel and Pushpak Bhattacharyya........... ... i i 31

Sequence to Sequence Learning for Event Prediction
Dai Quoc Nguyen, Dat Quoc Nguyen, Cuong Xuan Chu, Stefan Thater and Manfred Pinkal. .. .37

Input-to-Output Gate to Improve RNN Language Models
Sho Takase, Jun Suzuki and Masaaki Nagata ...ttt 43

Counterfactual Language Model Adaptation for Suggesting Phrases
Kenneth Arnold, Kai-Wei Chang and Adam Kalai............... i i, 49

Deep Automated Multi-task Learning
Davis Liang and Yan Shu.o 55

Post-Processing Techniques for Improving Predictions of Multilabel Learning Approaches
Akshay Soni, Aasish Pappu, Jerry Chia-mau Ni and Troy Chevalier.......................... 61

Learning Kernels over Strings using Gaussian Processes
Daniel Beck and Trevor Cohn.o e 67

Substring Frequency Features for Segmentation of Japanese Katakana Words with Unlabeled Corpora
Yoshinari Fujinuma and Alvin Grissom IL........ i e 74

MONPA: Multi-objective Named-entity and Part-of-speech Annotator for Chinese using Recurrent Neu-
ral Network

Yu-Lun Hsieh, Yung-Chun Chang, Yi-Jie Huang, Shu-Hao Yeh, Chun-Hung Chen and Wen-Lian
HSU . 80

Recall is the Proper Evaluation Metric for Word Segmentation
Yan Shao, Christian Hardmeier and Joakim Nivreo i 86

Low-Resource Named Entity Recognition with Cross-lingual, Character-Level Neural Conditional Ran-
dom Fields
Ryan Cotterell and Kevin Duh e e 91

XV

Segment-Level Neural Conditional Random Fields for Named Entity Recognition
Motoki Sato, Hiroyuki Shindo, Ikuya Yamada and Yuji Matsumoto.......................... 97

Integrating Vision and Language Datasets to Measure Word Concreteness
Gitit Kehat and James PustejovsKy i 103

Semantic Features Based on Word Alignments for Estimating Quality of Text Simplification
Tomoyuki Kajiwara and Atsushi Fujitac e 109

Injecting Word Embeddings with Another Language’s Resource : An Application of Bilingual Embed-
dings
Prakhar Pandey, Vikram Pudi and Manish Shrivastava..............o ... 116

Improving Black-box Speech Recognition using Semantic Parsing
Rodolfo Corona, Jesse Thomason and Raymond Mooney..................coooiiiiaa... 122

Revisiting the Design Issues of Local Models for Japanese Predicate-Argument Structure Analysis
Yuichiroh Matsubayashi and Kentaro Inui............. 128

Natural Language Informs the Interpretation of Iconic Gestures: A Computational Approach
Ting Han, Julian Hough and David Schlangen 134

Modelling Representation Noise in Emotion Analysis using Gaussian Processes
Daniel Beck. 140

Are Manually Prepared Affective Lexicons Really Useful for Sentiment Analysis
Minglei Li, Qin Lu and Yunfei Long. 146

MTNA: A Neural Multi-task Model for Aspect Category Classification and Aspect Term Extraction On
Restaurant Reviews
Wei Xue, Wubai Zhou, Tao Li and Qing Wang. ...ttt 151

Can Discourse Relations be Identified Incrementally?
Frances Yung, Hiroshi Noji and Yuji Matsumoto.ttt 157

Speaker Role Contextual Modeling for Language Understanding and Dialogue Policy Learning
Ta Chung Chi, Po Chun Chen, Shang-Yu Su and Yun-Nung Chen 163

Diversifying Neural Conversation Model with Maximal Marginal Relevance
Yiping Song, Zhiliang Tian, Dongyan Zhao, Ming Zhang and Rui Yan...................... 169

Dialog for Language to Code
Shobhit Chaurasia and Raymond J. MOONEYcoviiie i eiiiieee e 175

Using Analytic Scoring Rubrics in the Automatic Assessment of College-Level Summary Writing Tasks
in L2
Tamara Sladoljev Agejev and Jan Snajder..............ooo i 181

A Statistical Framework for Product Description Generation
Jinpeng Wang, Yutai Hou, Jing Liu, Yunbo Cao and Chin-Yew Lin 187

Automatic Text Summarization Using Reinforcement Learning with Embedding Features
Gyoung Ho Lee and Kong JoO Lee iiiiii e e 193

SSAS: Semantic Similarity for Abstractive Summarization
Raghuram Vadapalli, Litton J Kurisinkel, Manish Gupta and Vasudeva Varma 198

XVi

Taking into account Inter-sentence Similarity for Update Summarization
maali mnasri, Gaél de Chalendar and Olivier Ferret 204

Hyperspherical Query Likelihood Models with Word Embeddings
Ryo Masumura, Taichi Asami, Hirokazu Masataki, Kugatsu Sadamitsu, Kyosuke Nishida and
Ryuichiro Higashinaka. o e 210

Dual Constrained Question Embeddings with Relational Knowledge Bases for Simple Question Answer-

ing
Kaustubh Kulkarni, Riku Togashi, Hideyuki Maeda and Sumio Fujita....................... 217

Efficiency-aware Answering of Compositional Questions using Answer Type Prediction
David Ziegler, Abdalghani Abujabal, Rishiraj Saha Roy and Gerhard Weikum 222

High Recall Open IE for Relation Discovery
Hady Elsahar, Christopher Gravier and Frederique Laforest................ 228

Using Context Events in Neural Network Models for Event Temporal Status Identification
Zeyu Dai, Wenlin Yao and Ruihong Huang........... ... o i 234

Identifying Protein-protein Interactions in Biomedical Literature using Recurrent Neural Networks with
Long Short-Term Memory
Yu-Lun Hsieh, Yung-Chun Chang, Nai-Wen Chang and Wen-Lian Hsu 240

Identifying Empathetic Messages in Online Health Communities
Hamed Khanpour, Cornelia Caragea and Prakhar Biyani................. 246

Fake News Detection Through Multi-Perspective Speaker Profiles
Yunfei Long, Qin Lu, Rong Xiang, Minglei Li and Chu-Ren Huang 252

Improving Neural Text Normalization with Data Augmentation at Character- and Morphological Levels
Itsumi Saito, Jun Suzuki, Kyosuke Nishida, Kugatsu Sadamitsu, Satoshi Kobashikawa, Ryo Ma-
sumura, Yuji Matsumoto and Junji Tomitao 257

Using Social Networks to Improve Language Variety Identification with Neural Networks
Yasuhide Miura, Tomoki Taniguchi, Motoki Taniguchi, Shotaro Misawa and Tomoko Ohkuma 263

Boosting Neural Machine Translation
Dakun Zhang, Jungi Kim, Josep Crego and Jean Senellart 271

Improving Japanese-to-English Neural Machine Translation by Voice Prediction
Hayahide Yamagishi, Shin Kanouchi, Takayuki Sato and Mamoru Komachi 277

Utilizing Lexical Similarity between Related, Low-resource Languages for Pivot-based SMT
Anoop Kunchukuttan, Maulik Shah, Pradyot Prakash and Pushpak Bhattacharyya............ 283

Key-value Attention Mechanism for Neural Machine Translation
Hideya Mino, Masao Utiyama, Eiichiro Sumita and Takenobu Tokunaga.................... 290

Transfer Learning across Low-Resource, Related Languages for Neural Machine Translation
Toan Q. Nguyen and David Chiang........... ..o 296

Concept Equalization to Guide Correct Training of Neural Machine Translation
kangil kim, Jong-Hun Shin, Seung-Hoon Na and SangKeun Jung........................... 302

XVvil

PubMed 200k RCT: a Dataset for Sequential Sentence Classification in Medical Abstracts
Franck Dernoncourt and Ji Young Leeo o i 308

A Parallel Corpus of Python Functions and Documentation Strings for Automated Code Documentation
and Code Generation
Antonio Valerio Miceli Barone and Rico Sennrich 314

Building Large Chinese Corpus for Spoken Dialogue Research in Specific Domains
Changliang Li and Xiuying Wang e e 320

Identifying Speakers and Listeners of Quoted Speech in Literary Works
Chak Yan Yeung and John Lee........ .. i 325

Language-Independent Prediction of Psycholinguistic Properties of Words
YO Bhara . .. 330

Correlation Analysis of Chronic Obstructive Pulmonary Disease (COPD) and its Biomarkers Using the
Word Embeddings
Byeong-Hun Yoon and Yu-Seop Kimo i 337

Reference-based Metrics can be Replaced with Reference-less Metrics in Evaluating Grammatical Error
Correction Systems
Hiroki Asano, Tomoya Mizumoto and Kentaro Inuio oo, 343

CVBed: Structuring CVs usingWord Embeddings
Shweta Garg, Sudhanshu S Singh, Abhijit Mishra and Kuntal Dey.......................... 349

Leveraging Diverse Lexical Chains to Construct Essays for Chinese College Entrance Examination
Liunian Li, Xiaojun Wan, Jin-ge Yao and Siming Yanooiiiiiiiiiiea.... 355

Draw and Tell: Multimodal Descriptions Outperform Verbal- or Sketch-Only Descriptions in an Image
Retrieval Task
Ting Han and David Schlangen i e e 361

Grammatical Error Correction with Neural Reinforcement Learning
Keisuke Sakaguchi, Matt Post and Benjamin VanDurme 366

Coreference Resolution on Math Problem Text in Japanese

Takumi Ito, Takuya Matsuzaki and Satoshi Sato i i, 373
Utilizing Visual Forms of Japanese Characters for Neural Review Classification

Yota Toyama, Makoto Miwa and Yutaka SasaKi...............ccooiiiiiiiiiiiiennnnnn... 378
A Multi-task Learning Approach to Adapting Bilingual Word Embeddings for Cross-lingual Named En-
tity Recognition

Dingquan Wang, Nanyun Peng and KevinDuh i, 383

Investigating the Effect of Conveying Understanding Results in Chat-Oriented Dialogue Systems
Koh Mitsuda, Ryuichiro Higashinaka and Junji Tomita..............., 389

Extracting and Understanding Contrastive Opinion through Topic Relevant Sentences
Ebuka Ibeke, Chenghua Lin, Adam Wyner and Mohamad Hardyman Barawi 395

CWIG3G2 - Complex Word Identification Task across Three Text Genres and Two User Groups
Seid Muhie Yimam, Sanja Stajner, Martin Riedl and Chris Biemann 401

XViil

Generating Stylistically Consistent Dialog Responses with Transfer Learning
Reina Akama, Kazuaki Inada, Naoya Inoue, Sosuke Kobayashi and Kentaro Inui............. 408

Learning to Explain Non-Standard English Words and Phrases
Ke Ni and William Yang Wang.t 413

Towards Abstractive Multi-Document Summarization Using Submodular Function-Based Framework,
Sentence Compression and Merging
Yllias Chali, Moin Tanvee and Mir Tafseer Nayeem.............. ..., 418

Domain Adaptation for Relation Extraction with Domain Adversarial Neural Network
Lisheng Fu, Thien Huu Nguyen, Bonan Min and Ralph Grishman 425

Lexical Simplification with the Deep Structured Similarity Model
Lis Pereira, Xiaodong Liuand John Lee i, 430

Proofread Sentence Generation as Multi-Task Learning with Editing Operation Prediction
Yuta Hitomi, Hideaki Tamori, Naoaki Okazaki and KentaroInui............................ 436

An Exploration of Data Augmentation and RNN Architectures for Question Ranking in Community Ques-
tion Answering
Charles Chen and Razvan Bunescu e 442

Deriving Consensus for Multi-Parallel Corpora: an English Bible Study
Patrick Xia and David YarowsKyt e 448

X1X

Conference Program

Tuesday, November 28, 2017

11:50-12:00 Machine Translation 1

11:50-12:00 CKY-based Convolutional Attention for Neural Machine Translation
Taiki Watanabe, Akihiro Tamura and Takashi Ninomiya

Tuesday, November 28, 2017

11:50-12:00 Syntax and Parsing

11:50-12:00 Supervised Attention for Sequence-to-Sequence Constituency Parsing
Hidetaka Kamigaito, Katsuhiko Hayashi, Tsutomu Hirao, Hiroya Takamura, Man-
abu Okumura and Masaaki Nagata

Tuesday, November 28, 2017
11:50-12:00 Semantics 1
11:50-12:00 Transferring Semantic Roles Using Translation and Syntactic Information

Maryam Aminian, Mohammad Sadegh Rasooli and Mona Diab

Tuesday, November 28, 2017

XX1

Tuesday, November 28, 2017 (continued)

14:50-15:00 Machine Translation 2
14:50-15:00 Neural Lattice Search for Domain Adaptation in Machine Translation
Huda Khayrallah, Gaurav Kumar, Kevin Duh, Matt Post and Philipp Koehn

Tuesday, November 28, 2017

14:50-15:00 Segmentation and Tagging
14:50-15:00 Analyzing Well-Formedness of Syllables in Japanese Sign Language
Satoshi Yawata, Makoto Miwa, Yutaka Sasaki and Daisuke Hara

Tuesday, November 28, 2017

14:50-15:00 Semantics 2
14:50-15:00 Towards Lower Bounds on Number of Dimensions for Word Embeddings
Kevin Patel and Pushpak Bhattacharyya

Tuesday, November 28, 2017

15:30-17:30 Poster and Demo
Sequence to Sequence Learning for Event Prediction
Dai Quoc Nguyen, Dat Quoc Nguyen, Cuong Xuan Chu, Stefan Thater and Manfred
Pinkal

Input-to-Output Gate to Improve RNN Language Models
Sho Takase, Jun Suzuki and Masaaki Nagata

Counterfactual Language Model Adaptation for Suggesting Phrases
Kenneth Arnold, Kai-Wei Chang and Adam Kalai

Deep Automated Multi-task Learning
Davis Liang and Yan Shu

XXil

Tuesday, November 28, 2017 (continued)

Post-Processing Techniques for Improving Predictions of Multilabel Learning Ap-
proaches
Akshay Soni, Aasish Pappu, Jerry Chia-mau Ni and Troy Chevalier

Learning Kernels over Strings using Gaussian Processes
Daniel Beck and Trevor Cohn

Substring Frequency Features for Segmentation of Japanese Katakana Words with
Unlabeled Corpora
Yoshinari Fujinuma and Alvin Grissom II

MONPA: Multi-objective Named-entity and Part-of-speech Annotator for Chinese
using Recurrent Neural Network

Yu-Lun Hsieh, Yung-Chun Chang, Yi-Jie Huang, Shu-Hao Yeh, Chun-Hung Chen
and Wen-Lian Hsu

Recall is the Proper Evaluation Metric for Word Segmentation
Yan Shao, Christian Hardmeier and Joakim Nivre

Low-Resource Named Entity Recognition with Cross-lingual, Character-Level Neu-
ral Conditional Random Fields
Ryan Cotterell and Kevin Duh

Segment-Level Neural Conditional Random Fields for Named Entity Recognition
Motoki Sato, Hiroyuki Shindo, Ikuya Yamada and Yuji Matsumoto

Integrating Vision and Language Datasets to Measure Word Concreteness
Gitit Kehat and James Pustejovsky

Semantic Features Based on Word Alignments for Estimating Quality of Text Sim-
plification
Tomoyuki Kajiwara and Atsushi Fujita

Injecting Word Embeddings with Another Language’s Resource : An Application of
Bilingual Embeddings

Prakhar Pandey, Vikram Pudi and Manish Shrivastava

Improving Black-box Speech Recognition using Semantic Parsing
Rodolfo Corona, Jesse Thomason and Raymond Mooney

Revisiting the Design Issues of Local Models for Japanese Predicate-Argument

Structure Analysis
Yuichiroh Matsubayashi and Kentaro Inui

XX1il

Tuesday, November 28, 2017 (continued)

Natural Language Informs the Interpretation of Iconic Gestures: A Computational
Approach
Ting Han, Julian Hough and David Schlangen

Modelling Representation Noise in Emotion Analysis using Gaussian Processes
Daniel Beck

Are Manually Prepared Affective Lexicons Really Useful for Sentiment Analysis
Minglei Li, Qin Lu and Yunfei Long

MTNA: A Neural Multi-task Model for Aspect Category Classification and Aspect
Term Extraction On Restaurant Reviews
Wei Xue, Wubai Zhou, Tao Li and Qing Wang

Can Discourse Relations be Identified Incrementally?
Frances Yung, Hiroshi Noji and Yuji Matsumoto

Speaker Role Contextual Modeling for Language Understanding and Dialogue Pol-
icy Learning
Ta Chung Chi, Po Chun Chen, Shang-Yu Su and Yun-Nung Chen

Diversifying Neural Conversation Model with Maximal Marginal Relevance
Yiping Song, Zhiliang Tian, Dongyan Zhao, Ming Zhang and Rui Yan

Dialog for Language to Code
Shobhit Chaurasia and Raymond J. Mooney

Using Analytic Scoring Rubrics in the Automatic Assessment of College-Level Sum-
mary Writing Tasks in L2
Tamara Sladoljev Agejev and Jan Snajder

A Statistical Framework for Product Description Generation
Jinpeng Wang, Yutai Hou, Jing Liu, Yunbo Cao and Chin-Yew Lin

Automatic Text Summarization Using Reinforcement Learning with Embedding Fea-
tures

Gyoung Ho Lee and Kong Joo Lee

SSAS: Semantic Similarity for Abstractive Summarization
Raghuram Vadapalli, Litton J Kurisinkel, Manish Gupta and Vasudeva Varma

XX1V

Tuesday, November 28, 2017 (continued)

Taking into account Inter-sentence Similarity for Update Summarization
maali mnasri, Gaél de Chalendar and Olivier Ferret

Hyperspherical Query Likelihood Models with Word Embeddings
Ryo Masumura, Taichi Asami, Hirokazu Masataki, Kugatsu Sadamitsu, Kyosuke
Nishida and Ryuichiro Higashinaka

Dual Constrained Question Embeddings with Relational Knowledge Bases for Sim-
ple Question Answering
Kaustubh Kulkarni, Riku Togashi, Hideyuki Maeda and Sumio Fujita

Efficiency-aware Answering of Compositional Questions using Answer Type Pre-
diction
David Ziegler, Abdalghani Abujabal, Rishiraj Saha Roy and Gerhard Weikum

High Recall Open IE for Relation Discovery
Hady Elsahar, Christopher Gravier and Frederique Laforest

Using Context Events in Neural Network Models for Event Temporal Status Identi-
fication
Zeyu Dai, Wenlin Yao and Ruihong Huang

ldentifying Protein-protein Interactions in Biomedical Literature using Recurrent
Neural Networks with Long Short-Term Memory
Yu-Lun Hsieh, Yung-Chun Chang, Nai-Wen Chang and Wen-Lian Hsu

Identifying Empathetic Messages in Online Health Communities
Hamed Khanpour, Cornelia Caragea and Prakhar Biyani

Fake News Detection Through Multi-Perspective Speaker Profiles
Yunfei Long, Qin Lu, Rong Xiang, Minglei Li and Chu-Ren Huang

Improving Neural Text Normalization with Data Augmentation at Character- and
Morphological Levels

Itsumi Saito, Jun Suzuki, Kyosuke Nishida, Kugatsu Sadamitsu, Satoshi
Kobashikawa, Ryo Masumura, Yuji Matsumoto and Junji Tomita

Using Social Networks to Improve Language Variety Identification with Neural Net-
works

Yasuhide Miura, Tomoki Taniguchi, Motoki Taniguchi, Shotaro Misawa and
Tomoko Ohkuma

Boosting Neural Machine Translation
Dakun Zhang, Jungi Kim, Josep Crego and Jean Senellart

XXV

Tuesday, November 28, 2017 (continued)

Improving Japanese-to-English Neural Machine Translation by Voice Prediction
Hayahide Yamagishi, Shin Kanouchi, Takayuki Sato and Mamoru Komachi

Utilizing Lexical Similarity between Related, Low-resource Languages for Pivot-
based SMT
Anoop Kunchukuttan, Maulik Shah, Pradyot Prakash and Pushpak Bhattacharyya

Key-value Attention Mechanism for Neural Machine Translation
Hideya Mino, Masao Utiyama, Eiichiro Sumita and Takenobu Tokunaga

Transfer Learning across Low-Resource, Related Languages for Neural Machine
Translation
Toan Q. Nguyen and David Chiang

Concept Equalization to Guide Correct Training of Neural Machine Translation
kangil kim, Jong-Hun Shin, Seung-Hoon Na and SangKeun Jung

PubMed 200k RCT: a Dataset for Sequential Sentence Classification in Medical
Abstracts
Franck Dernoncourt and Ji Young Lee

A Parallel Corpus of Python Functions and Documentation Strings for Automated
Code Documentation and Code Generation
Antonio Valerio Miceli Barone and Rico Sennrich

Building Large Chinese Corpus for Spoken Dialogue Research in Specific Domains
Changliang Li and Xiuying Wang

Identifying Speakers and Listeners of Quoted Speech in Literary Works
Chak Yan Yeung and John Lee

Language-Independent Prediction of Psycholinguistic Properties of Words
Yo Ehara

Correlation Analysis of Chronic Obstructive Pulmonary Disease (COPD) and its
Biomarkers Using the Word Embeddings
Byeong-Hun Yoon and Yu-Seop Kim

Reference-based Metrics can be Replaced with Reference-less Metrics in Evaluating

Grammatical Error Correction Systems
Hiroki Asano, Tomoya Mizumoto and Kentaro Inui

XXVi

Tuesday, November 28, 2017 (continued)

CVBed: Structuring CVs usingWord Embeddings
Shweta Garg, Sudhanshu S Singh, Abhijit Mishra and Kuntal Dey

Leveraging Diverse Lexical Chains to Construct Essays for Chinese College En-
trance Examination

Liunian Li, Xiaojun Wan, Jin-ge Yao and Siming Yan

Draw and Tell: Multimodal Descriptions Outperform Verbal- or Sketch-Only De-

scriptions in an Image Retrieval Task
Ting Han and David Schlangen

Wednesday, November 29, 2017

11:50-12:00 Machine Learning 1

11:50-12:00 Grammatical Error Correction with Neural Reinforcement Learning

Keisuke Sakaguchi, Matt Post and Benjamin Van Durme

Wednesday, November 29, 2017

11:50-12:00 Discourse 1

11:50-12:00 Coreference Resolution on Math Problem Text in Japanese
Takumi Ito, Takuya Matsuzaki and Satoshi Sato

XX Vil

Wednesday, November 29, 2017

11:50-12:00 Sentiment and Opinion 1

11:50-12:00 Utilizing Visual Forms of Japanese Characters for Neural Review Classification
Yota Toyama, Makoto Miwa and Yutaka Sasaki

Wednesday, November 29, 2017

14:50-15:00 Machine Learning 2
14:50-15:00 A Multi-task Learning Approach to Adapting Bilingual Word Embeddings for Cross-

lingual Named Entity Recognition
Dingquan Wang, Nanyun Peng and Kevin Duh

Wednesday, November 29, 2017

14:50-15:00 Discourse 2

14:50-15:00 Investigating the Effect of Conveying Understanding Results in Chat-Oriented Dia-
logue Systems
Koh Mitsuda, Ryuichiro Higashinaka and Junji Tomita

Wednesday, November 29, 2017

XXViil

Wednesday, November 29, 2017 (continued)

14:50-15:00 Sentiment and Opinion 2
14:50-15:00 Extracting and Understanding Contrastive Opinion through Topic Relevant Sen-

tences
Ebuka Ibeke, Chenghua Lin, Adam Wyner and Mohamad Hardyman Barawi

Wednesday, November 29, 2017

16:50-17:00 Word

16:50-17:00 CWIG3G2 - Complex Word Identification Task across Three Text Genres and Two
User Groups
Seid Muhie Yimam, Sanja Stajner, Martin Riedl and Chris Biemann

Wednesday, November 29, 2017

16:50-17:00 Dialogue

16:50-17:00 Generating Stylistically Consistent Dialog Responses with Transfer Learning
Reina Akama, Kazuaki Inada, Naoya Inoue, Sosuke Kobayashi and Kentaro Inui

Wednesday, November 29, 2017
16:50-17:00 Web and Social Media

16:50-17:00 Learning to Explain Non-Standard English Words and Phrases
Ke Ni and William Yang Wang

XXiX

Thursday, November 30, 2017

11:50-12:00 Summarization

11:50-12:00 Towards Abstractive Multi-Document Summarization Using Submodular Function-
Based Framework, Sentence Compression and Merging
Yllias Chali, Moin Tanvee and Mir Tafseer Nayeem

Thursday, November 30, 2017

11:50-12:00 Information Extraction

11:50-12:00 Domain Adaptation for Relation Extraction with Domain Adversarial Neural Net-
work
Lisheng Fu, Thien Huu Nguyen, Bonan Min and Ralph Grishman

Thursday, November 30, 2017

11:50-12:00 NLP Application

11:50-12:00 Lexical Simplification with the Deep Structured Similarity Model

Lis Pereira, Xiaodong Liu and John Lee

Thursday, November 30, 2017

XXX

Thursday, November 30, 2017 (continued)

14:50-15:00 Generation
14:50-15:00 Proofread Sentence Generation as Multi-Task Learning with Editing Operation Pre-

diction
Yuta Hitomi, Hideaki Tamori, Naoaki Okazaki and Kentaro Inui

Thursday, November 30, 2017

14:50-15:00 Documents and Questions
14:50-15:00 An Exploration of Data Augmentation and RNN Architectures for Question Ranking

in Community Question Answering
Charles Chen and Razvan Bunescu

Thursday, November 30, 2017

14:30-14:40 Resources and Tools

14:30-14:40 Deriving Consensus for Multi-Parallel Corpora: an English Bible Study
Patrick Xia and David Yarowsky

XXX1

CKY-based Convolutional Attention for Neural Machine Translation

Taiki Watanabe and Akihiro Tamura and Takashi Ninomiya
Ehime University
3 Bunkyo-cho, Matsuyama, Ehime, JAPAN

{t_watanabe@ai.cs,

Abstract

This paper proposes a new attention
mechanism for neural machine transla-
tion (NMT) based on convolutional neu-
ral networks (CNNs), which is inspired
by the CKY algorithm. The proposed at-
tention represents every possible combi-
nation of source words (e.g., phrases and
structures) through CNNs, which imitates
the CKY table in the algorithm. NMT,
incorporating the proposed attention, de-
codes a target sentence on the basis of
the attention scores of the hidden states
of CNNs. The proposed attention en-
ables NMT to capture alignments from un-
derlying structures of a source sentence
without sentence parsing. The evalua-
tions on the Asian Scientific Paper Excerpt
Corpus (ASPEC) English-Japanese trans-
lation task show that the proposed atten-
tion gains 0.66 points in BLEU.

1 Introduction

Recently, neural machine translation (NMT) based
on neural networks (NNs) is known to provide
both high-precision and human-like translation
through its simple architecture. In NMT, the
encoder-decoder model, which is intensively stud-
ied, converts a source-language sentence into a
fixed-length vector and then generates a target-
language sentence from the vector by using re-
current NNs (RNNs) with gated recurrent units
(GRUs) (Choetal., 2014a) or long short-term
memory (LSTM) (Hochreiter and Schmidhuber,
1997; Gers et al., 2000; Sutskever et al., 2014).
An attention-based NMT (ANMT) is one of the
state-of-the-art technologies for MT, which is an
extension of the encoder-decoder model and pro-
vides highly accurate translation (Luong et al.,

tamura@cs,

1

ninomiya@cs}.ehime-u.ac. jp

2015; Dzmitry et al., 2015). ANMT is a method of
translation in which the decoder generates a target-
language sentence, referring to the history of the
encoder’s hidden layer state.

The encoder-decoder model has also been ex-
tended to syntax-based NMT, which utilizes struc-
tures of source sentences, target sentences, or
both. In particular, Eriguchi et al. (2016b) have
shown that a source-side structure (i.e., constituent
trees of source sentences) are useful for NMT
on the English-Japanese translation. However,
syntax-based NMT requires sentence parsing in
advance.

This paper proposes a new attention mechanism
for NMT based on convolutional neural networks
(CNNss) to leverage the structures of source sen-
tences in NMT without parsing. In the parsing
field, the CKY algorithm (Kasami, 1965; Younger,
1967) parses a sentence in a bottom-up manner
through the CKY table, which efficiently consid-
ers all possible combinations of words and rep-
resents the structure of the sentence through dy-
namic programming. Inspired by the algorithm,
we incorporate CNNs that imitate the CKY table
into the attention mechanism of ANMT. In par-
ticular, the proposed attention constructs CNNs in
the same order as the calculation procedures in the
CKY table, and then ANMT decodes a target sen-
tence by referring to each state of the hidden lay-
ers of CNNs, which corresponds to each cell in
the CKY table. The proposed attention enables the
ANMT model to capture underlying structures of
a source sentence that are useful for a prediction
of each target word, without sentence parsing in
advance.

The evaluations on the ASPEC English-
Japanese translation task (Nakazawa et al., 2016)
show that the proposed attention gains 0.66 points
in BLEU. Furthermore, they show that our atten-
tion can capture structural alignments (e.g., align-

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 1-6,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

ment to a case structure), which is not a word-level
alignment.

There are several previous studies on NMT
using CNNs (Kalchbrenner and Blunsom,
2013; Choetal., 2014b; Lamb and Xie, 2016;
Kalchbrenner et al., 2016). Their models consist
of serially connected multi-layer CNNs for en-
coders or decoders, similar to image recognition
CNNs for 1D image processing. Therefore,
their models do not have any direct mecha-
nisms for dealing with the connections between
phrases/words in long distance. Our model adopts
CKY-based connections between multi-layer
CNNs, which enables the NMT to calculate direct
connections between phrases/words in encoders,
and the attention mechanism enables the NMT
to capture structural alignment between decoders
and encoders!.

2 Attention-based NMT (ANMT)

ANMT (Luong et al., 2015; Dzmitry et al., 2015)
is an extension of the encoder-decoder model
(Sutskever et al., 2014; Cho et al., 2014a). The
model uses its RNN encoder to convert a source-
language sentence into a fixed-length vector and
then uses its RNN decoder to generate a target-
language sentence from the vector.

We used a bi-directional two-layer LSTM net-
work as the encoder. Given a source-language sen-
tence x = x1, 2, - -, 2T, the encoder represents
the i-th word, x;, as a d-dimensional vector, v;, by
a word embedding layer. The encoder then com-
putes the hidden state of v;, h;, as follows:

WY = LsTMD (vy), (1)

«—

hY = LsTM D (vy),)
—

n = Lsru @) 1,)

— —

W = LsTM@ () +n, @

o
b= b 1+ 00, 5)

where — and <« indicate the forward direction
(i.e., from the beginning to the end of a sentence)
and the reverse direction, respectively. LST M (1)
and LSTM) represent the first- and second-
layer LSTM encoders, respectively. The dimen-

sions of hgl), hl(l ,hl(?), hl(-2 , and h; are d.

'In a preliminary experiment, we directly applied a CNN
to the encoder of the encoder-decoder model. However, the
method (BLEU: 25.91) does not outperform our proposed
method (BLEU: 26.75).

In ANMT, the decoder generates a target-
language sentence, referring to the hidden layer’s
states of the LSTM encoder, h;. The attention
mechanism explained below is called global atten-
tion (dot) (Luong et al., 2015). We used a two-
layer LSTM network as the decoder. The ini-
tial states of the first- and second-layer LSTM de-
coders are initialized as the states of the first- and
second-layer LSTM encoders in the reverse direc-
tion, respectively.

Each s(tz;te of t(hg: hidden layers of LSTM de-

1 2

coders, s; ' and s

J 5+ 1s calculated by

—

s = LSTMD (jw;_1:5,1]), (6)
st = LSTM® (s\D),)

—~ <

<

where w;_1 indicates word embedding of the out-
put word y;_1, ;" represents a concatenation of
matrices, and §;_1 is an attentional vector used
for generating the output word y;_1, which is ex-
plained below?.

The dimensions of w;_; and 5;_1 are d. The
attention score o(1) is calculated as follows:
(2))

exp(hi - s;

STy eap(hy, - s%)

The context vector c; for generating a target-
language sentence is calculated by

®)

ozj(i

T
¢ =Y a;(i)h;. ©)
=1

The attentional vector 5; is calculated by using the
context vector as follows:

§j = tanh(We[s¥); ¢;]), (10)

and then using the state of this hidden layer, the
probability of the output word y; is given by

p(Y;ly<j, x) = softmaz(Wss;), QY

where W, and Wy represent weight matrices.
3 NMT with CKY-based Convolutional
Attention

Figure 1 shows the overall structure of the pro-
posed attention. In the proposed attention, a gen-

Providing an attentional vector as inputs to the LSTM in
the next time step is called input feeding (Luong et al., 2015).

3In our experiments, target sentences are generated by the
greedy algorithm on the basis of output probabilities.

hy h, hr_1 hr S1 Sj—1

Figure 1: Overall View of CKY-based Attention

erative rule in the CKY algorithm is imitated by
the network structure shown in Figure 2. We
call the network as the Deduction Unit (DU). In
a DU, four types of CNNs are connected by a
residual connection®. In Figure 2, the size of fil-
ters and the number of output channels for each
CNN are shown in a parenthesis. In particular, the
filter sizes of CNN1, CNN2, CNN3, and CNN4,
are 1 x 1,1 x2,1x1, and 1 x 2, and their
channel numbers are %, %l, d, and d, respectively.
Each DU receives d-dimensional vectors (states)
of two cells in a CKY table and computes a d-
dimensional vector for an upper-level cell, which
corresponds to a generation rule in the CKY al-
gorithm. By using DUs, the state of each cell in
a CKY table is induced by folding the states of
lower-level cells in the same order as the calcu-
lation procedures in the CKY algorithm. We call
the network for this overall procedure as the CKY-
CNN. We hereafter denote the state of the j-th cell
in the i-th CKY-CNN layer as 2{"). Note that
the states of the first-layer of the CKY-CNN (.e.,
h(ICky) = (hgf’fy), - hgﬁy))) are set to the states
of the LSTM encoder (i.e., h = (hq,...,h7)). In
the CKY-CNN, the state of a cell is induced from
multiple candidates of outputs from DUs, similar
to the CKY algorithm. Specifically, the state of a
cell is set to the output vector with the highest sum
of values of all dimensions as follows:

hl(’cjky) = Maxlgkgi—lDU(hécjy)> hgiklngrk)

(12)

“Through a preliminary experiment, we confirmed that
a simple DU composed of one type of CNN did not work
well. Therefore, we have improved the DU in reference to
(He et al., 2016).

Batch Normalization 1

Input (1 X2 X d)

CNN1(1 x 1% 5)
Batch Normalization 2

Input(1 X 2 X d)

Output(1 X 1 X d)

Output(1 X2 X %)

Input(1x2x5)

CNN2(1 X 2 % %)
Batch Normalization 3

Output(1 X 1X g)

Input(1x 1% %)

CNN3(1 X 1 X d)

(H X W X channels)
Output(1Xx1xd)

Figure 2: Deduction Unit in CK'Y-based Attention

hs 1 CKY-CNN layer 5

P haa h4,z CKY-CNN layer 4

hs3 CKY-CNN layer 3

L han | s

=
21 K_hz,s haa4

DU

- iy | s | hus [| s

wq wy W3 Wy Ws

CKY-CNN layer 2

CKY-CNN layer 1

Figure 3: An Example of Max-pooling with CKY-
CNN

Figure 3 shows an example of convolutions in the
CKY-CNN, highlighting the process of generating
the state of the yellow cell. In this process, three
DUs generate vectors based on the states of the
two blue cells, those of the two red cells, and those
of the two green cells, respectively. The vector
with the highest sum of vector elements is then set
to the state of the yellow cell. Through the CKY-
CNN, the states of the cells in a CKY table (h(Cky))
are obtained.

NMT with the CKY-based convolutional atten-
tion decodes a target sentence by referring to the
states of the hidden layers of the CKY-CNN in ad-
dition to the states of the hidden layer of the LSTM
encoder. The alignment scores are calculated as
follows:

/ . .
a (i,)
= efﬂp(hrs;Z))
= N C
Doy cop(hiesy)AY ey Dy ean(hyy”si)

13)

o’ (i1, 2,)

ezpmg;kf; s%)

= T T—k+1
z:k:16$p(hk5§) +§:k:1 =1 ¥

Note that 35-2) is the hidden layer’s state of the
second-layer LSTM encoder (see Section 2). The
context vector c;- for CKY-CNN is calculated by

T T T—k+1
=3 (k,h+ > Z "k, L)RS,
k=1 k=1 I=1

(15)
5j is calculated on the basis of the context vector
of the LSTM encoder (c;), which is defined in Sec-

tion 2, and that of the CKY-CNN (c;-) as follows:

5 = tanh(W[s\”; ¢js),

(16)
where W € R?*3? js a weight matrix. By apply-
ing the softmax function to the 5; in the same way
as in the conventional ANMT (see Section 2), the
encoder predicts the j-th target word.

4 Experiments

4.1 Settings

We used Asian Scientific Paper Excerpt Corpus
(ASPEC)’s English-Japanese corpus’ in this ex-
periment. We used the Moses decoder for word
segmentation of the English corpus and Kytea
(Neubig et al., 2011) for the Japanese corpus. For
each corpus, all characters are lowercased. We
used the first 100,000 sentences (< 50 words)
for training, 1,790 sentences for parameter tuning,
and 1,812 sentences for testing. The words that
appeared less than twice in the training data were
replaced with the special symbol UNK.

The number of dimensions of word vectors and
hidden layers was 256. Adam (Kingsma and Ba,
2014) was used for learning each parameter, and
the initial values of the parameters were set to
a = 0.01, 51 = 0.9, and G2 = 0.99. The learning
rate was halved after 9 and 12 epochs. A gradient
clipping technique was used with a clipping value
of 3.0, following (Eriguchi et al., 2016a). We used
dropout (Srivastava et al., 2014) and weight de-
cay to prevent over-fitting. The dropout ratio for
LSTMs was 0.2, that for the CNN was 0.3, and
the weight decay coefficient was 1076,

AT
(14)

Table 1: Evaluation Results

BLEU (%)
Baseline Model 26.09
Proposed Model 26.75

4.2 Results

We compared the NMT with the CKY-based con-
volutional attention (see Section 3) with the NMT
with the conventional attention (see Section 2) to
confirm the effectiveness of the proposed CKY-
based attention. The only difference between the
baseline and the proposed model is their attention
mechanisms. Table 1 shows the translation perfor-
mance by BLEU (Papineni et al., 2002). For ref-
erence, we obtained a 18.69% BLEU score using
the Moses phrase-based statistical machine trans-
lation system (Koehn et al., 2007) with the default
settings.

Table 1 shows that the proposed model outper-
forms the baseline model, which indicates that the
proposed attention is useful for NMT.

Figure 4 shows the attention scores of an in-
stance in the test data. The deeper color of a
cell represents a higher attention score. The ver-
tical axis represents a source sentence. In Fig-
ure 4, the test sentence is "finally, this paper de-
scribes the recent trend and problems in this field
". The horizontal axis indicates the depth of the
CKY-CNN. Note that an attention score of the first
layer of the CKY-CNN corresponds to an atten-
tion score of the hidden layer of the LSTM. Figure
4 shows that for the words whose alignments are
clearly defined such as content words (e.g., "B /%
(finally)", "3 87 (field)", "%k X (describe)"), high
alignment scores are located in the first layer. On
the other hand, for the words whose alignments are
not clearly defined such as function words (e.g., "
2", ", "5 "), high alignment scores are located
at a deeper layer. The Japanese word "IZ" shows
a case structure, and "1J" and " %" are parts of the
Japanese preposition " 1F % (in)". This indicates
that while the conventional attention finds word-
level alignments, the proposed attention captures
structural alignments.

Shttp://orchid.kuee.kyoto-u.ac.jp
/WAT/WAT2015/index.html

finally - firally

descroes [}

1 2 3 4 5 6 7 8 9 10 11 12 13 14

&% (finally)

1 2 3 4 5 6 7

5% (field)

§ 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14

B~ (describe)

1 2 3 4 5 6 7 8 9 10 1 12 13 14

IZ(function word)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

[T (function word)

1 2 3 4 5 6 7 8 9 10 11 12 13 14

%(function word)

Figure 4: Examples of Attention Scores

5 Conclusions

This paper proposed an attention mechanism for
NMT based on CNNs, which imitates the CKY al-
gorithm. The evaluations on the ASPEC English-
Japanese translation task showed that the proposed
attention gained 0.66 points in BLEU and cap-
tured structural alignments, which could not be
captured by a conventional attention mechanism.
The proposed model consumes excessive amounts
of memory because the proposed model keeps hid-
den states of all cells in a CKY table. In future,
we would like to improve the proposed attention
in terms of memory consumption, and then ver-
ify the effectiveness of the proposed attention for
larger datasets.

Acknowledgements

This work was supported by JSPS Grants-in-Aid
for Scientific Research Grant Number 25280084.
We are grateful to Shinsuke Mori, Kazuma
Hashimoto, and Akiko Eriguchi for their technical
advice to this work.

References

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014a. Learning
phrase representations using rnn encoder—decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1724-1734.

Kyunghyun Cho, Bart Van Merriénboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014b. On the proper-
ties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259.

Bahdanau Dzmitry, Cho KyungHyun, and Bengio
Yoshua. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the 3rd International Conference on Learning Rep-
resentations.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016a. Character-based decoding in tree-
to-sequence attention-based neural machine transla-
tion. In Proceedings of the 3rd workshop on Asian
Translation, pages 175-183.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016b. Tree-to-sequence attentional neu-
ral machine translation. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 823—833.

Felix A Gers, Jiirgen Schmidhuber, and Fred Cummins.
2000. Learning to forget: Continual prediction with
Istm. Neural computation, 12(10):2451-2471.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 770—
778.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of
the 2013 Conference on Empirical Methods in Nat-
ural Language Processing, page 413.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan,
Aaron van den Oord, Alex Graves, and Koray
Kavukcuoglu. 2016. Neural machine translation in
linear time. arXiv preprint arXiv:1610.10099.

Tadao Kasami. 1965. An efficient recognition and syn-
tax algorithm for context-free languages. Technical
Report AFCRL-65-758.

Diederik Kingsma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In 5th Interna-
tional Conference on Learning Representations.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the Associ-
ation for Computational Linguistics on interactive
poster and demonstration sessions, pages 177-180.

Andrew Lamb and Michael Xie. 2016. Convolutional
encoders for neural machine translation. arXiv
preprint arXiv:1611.02344.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1412-1421.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao
Kurohashi, and Hitoshi Isahara. 2016. Aspec: Asian
scientific paper excerpt corpus. In Proceedings of
the Ninth International Conference on Language Re-

sources and Evaluation, pages 2204-2208.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori.
2011. Pointwise prediction for robust, adaptable
japanese morphological analysis. In Proceedings of
the 49th Annual Meeting of the Association for Com-
putational Linguistics, pages 529-533.

Kishore Papineni, Salam Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks

from overfitting. Journal of Machine Learning Re-
search, 15(1):1929-1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems, pages 3104-3112.

Daniel H. Younger. 1967. Recognition and parsing of
context-free languages in time n>. Information and
Control, 2(10):189-208.

Hidetaka Kamigaitof, Katsuhiko Hayashi,
Tsutomu Hirao and Masaaki Nagata

Supervised Attention for Sequence-to-Sequence Constituency Parsing

NTT Communication Science Laboratories, NTT Corporation
2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto, 619-0237, Japan
Tkamigaito.hidetaka@lab.ntt.co.jp

Hiroya Takamura and Manabu Okumura
Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan

Abstract

The sequence-to-sequence (Seq2Seq)
model has been successfully applied to
machine translation (MT). Recently, MT
performances were improved by incorpo-
rating supervised attention into the model.
In this paper, we introduce supervised
attention to constituency parsing that can
be regarded as another translation task.
Evaluation results on the PTB corpus
showed that the bracketing F-measure was
improved by supervised attention.

1 Introduction

The sequence-to-sequence (Seq2Seq) model has
been successfully used in natural language genera-
tion tasks such as machine translation (MT) (Bah-
danau et al., 2014) and text summarization (Rush
et al., 2015). In the Seq2Seq model, attention,
which encodes an input sentence by generating an
alignment between output and input words, plays
an important role. Without the attention mecha-
nism, the performance of the Seq2Seq model de-
grades significantly (Bahdanau et al., 2014). To
improve the alignment quality, Mi et al. (2016),
Liu et al. (2016), and Chen et al. (2016) proposed
a method that learns attention with the given align-
ments in a supervised manner, which is called su-
pervised attention. By utilizing supervised atten-
tion, the translation quality of MT is improved.
The Seq2Seq model can also be applied to other
NLP tasks. We can regard parsing as a transla-
tion task from a sentence to an S-expression, and
Vinyals et al. (2015) proposed a constituent pars-
ing method based on the Seq2Seq model. Their
method achieved the state-of-the-art performance.

7

<s> <[s>

S s

/\

(NP np (VP Hvp
XX XX XX (NP e
the chef cooks XX XX

the soup

Figure 1: S-expression format for Vinyals et al.
(2015)’s Seq2seq constituency parser. The
Seq2seq model employs “<s> (S (NP XX XX)np
(VP XX (NP XX XX)np)vp)s </s>" as output
tokens. <s> and </s> are start and end of sen-
tence symbols, respectively.

In their method, based on the alignment be-
tween a nonterminal and input words, the attention
mechanism has also an important role. However,
since the attention is learned in an unsupervised
manner, the alignment quality might not be opti-
mal. If we can raise the quality of the alignments,
the parsing performance will be improved. Un-
like MT, however, the definition of a gold standard
alignment is not clear for the parsing tasks.

In this paper, we define several linguistically-
motivated annotations between surface words and
nonterminals as “gold standard alignments” to en-
hance the attention mechanism of the constituency
parser (Vinyals et al., 2015) by supervised atten-
tion. The PTB corpus results showed that our
method outperformed Vinyals et al. (2015) by over
1 point in the bracketing F-measure.

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 7-12,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

(SBARQ (WHADVP XX)WHADVP
\
hq dy do ds dy

hs

2
\

NG I N
hy \ h 5 \) 2‘ ‘ h 1‘
b LSTM; LSTM2 ‘ ‘ LSTM LSTM,

Y

-
@

o

T T T Y Y o S Py ' I A - Gk ¥
LSTM; LSTM; LSTM; ‘ \LSTM1 ‘ \L\STM, ‘ \LSTMI ‘ ‘LSTMd‘ \LLSTMg LSTM; LSTM;
</s> ? next ’s What <s> <s> (SBARQ (WHADVP XX

Figure 2: Network structure of our sequence-to-sequence model.

2 Sequence-to-Sequence based
Constituency Parser on Supervised
Attention Framework

The Seq2Seq constituency parser (Vinyals
et al, 2015) predicts nonterminal Ia-
bels y = (y1,.,Ym), for input words
x = (x1, ..., zp), Where m and n are respectively

the lengths of the word and the label sequences.
As shown in Fig. 1, we use normalized labels
(Vinyals et al.,, 2015) in our Seq2Seq model,
which consists of encoder and decoder parts. Its
overall structure is shown in Fig. 2.

The encoder part employs a 3-layer stacked bi-
directional Long Short-Term Memory (LSTM) to
encode input sentence x into a sequence of hidden
states h = (hq, ..., hy,). Each h; is a concatenation
of forward hidden layer ﬁz and backward hidden
layer %Z
initial state.

The decoder part employs a 3-layer stacked for-
ward LSTM to encode previously predicted label
y;—1 into hidden state s;.

For each time ¢, with a 2-layer feed-forward
neural network r, encoder and decoder hidden lay-
ers h and 5, are used to calculate the attention
weight:

Zl is inherited by the decoder as an

oo exp(r(hi, 5t))
b i eap(r(he, F)
Using attention weight o} and 1-layer feed-

forward neural network u, label probabilities are
calculated as follows:

exp(u(dt)v=y,)

P(yt ‘ yt—17-"7y1) —)
3o exp(u(dr),)
dt = [Za§~hi,?t],
i=1

where V' is the label size. Note that d; and the
embedding of label y; are concatenated and fed to
the decoder at time ¢ + 1.

In a supervised attention framework, attentions
are learned from the given alignments. We denote
a link on an alignment between y; and x; as ai =1
(ai = 0 denotes that y; and x; are not linked.).
Following a previous work (Liu et al., 2016), we
adopt a soft constraint to the objective function:

n
- ZZOQP(yt | Yt—1, "'7y05X)
t=1

n m
—A X ZZai x logal,
i=1 t=1
to jointly learn the attention and output distribu-
tions. All our alignments are represented by one-
to-many links between input words x and nonter-
minals y.

3 Design of our Alignments

In the traditional parsing framework (Hall et al.,
2014; Durrett and Klein, 2015), lexical features
have been proven to be useful in improving pars-
ing performance. Inspired by previous work,
we enhance the attention mechanism utilizing the
linguistically-motivated annotations between sur-
face words and nonterminals by supervised atten-
tion.

In this paper, we define four types of alignments
for supervised attention. The first three methods
use the monolexical properties of heads without
incurring any inferential costs of lexicalized an-
notations. Although the last needs manually con-
structed annotation schemes, it can capture bilexi-
cal relationships along dependency arcs. The fol-
lowings are the details:

<s>[<s>] <Us>[</s>]

(S[the])s|the]

/\
(NPJthe])np[the] (VP[cooks])vp[cooks]
/\
XX[th{X\X[cheﬂ XX [cooks] (NPJthe])np[the]
t}‘ne ch‘ef colks XX[the]/E[soup]
t}‘le so‘up
(a) Left Word.

<s>[<s>] <Is>[</s>]

(Sthe])s[soup]

/\

(NPJthe])xp[chef] (VP[cooks])vp[soup]

XX[the] XX[chef] XX][cooks] (NP[the])np([soup]
the chef cooks XX[the] XX][soup]
the soup
(c) Span Word.

<s>[<s>] <Is>[</s>]

(S[soup])s[soup]

(NP[chef])np[chef] (VP[soup])ve[soup]

XX[the] XX|chef] XX[cooks] (NP[soup])np[soup]
the chef cooks XX[the] XX][soup]
the soup
(b) Right Word.

<s>[<s>] <Us>[</s>]

(S[cooks])s[cooks]

(NP[chef])xp[chef] (VP[cooks])ve[cooks]

XX[the] XX[chef] XX[cooks] (NP[soup])np[soup]
the chef cooks XX[the] XX][soup]
the soup
(d) Lexical Head.

Figure 3: Example of our alignments. The word in [] is linked to each output token.

Left word: In English, the syntactic head of
a verb phrase is typically at the beginning of
the span. Based on this notion, this method
uses the identity of the starting word of a non-
terminal span. Figure 3a shows an alignment
example where an output token is linked to
its leftmost word of the span.

Right word: On the contrary, the syntactic
head of a simple English noun phrase is of-
ten at the end of the span. The alignment ex-
ample in Fig. 3b is produced by this method,
where an output token is linked to the right-
most word of the span.

Span word: Here, we unify the above two
methods. All output tokens are linked to their
leftmost word, except the ending bracket to-
kens, which are linked to their rightmost
word. Figure 3c shows an alignment exam-
ple produced by this method.

Lexical head: Lexicalization (Eisner, 1996;
Collins, 1997), which annotates grammar
nonterminals with their head words, is use-
ful for resolving the syntactic ambiguities in-
volved by such linguistic phenomena as co-

ordination and PP attachment. As shown in
Fig. 3d, this method produces alignments by
linking an output token and its head word'.

4 Experimental Evaluation

4.1 Evaluation Settings

We experimentally evaluated our methods on the
English Penn Treebank corpus (PTB), and split
the data into three parts: The Wall Street Journal
(WSJ) sections 02-21 for training, section 22 for
development and section 23 for testing.

In our models, the dimensions of the input word
embeddings, the fed label embeddings, the hidden
layers, and an attention vector were respectively
set to 150, 30, 200, and 200. The LSTM depth
was set to 3. Label set L., had a size of 61. The
input vocabulary size of PTB was set to 42393.
Supervised attention rate A was set to 1.0. To use
entire words as a vocabulary, we integrated word
dropout (Iyyer et al., 2015) into our models with
smoothing rate 0.8375 (Cross and Huang, 2016).
We used dropout layers (Srivastava et al., 2014) to

'For head annotations, we used ptbconv 3.0 tool (Yamada
and Matsumoto, 2003), which is available from http://
www.jaist.ac.jp/h-yamada/.

WSJ Section 22 WSJ Section 23
Setting P R F1 AER P R Fi AER
Seq2Seq 88.1 88.0 88.1 - 883 87.6 88.0 -
Seq2Seq+random 67.1 663 66.7 96.3 66.5 655 66.0 96.3
Seq2Seq-+first 703 69.7 70.0 0.0 69.6 687 692 0.0
Seq2Seq-+last 66.7 66.1 664 0.0 66.1 648 654 0.0
Seq2Seq+head 89.2 889 89.1 6.9 89.2 88.1 83.6 6.9
Seq2Seq-+left 89.6 894 895 1.8 894 88.7 89.0 1.7
Seq2Seq+right 89.2 889 89.0 4.7 89.5 886 89.1 4.7
Seq2Seq+span 893 89.1 89.2 1.6 89.2 884 88.8 1.6
Vinyals et al. (2015) w attt - - 88.7 - - - 88.3 -
Vinyals et al. (2015) w/o attt - - <70 - - - <170 -
Seq2Seq+beam 89.0 88.7 88.8 - 89.1 883 887 -
Seq2Seqg+beam+random 710 699 704 96.3 69.4 68.1 68.7 96.3
Seq2Seq+beam-+first 739 73.0 735 0.0 732 718 725 0.0
Seq2Seq-+beam-+last 70.5 69.6 70.0 0.0 69.7 68.1 689 0.0
Seq2Seq+beam-+head 89.6 892 894 6.9 890.6 884 89.0 6.9
Seq2Seq+beam-+left 89.9 89.6 898 1.8 89.8 89.0 894 1.7
Seq2Seq+beam-+right 89.6 892 894 4.7 89.7 889 893 4.7
Seq2Seq+beam+span 89.6 894 895 1.6 90.0 89.0 895 1.6
Seq2Seq+ens(base) | 905 90.1 903 -] 9.6 8.6 90.1 -
Seq2Seq+ens(feat) | 91.3 90.7 91.0 - | 915 905 91.0 -
Vinyals et al. (2015) w att+enst - - 90.7 - - - 90.5 -
Seq2Seq+beam-+ens(base) 914 909 911 - 915 905 91.0 -
Seq2Seq-+beam-+ens(feat) | 919 914 917 - | 921 910 915 -

Table 1: Results of parsing evaluation: Seq2Seq indicates the Seq2Seq model on a single model with
greedy decoding. +beam shows the beam decoding results. +lex, +left, +right and +span respectively
show the results on our proposed lexical head, left word, right word, and span word alignments. +random,
+first, and +last respectively show the results on the alignment of baselines random, first word, and last
word. +ens(base) shows the ensemble results of five Seq2Seq models without the given alignments.
+ens(feat) shows the ensemble results of a Seq2Seq model without a given alignment and Seq2Seq
models with lexical head, left word, right word and span word alignments. § denotes the scores reported

in the paper.

each LSTM input layer (Vinyals et al., 2015) with
a dropout rate of 0.3.

The stochastic gradient descent (SGD) was used
to train models on 100 epochs. SGD’s learning
rate was set to 1.0 in the first 50 epochs. After the
first 50 epochs, the learning rate was halved after
every 5th epoch. All gradients were averaged in
each mini-batch. The maximum mini-batch size
was set to 16. The mini-batch order was shuffled
at the end of every epoch. The clipping threshold
of the gradient was set to 1.0.

We used greedy and beam searches for the de-
coding. The beam size was set to ten. The de-
coding was performed on both a single model and
five-model ensembles. We used the products of
the output probabilities for the ensemble.

All models were written in C++ on Dynet (Neu-
big et al., 2017).

We compared Seq2Seq models with and with-

out our alignments. To investigate the influence
of the supervised attention method itself, we also
compared our alignments to the following align-
ments:

e Random: Based on uniform distribution,
each output token was randomly linked to at
most one input token.

e First word: All output tokens were linked to
the start of the sentence tokens in the input
sentence.

e Last word: All output tokens were linked to
the end of the sentence tokens in the input
sentence.

We evaluated the compared methods using
bracketing Precision, Recall and F-measure. We
used evalb? as a parsing evaluation. We also eval-

*http://nlp.cs.nyu.edu/evalb/

10

uated the learned attention using alignment error
rate (AER) (Och and Ney, 2003) on their align-
ments. Following a previous work (Luong et al.,
2015), attention evaluation was conducted on gold
output.

4.2 Results

Table 1 shows the results. All our lexical head,
left word, right word and span word alignments
improved bracket F-measure of baseline on ev-
ery setting. From the +random, +first, and +last
results, only supervised attention itself did not
improve the parsing performances. Furthermore,
each AER indicates that the alignments were cor-
rectly learned. These results support our expecta-
tion that our alignments improve the parsing per-
formance with Seq2Seq models.

5 Discussion

All of the baseline alignments random, first word
and last word, largely degraded the parsing per-
formances. random prevented the learning of at-
tention distributions, and first word and last word
fixed the attention distributions. These resemble
disable the attention mechanism. Vinyals et al.
(2015) reported that the bracket F-measure of
Seq2Seq without an attention mechanism is less
than 70. Our evaluation results, which are con-
sistent with their score, and it supports our expec-
tation that the attention mechanism is critical for
Seq2Seq constituency parsing.

Comparing the results of our proposed align-
ments in Table 1, even though the bracket F-
measure of the lexical head is lower than that of
the left word, right word and span word, the lex-
ical head is the most intuitive alignment. Except
for random, the AER of lexical head is the highest
in all the alignments. This means that lexical head
is difficult to learn on attention distribution. The
prediction difficulty may degrade the parsing per-
formances. Our analysis indicates that an align-
ment which can be easily predicted is suitable for
the supervised attention of Seq2Seq constituency
parsing.

6 Conclusion

We proposed methods that use traditional pars-
ing features as alignments for the sequence-to-
sequence based constituency parser in the super-
vised attention framework. In our evaluation, the
proposed methods improved the bracketing scores

11

on the English Penn Treebank against the baseline
methods. These results emphasize, the effective-
ness of our alignments in parsing performances.

Acknowledgement

We thank the anonymous reviewers for their care-
ful reading and useful comments.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Wenhu Chen, Evgeny Matusov, Shahram Khadivi,
and Jan-Thorsten Peter. 2016. Guided alignment
training for topic-aware neural machine translation.
CoRR, abs/1607.01628.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. In Proceedings of the
8th European chapter of the Association for Com-
putational Linguistics, pages 16-23. Association for
Computational Linguistics.

James Cross and Liang Huang. 2016. Span-based con-
stituency parsing with a structure-label system and
provably optimal dynamic oracles. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, pages 1-11, Austin,
Texas. Association for Computational Linguistics.

Greg Durrett and Dan Klein. 2015. Neural crf parsing.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
302-312, Beijing, China. Association for Computa-
tional Linguistics.

Jason M Eisner. 1996. Three new probabilistic models
for dependency parsing: An exploration. In Pro-
ceedings of the 16th conference on Computational
linguistics-Volume 1, pages 340-345. Association
for Computational Linguistics.

David Hall, Greg Durrett, and Dan Klein. 2014. Less
grammar, more features. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 228-237, Baltimore, Maryland. Association
for Computational Linguistics.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1681-1691, Beijing, China. Association for Com-
putational Linguistics.

Lemao Liu, Masao Utiyama, Andrew Finch, and Ei-
ichiro Sumita. 2016. Neural machine translation
with supervised attention. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages
3093-3102, Osaka, Japan. The COLING 2016 Or-
ganizing Committee.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412-1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016.
Supervised attentions for neural machine translation.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2283-2288, Austin, Texas. Association for Compu-
tational Linguistics.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, et al. 2017. Dynet: The
dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational linguistics, 29(1):19-51.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379-389, Lisbon, Portugal.
Association for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research, 15(1):1929-1958.

Oriol Vinyals, L. ukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing
Systems 28, pages 2773-2781. Curran Associates,
Inc.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statis-
tical dependency analysis with support vector ma-
chines. In Proceedings of IWPT, volume 3, pages
195-206.

12

Transferring Semantic Roles Using Translation and Syntactic Information

Maryam Aminian', Mohammad Sadegh Rasooli?, Mona Diab!
'Department of Computer Science, The George Washington University, Washington
?Department of Computer Science, Columbia University, New York
Yaminian, mtdiab}@gwu.edu

2

Abstract

Our paper addresses the problem of anno-
tation projection for semantic role label-
ing for resource-poor languages using su-
pervised annotations from a resource-rich
language through parallel data. We pro-
pose a transfer method that employs in-
formation from source and target syntactic
dependencies as well as word alignment
density to improve the quality of an iter-
ative bootstrapping method. Our experi-
ments yield a 3.5 absolute labeled F-score
improvement over a standard annotation
projection method.

1 Introduction

Semantic role labeling (SRL) is the task of auto-
matically labeling predicates and arguments of a
sentence with shallow semantic labels character-
izing “Who did What to Whom, How, When and
Where?” (Palmer et al., 2010). These rich se-
mantic representations are useful in many applica-
tions such as question answering (Shen and Lap-
ata, 2007) and information extraction (Christensen
etal., 2011), hence gaining a lot of attention in re-
cent years (Zhou and Xu, 2015; Téckstrom et al.,
2015; Roth and Lapata, 2016; Marcheggiani et al.,
2017). Since the process of creating annotated re-
sources needs significant manual effort, SRL re-
sources are available for a relative small num-
ber of languages such as English (Palmer et al.,
2005), German (Erk et al., 2003), Arabic (Za-
ghouani et al., 2010) and Hindi (Vaidya et al.,
2011). However, most languages still lack SRL
systems. There have been some efforts to use
information from a resource-rich language to de-
velop SRL systems for resource-poor languages.
Transfer methods address this problem by trans-
ferring information from a resource-rich language

13

rasooli@cs.columbia.edu

(e.g. English) to a resource-poor language.

Annotation projection is a popular transfer
method that transfers supervised annotations from
a source language to a target language through
parallel data. Unfortunately this technique is not
as straightforward as it seems, e.g. translation
shifts lead to erroneous projections and accord-
ingly affecting the performance of the SRL system
trained on these projections. Translation shifts are
typically a result of the differences in word order
and the semantic divergences between the source
and target languages. In addition to translation
shifts, there are errors that occur in translations,
automatic word alignments as well as automatic
semantic roles, hence we observe a cascade of er-
ror effect.

In this paper, we introduce a new approach for
a dependency-based SRL system based on anno-
tation projection without any semantically anno-
tated data for a target language. We primarily fo-
cus on improving the quality of annotation projec-
tion by using translation cues automatically dis-
covered from word alignments. We show that ex-
clusively relying on partially projected data does
not yield good performance. We improve over
the baseline by filtering irrelevant projections, it-
erative bootstrapping with relabeling, and weight-
ing each projection instance differently with data-
dependent cost-sensitive training.

In short, contributions of this paper can be sum-
marized as follows; We introduce a weighting al-
gorithm to improve annotation projection based
on cues obtained from syntactic and translation
information. In other words, instead of utilizing
manually-defined rules to filter projections, we de-
fine and use a customized cost function to train
over noisy projected instances. This newly de-
fined cost function helps the system weight some
projections over other instances. We then utilize
this algorithm in a bootstrapping framework. Un-

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 13—19,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

like traditional bootstrapping, ours relabels every
training instance (including labeled data) in every
self-training round. Our final model on transfer-
ring from English to German yields a 3.5 absolute
improvement labeled F-score over a standard an-
notation projection method.

2 Our Approach

We aim to develop a dependency-based SRL sys-
tem which makes use of training instances pro-
jected from a source language (SLang) onto a tar-
get language (TLang) through parallel data. Our
SRL system is formed as a pipeline of classifiers
consisting of a predicate identification and dis-
ambiguation module, an argument identification
module, and an argument classification module.
In particular, we use our re-implementation of the
greedy (local) model of Bjorkelund et al. (2009)
except that we use an averaged perceptron algo-
rithm (Freund and Schapire, 1999) as the learning
algorithm.

2.1 Baseline Model

As our baseline, we apply automatic word align-
ment on parallel data and preserve the intersected
alignments from the source-to-target and target-
to-source directions. As our next step, we de-
fine a projection density criteria to filter some of
the projected sentences. Given a target sentence
from TLang with w words where f words have
alignments (f < w), if the source sentence from
SLang has p predicates for which p’ of them are
projected (p’ < p), we define projection den-
sity as (p’ X f)/(p X w) and prune out sentences
with a density value less than a certain threshold.
The threshold value is empirically determined dur-
ing tuning experiments performed on the develop-
ment data. In this criteria, the denominator shows
the maximum number of training instances that
could be obtained by projection and the nomina-
tor shows the actual number of relevant instances
that are used in our model. In addition to speed-
ing up the training process, filtering sparse align-
ments helps remove sentence pairs with a signif-
icant translation shifts. Thereafter, a supervised
model is trained directly on the projected data.

2.2 Model Improvements

As already mentioned, the quality of projected
roles is highly dependent on different factors in-
cluding translation shifts, errors in automatic word

14

alignments and the SLang supervised SRL sys-
tem. In order to address these problems, we apply
the following techniques to improve learning from
partial and noisy projections, thereby enhancing
the performance of our model:

* Bootstrapping to make use of unlabeled data;

* Determining the quality of a particular pro-
jected semantic dependency based on two
factors: 1) source-target syntactic correspon-
dence; and, 2) projection completeness de-
gree. We utilize the above constraints in the
form of a data-dependent cost-sensitive train-
ing objective. This way the classifier would
be able to learn translation shifts and erro-
neous instances in the projected data, hence
enhancing the overall performance of the sys-
tem.

Bootstrapping Bootstrapping (or self-training)
is a simple but very useful technique that makes
use of unlabeled data. A traditional self-training
method (McClosky et al., 2006) labels unlabeled
data (in our case, fill in missing SRL decisions)
and adds that data to the labeled data for further
training. We report results for this setting in §3.1
as fill-in. Although fill-in method is shown to be
very useful in previous work (Akbik et al., 2015),
empirically, we find that it is better to relabel all
training instances (including the already labeled
data) instead of only labeling unlabeled raw data.
Therefore, the classifier is empowered to discover
outliers (resulting from erroneous projections) and
change their labels during the training process.
Figure 1 illustrates our algorithm. It starts with
training on the labeled data and uses the trained
model to label the unlabeled data and relabel the
already labeled data. This process repeats for a
certain number of epochs until the model con-
verges, i.€., reaches its maximum performance.

Data-dependent cost-sensitive training In our
baseline approach, we use the standard perceptron
training. In other words, whenever the algorithm
sees a training instance x; with its corresponding
label y;, it updates the weight vector 6 for itera-
tion ¢ based on the difference between the feature
vector ¢(z;,y;) of the gold label and the feature
vector ¢(z;,y;) of the predicted label v (Eq. 1).

0" = 0"+ p(xi, i) — dlxi,yy) (D)

In Eq. 1, the algorithm assumes that every data
point x; in the training data {x1,- - ,z,} has the

Inputs: 1) Projected data D = D* UDY where D and DY
indicate labeled and unlabeled instances in the projected
data; 2) Number of self-training iterations m.

Algorithm:
Train model ° on D
fori=1tomdo
DY — Label data DY with model §°~.
DF «— Relabel data D with model 6* .
Train model 6° on DX U DY
Output: The model parameters 6.

Figure 1: The iterative bootstrapping algorithm for
training SRL on partially projected data.

same importance and the cost of wrongly predict-
ing the best label for each training instance is uni-
form. We believe this uniform update is problem-
atic especially for the transfer task in which dif-
ferent projected instances have different qualities.
To mitigate this issue, we propose a simple mod-
ification, we introduce a cost \; € [0, 1] for each
training instance x;. Therefore, Eq. 1 is modified
as follows in Eq. 2.

08 =01 + N (i, ui) — d(xi,97)) Q)

In other words, the penalty of making a mis-
take by the classifier for each training instance de-
pends on the importance of that instance defined
by a certain cost. The main challenge is to de-
fine an effective cost function, especially in our
framework where we don’t have supervision. Ac-
cordingly, we experiment with the following cost
definitions:

- Projection completeness: Our observation
shows that the density of projection is a very
important indicator of projection quality. We
view it as a rough indicator of translation
shifts: the more alignments from source to
target, the less we have a chance of having
translation shifts. As an example, consider
the sentence pair extracted from English—
German Europarl corpus: I sit here be-
tween a rock and a hard place” and its Ger-
man translation “Zwei Herzen wohnen ach
in meiner Brust” which literally reads as
“Two hearts dwell in my chest”. The only
words that are aligned (based on the output of
Giza++) are the English word “between” and
the German word “in”. In fact, the German
sentence is an idiomatic translation of the
English sentence. Consequently predicate—
argument structure of these sentences vary

15

tremendously; The word “sif” is predicate of
the English sentence while “wohnen (dwell)”
is the predicate of the German sentence.

We use the definition of completeness from
Akbik et al. (2015) to define the sparsity cost
(AC9™P): this definition deals with the propor-
tion of a verb or direct dependents of verbs in
a sentence that are labeled.

Source-target syntactic = dependency
match: We observe that when the depen-
dency label of a target word is different from
its aligned source word, there is a higher
chance of a projection mistake. However,
given the high frequency of source-target de-
pendency mismatches, it is harmful to prune
those projections that have dependency
mismatch; instead, we define a different
cost if we see a training instance with a
dependency mismatch. For an argument x;
that is projected from source argument sg,,
we define the cost)\fep according to the
dependency of the source and target words
dep(zx;) and dep(s,,) as Eq. 3.

iep _ J1 i dep(a)) = dep(s.,)
¢ 105 otherwise

3)

As an example, consider Fig. 2 that demon-
strates an English-German sentence pair from
EuroParl “I would urge you to endorse this”
with its German translation that literally
reads as “I ask for your approval”. As we can
see, there is a shift in translation of English
clausal complement “fo endorse this” into
German equivalent “um Zustimmung (your
approaval)” which leads the difference in the
syntactic structure of source and target sen-
tences. Therefore, neither the predicate label
of English verb “endorse” nor the argument
“A2” should not be projected to the German
noun “Zustimmung”. Dashed edges between
sentences show intersected word alignments.
Here, projecting semantic role of “endorse*
(A2) to to the word ~Zustimmmung* through
alignment will lead to the wrong semantic
role for this word.

Completeness + syntactic match: We em-
ploy the average of \%P and \°°"" values as
defined above. This way, we simultaneously
encode both the completeness and syntactic
similarity information.

|
[.
B Ty A

[\
v

(endorse i

A2

endorse.01

-

Al

-
-
-
-

Figure 2: Example of English-German sentences
from Europarl with dependency structure. Dif-
ferent dependencies are shown with dashed arcs.
Predicate—argument structure of the English sen-
tence is shown bellow each word.

3 Experiments

Data and Setting We use English as the source
and German as the target language. In our setting,
we assume to have supervised part-of-speech tag-
ging and dependency parsing models for both the
source (SLang) and target (TLang) languages. We
use the Universal part-of-speech tagset of Petrov
et al. (2011) and the Google Universal Treebank
(McDonald et al., 2013). We ignore the projection
of the AM roles to German since this particular
role does not appear in the German dataset.

We use the standard data splits in the CoNLL
shared task on SRL (Haji¢ et al., 2009) for eval-
uation. We replace the POS and dependency
information with the predictions from the Yara
parser (Rasooli and Tetreault, 2015) trained on the
Google Universal Treebank.! We use the parallel
Europarl corpus (Koehn, 2005) and Giza++ (Och
and Ney, 2003) for extracting word alignments.
Since predicate senses are projected from English
to German, comparing projected senses with the
gold German predicate sense is impossible. To ad-
dress this, all evaluations are conducted using the
Gold predicate sense.

After filtering projections with density criteria
of §2.1, 29417 of the sentences are preserved.
The number of preserved sentences after filtering
sparse alignments is roughly one percent of the

'Our ideal setting is to transfer to more languages but
because of the semantic label inconsistency across CoNLL
datasets, we find it impossible to evaluate our model on more
languages. Future work should work on defining a reli-
able conversion scheme to unify the annotations in different
datasets.

16

Model Cost Lab. F1
Baseline X 60.3
Bootstrap—fill-in X 61.6
Bootstrap-relabel X 62.4
Bootstrap—relabel comp. 63.0(41.0)
Bootstrap—relabel dep. 634415
Bootstrap—relabel | comp.+dep. 63.8(,: 3
Supervised - 79.5
Table 1: Labeled F-score for different models

in SRL transfer from English to German using
gold predicates. Cost columns shows the use of
cost-sensitive training using projection complete-
ness (“comp.”), source-target dependency match
(““dep.”) and both (“comp.+dep.”). The numbers in
parenthesis show the absolute improvement over
the Bootstrap-fill-in method.

original parallel data (29K sentences out of 2.2M
sentences). Density threshold is set to 0.4 deter-
mined based on our tuning experiments on devel-
opment data.

3.1 Results and Discussion

Table 1 shows the results of different models
on the German evaluation data. As we can see
in the table, bootstrapping outperforms the base-
line. Interestingly, relabelling all training in-
stances (Bootstrap—relabel) gives us 0.8 absolute
improvement in F-score compared to when we
just predict over instances without a projected la-
bel (Bootstrap—fill-in). Here, the fill-in approach
would label only the German word “um‘ in Fig. 2
that does not have any projected label from the En-
glish side. While the relabeling method will over-
write all projected labels with less noisy predicted
labels.

We additionally observe that the combination
of the two cost functions improves the quality
further. Overall, the best model yields 3.5 ab-
solute improvement F-score over the baseline.
As expected, none of the approaches improves
over supervised performance. We further ana-
lyzed the effects of relabeling approach on iden-
tification and classification of non-root seman-
tic dependencies. Figure 3 shows precision, re-
call and F-score of the two most frequent seman-
tic dependencies (predicate pos + argument la-
bel): VERB+AO, VERB+A1 throughout relabel-
ing iterations. As demonstrated in the graph, both
precision and recall improve by cost-sensitive re-

VERB+A0 VERB+Al

T T T T T T
06 |3 ET | o5) Bfeﬂ/a i
0.55 |- 1 045 F |
05 *A/A_/\&jf X\A—A\A_?/A
| | | 0.4 b1 \ .

2 4 6 2 4 6

’% precision —a— recall f-score ‘

Figure 3: Precision, recall and F-score of
VERB+AO and VERB+A1 during relabeling iter-
ations on the German development data. Horizon-
tal axis shows the number of iterations and vertical
axis shows values of precision, recall and F—score.

labeling for VERB+AQO. In fact, cost-sensitive
training helps the system refine irrelevant projec-
tions at each iteration and assigns more weight on
less noisy projections, hence enhancing precision.
Our analysis on VERB+ADO instances shows that
source—target dependency match percentage also
increases during iterations leading to increase the
recall. In other words, weighting projection in-
stances based on dependency match helps classi-
fier label some of the instances which were dis-
missed during projection, thereby will increase the
recall. While similar improvement in precision
is observed for VERB+A1, Figure 3 shows that
the recall is almost descending by relabeling. Our
analysis shows that unlike VERB+AO, percentage
of source—target dependency match remains al-
most steady for VERB+A1. This means that cost-
sensitive relabeling for this particular semantic de-
pendency has not been very successful in labeling
unlabeled data.

4 Related Work

There have been several studies on transferring
SRL systems (Pad6é and Lapata, 2005, 2009;
Mukund et al., 2010; van der Plas et al., 2011,
2014; Kozhevnikov and Titov, 2013; Akbik et al.,
2015). Pad6 and Lapata (2005), as one of the earli-
est studies on annotation projection for SRL using
parallel resources, apply different heuristics and
techniques to improve the quality of their model
by focusing on having better word and constituent
alignments. van der Plas et al. (2011) improve an
annotation projection model by jointly training a
transfer system for parsing and SRL. They solely
focus on fully projected annotations and train only
on verbs. In this work, we train on all predicates

17

as well as exploit partial annotation. Kozhevnikov
and Titov (2013) define shared feature representa-
tions between the source and target languages in
annotation projection. The benefit of using shared
representations is complementary to our work en-
couraging us to use it in future work.

Akbik et al. (2015) introduce an iterative self-
training approach using different types of linguis-
tic heuristics and alignment filters to improve the
quality of projected roles. Unlike our work that
does not use any external resources, Akbik et al.
(2015) make use of bilingual dictionaries. Our
work also leverages self-training but with a differ-
ent approach: first of all, ours does not apply any
heuristics to filter out projections. Second, it trains
and relabels all projected instances, either labeled
or unlabeled, at every epoch and does not grad-
ually introduce new unlabeled data. Instead, we
find it more useful to let the target language SRL
system rule out noisy projections via relabeling.

5 Conclusion

We described a method to improve the perfor-
mance of annotation projection in the dependency-
based SRL task utilizing a data-dependent cost-
sensitive training. Unlinke previous studies that
use manually-defined rules to filter projections, we
benefit from information obtained from projection
sparsity and syntactic similarity to weigh projec-
tions. We utilize a bootstrapping algorithm to train
a SRL system over projections. We showed that
we can get better results if we relabel the entire
train data in each iteration as opposed to only la-
beling instances without projections.

For the future work, we consider experiment-
ing with newly published Universal Proposition
Bank (Wang et al., 2017) that provides a uni-
fied labeling scheme for all languages. Given the
recent success in SRL systems with neural net-
works (Marcheggiani et al., 2017; Marcheggiani
and Titov, 2017), we plan to use them for further
improvement. We expect a similar trend by apply-
ing the same ideas in a neural SRL system.

Acknowledgments

This work has been partly funded by DARPA
LORELEI Grant and generous support by Leidos
Corp. for the 1st and 3rd authors. We would like to
acknowledge the useful comments by three anony-
mous reviewers who helped in making this publi-
cation more concise and better presented.

References

Alan Akbik, laura chiticariu, Marina Danilevsky, Yun-
yao Li, Shivakumar Vaithyanathan, and Huaiyu Zhu.
2015. Generating high quality proposition banks for
multilingual semantic role labeling. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 397-407. Associa-
tion for Computational Linguistics.

Anders Bjorkelund, Love Hafdell, and Pierre Nugues.
2009. Proceedings of the Thirteenth Conference on
Computational Natural Language Learning (CoNLL
2009): Shared Task, chapter Multilingual Semantic
Role Labeling. Association for Computational Lin-
guistics.

Janara Christensen, Mausam, Stephen Soderland, and
Oren Etzioni. 2011. An analysis of open informa-
tion extraction based on semantic role labeling. In
Proceedings of the Sixth International Conference
on Knowledge Capture, K-CAP ’11, pages 113-120,
New York, NY, USA. ACM.

Katrin Erk, Andrea Kowalski, Sebastian Paddé, and
Manfred Pinkal. 2003. Towards a resource for lexi-
cal semantics: A large german corpus with extensive
semantic annotation. In Proceedings of the 41st An-
nual Meeting of the Association for Computational
Linguistics, pages 537-544, Sapporo, Japan. Asso-
ciation for Computational Linguistics.

Yoav Freund and Robert E. Schapire. 1999. Large
margin classification using the perceptron algorithm.
Machine Learning, 37(3):277-296.

Jan Haji¢, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Antonia Maria Marti, Lluis
Marquez, Adam Meyers, Joakim Nivre, Sebastian
Pado, Jan §tepének, Pavel Stranak, Mihai Surdeanu,
Nianwen Xue, and Yi Zhang. 2009. Proceedings of
the Thirteenth Conference on Computational Nat-
ural Language Learning (CoNLL 2009): Shared
Task, chapter The CoNLL-2009 Shared Task: Syn-
tactic and Semantic Dependencies in Multiple Lan-
guages. Association for Computational Linguistics.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. In MT summit, vol-
ume 5, pages 79-86.

Mikhail Kozhevnikov and Ivan Titov. 2013. Cross-
lingual transfer of semantic role labeling models.
In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1190-1200. Association for
Computational Linguistics.

Diego Marcheggiani, Anton Frolov, and Ivan Titov.
2017. A simple and accurate syntax-agnostic neural
model for dependency-based semantic role labeling.
In Proceedings of the 21st Conference on Computa-
tional Natural Language Learning (CoNLL 2017),

18

pages 411-420. Association for Computational Lin-
guistics.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1507-1516. Association
for Computational Linguistics.

David McClosky, Eugene Charniak, and Mark John-
son. 2006. Effective self-training for parsing. In
Proceedings of the Human Language Technology
Conference of the NAACL, Main Conference.

Ryan McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuz-
man Ganchev, Keith Hall, Slav Petrov, Hao
Zhang, Oscar Téckstrom, Claudia Bedini, Nuria
Bertomeu Castelld, and Jungmee Lee. 2013. Uni-
versal dependency annotation for multilingual pars-
ing. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 92-97, Sofia, Bulgaria.
Association for Computational Linguistics.

Smruthi Mukund, Debanjan Ghosh, and Rohini Sri-
hari. 2010. Using cross-lingual projections to gener-
ate semantic role labeled annotated corpus for urdu
- a resource poor language. In Proceedings of the
23rd International Conference on Computational
Linguistics (Coling 2010), pages 797-805. Coling
2010 Organizing Committee.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1).

Sebastian Padé and Mirella Lapata. 2005. Cross-
lingual bootstrapping of semantic lexicons: The case
of framenet. In Proceedings of the National Con-

ference on Artificial Intelligence, volume 20, pages
1087-1092.

Sebastian Pad6é and Mirella Lapata. 2009. Cross-
lingual annotation projection for semantic
roles. Journal of Artificial Intelligence Research,
36(1):307-340.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus
of semantic roles. Computational Linguistics, Vol-
ume 31, Number 1, March 2005.

Martha Palmer, Daniel Gildea, and Nianwen Xue.
2010. Semantic role labeling. Synthesis Lectures
on Human Language Technologies, 3(1):1-103.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2011.
A universal part-of-speech tagset. arXiv preprint
arXiv:1104.2086.

Lonneke van der Plas, Marianna Apidianaki, and Chen-
hua Chen. 2014. Global methods for cross-lingual

semantic role and predicate labelling. In Proceed-
ings of COLING 2014, the 25th International Con-
ference on Computational Linguistics: Technical
Papers, pages 1279-1290. Dublin City University
and Association for Computational Linguistics.

Lonneke van der Plas, Paola Merlo, and James Hender-
son. 2011. Scaling up automatic cross-lingual se-
mantic role annotation. In Proceedings of the 49th
Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 299-304. Association for Computational Lin-
guistics.

Mohammad Sadegh Rasooli and Joel Tetreault. 2015.
Yara parser: A fast and accurate dependency parser.
arXiv preprint arXiv:1503.06733.

Michael Roth and Mirella Lapata. 2016. Neural se-
mantic role labeling with dependency path embed-
dings. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1192—-1202. Associa-
tion for Computational Linguistics.

Dan Shen and Mirella Lapata. 2007. Using seman-
tic roles to improve question answering. In Pro-
ceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 12-21, Prague, Czech Republic. As-
sociation for Computational Linguistics.

Oscar Tiackstrom, Kuzman Ganchev, and Dipanjan
Das. 2015. Efficient inference and structured learn-
ing for semantic role labeling. Transactions of the
Association of Computational Linguistics, 3:29-41.

Ashwini Vaidya, Jinho Choi, Martha Palmer, and Bhu-
vana Narasimhan. 2011. Analysis of the hindi
proposition bank using dependency structure. In
Proceedings of the 5th Linguistic Annotation Work-
shop, pages 21-29, Portland, Oregon, USA. Associ-
ation for Computational Linguistics.

Chenguang Wang, Alan Akbik, laura chiticariu, Yun-
yao Li, Fei Xia, and Anbang Xu. 2017. Crowd-in-
the-loop: A hybrid approach for annotating seman-
tic roles. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1914-1923, Copenhagen, Denmark. As-
sociation for Computational Linguistics.

Wajdi Zaghouani, Mona Diab, Aous Mansouri, Sameer
Pradhan, and Martha Palmer. 2010. The revised ara-
bic propbank. In Proceedings of the Fourth Linguis-
tic Annotation Workshop, pages 222-226, Uppsala,
Sweden. Association for Computational Linguistics.

Jie Zhou and Wei Xu. 2015. End-to-end learning of
semantic role labeling using recurrent neural net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguis-
tics and the 7th International Joint Conference on

19

Natural Language Processing (Volume 1: Long Pa-
pers), pages 1127-1137. Association for Computa-
tional Linguistics.

Neural Lattice Search for Domain Adaptation in Machine Translation

Huda Khayrallah! Gaurav Kumar’ Kevin Duh* Matt Post’ Philipp Koehn'
fCenter for Language and Speech Processing
*Human Language Technology Center of Excellence
Johns Hopkins University
{huda, gkumar, kevinduh, post, phi}@cs.jhu.edu

Abstract

Domain adaptation is a major challenge
for neural machine translation (NMT).
Given unknown words or new domains,
NMT systems tend to generate fluent
translations at the expense of adequacy.
We present a stack-based lattice search al-
gorithm for NMT and show that constrain-
ing its search space with lattices gener-
ated by phrase-based machine translation
(PBMT) improves robustness. We report
consistent BLEU score gains across four
diverse domain adaptation tasks involving
medical, IT, Koran, or subtitles texts.

1 Introduction

Domain adaptation is a major challenge for neural
machine translation (NMT). Although impressive
improvements have been achieved in recent years
(c.f. Bojar et al. (2016)), NMT systems require
a large amount of training data and thus perform
poorly relative to phrase-based machine transla-
tion (PBMT) systems in low resource and domain
adaptation scenarios (Koehn and Knowles, 2017).
In such situations, neural systems often produce
fluent output that unfortunately contains words not
licensed by the unfamiliar source sentence (Arthur
et al., 2016; Tu et al., 2016). Phrase-based sys-
tems, in contrast, explicitly model the translation
of all source words via coverage vectors, and tend
to produce translations that are adequate but less
fluent. This situation is depicted in Table 1, which
contains examples of PBMT and NMT systems
trained on WMT training sets which are then
applied to IT texts.

We present an approach that combines the best
of both worlds by using the lattice output of PBMT
to constrain the search space available to an NMT
decoder, thereby bringing together the adequacy

sre Versionsinformationen ausgeben und beenden
ref output version information and exit

PBMT Spend version information and end
NMT Spend and end versionary information
NMT; Print version information and exit

Table 1: Translations of sentence #925 from the IT
corpus with systems trained on WMT data. The
NMT; line was produced by a WMT-trained NMT
search over a WMT-trained PBMT lattice.

and the fluency properties of PBMT and NMT
systems. The final line of Table 1 demonstrates the
improvement this can bring. Our contributions are
(1) a simple stack-based lattice search algorithm
for NMT,! and (2) a set of domain adaptation ex-
periments showing that PBMT lattice constraints
are effective in achieving robust results compared
to NMT decoding with standard beam search.

Search Graph

Source
sentence

Target
translation

20

NMT Lattice
. >® M
~. »

Figure 1: NMT Iattice search over a PBMT-
generated lattice.

2 Stack-based Neural Lattice Search

Figure 1 demonstrates our system; given an input
sentence, the PBMT system generates a lattice,
which is then used as input to the neural lattice
search algorithm. We would like to score every
path in the lattice with the NMT system and then
search. However, this is generally prohibitively
expensive because the RNN architectures in NMT

'github.com/khayrallah/
nematus—-lattice-search

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 20-25,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

do not permit recombination of hypotheses on
the lattice, since NMT states encode the entire
sentence history. This explodes the search lattice
into an exponentially sized tree. To address this
problem, we use a stack decoding algorithm that
groups hypotheses by the number of target words,
extending items from each stack in order of score,
and adding them to later stacks.”> This strategy
allows us to group together roughly equivalent
intermediate nodes, allowing for pruning.

Algorithm 1: Stack decoding over a lattice

Data: lattice root NV, NMT init state I, beam
size b
Result: output string s
1 goalStack = []; stacks =[]
2 heappush(stacks[0], (0.0, NV, I, null, 0))
3 for i = 0; i <len(stacks); i++ do
4 forb;inl...bdo
5 score, node, state, _, len =
heappop(stacks[i])
for arc in node.arcs() do
newState, cost = scorer(state, arc)
newScore = score + cost
newlLen = len + arc.len
if isFinalState(node) then
‘ stack = goalStack
else
‘ stack = stack[newLen]
heappush(stack, (newScore,
arc.head, newState, arc,
newlLen))
15 return extractBest(heappop(goalStack))

e e 9 &

10
11
12
13
14

The pseudocode is in Algorithm 1, and a
graphical depiction in Figure 2. In the lattice
(Figure 2(a)), arcs are annotated with phrases of
one or more words indicating the target sides of
phrases that were applied during PBMT decoding.
Nodes represent recombined states in the PBMT
search space (i.e., states that have identical source
coverage vectors and language model states). The
search nodes contain the cumulative score, the
current lattice node, the current neural state, the
incoming arc, and the target length along this
path. After initialization, the outer loop (line
3) proceeds over stacks, starting at stack 1, and

This is similar to PBMT stack decoding. However, in
PBMT stack decoding, stacks are grouped by the number of
translated source words, which is not possible in NMT, since
the translation of individual source words is not tracked.

21

continuing through the longest path through the
lattice (subject to pruning). Upon visiting each
stack, it considers the top b items (line 4). It
pops each of them in turn and retrieves its node
in the underlying lattice and the associated neural
state (line 5). It then considers all of the node’s
outgoing arcs (line 6). The neural scorer is used to
score each of them (line 7), returning a new neural
state that is stored with a new item (line 14) on the
appropriate stack.

Figure 2 depicts this process, but without prun-
ing or sorting. A beam of size 2 would prune
off one item from stack 2, along with all of its
descendants, thus culling the exponentially sized
tree.

Figure 2: (a) A PBMT search lattice and (b)
stack-based decoding over that lattice. Each letter
represents a word.

In (b), the exponential expansion of the lattice in
(a) is apparent, since states that had recombined
in (a) due to identical n-gram history do not
recombine in (b). This figure does not demonstrate
pruning, descendants of items that fall off the
beam would not be explored.

Corpus Words Sentences W/S
Medical 14,301,472 1,104,752 13
IT 3,041,677 337,817 9
Koran 9,848,539 480,421 21
Subtitles 114,371,754 13,873,398 8
“WMT 113,165,079 4,562,102 25

Table 2: Size of the training data for each domain

3 Experiment Setup

Our German-to-English evaluation consists of
a large out-of-domain bitext (WMT2016 (Bojar
et al., 2016), news/parliamentary text) and four
distinct in-domain bitexts from OPUS (Tiede-
mann, 2009, 2012): Medical (EMEA), IT
(GNOME, KDE, PHP, Ubuntu, and OpenOffice),
Koran (Tanzil), and Subtitles (OpenSubtitles3).

The in-domain corpora use the same
train/tune/test splits as Koehn and Knowles
(2017), and for each in-domain training set we
build PBMT and NMT models, termed PBMTj;,,
and NMT;,,. We also build PBMT and NMT
models on the out-of-domain WMT bitext, termed
PBMT,,; and NMT,,;. For each in-domain test
set, we consider four configurations:

1. PBMT,,: X NMT,,;: the unsupervised do-
main adaptation setting where no training
data is available for the domain of interest.

. PBMT;,, x NMT;,: the matched domain
setting where the training data matches the
test data in terms of domain, but the training
data is not large (relative to WMT).

PBMT;,, x NMT,,;: PBMT is trained on
small in-domain data while NMT is trained
on larger out-of-domain data.

PBMT,,; x NMT;,: NMT is trained on
small in-domain data while PBMT is trained
on larger out-of-domain data.

For each training configuration, we are inter-
ested in seeing how our proposed NMT lattice
search compares to standard NMT beam search.
Additionally, we compare the results of PBMT 1-
best decoding and PBMT N-best lists rescoring
(N=500) using the same NMT model.

The PBMT models are trained with Moses
(Koehn et al., 2007). The PBMT,,; models

3opensubtitles .0rg

22

include German specific processing and Neural
Network Joint Models (Devlin et al., 2014), repli-
cating Ding et al. (2016). The PBMT;,, models are
Moses models with standard settings, replicating
Koehn and Knowles (2017). The NMT models are
trained with Nematus (Sennrich et al., 2017). The
NMT,,; models replicate Sennrich et al. (2016);*
the NMT;,, models replicate Koehn and Knowles
(2017). We use Marian (Junczys-Dowmunt et al.,
2016a) to rescore N-best lists.

The search graphs are pre-processed by convert-
ing them to the OpenFST format (Allauzen et al.,
2007) and applying operations to remove epsilon
arcs, determinize, minimize and topsort. Since the
search graphs may be prohibitively large in size,
we prune them with a threshold.> We perform 5-
fold cross-validation over pruning thresholds (.1,
.25, .5) and lattice search beamsizes (1, 10, 100).

Very aggressive pruning with a small beam
limits the search to be very similar to the PBMT
output. In contrast, a very deep lattice with a large
beam begins to approach the unconstrained search
space of standard decoding in NMT.

4 Results

Table 3 summarizes the BLEU results on each
test domain. Note that PBMT 1-best results are
equivalent for PBMT;,, x NMT;, and PBMT;,
X NMT,,; since the same PBMT model is used
and NMT is not relevant. For both PBMT 1-
best and NMT Standard Search, there are two
sets of equivalent results among the four training
configurations.

We want to highlight the fact that the PBMT
1-best in-domain models outperform the out of
domain ones, despite being much simpler models.
Additionally, the BLEU scores for NMT standard
search are higher for the in-domain models, de-
spite the smaller amount of training data. This
emphasizes the importance of the domain of the
training corpora.

In cross-validation for our domains, smaller
beams and aggressive pruning tend to perform
well. This follows from the fact that PBMT 1-best
outperforms NMT standard search. We want to
strongly limit the search space given to NMT in
such a scenario. However, these parameters need
to be tuned to a specific domain and language.

‘github.com/rsennrich/wmtl6-scripts

SPruning removes arcs that do not appear on a lattice path
whose score is within than ¢ ® w, where w is the weight of
the FST’s shortest path, and ¢ is the pruning threshold.

Test Training Configuration PBMT NMT N-best NMT
Domain 1-best Standard Search Rescoring Lattice Search
IT PBMT,,: X NMToyt 25.1 (-0.3) 225 (-29) 222 (-3.2) 25.4
PBMT;,, x NMT;, 474 (-4.2) 342 (-17.4) 47.6 (-4.0) 51.6
PBMT;, X NMT,y: 474 (-5.2) 22.5(-30.1) 47.6 (-5.0) 52.6*
PBMT,,: x NMT;, 25.1(-2.2) 342 (69) 224 (4.9) 273
Medical | PBMT.,: X NMT,: 33.3(-0.9) 329 (-1.3) 30.8 (-3.4) 34.2
PBMT;, x NMT;, 47.4 (-0.7) 37.8 (-10.3) 40.2 (-7.9) 48.1*
PBMT;,, x NMT,,: 47.4 (-0.4) 329 (-14.9) 39.7 (-8.1) 47.8
PBMT,,: x NMT;, 33.3(-2.7) 37.8 (1.8) 312 (4.8) 36.0
Koran PBMT,u: X NMTyt 14.7 (-0.2) 10.8 (-4.1) 139 (-1.0) 14.9
PBMT;,, x NMT;, 20.6 (-0.1) 159 (-4.8) 193 (-1.4) 20.7
PBMT;, X NMT,y: 20.6 (-0.2) 10.8 (-10.0) 194 (-1.4) 20.8*
PBMT,,: x NMT;, 14.7 (-1.4) 159 (-0.2) 139 (-2.2) 16.1
Subtitle | PBMT,,: X NMT,,t 26.6 (-0.9) 25.3 (-2.2) 19.7 (-7.8) 27.5
PBMT;, x NMT;, 26.8 (-1.1) 249 (-3.0) 17.8(-10.1) 279
PBMT;,, X NMT,,+ 26.8 (-1.6) 253 (-3.1) 17.1(-11.3) 28.4*
PBMT,,: x NMT;, 26.6 (-1.0) 249 (-277) 19.8 (-7.8) 27.6

Table 3: Results across test domains and training configurations. For each system, we show the BLEU
score and its difference with NMT Lattice Search under the same training configuration (same row) in
parentheses. E.g. in the last row, NMT Lattice Search achieves 27.6 BLEU and is better than PBMT
1-best by 1.0 BLEU, and better than NMT Standard Search by 2.7 BLEU. For each test domain we mark
the best score among all systems and training configurations with an asterisk, and bold any score with

less than a 0.5 BLEU difference.

Our research questions are as follows:

Does lattice search perform best across train-
ing configurations? As observed across each row
in Table 3, lattice search typically outperforms the
three other systems. Importantly, the BLEU gains
against standard beam search in NMT and N-
best rescoring of PBMT with NMT are noticeable
regardless of training configuration. E.g., in the
Subtitles task the gains range from 2.2 to 3.1
BLEU. There are also consistent gains compared
to PBMT 1-best (e.g. 0.9-1.6 BLEU gain), which
forms the basis of the search space; this implies
that PBMT and NMT can serve as effective hybrid
systems, where the former provides the potential
translation candidates and the latter scores them.

Given the choice, which training configu-
ration is best for domain adaptation? While
the answer depends on the amount of in-domain
and out-of-domain data, we find that PBMT;,
x NMT;, and PBMT;,, x NMT,,; perform the
best. This supports previous findings (Koehn
and Knowles, 2017) that PBMT;,, is robust when
training data is insufficient. In conclusion, we rec-
ommend using lattice search with search graphs
from PBMT),,,, and NMT models can be trained
on either in-domain or out-of-domain corpora.

23

5 Related Work

Previous work on domain adaptation in NMT fo-
cuses on training methods such as transfer learning
or fine-tuning (Luong and Manning, 2015; Freitag
and Al-Onaizan, 2016; Chu et al., 2017). This
strategy begins with a strong model trained on a
large out-of-domain corpus and then continuesx
training on an in-domain corpus. Our approach
is orthogonal in that we focus on search. Con-
ceivably, advances in training methods might be
incorporated to improve our individual NMT;,
models.

Our lattice search algorithm is related to previ-
ous work in hybrid NMT/PBMT systems, which
can be visualized on a spectrum depending on
how tightly integrated the two systems are. On
one end, NMT can easily be used to rerank V-
best lists output by PBMT; on the other, NMT can
be incorporated as features in PBMT (Junczys-
Dowmunt et al., 2016b). In the middle of the
spectrum is NMT search (or re-scoring) based on
constraints from PBMT.

Our algorithm is conceptually very similar to
Stahlberg et al. (2016), who rescore a WFSA
reformulation of the Hiero formalism. Their

algorithm is a breadth-first search over all the
nodes of the lattice, capped by a beam. Other
hybrid methods include: constraining the output
vocabulary of NMT on a per-sentence basis, using
bilingual information provided by PBMT (Mi
et al., 2016), Minimum Bayes Risk decoding with
PBMT n-gram posteriors (Stahlberg et al., 2017),
and incorporating PBMT hypotheses as additional
input in a modified NMT architecture (Wang et al.,
2017).

Related works in lattice search/re-scoring with
RNNs (without NMT encoder-decoders) (Ladhak
et al., 2016; Deoras et al., 2011; Hori et al.,
2014) may serve as other interesting comparisons.
Specifically, Auli et al. (2013) and Liu et al. (2016)
provide alternatives to our approach to the prob-
lem of recombination. The former work allows the
splitting of previously recombined decoder states
(thresholded) while the latter clusters RNN states
based on their n-gram context.

6 Conclusion

We present a stack-based lattice search algorithm
for NMT, and show that constraining decoding to
candidate translations in a PBMT search graph
leads to robust improvements for domain adap-
tation. Our method can be viewed as as sim-
ple yet effective way to combine the adequacy
advantages of PBMT, which stems from explicit
models of coverage, with the fluency advantages of
NMT. When presented with a domain adaptation
problem we recommend using lattice search with
search graphs from PBMT;,, with NMT mod-
els either trained on either in-domain or out-of-
domain corpora.

Future work includes interpolation of the NMT
and PBMT scores in the lattice search, which
requires additional tuning but may further improve
results.

Acknowledgments

This material is based upon work supported in
part by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR0011-
15-C-0113. Any opinions, findings and conclu-
sions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily
reflect the views of DARPA.

24

References

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jciech Skut, and Mehryar Mohri. 2007. Open-
Fst: A General and Efficient Weighted Finite-
State Transducer Library. In Proceedings of the
Ninth International Conference on Implementation
and Application of Automata, (CIAA 2007), vol-
ume 4783 of Lecture Notes in Computer Science.
Springer. http://www.openfst.org.

Philip Arthur, Graham Neubig, and Satoshi Nakamura.
2016. Incorporating Discrete Translation Lexicons
into Neural Machine Translation. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, Austin, Texas. Asso-
ciation for Computational Linguistics.

Michael Auli, Michel Galley, Chris Quirk, and Geof-
frey Zweig. 2013. Joint Language and Translation
Modeling with Recurrent Neural Networks. In
Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, Seattle,
Washington, USA. Association for Computational
Linguistics.

Ondrej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, Varvara
Logacheva, Christof Monz, Matteo Negri, Aure-
lie Neveol, Mariana Neves, Martin Popel, Matt
Post, Raphael Rubino, Carolina Scarton, Lucia
Specia, Marco Turchi, Karin Verspoor, and Marcos
Zampieri. 2016. Findings of the 2016 Conference
on Machine Translation. In Proceedings of the First
Conference on Machine Translation, Berlin, Ger-
many. Association for Computational Linguistics.

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017.
An Empirical Comparison of Simple Domain Adap-
tation Methods for Neural Machine Translation.
CoRR, abs/1701.03214.

Anoop Deoras, Tomas Mikolov, and Kenneth Church.
2011. A fast re-scoring strategy to capture long-
distance dependencies. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP, Stroudsburg, PA, USA. Asso-
ciation for Computational Linguistics.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas
Lamar, Richard Schwartz, and John Makhoul. 2014.
Fast and Robust Neural Network Joint Models for
Statistical Machine Translation. In Proceedings of
the 52nd Annual Meeting of the Association for
Computational Linguistics, Baltimore, Maryland.
Association for Computational Linguistics.

Shuoyang Ding, Kevin Duh, Huda Khayrallah, Philipp
Koehn, and Matt Post. 2016. The JHU Machine
Translation Systems for WMT 2016. In Proceed-
ings of the First Conference on Machine Translation,
Berlin, Germany. Association for Computational
Linguistics.

Markus Freitag and Yaser Al-Onaizan. 2016. Fast
Domain Adaptation for Neural Machine Translation.
CoRR, abs/1612.06897.

Takaaki Hori, Yotaro Kubo, and Atsushi Nakamura.
2014. Real-time one-pass decoding with recurrent
neural network language model for speech recog-
nition. In 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).

Marcin Junczys-Dowmunt, Tomasz Dwojak, and Hieu
Hoang. 2016a. Is Neural Machine Translation
Ready for Deployment? A Case Study on 30
Translation Directions. In Proceedings of the 9th
International Workshop on Spoken Language Trans-
lation (IWSLT), Seattle, WA.

Marcin Junczys-Dowmunt, Tomasz Dwojak, and Rico
Sennrich. 2016b. The AMU-UEDIN Submission
to the WMT16 News Translation Task: Attention-
based NMT Models as Feature Functions in Phrase-
based SMT. In Proceedings of the First Conference
on Machine Translation, Berlin, Germany. Associa-
tion for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
Source Toolkit for Statistical Machine Translation.
In Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics Compan-
ion Volume Proceedings of the Demo and Poster
Sessions, Prague, Czech Republic. Association for
Computational Linguistics.

Philipp Koehn and Rebecca Knowles. 2017. Six
Challenges for Neural Machine Translation. In
Proceedings of the 1st Workshop on Neural Machine
Translation (and Generation) at ACL. Association
for Computational Linguistics.

Faisal Ladhak, Ankur Gandhe, Markus Dreyer, Lam-
bert Mathias, Ariya Rastrow, and Bjorn Hoffmeister.
2016. LATTICERNN: Recurrent Neural Networks
over Lattices. In Interspeech.

Xunying Liu, Xie Chen, Yongqiang Wang, Mark J. F.
Gales, and Philip C. Woodland. 2016. Two Efficient
Lattice Rescoring Methods Using Recurrent Neural
Network Language Models. IEEE/ACM Trans.
Audio, Speech and Lang. Proc., 24(8).

Minh-Thang Luong and Christopher D. Manning.
2015. Stanford Neural Machine Translation Sys-
tems for Spoken Language Domain. In Interna-
tional Workshop on Spoken Language Translation,
Da Nang, Vietnam.

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah.
2016. Vocabulary Manipulation for Neural Machine
Translation. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, Berlin, Germany. Association for Compu-
tational Linguistics.

25

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexan-
dra Birch, Barry Haddow, Julian Hitschler, Marcin
Junczys-Dowmunt, Samuel Laubli, Antonio Valerio
Miceli Barone, Jozef Mokry, and Maria Nadejde.
2017. Nematus: a Toolkit for Neural Machine
Translation. In Proceedings of the Software Demon-
strations of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics, Valencia, Spain. Association for Computa-
tional Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Edinburgh Neural Machine Translation Sys-
tems for WMT 16. In Proceedings of the First Con-
ference on Machine Translation, Berlin, Germany.
Association for Computational Linguistics.

Felix Stahlberg, Adria de Gispert, Eva Hasler, and
Bill Byrne. 2017. Neural Machine Translation by
Minimising the Bayes-risk with Respect to Syntactic
Translation Lattices. In Proceedings of the 15th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, Valencia, Spain.
Association for Computational Linguistics.

Felix Stahlberg, Eva Hasler, Aurelien Waite, and Bill
Byrne. 2016. Syntactically Guided Neural Machine
Translation. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, Berlin, Germany. Association for Compu-
tational Linguistics.

Jorg Tiedemann. 2009. News from OPUS - A collec-
tion of multilingual parallel corpora with tools and
interfaces. In N. Nicolov, K. Bontcheva, G. An-
gelova, and R. Mitkov, editors, Recent Advances in
Natural Language Processing, volume V. John Ben-
jamins, Amsterdam/Philadelphia, Borovets, Bul-
garia.

Jorg Tiedemann. 2012. Parallel Data, Tools and
Interfaces in OPUS. In Proceedings of the 8th
International Conference on Language Resources
and Evaluation.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling Coverage for Neural
Machine Translation. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics, Berlin, Germany. Association for
Computational Linguistics.

Xing Wang, Zhengdong Lu, Zhaopeng Tu, Hang
Li, Deyi Xiong, and Min Zhang. 2017. Neural
Machine Translation Advised by Statistical Machine
Translation.

Analyzing Well-Formedness of Syllables in Japanese Sign Language

Satoshi Yawata* Makoto Miwa

Yutaka Sasaki Daisuke Hara

Toyota Technological Institute
2-12-1 Hisakata, Tempaku-ku, Nagoya, Aichi, 468-8511, Japan
yawatalnsk.com
{makoto-miwa, yutaka.sasaki,daisuke.hara}l@toyota-ti.ac.jp

Abstract

This paper tackles a problem of analyz-
ing the well-formedness of syllables in
Japanese Sign Language (JSL). We for-
mulate the problem as a classification
problem that classifies syllables into well-
formed or ill-formed. We build a data
set that contains hand-coded syllables and
their well-formedness. We define a fine-
grained feature set based on the hand-
coded syllables and train a logistic re-
gression classifier on labeled syllables, ex-
pecting to find the discriminative features
from the trained classifier. We also per-
form pseudo active learning to investigate
the applicability of active learning in an-
alyzing syllables. In the experiments, the
best classifier with our combinatorial fea-
tures achieved the accuracy of 87.0%. The
pseudo active learning is also shown to
be effective showing that it could reduce
about 84% of training instances to achieve
the accuracy of 82.0% when compared to
the model without active learning.

1 Introduction

Japanese Sign Language (JSL) is a widely-used
natural language different from Japanese. JSL
vocabulary needs to be expanded because JSL
vocabulary seems much smaller than Japanese
one (Tokuda and Okumura, 1998) and JSL words
for new concepts are always required (Japanese
Federation of the Deaf, 2011). Many JSL words
and syllables, which are basic units that com-
pose words, are newly coined to meet these
requirements, e.g., (Japanese Federation of the
Deaf, 2011). However, some of the syllables
are ill-formed, or unnatural for JSL natives, since

*Currently at NSK Ltd.

26

Figure 1: Examples of well-formed (left) and ill-
formed (right) JSL syllables. They are also mono-
syllable words: the left syllable means “basis” and
the right syllable means “avocado” (Yonekawa,
1997; Japanese Federation of the Deaf, 2011).

these new syllables are often coined by non-
natives (Hara, 2016a). This ill-formedness is
problematic since this can cause miscommuni-
cation and also erroneous learning for JSL non-
natives. Figure 1 illustrates the examples of well-
formed and ill-formed JSL syllables (monosylla-

ble words): “basis”! and “avocado’?.

The phonology and phonotactics of JSL have
not been well studied and the causes for this
ill-formedness have not been revealed. Natives
can distinguish such syllables, but they cannot
clearly explain the causes since the ill-formedness
stems from their intuition. It is thus difficult to
distinguish ill-formed syllables from well-formed
ones without the help of natives. A practical ap-
proach is required to analyze and understand the
ill-formedness of syllables objectively to exclude

'Stand up the left elbow, touch the closed right hand and
open it downwards.

Put the right little finger to the back of the left hand
standing up and move the right hand to cut it towards the
palm of the left hand

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 2630,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

the ill-formed syllables and avoid producing them
with little burden on native signers.

In this paper, we describe an approach to model
the well-formedness of syllables in JSL as a clas-
sification problem and analyze the cause of the
well-formedness. We build a data set that con-
tains 2,891 hand-coded syllables with their well-
formedness. Based on the data set, we train an
L1-regularized logistic regression classifier using
a fine-grained feature set to investigate the appli-
cability of machine learning (ML) approaches and
to find the differences between well-formed and
ill-formed syllables. We also apply pseudo active
learning (Settles, 2009) to the data to investigate
the possibility in reducing the annotation costs.

As far as we know, this is the first approach
that tackles the well-formedness of JSL syllables
with ML. We got the following insights from our
experiments. First, the syllables can be classified
into well-formed or not in the accuracy of 87.0%
with the simple classifier on sparse fine-grained
features. Second, we disclosed features that are
useful for the classification. Third, we show that
active learning can reduce the annotation costs.
We will make the annotated data available upon
request’.

2 Method

This section explains how we define and tackle
the classification problem to analyze the well-
formedness of JSL syllables. We first define the
representation of syllables. We then explain the
classification and pseudo active learning methods.

2.1 Syllable representation

JSL is a visual language, and the syllables are ex-
pressed visually. To avoid the difficulty in dealing
with the visual language®, we decide to hand-code
syllables. JSL syllables are usually composed of
three elements: handshapes, movements, and lo-
cations (Kimira et al., 2011).

We hand-code JSL syllables with the encod-
ing scheme by Hara (2016b), which is ex-
tended from Hara (2003). Each syllable is rep-
resented with seven components in this cod-
ing: types, handshapes, locations,
movements, contacts, directions of
palms, and directions of wrists. We

3Please contact the last author for data related inquiry.

“We left the automatic coding of visually-expressed syl-
lables as future work.

27

here briefly explain these components: Types
denote the number of hands used and, if two
hands are involved, the information about whether
both hands have the identical or different hand-
shapes, and whether both hands move together
or not. Handshapes represent the handshape
types. Locations correspond to 28 locations
of hands on or around the body such as the eye,
the shoulder, neutral space, i.e., space in front
of the signer, and so on. Movements are the
movement types of hands such as path move-
ment, orientation change movement, and handsape
change movement, and their relationships such
as synchronous movement and alternating move-
ment. Contacts indicate whether and when
both hands have contact in the syllable execu-
tion. Directions of palms show which
direction the palm faces. Directions of
wrists denote directions to which the tip of the
metacarpal bones point.

Syllables have little overlap in this coding
and it is impossible to find the discriminative
characteristics between well-formed syllables and
ill-formed ones, so we decompose the compo-
nents in the coding into a set of fine-grained bi-
nary features, aiming that the features are shared
among syllables without losing the original in-
formation. Types are represented with nine bi-
nary features, e.g., whether both hands are used,
whether both hand movements are symmetric, etc.
Handshapes are decomposed into 208 binary
features to represent whether each finger in hands
is used and whether each finger joint in hands
is stretched, loosely bent, or bent. Similarly,
we define 98 binary features for locations,
398 for movements, 171 for contacts, and
62 for directions of palms, and 62 for
directions of wrists. With this decom-
position, we define 1,017 binary features in total.

2.2 Well-formedness classification

We employ an L1-regularized logistic regression
classifier to classify well-formed and ill-formed
syllables. Training instances are not so many and
it is unknown how ML approaches work on this
problem, so we decide to employ this simple clas-
sifier as the first step toward this problem. We
use the L1 penalty to encourage the model to be
sparse, expecting that we can make the finding of
discriminative features easier. We also consider
adding the combinatorial features of two binary

Accuracy F1
most frequent 0.826 -
binary features 0.837 0.533
+ combinatorial features 0.870 0.613

Table 1: Classification results

features so that we can get more descriptive fea-
tures.

2.3 Pseudo active learning

There are plenty of JSL syllables in practice, and
it is infeasible to manually annotate these sylla-
bles’. We apply pseudo active learning to the data
set and investigate the possibility of reducing the
annotation cost. We employ two strategies: an un-
certainty sampling strategy that chooses the least
confident instances (Lewis and Catlett, 1994) and
a certainty-based strategy that chooses most neg-
ative (ill-formed) instances, which was shown to
be effective for imbalanced data sets (Fu and Lee,
2013; Miwa et al., 2014).

3 Evaluation

3.1 Experimental settings

Data sets: We employed 25 JSL natives to
hand-code 2,891 syllables and annotate their
well-formedness. The syllables are taken from
Yonekawa (1997) and the book series of “Our
Sign Language”, e.g., (Japanese Federation of the
Deaf, 2011). We split the syllables into training
and test data sets. The training data set contained
2,053 well-formed (positive) syllables and 538 ill-
formed (negative) syllables. The test data set con-
tained 238 positive and 52 negative syllables.
Well-formedness classification: We employed
the L1-regularized logistic regression classifier in
scikit-learn®. We evaluated the classification per-
formance by using both the classification accuracy
and F1 score on negative, ill-formed syllables as
the evaluation metrics. We also compared two
models to check whether the combinatorial fea-
tures help: one uses binary features and the other
uses combinatorial features of two binary features.
We tuned the regularization parameter by a 20-fold
cross validation (CV) on the training data.
Pseudo active learning: Using the classification
accuracy as the evaluation metric, we compared

>We need an established way to automatically code JSL
syllables beforehand, e.g., by extending Sako et al. (2016).
Shttp://scikit-learn.org

28

three models: random baseline with binary fea-
tures (random), active learning with binary fea-
tures (active), and active learning with binary and
combinatorial features (active(combi)). We also
compared the two active learning strategies using
binary and combinatorial features. We built the
initial classifier by training the classifier on 20 in-
stances consisting of 10 well-formed and 10 ill-
formed syllables. We added labeled instances one
by one in active learning. We tuned the regulariza-
tion parameter using the 20-fold CV each time 50
instances are added by active learning.

3.2 Results

We first examined the number of features that ap-
peared in the data set. For binary features, 849
out of 1,017 features appeared in the data set.
This shows there are some features that rarely or
never appear in JSL syllables. Similarly, not all
combinatorial features appeared in the data set,
and 174,986 out of 359,976 (i.e. (*)?) =849 x848/2)
features appeared. This is mainly because some
binary features are disjunctive and their combina-
tions are physically impossible.

Next, we evaluated the classification perfor-
mance on the test data set (Table 1). Our classi-
fiers produced better accuracy than did the most
frequent baseline that always predicted syllables
as well-formed. These high accuracies show that
our classifiers can detect relatively few ill-formed
syllables. The F1 scores are still low, which indi-
cates that we need to investigate how to alleviate
the data imbalance problem. This table also shows
that the combinatorial features are useful for im-
proving the performance.

Table 2 lists up some contributing features in
the model. Among the top 20 features, 9 and
11 features were related to dominant and non-
dominant features respectively for binary features,
whereas 7, 2, and 11 features were related to dom-
inant, non-dominant, and both hands respectively
for combinatorial features. These differences and
the performance difference between the features
indicate that the relation of both hands are impor-
tant to decide the ill-formedness.

Figure 2 shows the learning curves of three
models (random baseline, active learning, active
learning with combinatorial features) explained in
Section 3.1 during active learning. Each curve
in this figure shows the average of 10 runs. This
shows active learning work well compared to

Dominant hand

Second joints of middle and ring fingers are bent
The base of ring finger is bent and the palm direction is diagonally forward
The hand moves according to an orbital movement and the palm direction is backward.

Both hands

Movements are not symmetric and there is no contact at the end of a syllable
Different handshapes and the direction of the metacarpal bone of the dominant hand is upward
Symmetric handshapes and no contact at the beginning of a syllable

Table 2: Examples of contributing combinatorial features

the random baseline. From this figure, random
baseline required 1,284 instances while the active
learning 184 to achieve 82% in accuracy, so the
active learning need about 14.3% of the training
data compared to the random baseline. The use
of combinatorial features produces slightly worse
results, but the final performance is higher than
one without combinatorial features which indi-
cates that the combinatorial features work well
only with enough training instances.

Lastly, we compare the two active learning
strategies in Figure 3. Certainty-based method
worked slightly worse than uncertainty-based
method did, but the difference is small and, as a
whole, both strategies work almost similarly. This
result is interesting since the certainty-based strat-
egy focuses only on ill-formed syllables.

4 Related work

Although automatic sign language analysis has
been widely studied since 1990s (Starner et al.,
1998; Ong et al., 2005), there are relatively few
studies on computational approaches to JSL.

Kimira et al. (2011) proposed a JSL dictionary
consisting of over 2,000 JSL sign’. Each sign is
defined with handshapes, motions, and locations,
and a movie is attached to the sign. They did not
deal with the well-formedness of JSL syllables.

Studies on automatic recognition of JSL are also
relatively few, and most of them aim at a small
number of syllables or signs. Sako et al. (2016)
recently proposed automatic JSL recognition us-
ing Kinect v2. They used contour-based hand-
shape recognition, and they recognized hand lo-
cation and motion by Hidden Markov Models and
Gaussian Mixture Models. They evaluated their
system on 223 JSL signs. The combination of our
method with these automatic recognition methods
is one of the interesting research directions.

7 A sign consists of one or more syllables

29

0.90
0.85
R et
e
So0s0 e
o I g
] I
T --random
0.75 Taiey)
g Lt active
." u active(combi)
070
0 1000 2000

of training instances

Figure 2: Learning curve with pseudo active learn-
ing

0.90
0.85 =
>
7]
<
5 0.80 |
o
o
<
0.75 uncertainty |
certainty
0.70
0 1000 2000

of training instances

Figure 3: Comparison of pseudo active learning
strategies

5 Conclusion

This paper tackled a problem of analyzing the
well-formedness of JSL syllables. We created the
data set consisting of 2,891 hand-coded syllables
with their well-formedness. We then built and
evaluated classifiers using the fine-grained binary
features on the classification of syllables into well-
formed or not. We also investigated the possibil-
ity of active learning on the analysis of the well-
formedness. The results show that our classifier
achieves 87.0% in accuracy and that the active
learning can reduce the number of annotations.

As future work, we would like to incorporate
more sophisticated ML approaches such as kernels
and deep neural networks to consider more com-
binations of features. We also would like to de-
velop a system that can code visual syllables into
our features to make our method practical to sup-
port defining new syllables.

Acknowledgments

This work was supported by JSPS KAKENHI
Grant Numbers JP16H03813 and JP15K02536
and DAIKO FOUNDATION.

References

JuiHsi Fu and SingLing Lee. 2013. Certainty-based
active learning for sampling imbalanced datasets.
Neurocomputing, 119:350-358.

Daisuke Hara. 2003. A Complexity-Based Approach
to the Syllable Formation in Sign Language. Ph.D.
thesis, The University of Chicago, Chicago, IL.

Daisuke Hara. 2016a. An information-based approach
to the syllable formation of Japanese Sign Language.
In Masahiko Minami, editor, Handbook of Japanese
Applied Linguistics, chapter 18, pages 452-482.
Gruyter Mouton, Boston, MA.

Daisuke Hara. 2016b. New Coding Manual for
Japanese Sign language. (In Japanese).

Japanese Federation of the Deaf, editor. 2011. Our sign
language 2011: new sign language. Japanese Fed-
eration of the Deaf, Tokyo, Japan. (In Japanese).

Tsutomu Kimira, Daisuke Hara, Kazuyuki Kanda, and
Kazunari Morimoto. 2011. Expansion of the system
of jsl-japanese electronic dictionary: An evaluation
for the compound research system. In Proceedings
of the 2nd International Conference on Human Cen-
tered Design, HCD’ 11, pages 407-416, Berlin, Hei-
delberg. Springer-Verlag.

David D. Lewis and Jason Catlett. 1994. Heteroge-
neous uncertainty sampling for supervised learning.
In Proceedings of the Eleventh International Confer-
ence on Machine Learning, pages 148—156. Morgan
Kaufmann.

Makoto Miwa, James Thomas, Alison OMara-Eves,
and Sophia Ananiadou. 2014. Reducing systematic
review workload through certainty-based screening.
Journal of biomedical informatics, 51:242-253.

Sylvie CW Ong, Surendra Ranganath, et al. 2005.
Automatic sign language analysis: A survey and
the future beyond lexical meaning. IEEE transac-

tions on pattern analysis and machine intelligence,
27(6):873-891.

30

Shinji Sako, Mika Hatano, and Tadashi Kitamura.
2016. Real-Time Japanese Sign Language Recogni-
tion Based on Three Phonological Elements of Sign.
Springer International Publishing, Cham.

Burr Settles. 2009. Active learning literature survey.
Computer Sciences Technical Report 1648.

Thad Starner, Joshua Weaver, and Alex Pentland. 1998.
Real-time american sign language recognition us-
ing desk and wearable computer based video. IEEE

Transactions on Pattern Analysis and Machine In-
telligence, 20(12):1371-1375.

Masaaki Tokuda and Manabu Okumura. 1998. To-
wards automatic translation from japanese into
japanese sign language. Assistive Technology and
Artificial Intelligence, pages 97-108.

Akihiko Yonekawa. 1997. Japanese — Japanese Sign
Language Dictionary. Japanese Federation of the
Deaf, Tokyo, Japan. (In Japanese).

Towards Lower Bounds on Number of Dimensions for Word Embeddings

Kevin Patel, Pushpak Bhattacharyya

Department of Computer Science and Engineering

Indian Institute of Technology Bombay
{kevin.patel,pb}@cse.iitb.ac.in

Abstract

Word embeddings are a relatively new
addition to the modern NLP researcher’s
toolkit. However, unlike other tools, word
embeddings are used in a black box man-
ner. There are very few studies regarding
various hyperparameters. One such hyper-
parameter is the dimension of word em-
beddings. They are rather decided based
on a rule of thumb: in the range 50 to
300. In this paper, we show that the di-
mension should instead be chosen based
on corpus statistics. More specifically, we
show that the number of pairwise equidis-
tant words of the corpus vocabulary (as de-
fined by some distance/similarity metric)
gives a lower bound on the the number of
dimensions , and going below this bound
results in degradation of quality of learned
word embeddings. Through our evalua-
tions on standard word embedding evalu-
ation tasks, we show that for dimensions
higher than or equal to the bound, we get
better results as compared to the ones be-
low it.

1 Introduction

Word embeddings are a crucial component of
modern NLP. They are learned in an unsupervised
manner from large amounts of raw corpora. Ben-
gio et al. (2003) were the first to propose neural
word embeddings. Many word embedding mod-
els have been proposed since then (Collobert and
Weston, 2008; Huang et al., 2012; Mikolov et al.,
2013a; Levy and Goldberg, 2014).

Word vector space models can only capture dif-
ferences in meaning (Sahlgren, 2006). That is, one
can infer the meaning of a word by looking at its
neighbors. An isolated word on its own does not

31

mean anything in the word vector space. Thus, one
needs to think of embedding algorithm’s capabil-
ity to capture these differences effectively, which
is governed by its hyperparameters. The hyperpa-
rameters affect the information to be represented
and the available degree of freedom to express it.

Most word embeddings share different design
choices and hyperparameters such as context type,
window size, number of dimensions of the embed-
dings, efc. However, a large portion of the research
community uses word embeddings without their
in-depth analysis; many proceed with default set-
tings that come with off-the-shelf word embedding
toolkits. While other hyperparameters have been
studied to varying extents (see section 2), there
are no rigorous studies on the number of dimen-
sions that should be used while training word em-
beddings. They are usually decided via a rule of
thumb (established as a side effect of other evalu-
ations): use between 50 to 300, or by trial and er-
ror. This is a common thread across many NLP ap-
plications: Part of Speech Tagging (Collobert and
Weston, 2008), Named Entity Recognition Sen-
tence Classification (Kim, 2014), Sentiment Anal-
ysis (Liu et al., 2015), Sarcasm Detection (Joshi
et al., 2016).

Depending on the corpus, its vocabulary, and
the context through which the differences are
elicited during training of word embedding, we
are bound to obtain a certain number of words,
say n, that are pairwise equidistant. Such words
impose an equality constraint that the embedding
algorithm has to uphold. Thus, we raise the fol-
lowing question:

Does n (the number of pairwise equidistant
words) enforce a lower bound on the number of
dimensions that should be chosen for training
word embeddings on the corpus?

In this paper, we show that this seems to be true

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 31-36,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

for skip gram embeddings. We show how to obtain
the number of pairwise equidistant points from
corpus. This number determines the lower bound.
Then we show how the training algorithm of skip-
gram embeddings fails to uphold the equality con-
straint when the number of dimensions is less than
the lower bound. We show this both via analysis
on toy examples as well as intrinsic evaluation on
real data.

2 Background and Related Work

As mentioned earlier, the number of dimensions is
often decided via the rule of thumb, or by trial and
error. This holds true not only for word embedding
usage but also for their evaluations.

Baroni et al. (2014) claimed that neural word
embeddings are better than traditional methods
such as LSA, HAL, RI (Landauer and Dumais,
1997; Lund and Burgess, 1996; Sahlgren, 2005).
They experimented with different settings for the
number of dimensions, but their experiments were
intended to evaluate the practicality of dimensions
of neural embeddings as compared to their tradi-
tional methods. However, their claim was chal-
lenged by Levy et al. (2015), who showed that
superiority of neural word embeddings is not
due to the embedding algorithm, but due to cer-
tain design choices and hyperparameters opti-
mizations. While they investigate different hyper-
parameters, they keep a consistent dimension of
500 for all different embedding models that they
evaluated. Many other evaluations set the number
of dimensions without any justifications (Schnabel
et al., 2015; Zhai et al., 2016; Ghannay et al.,
2016).

Melamud et al. (2016) evaluates skip-gram
word embeddings on a wide range of intrinsic and
extrinsic NLP tasks. An interesting observation
made by them is that while the performance for
intrinsic tasks such as word pair similarity, etc.
peaks at around 300 dimensions, the performance
of extrinsic tasks peaked at around 50, and some-
times showed degradation for higher dimensions.
This justifies the need for study of bounds for di-
mensions.

As 18 evident from the above discussion, the
analysis of the number of dimensions have not re-
ceived enough attention. This paper is a contribu-
tion towards that direction.

32

3 Motivation

Let us consider the following toy corpus of four
sentences (< >is sentence separator):

<>I like cats <>I love dogs <>I hate rats <>I
rate bats <>

Table 1 shows the rows of the co-occurrence
matrix corresponding to the four words {like, love,
hate, rate}.

like
0

bats
0

hate
0

love
0

word
like
love
hate
rate

< rats | cats

0 1

rate
0

dogs
0

o|o|o|o|V
Y PSR [

0 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1

Table 1: Four rows corresponding to {like, love,
hate, rate} of co-occurrence matrix for toy corpus

The euclidean distance between any two words
from the set {like, love, hate, rate} isv/2. In other
words, they form a regular tetrahedron with side
length =v/2. The words {cats, dogs, rats, bats}
form another such set. Intuitively, we know that
the space which can embed a regular tetrahedron
needs at least 3 dimensions. If a word embedding
learning algorithm wishes to model this informa-
tion correctly, it has to strive to uphold this equal-
ity constraint. However, its success will depend on
the degree of freedom which it receives in terms of
the number of dimensions. If it tries to embed it in
a space of dimension lower than 3, then it ends
up breaking the equality constraint. We end up
having (0.94, 0.94), (1.77, 0.80), and (2.63, 0.10)
as the average (mean, standard deviation) for the
pairwise distances for dimensions 1, 2 and 3 re-
spectively for 5 random initializations. Figure 1
shows the results of attempting to embed the reg-
ular tetrahedron created by the four words in a 1,
2, and 3-dimensional space. One can see how the
algorithm fails for dimensions 1, and 2 (very high
standard deviations), but succeeds in case of 3 di-
mensions (low standard deviation).

To further verify the distortions due to a lower
than needed dimension, we make the following
hypothesis: if the learning algorithm of word em-
beddings does not get enough dimensions, then it
will fail to uphold the equality constraint. There-
fore, the standard deviation of the mean of all pair-
wise distances will be higher. As we increase the
dimension, the algorithm will get more degrees of
freedom to model the equality constraint in a bet-
ter way. Thus, there will be statistically significant
changes in the standard deviation. Once the lower

1.5 1.5 1.5

1.0 1.0 1.0
0.5]
0.0;

—0.5]

0.5
loyvehate likate 0.0]

0.5] like |

e 0.0 ove
hate rate

~0.5] :

like hate
N lov

rate
~0.5]

-1.0 -1.0 -1.0

—1.5
-1.51.6-0.50.00.51.01.5

—1.5
-1.51.6-0.50.00.51.0 1.5

—1.5
-1.51.6-0.50.00.51.0 1.5

(a) 1d(Before) (b) 2d(Before) (c) 3d(Before)

1.
5 1.5

1.0
0.5]
0.0
—0.5]
-1.0
—1.5

rate
1.0

0.5]
0.0

hate{ 1
love rhiteee liggee o

hate like
-0.5 |
-1.0 -X ove
love

—1.5
-1.51.6-0.50.00.51.0 1.5

(d) 1d(After)

—2l
-2 -1 0 1

(f) 3d(After)

-1.51.60.9.00.51.01.5

(e) 2d(After)

Figure 1: Trying to embed {like, love, hate, rate}
in a 1,2 and 3-dimensional space. Here, (Before)
and (After) indicates positions before and after
training respectively. The 3 dimensional vectors
in (c) and (f) are reduced to 2 dimensions using
PCA for visualization purposes

bound of dimensions is reached, the algorithm gets
enough degrees of freedom. Thus, from this point
onwards, even if we increase dimensions, there
will not be any statistically significant difference
in the standard deviation.

To test this, we train word embeddings for dif-
ferent dimensions for an artificially created cor-
pus with 15 pairwise equidistant words. The cor-
pus contained sentences of the form I verb; noun;
where 1 < ¢ < 15. Table 2 shows the results for
the same. Note how there are statistically signif-
icant reductions (p-value < 0.05) in standard de-
viations up until 14 (15 — 1). However, once the
number of dimensions is higher than 14, the differ-
ences are no longer significant (p-value > 0.05).
We used Welch’s Unpaired t-test for testing statis-
tical significance.

Dim T P-value | Dim o P-value

7 | 0.358 12 | 0.154 0.0058

8 | 0.293 0.0020 13 | 0.111 0.0001

91 0273 0.0248 14 | 0.044 0.0001

10 | 0.238 0.0313 15 | 0.047 0.3096

11 | 0.189 0.0013 16 | 0.054 0.1659
Table 2: Avg standard deviation (o) for 15 pair-

wise equidistant words (along with two tail p-
values of Welch’s unpaired t-test for statistical sig-
nificance)

4 Approach

We used euclidean distance in the motivation sec-
tion for ease of discussion. In practice, the met-

33

ric used in conjunction with word vectors is co-
sine similarity. While the closed-form solution
is available for the case of euclidean distance
(Lower Bound = #Pairwise Equidistant points -
1) (Swanepoel, 2004), the same is not true for
the case of cosine similarity. Instead, the rela-
tion between the number of dimensions and the
maximum number of pairwise equiangular lines
that can be embedded is an active area of research
(Lemmens and Seidel, 1973; de Caen, 2000; God-
sil and Roy, 2009; Barg and Yu, 2014). Table 3
gives the maximum number of pairwise equian-
gular lines E' that can be embedded in a space of
dimension A (taken from (Barg and Yu, 2014)).

A E A E
3 6 18 61
4 6 19 76
5 10 20 96
6 16 21 126
7<=n<=13 | 28 22 176
14 30 23 276
15 36 | 24<=n<=41 | 276
16 42 42 288
17 51 43 344

Table 3: Number of dimensions A and the corre-
sponding maximum number of equiangular lines E
(for larger values of A, refer (Barg and Yu, 2014))

To find the lower bound, one should follow the
following approach:

1. Compute the word x word co-occurrence
matrix from the corpus

. Create the word x word cosine similarity ma-
trix by treating the rows of co-occurrence ma-
trix as word vectors

. For each similarity value sj:

a) Create a graph, where the words are
nodes. Create an edge between node 7
and node j if sim(7, j) = sg

b) Find maximum clique on this graph.

The number of nodes in this clique is the

maximum number of pairwise equidis-

tant points E},

c) Reverse lookup Ej, in table 3 to deter-

mine the corresponding number of di-

mension Ay

4. The maximum A\ among all Ags is the lower
bound

a) Word Pair Similarity

b) Word Analogy

c) Categorization

e e e T R =T = e SeEain] [miEsses Bt S Y B E R
0357] 0.20 ‘ ‘ ‘ ‘ — 08— ‘ M
0.30f peeen/ £ k| 0.7H . 4 b

h

S o2 f }\/\"_/\ Ay - 015 pd VN o /W

2 020 ﬁwﬂqﬂﬂw E . Lo /

e od 1 3 £ o5} 1

S5 0.15} /H’ 3 5 SO i S SSRGS

< ZX”/ / < 0.0} 2 v .

§ o.10f Y. s g

E S 5 03f 4

5005 N S e g 3 O 7| e e s

2 ool W % 0.05] il |

& f/ v WW

—0.05F 0.1+]
0.00% 0.0L

—0.10% ' J
0 5 10 15 20 25 30 35 0 5
Number of dimensions

0
Number of dimensions

e
15

10 15 20 25 30 35
Number of dimensions

200 25 30 35 0 5

Figure 2: Performance for different tasks with respect to number of dimensions

When we applied this procedure on Brown cor-
pus, we obtained a maximum of 62 words in step
3b), which lead to lower bound of 19 dimensions.

A theoretical shortcoming of this approach is
that finding maximum clique is NP-complete. For
the Brown corpus, we obtained the maximum
cliques using Parallel Maximum Clique library
(PMC)(Rossi et al., 2013).

S Experimental Setup
5.1 Word Embedding training

We train skip-gram embeddings on the Brown cor-
pus provided with NLTK toolkit. For tokeniza-
tion, we use the default tokenizer. We do not re-
move any stopwords. In order to control effects of
randomization, we avoided it wherever possible.
To this effect, we do not use negative sampling.
We use hierarchical softmax to hasten the softmax
computation. One word to the left and right of the
input word is considered as context.

5.2 Tasks

We use the following intrinsic tasks for evaluation.

a) Word Pair Similarity tasks are commonly
used for intrinsic evaluation of word em-
beddings, which involve predicting similar-
ity between a given pair of words a and b.
The evaluation involves finding cosine sim-
ilarity between the embeddings of a and b,
and finding the spearman correlation with hu-
man annotation. We used the WS353, MEN,
RW, RG65, MTurk, and SimLex999 datasets
(Faruqui and Dyer, 2014)

b) Word Analogy tasks are yet another com-
monly used tasks for intrinsic evaluation of
word embeddings, which involve evaluating
the accuracy of finding a missing word d in
the relation: a is to b as c is to d, where (a, b)

34

and (c, d) have the same relation. We used
the Google, MSR, and SemEval 2012 Task 2
datasets (Mikolov et al., 2013b).

Categorization tasks are yet another com-
monly used tasks for intrinsic evaluation of
word embeddings, which involve evaluating
the purity of clusters formed by word embed-
dings. We used the AP, BLESS, ESSLI la,
ESSLI_2b, and ESSLI_2c datasets (Schnabel
etal., 2015).

6 Results and Analysis

Figure 2 shows the effects of increasing dimen-
sions from 1 to 35 on different tasks. One ob-
serves that each series ascends till the number of
dimensions reach 19, after which it stabilizes. This
is because once the lower bound is reached, the
errors introduced due to the violation of equality
constraint are removed. Thus, the optimal perfor-
mance possible with the selected configurations is
reached, and the performance stabilizes thereafter.

Note that, in some cases, the performance stabi-
lizes before 19. This is because, for that particular
dataset and task, the equality constraints that are
broken at lower than 19 dimensions did not mat-
ter. But, for a realistic use case, one would be bet-
ter off if they stick to the lower bound.

7 Conclusion and Future Work

We discussed the importance of deciding the num-
ber of dimensions for word embedding training by
looking at the corpus. We motivated the idea us-
ing abstract examples and gave an algorithm for
finding the lower bound. Our experiments showed
that performance of word embeddings is poor, un-
til the lower bound is reached. Thereafter, it sta-
bilizes. Therefore, such bounds should be used to
decide the number of dimensions, instead of trial
and error.

We aim to continue the work, addressing the
limitations of complexity, the validity of hypothe-
sis in extrinsic tasks, efc.. We will also investigate
whether the same holds for different word embed-
ding models.

Acknowledgements

We thank Arjun Atreya, Anoop Kunchukuttan,
Aditya Joshi, Abhijit Mishra and other members
of the Center for Indian Language Technology
(CFILT) for valuable discussions and feedback.

References

Alexander Barg and Wei-Hsuan Yu. 2014. New bounds
for equiangular lines. Contemporary Mathematics
625.0:111-121.

Marco Baroni, Georgiana Dinu, and German
Kruszewski. 2014. Don’t count, predict! a
systematic comparison of context-counting Vvs.
context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics,
pages 238-247.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent,
and Christian Janvin. 2003. A neural probabilis-
tic language model. Journal of Machine Learning
Research 3.0:1137-1155.

Ronan Collobert and Jason Weston. 2008. A uni-
fied architecture for natural language processing:
deep neural networks with multitask learning. In
Machine Learning, Proceedings of the Twenty-Fifth
International Conference (ICML). ACM, volume
307.0, pages 160-167.

Dominique de Caen. 2000. Large equiangular sets
of lines in euclidean space. Electronic Journal of
Combinatorics 7.0.

Manaal Faruqui and Chris Dyer. 2014. Commu-
nity evaluation and exchange of word vectors at
wordvectors.org. In Proceedings of 52nd Annual
Meeting of the Association for Computational
Linguistics: System Demonstrations. Association
for Computational Linguistics, pages 19-24.

Sahar Ghannay, Benoit Favre, Yannick Estve, and
Nathalie Camelin. 2016. Word embedding evalua-
tion and combination. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC). European Language Re-
sources Association (ELRA).

Chris Godsil and Aidan Roy. 2009. Equiangular
lines, mutually unbiased bases, and spin models.
European Journal of Combinatorics 30.0:246-262.

35

Eric Huang, Richard Socher, Christopher Manning,
and Andrew Ng. 2012. Improving word represen-
tations via global context and multiple word proto-
types. In Proceedings of the 50th Annual Meeting
of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Compu-
tational Linguistics, pages 873-882.

Aditya Joshi, Vaibhav Tripathi, Kevin Patel, Pushpak
Bhattacharyya, and Mark Carman. 2016. Are word
embedding-based features useful for sarcasm detec-
tion? In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, pages
1006-1011.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Association for
Computational Linguistics, pages 1746—1751.

Thomas K. Landauer and Susan T. Dumais. 1997. A
solution to Plato’s problem: The latent semantic
analysis theory of acquisition, induction, and rep-
resentation of knowledge. Psychological Review
104.0:211-240.

Petrus WH Lemmens and Johan J Seidel. 1973.
Equiangular lines. Journal of Algebra 24.0:494—
512.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of
the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short
Papers). Association for Computational Linguistics,
pages 302-308.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015.
Improving distributional similarity with lessons
learned from word embeddings. Transactions of the
Association of Computational Linguistics 3.0:211-
225.

Pengfei Liu, Shafiq Joty, and Helen Meng. 2015.
Fine-grained opinion mining with recurrent neural
networks and word embeddings. In Proceedings
of the 2015 Conference on Empirical Methods in
Natural Language Processing. Association for Com-
putational Linguistics, pages 1433—-1443.

Kevin Lund and Curt Burgess. 1996. Produc-
ing high-dimensional semantic spaces from lexi-
cal co-occurrence. Behavior Research Methods,
Instruments, & Computers 28.0:203-208.

Oren Melamud, David McClosky, Siddharth Patward-
han, and Mohit Bansal. 2016. The role of con-
text types and dimensionality in learning word em-
beddings. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies. Association for Computational Lin-
guistics, pages 1030-1040.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013a. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings
of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States.. pages 3111-3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, pages 746-751.

Ryan A Rossi, David F Gleich, Assefaw H Gebremed-
hin, Mostofa A Patwary, Ryan A Rossi, David F
Gleich, David F Gleich, and Ryan A Rossi. 2013.
A fast parallel maximum clique algorithm for large

sparse graphs and temporal strong components.
arXiv preprint 1302.6256 .

Magnus Sahlgren. 2005. An introduction to ran-
dom indexing. In In Methods and Applications
of Semantic Indexing Workshop at the 7th
International Conference on Terminology and
Knowledge Engineering, (TKE).

Magnus Sahlgren. 2006. The Word-Space Model:
Using Distributional Analysis to Represent
Syntagmatic and Paradigmatic Relations between
Words in High-Dimensional Vector Spaces. Ph.D.
thesis, Stockholm University.

Tobias Schnabel, Igor Labutov, David Mimno, and
Thorsten Joachims. 2015. Evaluation methods for
unsupervised word embeddings. In Proceedings
of the 2015 Conference on Empirical Methods in
Natural Language Processing. Association for Com-
putational Linguistics, pages 298-307.

Konrad J Swanepoel. 2004. Equilateral sets in
finite-dimensional normed spaces. In Seminar of
Mathematical Analysis. volume 71.0, pages 195-
237.

Michael Zhai, Johnny Tan, and Jinho D. Choi. 2016.
Intrinsic and extrinsic evaluations of word em-
beddings. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence. AAAI Press,
pages 4282-4283.

36

Sequence to Sequence Learning for Event Prediction

Dai Quoc Nguyen', Dat Quoc Nguyen?, Cuong Xuan Chu?,
Stefan Thater', Manfred Pinkal'

'Department of Computational Linguistics, Saarland University, Germany
{daiquocn, stth, pinkal}@coli.uni-saarland.de
2Department of Computing, Macquarie University, Australia
dat .nguyenlmg.edu.au
3Max Planck Institute for Informatics, Germany
cxchul@mpi-inf.mpg.de

Abstract

This paper presents an approach to the
task of predicting an event description
from a preceding sentence in a text. Our
approach explores sequence-to-sequence
learning using a bidirectional multi-layer
recurrent neural network. Our approach
substantially outperforms previous work
in terms of the BLEU score on two
datasets derived from WIKIHOW and DE-
SCRIPT respectively. Since the BLEU
score is not easy to interpret as a mea-
sure of event prediction, we complement
our study with a second evaluation that ex-
ploits the rich linguistic annotation of gold
paraphrase sets of events.

1 Introduction

We consider a task of event prediction which aims
to generate sentences describing a predicted event
from the preceding sentence in a text. The follow-
ing example presents an instruction in terms of a
sequence of contiguous event descriptions for the
activity of baking a cake:

Gather ingredients. Turn on oven. Combine
ingredients into a bowl. Pour batter in pan.
Put pan in oven. Bake for specified time.

The task is to predict event description “Put pan in
oven” from sentence “Pour batter in pan”, or how
to generate the continuation of the story, i.e., the
event following “Bake for specified time”, which
might be “Remove pan from oven”. Event predic-
tion models an important facet of semantic expec-
tation, and thus will contribute to text understand-
ing as well as text generation. We propose to em-

37

ploy sequence-to-sequence learning (SEQ2SEQ)
for this task.

SEQ2SEQ have received significant research at-
tention, especially in machine translation (Cho
etal., 2014; Sutskever et al., 2014; Bahdanau et al.,
2015; Luong et al., 2015), and in other NLP tasks
such as parsing (Vinyals et al., 2015; Dong and La-
pata, 2016), text summarization (Nallapati et al.,
2016) and multi-task learning (Luong et al., 2016).
In general, SEQ2SEQ uses an encoder which typ-
ically is a recurrent neural network (RNN) (El-
man, 1990) to encode a source sequence, and then
uses another RNN which we call decoder to de-
code a target sequence. The goal of SEQ2SEQ
is to estimate the conditional probability of gen-
erating the target sequence given the encoding
of the source sequence. These characteristics of
SEQ2SEQ allow us to approach the event predic-
tion task. SEQ2SEQ has been applied to text pre-
diction by Kiros et al. (2015) and Pichotta and
Mooney (2016). We also use SEQ2SEQ for pre-
diction of what comes next in a text. However,
there are several key differences.

e We collect a new dataset based on the largest
available resource of instructional texts, i.e.,
WIKIHOW', consisting of pairs of adjacent
sentences, which typically describe contigu-
ous members of an event chain characterizing
a complex activity. We also present another
dataset based on the DESCRIPT corpus—a
crowdsourced corpus of event sequence de-
scriptions (Wanzare et al., 2016). While the
WIKIHOW-based dataset helps to evaluate
the models in an open-domain setting, the
DESCRIPT-based dataset is used to evaluate
the models in a closed-domain setting.

'www.wikihow.com

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 37-42,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

e Pichotta and Mooney (2016) use the BLEU
score (Papineni et al., 2002) for evaluation
(i.e., the standard evaluation metric used in
machine translation), which measures sur-
face similarity between predicted and actual
sentences. We complement this evaluation
by measuring prediction accuracy on the se-
mantic level. To this purpose, we use the
gold paraphrase sets of event descriptions in
the DESCRIPT corpus, e.g., “Remove cake”,
“Remove from oven” and “Take the cake out
of oven” belong to the same gold paraphrase
set of taking out oven. The gold paraphrase
sets allow us to access the correctness of the
prediction which could not be attained by us-
ing the BLEU measure.

We explore multi-layer RNNs which have
currently shown the advantage over sin-
gle/shallow RNNs (Sutskever et al., 2014;
Vinyals et al., 2015; Luong et al., 2015). We
use a bidirectional RNN architecture for the
encoder and examine the RNN decoder with
or without attention mechanism. We achieve
better results than previous work in terms of
BLEU score.

2 Sequence to Sequence Learning

Given a source sequence x1,x2, ..., L, and a tar-
get sequence yi, Yo, ..., Yn, S€quence to sequence
learning (SEQ2SEQ) is to estimate the conditional
probability Pr(yi,vy2,....yn | x1,T2,....,Tm)
(Sutskever et al., 2014; Cho et al., 2014; Bah-
danau et al., 2015; Vinyals et al., 2015; Luong
et al., 2016). Typically, SEQ2SEQ consists of a
RNN encoder and a RNN decoder. The RNN
encoder maps the source sequence into a vector
representation ¢ which is then fed as input to the
decoder for generating the target sequence.

We use a bidirectional RNN (BiRNN) architec-
ture (Schuster and Paliwal, 1997) for mapping the
source sequence i, X2, ..., Ty, into the list of en-
coder states s§, s5, ..., s5,.

The RNN decoder is able to work with or with-
out attention mechanism. When not using atten-
tion mechanism (Sutskever et al., 2014; Cho et al.,
2014), the vector representation c is the last state
s¢, of the encoder, which is used to initialize the
decoder. Then, at the timestep i (1 < i < n), the
RNN decoder takes into account the hidden state
s;i_l and the previous input ;1 to output the hid-
den state sgl and generate the target y;.

38

Attention mechanism allows the decoder to at-
tend to different parts of the source sequence at
one position of a timestep of generating the tar-
get sequence (Bahdanau et al., 2015; Luong et al.,
2015; Vinyals et al., 2015). We adapt the attention
mechanism proposed by Vinyals et al. (2015) to
employ a concatenation of the hidden state s¢ and
the vector representation ¢ to make predictions at
the timestep <.

We use two advanced variants of RNNs that re-
place the cells of RNNs with the Long Sort Term
Memory (LSTM) cells (Hochreiter and Schmid-
huber, 1997) and the Gated Recurrent Unit (GRU)
cells (Cho et al., 2014). We also use a deeper ar-
chitecture of multi-layers, to model complex inter-
actions in the context. This is different from Kiros
et al. (2015) and Pichotta and Mooney (2016)
where they only use a single layer. So we in fact
experiment with Bidirectional-LSTM multi-layer
RNN (BiLSTM) and Bidirectional-GRU multi-
layer RNN (BiGRU).

3 Experiments

3.1 Datasets

@ www.wikihow.com/Bake-a-Cake

Making Vanilla Pound Cake

1 Gather your ingredients. Iﬁc.md cake is one of the 5
Lh_l =

you'll need:

Preheat the oven to 325 degrees.

2

Figure 1: An WIKIHOW activity example.

WIKIHOW-based dataset: WIKIHOW is the
largest collection of “how-to” tasks, created by
an online community, where each task is repre-
sented by sub-tasks with detailed descriptions and
pictorial illustrations, e.g., as shown in Figure 1.
We collected 168K articles (e.g., “Bake-a-Cake”)
consisting of 238K tasks (e.g., “Making Vanilla
Pound Cake”) and approximately 1.59 millions
sub-tasks (e.g., “Gather your ingredients”, “Pre-
heat the oven to 325 degrees”), representing a
wide variety of activities and events. Then we cre-
ated a corpus of approximately 1.34 million pairs
of subsequent sub-tasks (i.e., source and target

sentences for the SEQ2SEQ model), for which we
have the training set of approximately 1.28 million
pairs, the development and test sets of 26,800 pairs
in each. This dataset aims to evaluate the models
in an open-domain setting where the predictions
can go into many kinds of directions.

DESCRIPT-based dataset: The DESCRIPT cor-
pus (Wanzare et al., 2016) is a crowdsourced cor-
pus of event sequence descriptions on 40 different
scenarios with approximately 100 event sequence
descriptions per scenario. In addition, the corpus
includes the gold paraphrase sets of event descrip-
tions. From the DESCRIPT corpus, we create a
new corpus of 29,150 sentence pairs of an event
and its next contiguous event. Then, for each 10
sentence pairs, the 5th and 10th pairs are used for
the development and test sets respectively, and 8
remaining pairs are used for the training set. Thus,
each of the development and test sets has 2,915
pairs, and the training set has 23,320 pairs. This
dataset helps to assess the models in a closed-
domain setting where the goal is trying to achieve
a reasonable accuracy.

3.2 Implementation details

The models are implemented in TensorFlow
(Abadi et al., 2016) and trained with/without at-
tention mechanism using the training sets. Then,
given a source sentence describing an event as
input, the trained models are used to generate
a sentence describing a predicted event. We
use the BLEU metric (Papineni et al., 2002) to
evaluate the generated sentences against the tar-
get sentences corresponding to the source sen-
tences. A SEQ2SEQ architecture using a single
layer adapted by Pichotta and Mooney (2016) is
treated as the BASELINE model.

We found vocabulary sizes of 30,000 and
5,000 most frequent words as optimal for the
WIKIHOW and DESCRIPT-based datasets, re-
spectively. Words not occurring in the vocabu-
lary are mapped to a special token UNK. Word
embeddings are initialized using the pre-trained
300-dimensional word embeddings provided by
Word2Vec (Mikolov et al., 2013) and then up-
dated during training. @ We use two settings
of a single BiLSTM/BiGRU layer (1-LAYER-
BISEQ2SEQ) and two BiLSTM/BiGRU layers (2-
LAYER-BISEQ2SEQ). We use 300 hidden units
for both encoder and decoder. Dropout (Srivas-
tava et al., 2014) is applied with probability of 0.5.

39

The training objective is to minimize the cross-
entropy loss using the Adam optimizer (Kingma
and Ba, 2015) and a mini-batch size of 64. The
initial learning rate for Adam is selected from
{0.0001, 0.0005, 0.001,0.005,0.01}. We run up
to 100 training epochs, and we monitor the BLEU
score after each training epoch and select the best
model which produces highest BLEU score on the
development set.

3.3 Evaluation using BLEU score

Table 1 presents our BLEU scores with models
trained on WIKIHOW and DESCRIPT-based data
on the respective test sets. There are significant
differences in attending to the WIKIHOW sen-
tences and the DESCRIPT sentences. The BLEU
scores between the two datasets cannot be com-
pared because of the much larger degree of varia-
tion in WIKIHOW. The scores reported in Pichotta
and Mooney (2016) on WIKIPEDIA are not com-
parable to our scores for the same reason.

WIKIHOW | DESCRIPT
Model

GRU | LSTM |GRU | LSTM
BASELINENoN-ATT 1.67] 1.68 |4.31| 4.69
1-LAYER-BISEQ2SEQyon.arr |2-21] 2.01 |4.85] 5.15
2-LAYER-BISEQ2SEQuon-arr [2.93] 2.69 [4.98| 5.42
BASELINEzrr 1.86| 2.03 |4.03| 4.01
1-LAYER-BISEQ2SEQurr 2.53| 2.58 |4.38| 4.47
2-LAYER-BISEQ2SEQ ¢t 2.86| 2.81 |4.76| 5.29

Table 1: The BLEU scores on the DESCRIPT and
WIKIHOW-based test sets. We use subscripts ATT
and NON-ATT to denote models with and without
using attention mechanism, respectively.

Table 1 shows that 1-LAYER-BISEQ2SEQ ob-
tains better results than the strong BASELINE.
Specifically, 1-LAYER-BISEQ2SEQ improves the
baselines with 0.3+ BLEU in both cases of ATT
and NON-ATT, indicating the usefulness of using
bidirectional architecture. Furthermore, the two-
layer architecture produces better scores than the
single layer architecture. Using more layers can
help to capture prominent linguistic features, that
is probably the reason why deeper layers empiri-
cally work better.

As shown in Table 1, the GRU-based models
obtains similar results to the LSTM-based mod-
els on the WIKIHOW-based dataset, but achieves
lower scores on the DESCRIPT-based dataset.
This could show that LSTM cells with memory
gate may help to better remember linguistic fea-

10

|
00 GRUsrr [0 LSTMarr
[0 GRUyon-arr BBLSTMyoN- ATt
87 .
) 6.19
S 61549 5.5.45 1
s
2 3721
— 4
[aa]
2,
0 \ T
<5 <10 > 10

Sentence length

Figure 2: The BLEU scores of two-layer BILSTM
BISEQ2SEQ with/without attention on the DE-
SCRIPT-based test set with respect to the source
sentence lengths.

tures than GRU cells without memory gate for the
closed-domain setting.

The ATT model outperforms the NON-ATT
model on the WIKIHOW-based dataset, but not on
the DESCRIPT-based dataset. This is probably be-
cause neighboring WIKIHOW sentences (i.e., sub-
task headers) are more parallel in structure (see
“Pour batter in pan” and “Put pan in oven” from
the initial example), which could be related to the
fact that they are in general shorter. Figure 2 shows
that the ATT model actually works well for DE-
SCRIPT pairs with a short source sentence, while
its performance decreases with longer sentences.

3.4 Evaluation based on paraphrase sets

BLEU scores are difficult to interpret for the task:
BLEU is a surface-based measure as mentioned in
(Qin and Specia, 2015), while event prediction is
essentially a semantic task. Table 2 shows output
examples of the two-layer BILSTM SEQ2SEQ
NON-ATT on the DESCRIPT-based dataset. Al-
though the farget and predicted sentences have
different surface forms, they are perfect para-
phrases of the same type of event.

To assess the semantic success of the predic-
tion model, we use the gold paraphrase sets of
event descriptions provided by the DESCRIPT cor-
pus for 10 of its scenarios. We consider a subset of
682 pairs, for which gold paraphrase information
is available, and check, whether a farget event and
its corresponding predicted event are paraphrases,

40

Source: combine and mix all the ingredients as the
recipe delegates

Target: pour ingredients into a cake pan

Predicted: put batter into baking pan

Source: put cake into oven

Target: wait for cake to bake

Predicted: bake for specified time

Source: make an appointment with your hair stylist

Target: go to salon for appointment

Predicted: drive to the barber shop

Table 2: Prediction examples.

Model ‘ Accuracy (%)
BASELINENoN-ATT 23.9
1-LAYER-BISEQ2SEQyon-arT 27.3
2-LAYER-BISEQ2SEQuon-art 24.0
BASELINE zrp 23.6
1-LAYER-BISEQ2SEQ 1t 23.0
2-LAYER-BISEQ2SEQurr 25.5

Table 3: The accuracy results of the LSTM-based
models on the subset of 682 pairs.

i.e., belong to the same gold paraphrase set.

The accuracy results are given in Table 3 for
the same LSTM-based models taken from Section
3.3. Accuracy is measured as the percentage of
predicted sentences that occur token-identical in
the paraphrase set of the corresponding target sen-
tences. Our best model outperforms Pichotta and
Mooney (2016)’s BASELINE by 3.4%.

Since the DeScript gold sets do not contain
all possible paraphrases, an expert (computational
linguist) checked cases of near misses between
Target and Predicted (i.e. similar to the cases
shown in Table 2) in a restrictive manner, not
counting borderline cases. So we achieve a final
average accuracy of about 31%, which is the sum
of an average accuracy over 6 models in Table 3
(24%) and an average accuracy (7%) of checking
cases of near misses (i.e, Target and Predicted are
clearly event paraphrases).

The result does not look really high, but the task
is difficult: on average, one out of 26 paraphrase
sets (i.e., event types) per scenario has to be pre-
dicted, the random baseline is about 4% only. Also
we should be aware that the task is prediction of
an unseen event, not classification of a given event
description. Continuations of a story are under-
determined to some degree, which implies that the
upper bound for human guessing cannot be 100 %,
but must be substantially lower.

4 Conclusions

In this paper, we explore the task of event pre-
diction, where we aim to predict a next event
addressed in a text based on the description
of the preceding event. We created the new
open-domain and closed-domain datasets based on
WIKIHOW and DESCRIPT which are available to
the public at: https://github.com/daiquocnguyen/
EventPrediction. We demonstrated that more ad-
vanced SEQ2SEQ models with a bidirectional and
multi-layer RNN architecture substantially outper-
form the previous work. We also introduced an
alternative evaluation method for event prediction
based on gold paraphrase sets, which focuses on
semantic agreement between the target and pre-
dicted sentences.

Acknowledgments

This research was funded by the German Research
Foundation (DFG) as part of SFB 1102 “Informa-
tion Density and Linguistic Encoding.” We would
like to thank Hannah Seitz for her kind help and
support. We thank anonymous reviewers for their
helpful comments.

References

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Gregory S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian J. Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jézefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Gordon Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Ku-
nal Talwar, Paul A. Tucker, Vincent Vanhoucke, Vi-
jay Vasudevan, Fernanda B. Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. 2016. Tensor-
Flow: Large-Scale Machine Learning on Heteroge-
neous Distributed Systems. Software available from
http://tensorflow.org/.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the 3rd International Conference on Learning Rep-
resentations.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learn-
ing Phrase Representations using RNN Encoder—
Decoder for Statistical Machine Translation. In Pro-
ceedings of the 2014 Conference on Empirical Meth-

41

ods in Natural Language Processing, pages 1724—
1734,

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33-43.

Jeffrey L. Elman. 1990. Finding structure in time.
Cognitive Science, pages 179-211.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, pages
1735-1780.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceed-
ings of the 3rd International Conference on Learn-
ing Representations.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Antonio Torralba, Raquel Urta-
sun, and Sanja Fidler. 2015. Skip-thought vectors.
In Proceedings of the 28th International Conference
on Neural Information Processing Systems, pages
3294-3302.

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task se-
quence to sequence learning. In Proceedings of the
4th International Conference on Learning Represen-
tations.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1412—-1421.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed rep-
resentations of words and phrases and their com-
positionality. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference on
Neural Information Processing Systems 2013, pages
3111-3119.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Caglar Gulcehre, and Bing Xiang. 2016. Ab-
stractive Text Summarization using Sequence-to-
sequence RNNs and Beyond. In Proceedings of the
20th SIGNLL Conference on Computational Natural
Language Learning, pages 280-290.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting on Association for Computa-
tional Linguistics, pages 311-318.

Karl Pichotta and Raymond J. Mooney. 2016. Using
sentence-level Istm language models for script infer-
ence. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 279-289.

Ying Qin and Lucia Specia. 2015. Truly exploring
multiple references for machine translation evalua-
tion. In Proceedings of the 18th Annual Conference
of the European Association for Machine Transla-
tion, pages 113-120.

M. Schuster and K.K. Paliwal. 1997. Bidirectional re-
current neural networks. IEEE Transactions on Sig-
nal Processing, pages 2673-2681.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, pages 1929-1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Proceedings of the 27th International

Conference on Neural Information Processing Sys-
tems, pages 3104-3112.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Advances in Neu-
ral Information Processing Systems 28, pages 2773—
2781.

Lilian D. A. Wanzare, Alessandra Zarcone, Stefan
Thater, and Manfred Pinkal. 2016. Descript: A
crowdsourced corpus for the acquisition of high-
quality script knowledge. In Proceedings of the
Tenth International Conference on Language Re-
sources and Evaluation, pages 3494-3501.

42

Input-to-Output Gate to Improve RNN Language Models

Sho Takase

Jun Suzuki

Masaaki Nagata

NTT Communication Science Laboratories
{takase.sho, suzuki.jun, nagata.masaaki}@lab.ntt.co.jp

Abstract

This paper proposes a reinforcing method
that refines the output layers of existing Re-
current Neural Network (RNN) language
models. We refer to our proposed method
as Input-to-Output Gate (IOG)!. I0G has
an extremely simple structure, and thus,
can be easily combined with any RNN lan-
guage models. Our experiments on the
Penn Treebank and WikiText-2 datasets
demonstrate that IOG consistently boosts
the performance of several different types
of current topline RNN language models.

1 Introduction

A neural language model is a central technol-
ogy of recently developed neural architectures in
the natural language processing (NLP) field. For
example, neural encoder-decoder models, which
were successfully applied to various natural lan-
guage generation tasks including machine transla-
tion (Sutskever et al., 2014), summarization (Rush
et al., 2015), and dialogue (Wen et al., 2015), can
be interpreted as conditional neural language mod-
els. Moreover, word embedding methods, such as
Skip-gram (Mikolov et al., 2013) and vLBL (Mnih
and Kavukcuoglu, 2013), are also originated from
neural language models that aim to handle much
larger vocabulary and data sizes. Thus, language
modeling is a good benchmark task for investigat-
ing the general frameworks of neural methods in
the NLP field.

In this paper, we address improving the perfor-
mance on the language modeling task. In particular,
we focus on boosting the quality of existing Recur-
rent Neural Network (RNN) language models. We
propose the Input-to-Output Gate (I0G) method,

'Our implementation is available at

https://github.com/nttcslab-nlp/iog.

publicly

43

which incorporates an additional gate function in
the output layer of the selected RNN language
model to refine the output. One notable charac-
teristic of IOG is that it can be easily incorporated
in any RNN language models since it is designed to
be a simple structure. Our experiments on the Penn
Treebank and WikiText-2 datasets demonstrate that
10G consistently boosts the performance of several
different types of current topline RNN language
models. In addition, IOG achieves comparable
scores to the state-of-the-art on the Penn Treebank
dataset and outperforms the WikiText-2 dataset.

2 RNN Language Model

This section briefly overviews the RNN language
models. Hereafter, we denote a word sequence
with length T', namely, wy, ..., wr as wy.7 for short.
Formally, a typical RNN language model computes
the joint probability of word sequence w;.7 by the
product of the conditional probabilities of each
timestep ¢:

T-1

plwir) = pwr) || plwigwie).
=1

(D

p(wy) is generally assumed to be 1 in this litera-
ture, that is, p(w;) = 1, and thus, we can ignore
the calculation of this term (See the implementa-
tion of Zaremba et al. (2014)2, for example). To
estimate the conditional probability p(wy41|w1.¢),
we apply RNNs. Let V' be the vocabulary size, and
let P, € RY be the probability distribution of the
vocabulary at timestep ¢. Moreover, let Dy, and D,
respectively be the dimensions of the hidden state
and embedding vectors. Then, the RNN language

*https://github.com/wojzaremba/lstm

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 43—48,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

P

t+1

T

Proposed method:

Input-to-Output Gate (IOG) | Softmax

Eq. 8
8 %
Computing P
gate (Eq. 6) !
(Eq.3)
h,
e’, RNN (Eq.4) | |h, ,
€
Mapping word Mapping word
to embedding (Eq. 7) to embedding (Eq. 5)
) 7
t X,
w

t

Figure 1: Overview of computing probability dis-
tribution.

models predict P, by the following equation:

P11 = softmax(sy), 2
s¢ = Why + b, 3)
hy = f(ffm ht—1)7 4)
et = By, &)

where W € RV*Ph is a matrix, b € RV is a bias
term, £ € RP<*V is a word embedding matrix,
xy € {0,1}V is a one-hot vector representing the
word at timestep ¢, and h;_; is the hidden state at
previous timestep ¢t — 1. h; at timestep ¢t = 0 is
defined as a zero vector, that is, hg = 0. Let f(-)
represent an abstract function of an RNN, which
might be the Elman network (Elman, 1990), the
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997), the Recurrent Highway
Network (RHN) (Zilly et al., 2017), or any other
RNN variants.

3 Input-to-Output Gate

In this section, we describe our proposed method:
Input-to-Output Gate (I0G). As illustrated in Fig-
ure 1, IOG adjusts the output of an RNN language
model by the gate mechanism before computing
the probability of the next word. We expect that
IOG will boost the probability of the word that may
occur. For example, a word followed by a prepo-
sition such as ‘of” is probably a noun. Therefore,
if the word at timestep ¢ is a preposition, IOG re-
fines the output of a language model to raise the
probabilities of nouns.

44

Hyper-parameter Selected value
Embedding dimension D, 300
Dropout rate 50%
Optimization method Adam
Initial learning rate 0.001
Learning rate decay 1/v/Epoch
Max epoch 5

Table 1: Hyper-parameters in training IOG.

Formally, let z; be a one-hot vector representing
wy, IOG calculates the gate g; by the following
equations:

gt = U(Wgeg + bg)a

/ j—
ey = Egy.

(6)
)

Here, W, € RYV*Ps is a matrix, b, € R is a
bias term, and £, € RPs*V is a word embedding
matrix3. Then, we compute the probability distri-
bution of the RNN language model by applying the
above gate to the Equation (2) as follows:

®)

P11 = softmax(g; © s¢),

where © represents the element-wise multiplication
of two vectors.

4 Experiments

4.1 Dataset

We conducted word-level prediction experiments
on the Penn Treebank (PTB) (Marcus et al., 1993)
and WikiText-2 (Merity et al., 2017b) datasets.
The PTB dataset consists of 929k training words,
73k validation words, and 82k test words. The
WikiText-2 dataset consists of 2,088k training
words, 217k validation words, and 245k test words.
Mikolov et al. (2010) and Merity et al. (2017b)
respectively published pre-processed PTB* and
WikiText-2° datasets. We used these pre-processed
datasets for fair comparisons with previous studies.

4.2 Training Procedure

For the PTB dataset, we prepared a total of 5 RNN
language models as our baseline models. First, we
replicated LSTM with dropout and LSTM with
variational inference based dropout, which we re-
fer to as “LSTM” and “Variational LSTM”, respec-
tively. Following Zaremba et al. (2014) and Gal

3We prepared different embeddings from those used in an
RNN language model.

*hitp://www.fit.vutbr.cz/ imikolov/rnnlm/

Shttps://einstein.ai/research/the-wikitext-long-term-
dependency-language-modeling-dataset

Model Parameters Validation Test
LSTM (medium) (Zaremba et al., 2014) 20M 86.2 82.7
LSTM (medium, replication of Zaremba et al. (2014)) 20M 87.1 84.0
+ IOG (proposed) 26M 84.1 81.1
LSTM (large) (Zaremba et al., 2014) T 66M 82.2 78.4
LSTM (large, replication of Zaremba et al. (2014)) 66M 82.7 78.6
+ IOG (proposed) 72M 78.5 75.5
Variational LSTM (medium) (Gal and Ghahramani, 2016) 20M 819+02 79.7+0.1
Variational LSTM (medium, replication of Gal and Ghahramani (2016)) 20M 82.8 79.1
+ IOG (proposed) 26M 81.2 78.1
Variational LSTM (large) (Gal and Ghahramani, 2016) { 66M 779403 752402
Variational LSTM (large, replication of Gal and Ghahramani (2016)) 66M 78.1 74.6
+ IOG (proposed) 72M 76.9 74.1
Variational RHN (depth 8) (Zilly et al., 2017) 32M 71.2 68.5
Variational RHN (depth 8, replication of Zilly et al. (2017)) 32M 72.1 68.9
+ IOG (proposed) 38M 69.2 66.5
Variational RHN (depth 8, replication of Zilly et al. (2017)) + WT 23M 69.2 66.3
+ IOG (proposed) 29M 67.0 64.4
Ensemble of 5 Variational RHN's 160M 66.1 63.1
+ IOG (proposed) 166M 64.7 62.0
Ensemble of 10 Variational RHNs 320M 65.2 62.3
+ IOG (proposed) 326M 64.1 61.4
Neural cache model (Grave et al., 2017) 21M - 72.1
Pointer Sentinel LSTM (medium) (Merity et al., 2017b) t 2IM 724 70.9
Variational LSTM (large) + WT + AL (Inan et al., 2016) 5IM 71.1 68.5
Variational RHN (depth 10) + WT (Press and Wolf, 2017) } 24M 68.1 66.0
Neural Architecture Search with base 8 (Zoph and Le, 2017) 32M - 67.9
Neural Architecture Search with base 8 + WT(Zoph and Le, 2017) 1 25M - 64.0
Neural Architecture Search with base 8 + WT (Zoph and Le, 2017) { 54M - 62.4
AWD LSTM + WT (Merity et al., 2017a) t 24M 60.0 57.3
AWD LSTM + WT (result by code of Merity et al. (20172)%) 24M 58.6 56.7
+ IOG (proposed) 30M 58.5 56.7
AWD LSTM + WT + cache (size = 2000) (Merity et al., 2017a) T 24M 53.9 52.8
AWD LSTM + WT + cache (size = 500) 24M 53.4 53.0
+ IOG (proposed) 30M 53.3 53.0

Table 2: Comparison between baseline models and the proposed method (represented as “+ I0OG”) on
the Penn Treebank (PTB) dataset. § denotes results published in previous studies. The method with WT
shared word embeddings (¥ in the Equation (5)) with the weight matrix of the final layer (W in the
Equation (3)). AL denotes that the method used a previously proposed augmented loss function (Inan
etal., 2016).

Model Parameters Validation Test
LSTM (medium, replication of Zaremba et al. (2014)) 50M 102.2 96.2
+ 10G (proposed) 70M 99.2 93.8
Variational LSTM (medium, replication of Gal and Ghahramani (2016)) 50M 97.2 91.8
+ 10G (proposed) 70M 95.9 91.0
Variational LSTM (medium) + cache (size = 2000) 50M 69.6 66.1
+ IOG (proposed) 70M 69.3 65.9
Pointer Sentinel LSTM (Merity et al., 2017b) 51M 7 84.8 80.8
Neural cache model (size = 100) (Grave et al., 2017) 42M - 81.6
Neural cache model (size = 2000) (Grave et al., 2017) t 42M - 68.9
AWD LSTM + WT (Merity et al., 2017a) T 33M 68.6 65.8
AWD LSTM + WT (result by code of Merity et al. (2017a)) 33M 68.6 65.8
+ IOG (proposed) 53M 68.6 65.9
AWD LSTM + WT + cache (size = 3785) (Merity et al., 2017a) t 33M 53.8 52.0
AWD LSTM + WT + cache (size = 3785) 33M 53.5 51.7
+ 10G (proposed) 53M 53.6 51.7

Table 3: Comparison between baseline models and the proposed method (represented as “+ I0G”) on the
WikiText-2 dataset. 1 denotes results published in previous studies.

45

and Ghahramani (2016), we prepared the medium
setting (2-layer LSTM with 650 dimensions for
each layer), and the large setting (2-layer LSTM
with 1500 dimensions for each layer) for each
LSTM. We also replicated ““Variational RHN” with
a depth of 8 described in Zilly et al. (2017). For
the WikiText-2 dataset, we prepared the medium
setting standard and variational LSTMs as our base-
lines, which are identical as those used in Merity
et al. (2017b).

After reproducing the baselines, we incorporated
I0G with those models. Table 1 summarizes the
hyper-parameters used for training the IOG. During
training IOG, we fixed the parameters of the RNN
language models to avoid over-fitting.

4.3 Results

We show the perplexities of the baselines and those
combined with IOG for the PTB in Table 2, and
for the WikiText-2 in Table 3. These tables, which
contain both the scores reported in the previous
studies and those obtained by our reproduced mod-
els, indicate that IOG reduced the perplexity. In
other words, IOG boosted the performance of the
baseline models. We emphasize that IOG is not
restricted to a neural architecture of a language
model because it improved the RHN and LSTM
performances.

In addition to the comparison with the base-
lines, Table 2 and Table 3 contain the scores pub-
lished in previous studies. Merity et al. (2017b)
and Grave et al. (2017) proposed similar methods.
Their methods, which are called “cache mecha-
nism” (or ‘pointer’), keep multiple hidden states
at past timesteps to select words from previous se-
quences. Inan et al. (2016) and Press and Wolf
(2017) introduced a technique that shares word em-
beddings with the weight matrix of the final layer
(represented as “WT” in Table 2). Inan et al. (2016)
also proposed using word embeddings to augment
loss function (represented as ‘AL’ in Table 2). Zoph
and Le (2017) adopted RNNs and reinforcement
learning to automatically construct a novel RNN
architecture. We expect that IOG will improve
these models since it can be combined with any
RNN language models. In fact, Table 2 and Table 3

we used
authors:

In contrast to other comparisons,
the following implementation by the
https://github.com/salesforce/awd-1stm-Ilm

"The number of parameters is different from the one de-
scribed in Merity et al. (2017b). We guess that they do not
consider the increase of the vocabulary size.

46

demonstrate that IOG enhanced the performance
even when the RNN language model was combined
with “WT’ or the cache mechanism.

Table 2 also shows the scores in the ensemble set-
tings. Model ensemble techniques are widely used
for further improving the performance of neural
networks. In this experiment, we employed a sim-
ple ensemble technique: using the average of the
output probability distributions from each model as
output. We computed the probability distribution
P41 on the ensemble of the M models as follows:

| M
Py = Vi Z:lmPtJrh)
m=

where ,,, ;41 represents the probability distribu-
tion predicted by the m-th model. In the ensemble
setting, we applied only one IOG to the multiple
models. In other words, we used the same I0G
for computing the probability distributions of each
language model, namely, computing the Equation
(8). Table 2 describes that 5 and 10 model ensem-
ble of Variational RHNs outperformed the single
model by more than 5 in perplexity. Table 2 shows
that IOG reduced the perplexity of the ensemble
models. Remarkably, even though the 10 Varia-
tional RHN ensemble achieved the state-of-the-art
performance on the PTB dataset, IOG improved
the performance by about 1 in perplexity®.

In addition, as additional experiments, we incor-
porated IOG with the latest method, which was
proposed after the submission deadline of [JCNLP
2017. Merity et al. (2017a) introduced various
regularization and optimization techniques such
as DropConnect (Wan et al., 2013) and averaged
stochastic gradient descent (Polyak and Juditsky,
1992) to the LSTM language model. They called
their approach AWD LSTM, which is an abbrevia-
tion of averaged stochastic gradient descent weight-
dropped LSTM. Table 2 and Table 3 indicate the
results on the PTB and the WikiText-2 respectively.
These tables show that IOG was not effective to
AWD LSTM. Perhaps, the reason is that the per-
plexity of AWD LSTM is close to the best per-
formance of the simple LSTM architecture. We
also note that IOG did not have any harmful effect
on the language models because it maintained the
performances of AWD LSTM with ‘WT” and the

8This result was the state-of-the-art score at the submission
deadline of JICNLP 2017, i.e., July 7, 2017, but Merity et al.
(2017a) surpassed it on Aug 7, 2017. We mention the effect
of IOG on their method in the following paragraph.

Model Diff Test
Variational RHN (replicate) - 68.9
Variational RHN + IOG (proposed) - 66.5
Variational RHN + IOG with hidden | +0.8M 75.6
Variational RHN + LSTM gate +0.7M 68.1

Table 4: Comparison among architectures for com-
puting the output gate on the PTB dataset. The
column ‘Diff’ shows increase of parameters from
10G (proposed).

cache mechanism. Moreover, incorporating 10G is
much easier than exploring the best regularization
and optimization methods for each RNN language
model. Therefore, to improve the performance, we
recommend combining IOG before searching for
the best practice.

4.4 Discussion

Although IOG consists only of word embeddings
and one weight matrix, the experimental results
were surprisingly good. One might think that more
sophisticated architectures can provide further im-
provements. To investigate this question, we exam-
ined two additional architectures to compute the
output gate g; in the Equation (6).

The first one substituted the calculation of the
gate function g; by the following g;:

gt = o (Wylhe, €] + by), (10)

where W, € RY*(PrtDg) “and [hy, €] represents
the concatenation of the hidden state h; of RHN
and embeddings e} used in IOG. We refer to this
architecture as “+ IOG with hidden”.

The second one similarly substituted g; by the
following g;':

92, = U(Wgh;& + bg)a
h; f/(e;7 ;5—1)7

(1)
(12)

where f’(+) is the 1-layer LSTM in our experiments.
We set the dimension of the LSTM hidden state
to 300, that is, Dy = 300, and the other hyper-
parameters remained as described in Section 4.2.
We refer to the second one as “+ LSTM gate”.
Table 4 shows the results of the above two archi-
tectures on the PTB dataset. 10G clearly outper-
formed the other more sophisticated architectures.
This fact suggests that (1) incorporating additional
architectures does not always improve the perfor-
mance, and (2) not always become better even if it
is a sophisticated architecture. We need to carefully

47

Input word | Top 5 weighted words

of security, columbia, steel, irs, thrift
in columbia, ford, order, labor, east
go after, through, back, on, ahead
attention was, than, (eos), from, to
whether to, she, estimates, i, ual

Table 5: Top 5 weighted words for each input word
on the PTB experiment.

design an architecture that can provide complemen-
tary (or orthogonal) information to the baseline
RNNEs.

In addition, to investigate the mechanism of IOG,
we selected particular words, and listed the top 5
weighted words given each selected word as in-
put in Table 5°. IOG gave high weights to nouns
when the input word was a preposition: ‘of” and
‘in’. Moreover, IOG encouraged outputting phrasal
verbs such as “go after”. These observations gener-
ally match human intuition.

5 Conclusion

We proposed Input-to-Output Gate (I0G), which
refines the output of an RNN language model by the
gate mechanism. IOG can be incorporated in any
RNN language models due to its simple structure.
In fact, our experimental results demonstrated that
I0G improved the performance of several different
settings of RNN language models. Furthermore,
the experimental results indicate that IOG can be
used with other techniques such as ensemble.

Acknowledgments

We thank the anonymous reviewers for their helpful
comments.

References

Jeffrey L Elman. 1990. Finding Structure in Time.
Cognitive science 14(2):179-211.

Yarin Gal and Zoubin Ghahramani. 2016. A Theoreti-
cally Grounded Application of Dropout in Recurrent
Neural Networks. In Advances in Neural Informa-
tion Processing Systems 29 (NIPS 2016).

Edouard Grave, Armand Joulin, and Nicolas Usunier.
2017. Improving Neural Language Models with a
Continuous Cache. In 5th International Conference
on Learning Representations (ICLR 2017).

°In this exploration, we excluded words occurring fewer
than 100 times in the corpus to remove noise.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation
9(8):1735-1780.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2016. Tying Word Vectors and Word Classifiers:
A Loss Framework for Language Modeling. In
Proceedings of the 5th International Conference on
Learning Representations (ICLR 2017).

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a Large Anno-
tated Corpus of English: The Penn Treebank. Com-
putational Linguistics 19(2):313-330.

Stephen Merity, Nitish Shirish Keskar, and Richard
Socher. 2017a. Regularizing and Optimiz-
ing LSTM Language Models. arXiv preprint
arXiv:1708.02182 .

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017b. Pointer Sentinel Mix-
ture Models. In Proceedings of the 5th Inter-
national Conference on Learning Representations

(ICLR 2017).

Tomas Mikolov, Martin Karafiadt, Lukds Burget, Jan
Cernocky, and Sanjeev Khudanpur. 2010. Recurrent
Neural Network based Language Model. In Pro-
ceedings of the 11th Annual Conference of the In-
ternational Speech Communication Association (IN-
TERSPEECH 2010). pages 1045-1048.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed Representa-
tions of Words and Phrases and their Compositional-
ity. In Advances in Neural Information Processing
Systems 26 (NIPS 2013), pages 3111-3119.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learn-
ing Word Embeddings Efficiently with Noise-
Contrastive Estimation. In Advances in Neural
Information Processing Systems 26 (NIPS 2013),
pages 2265-2273.

Boris T Polyak and Anatoli B Juditsky. 1992. Ac-
celeration of Stochastic Approximation by Averag-
ing. SIAM Journal on Control and Optimization
30(4):838-855.

Ofir Press and Lior Wolf. 2017. Using the Output Em-
bedding to Improve Language Models. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics
(EACL 2017). pages 157-163.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A Neural Attention Model for Abstractive
Sentence Summarization. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2015). pages 379—
389.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. In Advances in Neural Information Process-
ing Systems 27 (NIPS 2014). pages 3104-3112.

48

Li Wan, Matthew Zeiler, Sixin Zhang, Yann L Cun, and
Rob Fergus. 2013. Regularization of Neural Net-
works using DropConnect. In Proceedings of the

30th International Conference on Machine Learning
(ICML 2013). pages 1058-1066.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksi¢, Pei-
Hao Su, David Vandyke, and Steve Young. 2015. Se-
mantically Conditioned LSTM-based Natural Lan-
guage Generation for Spoken Dialogue Systems. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2015). pages 1711-1721.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent Neural Network Regularization. In
Proceedings of the 2nd International Conference on
Learning Representations (ICLR 2014).

Julian Georg Zilly, Rupesh Kumar Srivastava, Jan
Koutnik, and Jiirgen Schmidhuber. 2017. Recurrent
Highway Networks. Proceedings of the 34th Inter-
national Conference on Machine Learning (ICML
2017) pages 4189-4198.

Barret Zoph and Quoc V. Le. 2017. Neural Archi-
tecture Search with Reinforcement Learning. In
Proceedings of the 5th International Conference on
Learning Representations (ICLR 2017).

Counterfactual Language Model Adaptation for Suggesting Phrases

Kenneth C. Arnold
Harvard CS
Cambridge, MA

Abstract

Mobile devices use language models to sug-
gest words and phrases for use in text en-
try. Traditional language models are based
on contextual word frequency in a static
corpus of text. However, certain types of
phrases, when offered to writers as sugges-
tions, may be systematically chosen more
often than their frequency would predict.
In this paper, we propose the task of gen-
erating suggestions that writers accept, a
related but distinct task to making accurate
predictions. Although this task is funda-
mentally interactive, we propose a counter-
factual setting that permits offline training
and evaluation. We find that even a simple
language model can capture text character-
istics that improve acceptability.

1 Introduction

Intelligent systems help us write by proactively
suggesting words or phrases while we type. These
systems often build on a language model that picks
most likely phrases based on previous words in con-
text, in an attempt to increase entry speed and ac-
curacy. However, recent work (Arnold et al., 2016)
has shown that writers appreciate suggestions that
have creative wording, and can find phrases sug-
gested based on frequency alone to be boring. For
example, at the beginning of a restaurant review,
“I love this place” is a reasonable prediction, but a
review writer might prefer a suggestion of a much
less likely phrase such as “This was truly a wonder-
ful experience”—they may simply not have thought
of this more enthusiastic phrase. Figure 1 shows
another example.

We propose a new task for NLP research: gener-
ate suggestions for writers. Doing well at this task
requires innovation in language generation but also

Kai-Wei Chang
University of California
Los Angeles, CA

49

Adam T. Kalai
Microsoft Research
Cambridge, MA

the food was really tasty. it was definitely a |

.andthe placeis placetogoto. change from a day
q||lw e r t y u | 0 p
a s, d f g h j ki I
"2z x|lc/vib/n | m| &

LB AL W S L S S —

Figure 1: We adapt a language model to offer sug-
gestions during text composition. In above exam-
ple, even though the middle suggestion is predicted
to be about 1,000 times more likely than the one
on the right, a user prefers the right one.

interaction with people: suggestions must be eval-
uated by presenting them to actual writers. Since
writing is a highly contextual creative process, tra-
ditional batch methods for training and evaluat-
ing human-facing systems are insufficient: ask-
ing someone whether they think something would
make a good suggestion in a given context is very
different from presenting them with a suggestion
in a natural writing context and observing their re-
sponse. But if evaluating every proposed parameter
adjustment required interactive feedback from writ-
ers, research progress would be slow and limited
to those with resources to run large-scale writing
experiments.

In this paper we propose a hybrid approach: we
maintain a natural human-centered objective, but
introduce a proxy task that provides an unbiased
estimate of expected performance on human evalua-
tions. Our approach involves developing a stochas-
tic baseline system (which we call the reference
policy), logging data from how writers interact
with it, then estimating the performance of candi-
date policies by comparing how they would behave

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 49-54,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

with how the reference policy did behave in the
contexts logged. As long as the behavior of the
candidate policy is not too different from that of
the reference policy (in a sense that we formalize),
this approach replaces complex human-in-the-loop
evaluation with a simple convex optimization prob-
lem.

This paper demonstrates our approach: we col-
lected data of how humans use suggestions made by
a reference policy while writing reviews of a well-
known restaurant. We then used logged interaction
data to optimize a simple discriminative language
model, and find that even this simple model gen-
erates better suggestions than a baseline trained
without interaction data. We also ran simulations
to validate the estimation approach under a known
model of human behavior.

Our contributions are summarized below:

e We present a new NLP task of phrase sugges-

tion for writing.!

e We show how to use counterfactual learning
for goal-directed training of language models
from interaction data.

e We show that a simple discriminative lan-
guage model can be trained with offline in-
teraction data to generate better suggestions
in unseen contexts.

2 Related Work

Language models have a long history and play an
important role in many NLP applications (Sordoni
et al., 2015; Rambow et al., 2001; Mani, 2001;
Johnson et al., 2016). However, these models do
not model human preferences from interactions.
Existing deployed keyboards use n-gram language
models (Quinn and Zhai, 2016; Kneser and Ney,
1995), or sometimes neural language models (Kim
et al., 2016), trained to predict the next word given
recent context. Recent advances in language model-
ing have increased the accuracy of these predictions
by using additional context (Mikolov and Zweig,
2012). But as argued in Arnold et al. (2016), these
increases in accuracy do not necessarily translate
into better suggestions.

The difference between suggestion and predic-
tion is more pronounced when showing phrases
rather than just words. Prior work has extended
predictive language modeling to phrase prediction
(Nandi and Jagadish, 2007) and sentence comple-

!Code and data are available at https://github.
com/kcarnold/counterfactual-1m.

50

tion (Bickel et al., 2005), but do not directly model
human preferences. Google’s “Smart Reply” email
response suggestion system (Kannan et al., 2016)
avoids showing a likely predicted response if it
is too similar to one of the options already pre-
sented, but the approach is heuristic, based on a
priori similarity. Search engine query completion
also generates phrases that can function as sugges-
tions, but is typically trained to predict what query
is made (e.g., Jiang et al. (2014)).

3 Counterfactual Learning for
Generating Suggestions

We consider the task of generating good words
and phrases to present to writers. We choose a
pragmatic quality measure: a suggestion system is
good if it generates suggestions that writers accept.
Let h denote a suggestion system, characterized
by h(y|z), the probability that h will suggest the
word or phrase y when in context x (e.g., words
typed so far).> We consider deploying A in an inter-
active interface such as Figure 1, which suggests
phrases using a familiar predictive typing interface.
Let ¢ denote a reward that a system receives from
that interaction; in our case, the number of words
accepted.’ We define the overall quality of a sug-
gestion system by its expected reward E[d] over all
contexts.

Counterfactual learning allows us to evaluate
and ultimately learn models that differ from those
that were deployed to collect the data, so we can
deploy a single model and improve it based on the
data collected (Swaminathan and Joachims, 2015).
Intuitively, if we deploy a model hg and observe
what actions it takes and what feedback it gets, we
could improve the model by making it more likely
to suggest the phrases that got good feedback.

Suppose we deploy a reference model* hgy and
log a dataset

D= {(xlaylv 517]71)7 KK} (xn>yn> 5n>pn)}

of contexts (words typed so far), actions (phrases
suggested), rewards, and propensities respectively,
where p; = ho(y;|z;). Now consider deploying an
alternative model hy (we will show an example as

2Qur notation follows Swaminathan and Joachims (2015)
but uses “reward” rather than “loss.” Since h(y|z) has the
form of a contextual language model, we will refer to it as a
“model.”

30ur setting admits alternative rewards, such as the speed
that a sentence was written, or an annotator’s rating of quality.

*Some other literature calls hg a logging policy.

Eq. (1) below). We can obtain an unbiased estimate
of the reward that hy would incur using importance
sampling:

1 n
S Z Sihg(yilxi) /pi-
n =1

However, the variance of this estimate can
be unbounded because the importance weights
ho(yi|x;)/p; can be arbitrarily large for small
pi. Like Ionides (2008), we clip the importance
weights to a maximum M:

1

n

RM(h) = Z:;l d; min {M, he(yi|zi)/pi} -

The improved model can be learned by optimizing
he = argmax; RM (h).

This optimization problem is convex and differen-
tiable; we solve it with BFGS. ?

4 Demonstration Using Discriminative
Language Modeling

We now demonstrate how counterfactual learning
can be used to evaluate and optimize the acceptabil-
ity of suggestions made by a language model. We
start with a traditional predictive language model
ho of any form, trained by maximum likelihood
on a given corpus.® This model can be used for
generation: sampling from the model yields words
or phrases that match the frequency statistics of
the corpus. However, rather than offering repre-
sentative samples from hg, most deployed systems
instead sample from p(w;) o< ho(w;)*/™, where T
is a “temperature” parameter; 7 = 1 corresponds
to sampling based on pg (soft-max), while 7 — 0
corresponds to greedy maximum likelihood gener-
ation (hard-max), which many deployed keyboards
use (Quinn and Zhai, 2016). The effect is to skew
the sampling distribution towards more probable
words. This choice is based on a heuristic assump-
tion that writers desire more probable suggestions;
what if writers instead find common phrases to be
overly cliché and favor more descriptive phrases?
To capture these potential effects, we add features
that can emphasize various characteristics of the

SWe use the BFGS implementation in SciPy.

The model may take any form, but n-gram (Heafield et al.,
2013) and neural language models (e.g., (Kim et al., 2016))
are common, and it may be unconditional or conditioned on
some source features such as application, document, or topic
context.

51

LM weight = 1, all other weights zero:

ididn’t see a sign for; i am a huge sucker for

LM weight = 1, Long-word bonus = 1.0:

another restaurant especially during sporting events

LM weight = 1, POS adjective bonus = 3.0:

great local bar and traditional southern

Table 1: Example phrases generated by the log-
linear language model under various parameters.
The context is the beginning-of-review token; all
text is lowercased. Some phrases are not fully gram-
matical, but writers can accept a prefix.

generated text, then use counterfactual learning to
assign weights to those features that result in sug-
gestions that writers prefer.

We consider locally-normalized log-linear lan-
guage models of the form

|y]

expf - f U)z|C Wi — 1])
hO(y‘x HZ ,expl - f(llcyw[:ifl])

, (D)

where y is a phrase and f(w;|x, w;;_q) is a fea-
ture vector for a candidate word w; given its context
. (wp;;—y) is a shorthand for {wq, wa, ... w;-1}.)
Models of this form are commonly used in se-
quence labeling tasks, where they are called Max-
Entropy Markov Models (McCallum et al., 2000).
Our approach generalizes to other models such as
conditional random fields (Lafferty et al., 2001).

The feature vector can include a variety of fea-
tures. By changing feature weights, we obtain lan-
guage models with different characteristics. To il-
lustrate, we describe a model with three features be-
low. The first feature (LM) is the log likelihood un-
der a base 5-gram language model po(w; |c, wy.;—1])
trained on the Yelp Dataset’ with Kneser-Ney
smoothing (Heafield et al., 2013). The second and
third features “bonus” two characteristics of w;:
long-word is a binary indicator of long word
length (we arbitrarily choose > 6 letters), and POS
is a one-hot encoding of its most common POS tag.
Table 1 shows examples of phrases generated with
different feature weights.

Note that if we set the weight vector to zero ex-
cept for a weight of 1/7 on LM, the model reduces
to sampling from the base language model with

“temperature” 7. The fitted model weights of the

log-linear model in our experiments is shown in
supplementary material.

"https://www.yelp.com/dataset_
challenge; we used only restaurant reviews

Reference model hy. In counterfactual estima-
tion, we deploy one reference model hg to learn
another h—but weight truncation will prevent h
from deviating too far from hg. So hg must of-
fer a broad range of types of suggestions, but they
must be of sufficiently quality that some are ulti-
mately chosen. To balance these concerns, we use
temperature sampling with a temperature 7 = 0.5):

po(wile, wyi—)) V7
> Po(wle, wi;)Y

We use our reference model hg to generate 6-word
suggestions one word at a time, so p; is the product
of the conditional probabilities of each word.

4.1 Simulation Experiment

We present an illustrative model of suggestion ac-
ceptance behavior, and simulate acceptance behav-
ior under that model to validate our methodology.
Our method successfully learns a suggestion model
fitting writer preference.

Desirability Model. We model the behavior of
a writer using the interface in Fig. 1, which dis-
plays 3 suggestions at a time. At each timestep ¢
they can choose to accept one of the 3 suggestions
{53- ?:1’ or reject the suggestions by tapping a key.
Let {pz };5:1 denote the likelihood of suggestion 33
under a predictive model, and let py = 1— Z?:; p;
denote the probability of any other word. Let a’; de-
note the writer’s probability of choosing the corre-
sponding suggestion, and aé. denote the probability
of rejecting the suggestions offered. If the writer
decided exactly what to write before interacting
with the system and used suggestions for optimal
efficiency, then aé- would equal p; But suppose the
writer finds certain suggestions desirable. Let D;
give the desirability of a suggestion, e.g., D} could
be the number of long words in suggestion s; We
model their behavior by adding the desirabilities to
the log probabilities of each suggestion:

ag.i) = pg.i) exp

(05129, ay) =12

) _ (4) (4)
where.Z(Z) =1->; p; .(1 —exp(D;")). Th§ net
effect is to move probability mass from the “reject”
action aé) to suggestions that are close enough to
what the writer wanted to say but desirable.

Experiment Settings and Results. We sample
10% of the reviews in the Yelp Dataset, hold them

52

out from training hg, and split them into an equal-
sized training set and test set. We randomly sample
suggestion locations from the training set. We cut
off that phrase and pretend to retype it. We gen-
erate three phrases from the reference model hy,
then allow the simulated author to pick one phrase,
subject to their preference as modeled by the de-
sirability model. We learn a customized language
model and then evaluate it on an additional 500
sentences from the test set.

For an illustrative example, we set the desirabil-
ity D to the number of long words (> 6 characters)
in the suggestion, multiplied by 10. Figure 3 shows
that counterfactual learning quickly finds model pa-
rameters that make suggestions that are more likely
to be accepted, and the counterfactual estimates
are not only useful for learning but also correlate
well with the actual improvement. In fact, since
weight truncation (controlled by M) acts as regu-
larization, the counterfactual estimate consistently
underestimates the actual reward.

4.2 Experiments with Human Writers

We recruited 74 workers through MTurk to write re-
views of Chipotle Mexican Grill using the interface
in Fig 1 from Arnold et al. (2016). For the sake of
simplicity, we assumed that all human writers have
the same preference. Based on pilot experiments,
Chipotle was chosen as a restaurant that many
crowd workers had dined at. User feedback was
largely positive, and users generally understood
the suggestions’ intent. The users’ engagement
with the suggestions varied greatly—some loved
the suggestions and their entire review consisted of
nearly only words entered with suggestions while
others used very few suggestions. Several users
reported that the suggestions helped them select
words to write down an idea or also gave them ideas
of what to write. We did not systematically enforce
quality, but informally we find that most reviews
written were grammatical and sensible, which indi-
cates that participants evaluated suggestions before
taking them. The dataset contains 74 restaurant
reviews typed with phrase suggestions. The mean
word count is 69.3, std=25.70. In total, this data
comprises 5125 words, along with almost 30k sug-
gestions made (including mid-word).

Estimated Generation Performance. We learn
an improved suggestion model by the estimated ex-
pected reward (RM). We fix M = 10 and evaluate
the performance of the learned parameters on held-

i love this place. the food is good. it's a little expensive, but the food is so much more than that. and i love the people that work there.
the burritos are huge and packed with flavor. i got one with chicken and beef and extra quac. it tasted fresh and i couldn't even finish
itall as it was huge! 11ove the location ad € atimosphere Was gteat. w1 definitely come back to try something different!

i hate spicy food but for some reason i love the flavor of chipotle chile§lin any form, so i loooove chipotle. i have been nervous about
eating here lately because of the food poisoning scandals but thankfully i haVe'not had any'problems! i alway order the burrito bowls
and thejportions are huge! service is just mediocre but ’Fﬁbad and you cant/expéct too much fromla chain restaurant. overall i would

give chipotle four stars.

Figure 2: Example reviews. A colored background indicates that the word was inserted by accepting a
suggestion. Consecutive words with the same color were inserted as part of a phrase.

4.0

I
35
3.0
25

2.0

Reward (# words accepted per suggestion)

—— logging policy ho
-+{+* counterfactual estimate from training
—}— actual performance on testing

0 500 1000

training samples

1500 2000

Figure 3: We simulated learning a model based
on the behavior of a writer who prefers long words,
then presented suggestions from that learned model
to the simulated writer. The model learned to make
desirable predictions by optimizing the counterfac-
tual estimated reward. Regularization causes that
estimate to be conservative; the reward actually
achieved by the model exceeded the estimate.

out data using 5-fold cross-validation. Figure 4
shows that while the estimated performance of the
new model does vary with the M used when esti-
mating the expected reward, the relationships are
consistent: the fitted model consistently receives
the highest expected reward, followed by an ab-
lated model that can only adjust the temperature
parameter 7, and both outperform the reference
model (with 7 = 1). The fitted model weights sug-
gest that the workers seemed to prefer long words
and pronouns, and eschewed punctuation.

5 Discussion

Our model assumed all writers have the same pref-
erences. Modeling variations between writers, such
as in style or vocabulary, could improve perfor-
mance, as has been done in other domains (e.g.,
Lee et al. (2017)). Each review in our dataset was
written by a different writer, so our dataset could be

53

3.50

—— Best reweighting of base LM
~—— Fully adapted model
—— Logging policy

Estimated reward (words accepted per suggestion offered)

20 40 60

Truncation factor M used in estimation

80

Figure 4: The customized model consistently im-
proves expected reward over baselines (reference
LM, and the best “temperature” reweighting LM) in
held-out data. Although the result is an estimated
using weight truncation at M, the improvement
holds for all reasonable M.

used to evaluate online personalization approaches.

Our task of crowdsourced reviews of a single
restaurant may not be representative of other tasks
or populations of users. However, the predictive
language model is a replaceable component, and a
stronger model that incorporates more context (e.g.,
Sordoni et al. (2015)) could improve our baselines
and extend our approach to other domains.

Future work can improve on the simple discrimi-
native language model presented here to increase
grammaticality and relevance, and thus acceptabil-
ity, of the suggestions that the customized language
models generate.

Acknowledgements Kai-Wei Chang was sup-
ported in part by National Science Foundation
Grant IIS-1657193. Part of the work was done
while Kai-Wei Chang and Kenneth C. Arnold vis-
ited Microsoft Research, Cambridge.

References

Kenneth C. Arnold, Krzysztof Z. Gajos, and Adam T.
Kalai. 2016. On suggesting phrases vs. predicting

words for mobile text composition. In Proceedings
of UIST ’16.

Steffen Bickel, Peter Haider, and Tobias Scheffer. 2005.
Learning to complete sentences. In Machine Learn-
ing: ECML 2005, pages 497-504. Springer.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013. Scalable modi-
fied Kneser-Ney language model estimation. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics, pages 690-696,
Sofia, Bulgaria.

Edward L Ionides. 2008. Truncated importance sam-
pling. Journal of Computational and Graphical
Statistics, 17(2):295-311.

Jyun-Yu Jiang, Yen-Yu Ke, Pao-Yu Chien, and Pu-Jen
Cheng. 2014. Learning user reformulation behavior
for query auto-completion. In Proceedings of the
37th International ACM SIGIR Conference on Re-
search & Development in Information Retrieval,
SIGIR ’14, pages 445-454, New York, NY, USA.
ACM.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Tho-
rat, Fernanda B. Viégas, Martin Wattenberg, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. 2016.
Google’s multilingual neural machine translation
system: Enabling zero-shot translation. CoRR,
abs/1611.04558.

Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias
Kaufmann, Andrew Tomkins, Balint Miklos, Greg
Corrado, Laszlo Lukacs, Marina Ganea, Peter
Young, and Vivek Ramavajjala. 2016. Smart re-
ply: Automated response suggestion for email. In
Proceedings of the ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD).

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Proceedings of the National Conference
on Artificial Intelligence (AAAI).

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In Pro-
ceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).
IEEE.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the International
Conference on Machine Learning (ICML), pages
282-289.

Hung-Yi Lee, Bo-Hsiang Tseng, Tsung-Hsien Wen,
Yu Tsao, Hung-Yi Lee, Bo-Hsiang Tseng, Tsung-
Hsien Wen, and Yu Tsao. 2017. Personalizing
recurrent-neural-network-based language model by
social network. IEEE/ACM Trans. Audio, Speech
and Lang. Proc., 25(3):519-530.

54

Inderjeet Mani. 2001. Automatic Summarization, vol-
ume 3 of Natural Language Processing. John Ben-
jamins Publishing Company, Amsterdam/Philadel-
phia.

Andrew McCallum, Dayne Freitag, and Fernando
Pereira. 2000. Maximum entropy Markov models
for information extraction and segmentation. In
Proceedings of the International Conference on Ma-
chine Learning (ICML).

Tomas Mikolov and Geoffrey Zweig. 2012. Context
dependent recurrent neural network language model.
In SLT, pages 234-239.

Arnab Nandi and HV Jagadish. 2007. Effective phrase
prediction. In Proceedings of the 33rd international
conference on Very large data bases, pages 219-230.
VLDB Endowment.

Philip Quinn and Shumin Zhai. 2016. A Cost-Benefit
Study of Text Entry Suggestion Interaction. Pro-
ceedings of the 2016 CHI Conference on Human
Factors in Computing Systems, pages 83—88.

Owen Rambow, Srinivas Bangalore, and Marilyn
Walker. 2001. Natural language generation in di-
alog systems. In Proceedings of the first interna-
tional conference on Human language technology re-
search, pages 1-4.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Margaret Mitchell,
Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015.
A neural network approach to context-sensitive gen-
eration of conversational responses. In Proceed-
ings of the Conference of the North American Chap-
ter of the Association for Computational Linguistics
(NAACL).

Adith Swaminathan and Thorsten Joachims. 2015.
Counterfactual risk minimization. In Proceedings
of the 24th International Conference on World
Wide Web Companion, pages 939-941. International
World Wide Web Conferences Steering Committee.

Deep Automated Multi-task Learning

Davis Liang
dlliang@ucsd.edu
University of California, San Diego

Yan Shu
yashu@ucsd.edu
University of California, San Diego

Abstract

Multi-task learning (MTL) has recently
contributed to learning better representa-
tions in service of various NLP tasks.
MTL aims at improving the performance
of a primary task, by jointly training on a
secondary task. This paper introduces au-
tomated tasks, which exploit the sequen-
tial nature of the input data, as secondary
tasks in an MTL model. We explore next
word prediction, next character prediction,
and missing word completion as potential
automated tasks. Our results show that
training on a primary task in parallel with
a secondary automated task improves both
the convergence speed and accuracy for
the primary task. We suggest two meth-
ods for augmenting an existing network
with automated tasks and establish bet-
ter performance in topic prediction, senti-
ment analysis, and hashtag recommenda-
tion. Finally, we show that the MTL mod-
els can perform well on datasets that are
small and colloquial by nature.

1 Introduction

Recurrent neural networks have demonstrated
formidable performance in NLP tasks ranging
from speech recognition (Hinton et al., 2012) to
neural machine translation (Bahdanau et al., 2014;
Wu et al., 2016). In NLP, multi-task learning has
been found to be beneficial for seq2seq learning
(Luong et al., 2015; Cheng et al., 2016), text rec-
ommendation (Bansal et al., 2016), and catego-
rization (Liu et al., 2015).

Despite the popularity of multi-task learning,
there has been little work done in generalizing the
application of MTL to all sequential tasks. To ac-
complish this goal, we use the concept of auto-

55

mated tasks. Similar work in multi-task learning
frameworks proposed in (Liu et al., 2016) and (Lu-
ong et al., 2015) are both trained on multiple la-
beled datasets. Though we have seen evidence of
research using external unlabeled datasets in pre-
training (Dai and Le, 2015) and semi-supervised
multi-task frameworks (Ando and Zhang, 2005),
to our knowledge there is no work dedicated to
using tasks derived from the original dataset in
multi-task learning with deep recurrent networks.
With automated tasks, we are able to use MTL for
almost any sequential task.

We present two ways of using automated multi-
task learning: (1) the MRNN, a multi-tasking
RNN where the tasks share an LSTM layer, and
(2) the CRNN, a cascaded RNN where the net-
work is augmented with a concatenative layer su-
pervised by the automated task. Examples of ei-
ther network are shown in Figure 1.

In summary, our main contributions are:

e We introduce the concept of automated tasks
for multi-task learning with deep recurrent
networks.

e We show that using the CRNN and the
MRNN trained in parallel on a secondary au-
tomated task allows the network to achieve
better results in sentiment analysis, topic pre-
diction, and hashtag recommendation.

2 Automated Multi-task Learning

We generalize multi-task learning by incorporat-
ing automated tasks with our two MTL models:
the CRNN and the MRNN. In the following sub-
sections, we describe the automated tasks, the
models, and their respective training methods.

2.1 Automated Tasks

The set of automated tasks we suggest include (1)
next word prediction, (2) next character predic-

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 55-60,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

[primary task] [automated task]

LSTM auto

LSTM body

primary task

automated task

[LSTM body]

(b)
Figure 1: MRNN (a) and CRNN (b) model

tion, and (3) missing word completion.

For word and character generation, we trained a
language model to predict the next word or charac-
ter given the words or characters from the previous
K steps. For the missing word completion task,
we removed a random non-stop-word from each
document and replaced it with a UNK placeholder.
The removed word is fed into a word2vec model
trained on Google News (Le and Mikolov, 2014)
and the resulting vector is the target. We per-
formed regression to minimize the mean squared
error of predicting the missing word vector given
the text. We generated predictions by finding the
target word vector with the highest cosine similar-
ity to the output vector.

2.2 MRNN

The multi-tasking RNN, MRNN, is an MTL
model that we use to train our primary and auto-
mated tasks in parallel. The MRNN’s initial layers
are shared, and the later layers branch out to sepa-
rate tasks. A basic example of an MRNN is shown

56

in Figure 1.

The MRNN is constructed such that the primary
task and automated task(s) share a body of units.
This body is supervised by both the primary and
automated task(s) and learns internal representa-
tions for both tasks.

2.3 CRNN

(Sggaard and Goldberg, 2016) showed that a
higher-level task can benefit from making use of
a shared representation learned by training on a
lower-level task. Similarly, the CRNN assumes
that the primary task has a hierarchical relation-
ship with the automated task. A basic example of
a CRNN is shown in Figure 1.

Specifically, we designed the CRNN to use the
representations learned from an automated task as
a concatenative input (Ghosh et al., 2016; Lipton
et al., 2015) for the primary task. Furthermore,
such a model can be supervised on an identical
task at different network layers.

3 Experiments

We evaluate the performance of our models on
binary sentiment analysis of the Rotten Tomato
Movie Review dataset, topic prediction on the AG
News dataset, and hashtag recommendation on a
Twitter dataset. For each of these datasets, we
compared the results from the MRNN and CRNN
to a corresponding LSTM model. We separately
tuned the hyper-parameters for each model with
the validation sets and took the average results
across the multiple runs. Note that the baseline
LSTM models are 2-layered. Our MTL models
and the LSTM baseline have the exact same num-
ber of parameters along the primary task stream.

In the following experiments, we use 512
LSTM cells for all models trained on the Rotten
Tomato dataset and 128 LSTM cells for the AG
News and Twitter datasets. Before each output
layer, we have a single fully connected layer con-
sisting of 512 hidden units for the Rotten Tomato
dataset and 128 hidden units for the AG News and
Twitter datasets. We use a batch size of 128 and
apply gradient clipping with the norm set to 1.0 on
all the parameters for all experiments.

We found that missing word completion is espe-
cially detrimental to our MTL models. We believe
that removing a word from each document, which
consists almost exclusively of short sequences,
discards a large portion of the useful information.

Dataset Doc. Count | Categories | Avg. WC
RTMR 10662 2 20
AGNews 127600 4 34
Twitter | 5964 71 70%*

Table 1: Dataset statistics. (*character count)

Thus, the quantitative results of the missing word
completion experiments have been omitted from
this paper. We hypothesize that missing word
completion is more useful for datasets with longer
documents where discarding individual words will
not have a major effect on each document.

3.1 Data

The Rotten Tomato Movie Review (RTMR)'
(Pang and Lee, 2005) dataset consists of 5331 pos-
itive and 5331 negative review snippets. The task
is to predict review sentiment. The dataset is ran-
domly split into 90% for the training and valida-
tion sets and 10% for test set (Dai and Le, 2015).

The AG News? (Zhang et al., 2015) dataset con-
sists of 120,000 training and 7,600 testing docu-
ments. The task is to classify the documents into
one of four topics. Following (Wang and Tian,
2016), we took 18,275 documents from the train-
ing set as validation data.

The Twitter dataset consists of 5,964 tweets.
The task is to predict one of the 71 hashtag labels.
We collected 300,000 tweets using the Twitter
API. We removed all retweets, URLs, uncommon
symbols, and emojis. We lowercased all the char-
acters in the tweets. We kept the tweets with the 71
most popular English hashtags, and removed the
hashtags from the tweets. We used an 80/10/10
split of the remaining data. Although Twitter’s
Developer Policy prevents us from releasing the
dataset, the entire data collection pipeline will be
made available upon publication.

4 Rotten Tomatoes

4.1 Training Details

The primary task for the Rotten Tomatoes dataset
is sentiment analysis. We used word genera-
tion as the automated task. The input is a 300-
dimensional word2vec vector for each word. The
primary task output consists of two softmax units,
representing a positive or negative review. The au-
tomated task output is next word prediction of the
word2vec representation, and hence is a 300 unit
tanh layer. For LSTM we use a learning rate of

1 . .
cs.cornell.edu/people/pabo/movie-review-data/

2di .unipi.it/gulli/AG_corpus_of_news_articles.html

57

0.0001. For the MTL models, we need to tune
the learning rate hyper-parameter of the automated
task. Instead of tuning the primary and automated
task hyper-parameters separately, we found an al-
ternative method for tuning the learning rates us-
ing the following equation where 7.1 is the only
learning rate hyper-parameter. [7,cq,) i Optimized
on the validation set.

7 actual)

Urpeim(epoch) = epoch + (2 o

ey

lrauto(ep()Ch) = ITactual — lrprim(epOCh)

We apply this type of learning rate modulation in
order to simulate network pre-training on the au-
tomated task in the earlier epochs, learn shared
representations in the intermediate epochs through
multi-task learning, and train more exclusively on
the primary task during the later epochs. We used
an {7 ,cuar of 0.01.

The MTL and LSTM models both use word-
level word2vec representations trained on Google
News (Le and Mikolov, 2014). The primary sen-
timent analysis task is trained using Adam opti-
mizer (Kingma and Ba, 2014) on cross-entropy
loss while the automated word generation task is
trained using mean-squared error. We continue to
use Adam optimizer in the rest of our experiments.

4.2 Results

We compare our experimental results with (1) SA-
LSTM (Dai and Le, 2015), an LSTM initialized
with a sequence auto-encoder, and (2) the adver-
sarial model (Miyato et al., 2016), an LSTM-based
text classification model with perturbed embed-
dings. We choose these two models because they
are both LSTM-based and are thus comparable to
our models. Non-LSTM models, such as convolu-
tional neural networks, have been able to achieve
higher accuracy on sentiment analysis with the
Rotten Tomatoes dataset (Kim, 2014). All of our
networks beat the variant of the SA-LSTM that
does not use outside data for pre-training. How-
ever, the adversarial (Miyato et al., 2016) and SA-
LSTM (Dai and Le, 2015) models, using external
unlabeled datasets, outperform our MTL models.
With the MRNN, we achieve a 1.5% gain in ac-
curacy over SA-LSTM, and 1% over the vanilla
LSTM network. With the CRNN, we achieve sim-
ilar results compared to the vanilla LSTM net-
work. We hypothesize that the reason the CRNN
under-performs the MRNN is due to the lack of
a clear hierarchy between sentiment analysis and

Dataset Model Accuracy
RTMR SA-LSTM (2015) 79.7%
RTMR SA-LSTM (2015)* 83.3%
RTMR Adversarial (2016)* | 83.4%
RTMR LSTM 80.2%
RTMR CRNN 80.1%
RTMR MRNN 81.2%
AGNews SC-LSTM-I 2016) | 92.05%
AGNews LSTM 91.59%
AGNews CRNN 92.19%
AGNews MRNN 91.93%
Twitter | LSTM 57.8%
Twitter | CRNN 61.4%
Twitter | MRNN 62.0%

Table 2: Experimental results. (*trained on exter-
nal unlabeled dataset)

word generation. We suspect that sentiment anal-
ysis is primarily keyword based and cannot fully
take advantage of the automated language model
task. Additionally, we found that the MTL mod-
els can be trained with much higher learning rates
than a standard LSTM, allowing for convergence
in many fewer epochs. The MRNN model con-
verged within the first 10 epochs, whereas the
LSTM model required approximately 30 epochs
to converge.

5 AG News

5.1 Training Details

For the AG News experiment, the primary task
is topic prediction and the automated task is
word generation. The input to the model is the
300-dimensional word2vec representations of the
words from the documents. The primary task out-
put uses a softmax layer with 4 units. The auto-
mated task output is represented by a tanh layer
with 300 units. The learning rate for the LSTM is
0.001. For the MRNN, the learning rates undergo
the same linear function as in the Rotten Tomatoes
experiment where [7cqq i 0.01.

5.2 Results

For AG News dataset, we compare our experiment
result with skip-connected LSTM (Wang and Tian,
2016), the previous state-of-the-art model on this
dataset. The CRNN outperforms state-of-the-art
by 0.14% and MRNN by 0.26%. We believe the
CRNN beats the MRNN due to a hierarchical rela-
tionship between topic prediction and word gener-
ation. We suspect that topic prediction, which re-
lies on a holistic understanding of a document, can
effectively take advantage of the language model.

58

6 Twitter

We ran an experiment showing that our models can
perform well in challenging environments with lit-
tle data. We used a small dataset of 5,964 tweets.
We performed regression on the word2vec repre-
sentation of the hashtag given the tweet. We chose
regression over classification of one-hot targets
because our chosen hashtags are inherently non-
orthogonal and can benefit from semantic repre-
sentations in vector space. We trained three mod-
els: an LSTM model, the MRNN, and the CRNN.

6.1 Training Details

For the Twitter experiment, the primary task is
hashtag recommendation and the automated task
is character prediction. We use character predic-
tion as the automated task due to the large amount
of misspellings and colloquialisms in tweets.

The input to the model is the 66-dimensional
one-hot encoding of the characters corresponding
to the ASCII characters that we kept during pre-
processing. The primary task output is a tanh layer
with 300 units. The automated task output uses a
softmax layer with 66 units. For all the models we
chose a fixed learning rate of 0.001 based on our
observation that different learning rates have little
effect on the relative trend between the models on
this particular task. A constant, equal learning rate
allows us to compare the accuracy curves of each
network against epochs run.

Since several of the hashtags are very similar
to each other (i.e. #Capricorn and #Scorpio), we
marked a prediction as correct if the predicted se-
mantic vector’s top 5% (top 4) closest cosine dis-
tance words contained the target hashtag.

6.2 Results

With the MRNN, we achieve a 4.2% gain in accu-
racy over the LSTM in the Twitter dataset. With
the CRNN, we achieve a 3.6% gain in accuracy.
Additionally, we have shown in Figure 2 that both
the MRNN and CRNN models converge faster
than the LSTM model; both MTL models take ap-
proximately half of the number of epochs to reach
50% accuracy using the same constant learning
rate.

7 Conclusion

In this paper, we showed that automated multi-
task learning models can consistently outperform
the LSTM in sentiment analysis, topic prediction,

Twitter Hashtag Prediction

0.7
0.6 T
zost /S
m r
*g 0.4 P
< 7z ———— MRNN
<03/ PEAH
0.2 _. A LSTM
0.1 .
0 10 20 30 40 50
Epochs

Figure 2: Hashtag prediction in Twitter.

and hashtag recommendation. Note that the con-
cept of automated tasks can be extended to non-
NLP sequence tasks such as image categorization
with next row prediction as the automated task.
Because automated MTL can be integrated into
an existing network by adding a new branch to a
pre-existing graph, we can substitute bidirectional
LSTMs (Schuster and Paliwal, 1997), GRUs (Gul-
cehre et al., 2014), and vanilla RNNs for LSTMs
in our MTL models. We will experiment on these
variations in the future.

References

R. Ando and T. Zhang. 2005. A framework for learning
predictive structures from multiple tasks and unla-
beled data. Journal of Machine Learning Research.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Trapit Bansal, David Belanger, and Andrew McCal-
lum. 2016. Ask the gru: Multi-task learning for deep
text recommendations. In Proceedings of the 10th

ACM Conference on Recommender Systems, pages
107-114. ACM.

Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Semi-
supervised learning for neural machine translation.
arXiv preprint arXiv:1606.04596.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In Advances in Neural Informa-
tion Processing Systems, pages 3079-3087.

Shalini Ghosh, Oriol Vinyals, Brian Strope, Scott Roy,
Tom Dean, and Larry Heck. 2016. Contextual 1stm
(clstm) models for large scale nlp tasks. arXiv
preprint arXiv:1602.06291.

Caglar Gulcehre, Kyunghyun Cho, Razvan Pascanu,
and Yoshua Bengio. 2014. Learned-norm pooling

59

for deep feedforward and recurrent neural networks,
part 1 edition, volume 8724 LNAI of Lecture Notes
in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). Springer Verlag.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew
Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. 2012. Deep neural networks for
acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal Process-
ing Magazine, 29(6):82-97.

Yoon Kim. 2014. Convolutional neural net-

works for sentence classification. arXiv preprint
arXiv:1408.5882.

P. Kingma and J. Ba. 2014.
for stochastic optimization.
arXiv:1412.6980.

Adam: A method
arXiv preprint

Quoc V Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In /CML,
volume 14, pages 1188-1196.

Zachary C Lipton, Sharad Vikram, and Julian
McAuley. 2015. Generative concatenative nets
jointly learn to write and classify reviews. arXiv
preprint arXiv:1511.03683.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016.
Deep multi-task learning with shared memory.
arXiv preprint arXiv:1609.07222.

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng,
Kevin Duh, and Ye-Yi Wang. 2015. Representation
learning using multi-task deep neural networks for
semantic classification and information retrieval. In
HLT-NAACL, pages 912-921.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2015. Multi-task
sequence to sequence learning. arXiv preprint
arXiv:1511.06114.

Takeru Miyato, Andrew M Dai, and Ian Good-
fellow. 2016. Adversarial training methods for
semi-supervised text classification. arXiv preprint
arXiv:1605.07725.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of the
43rd annual meeting on association for computa-
tional linguistics, pages 115-124. Association for
Computational Linguistics.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing, 45(11):2673-2681.

Anders Sggaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In Proceedings of the 54th Annual

Meeting of the Association for Computational Lin-
guistics, volume 2, pages 231-235. Association for
Computational Linguistics.

Yiren Wang and Fei Tian. 2016. Recurrent residual
learning for sequence classification. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, page 938943. Asso-
ciation for Computational Linguistics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between

human and machine translation. arXiv preprint
arXiv:1609.08144.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649—657.

60

Post-Processing Techniques for Improving Predictions of Multilabel
Learning Approaches

Akshay Soni, Aasish Pappu, Jerry Chia-mau Ni* and Troy Chevalier
Yahoo! Research, USA

*Yahoo! Taiwan

akshaysoni, aasishkp, jerryni, troyc @oath.com

Abstract

In Multilabel Learning (MLL) each train-
ing instance is associated with a set of
labels and the task is to learn a func-
tion that maps an unseen instance to its
corresponding label set. In this paper,
we present a suite of—MLL algorithm
independent—post-processing techniques
that utilize the conditional and directional
label-dependences in order to make the
predictions from any MLL approach more
coherent and precise. We solve a con-
straint optimization problem over the out-
put produced by any MLL approach and
the result is a refined version of the input
predicted label set. Using proposed tech-
niques, we show absolute improvement of
3% on English News and 10% on Chinese
E-commerce datasets for P@K metric.

1 Introduction

The Multiclass Classification problem deals with
learning a function that maps an instance to its one
(and only one) label from a set of possible labels
while in MLL each training instance is associated
with a set of labels and the task is to learn a func-
tion that maps an (unseen) instance to its corre-
sponding label set. Recently, MLL has received
a lot of attention because of modern applications
where it is natural that instances are associated
with more than one class simultaneously. For in-
stance, MLL can be used to map news items to
their corresponding topics in Yahoo News, blog
posts to user generated tags in Tumblr, images to
category tags in Flickr, movies to genres in Net-
flix, and in many other web-scale problems. Since
all of the above mentioned applications are user-
facing, a fast and precise mechanism for automati-
cally labeling the instances with their multiple rel-

61

evant tags is critical. This has resulted in the de-
velopment of many large-scale MLL algorithms.

The most straightforward approach for MLL is
Binary Relevance that treats each label as an in-
dependent binary classification task. This quickly
becomes infeasible if either the feature dimension
is large or the number of labels is huge or both.
Modern approaches either reduce the label dimen-
sion, e.g., PLST, CPLST (Chen and Lin, 2012),
Bayesian CS (Kapoor et al., 2012), LEML (Yu
et al., 2014), RIPML (Soni and Mehdad, 2017),
SLEEC (Bhatia et al., 2015), or feature dimension
or both (such as WSABIE and DocTag2Vec (Chen
et al., 2017)). The inference stage for all of these
approaches produce a score for each potential la-
bel and then a set of top-scored labels is given as
the prediction.

A potential problem with the above mentioned
algorithms is that they lack the knowledge of cor-
relation or dependency between the labels. Let us
look at a toy example: our training data is such that
whenever the label mountain is active then the la-
bel tree is also active. Therefore MLL algorithm
should take advantage of this correlation embed-
ded in the training data to always infer the label
tree when mountain is one of the label. On the
other hand, if tree is an active label then mountain
may not be a label. Exploiting this directional and
conditional dependency between the labels should
allow us to predict a more coherent set of labels.
It would—to some extend—also save the MLL al-
gorithm from making wrong predictions since if
some wrong labels (say we predict a wrong la-
bel politics) are predicted along with correct la-
bels (when true labels are tree and mountain) then
the overall set of predicted labels would not be co-
herent. Inclusion of this external knowledge about
labels shows significant improvements when there
is a lack of training data for some labels.

There have been many attempts (Dembszynski

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 61-66,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

et al., 2010) of using label-hierarchies or label-
correlation information as part of the MLL train-
ing process. For instance, the label-correlation in
training data is used in (Tsoumakas et al., 2009);
(Guo and Gu, 2011) uses conditional dependen-
cies among labels via graphical models. Some of
the other relevant works that use this information
as part of the training are (Huang and Zhou, 2012;
Kong et al., 2013; Younes et al., 2008) and refer-
ences therein. Since these approaches use label de-
pendency information as part of the training stage,
we foresee following issues:

e Using pre-trained model: In some cases we
want to use a pre-trained MLL model that
did not use the label-dependency information
during training and retraining a new model is
not an option. The use of pre-trained models
has become very common since not everyone
has the hardware capability to train complex
models using large amounts of data.

Label-dependency information not available
during training or else one may want to use
updated or new label-dependency informa-
tion after the model is trained.

Expensive training and inference: Almost all
algorithms that utilize the label-dependence
as side-information are either expensive dur-
ing training, or inference, or both.

In this paper, we present a suite of post-
processing techniques that utilize the conditional
and directional label-dependences in order to
make the predictions from any MLL approach
more coherent and precise. It is to be noted that
the proposed techniques are algorithm indepen-
dent and can even be applied over the predictions
produced by approaches that use this or any other
label-dependency information as part of the train-
ing. Our techniques involve solving simple con-
straint optimization problems over the outputs pro-
duced by any MLL approach and the result is a re-
fined version of the input prediction by removing
spurious labels and reordering the labels by utiliz-
ing the additional label-dependency side informa-
tion. We show benefits of our approach on Chinese
e-commerce and English news datasets.

2 Problem Description and Approaches

MLL is the problem of learning a function
f : T — 2% that maps an instance in Z to one of

62

the sets in the power set 2% where £ is the set of
all possible labels. For a specific instance, MLL
predicts a subset S C L. Our goal is to learn a
subset L C S such that L is a refined version of S.

Given a set of constraints on input labels, one
can define an objective function that would poten-
tially minimize inconsistencies between the final
set of labels. Intuitively, labels may be interde-
pendent, thus certain subsets are more coherent
than the others. Label dependency can manifest
either through human-curated label taxonomy or
conditional probabilities. We propose two post-
processing techniques in this paper to improve
predicted outputs of any MLL algorithm. In the
following subsections, we present details of each
technique.

2.1 Steiner Tree Approximation

We formulate label coherence problem as a Steiner
Tree Approximation problem (Gilbert and Pollak,
1968). Consider the following: input is a set of
predicted labels S = R U O, where R is a set
of coherent (required) labels and O is a set of in-
coherent (optional) labels. Labels are connected
by directed weighted edges, thus form a graph G.
The goal is to find a tree T' = (L, E, W) where L
is a set of labels R C L C S that includes all of
the coherent labels and may include some of the
optional labels O, E is the set of directed edges
connecting nodes in L and W is set of weights as-
signed to the edges. For faster and approximate so-
lutions, one can reduce Steiner tree problem to di-
rected minimum spanning tree (MST) (Mehlhorn,
1988) and can be solved using Edmond’s algo-
rithm (Edmonds, 1967). MST has been applied in
several previous works on document summariza-
tion (Varadarajan and Hristidis, 2006), text detec-
tion in natural images (Pan et al., 2011), and de-
pendency parsing (McDonald et al., 2005). In this
work, we first construct a directed graph of labels
and then apply MST to obtain a tree of coherent
labels. On applying MST, we choose vertices with
top-K edge weights. Our goal is to find a tree that
minimizes the following objective function:

costg(T) =y d(u,v),

(u,v)eE

where u and v are nodes, d(u,v) = 1 — W(u,v).
The edge weights W are determined by the con-
ditional probabilities of co-occurrence of labels.
Directionality of the edges are determined by the

following criterion:

{

where Pr(L;|L;) is the probability that label L; is
active given label L is active.

Once the directed graph is constructed based on
above criterion, Edmond’s algorithm recursively
eliminates edges between a root node and one of
the other nodes with minimum edge weights. In
case of cycles, the edges are eliminated randomly.
In essence, this algorithm selects highest-value
connected-component in the directed graph. Thus,
we are left with coherent labels.

L; — Lj,
Lz' <—Lj,

PI‘(LZ"LJ') § PI‘(LZ‘|LJ‘)

otherwise,

2.2 0-1 Knapsack

Assigning labels to an instance with a budget can
be considered as a resource allocation problem.
0-1 Knapsack is a popular resource allocation
problem where capacity of the knapsack is limited
and it can be filled with only a few valuable items.
Items are added to the knapsack by maximizing
the overall value of the knapsack subject to the
combined weight of the items under budget. Many
previous works in NLP have used Knapsack for-
mulation, particularly in summarization (Lin and
Bilmes, 2010; Ji et al., 2013; Hirao et al., 2013;
McDonald, 2007). We formulate label assignment
problem as a resource allocation problem, where
we maximize total value of assigned labels. We
determine individual value of a label based on the
log likelihood of the label and its dependent labels.
Intuitively, a label is included in the knapsack only
when its dependent labels increase the overall log-
likelihood.
maximize » > log(Pr(Ly|L:))

keSieDy,

st. Y Dy <C,
kes

where D, C S — Lj is a subset of input labels
S that are conditionally dependent on label Ly i.e.
Pr(Lg|L;) > 0 for i € Dy. To include a label Ly
in the knapsack (i.e., in L), we optimize the total
sum of the log conditional probabilities of labels
L;. under the constraint that the total number of
dependent labels are within the budget C'—total
number of permissible labels. The problem can
be understood as a maximization of values of as-
signed labels. This problem is solved using a dy-
namic programming algorithm that runs in poly-
nomial time (Andonov et al., 2000).

63

3 Experiments

The goal of this section is to emphasize on
the fact that our post-processing techniques are
MLL algorithm independent. For that we apply
our approaches over the predictions from mul-
tiple MLL algorithms for two datasets: Yahoo
News dataset in English and Chinese E-commerce
dataset. Since MLL is generally used in applica-
tions where precision of predictions are important,
we use Precision@K for K = 1,2 and 3 as our
metric.

3.1 Datasets

e Yahoo News MLL Dataset (English)1 : This
is one of the few publicly available large
scale datasets for MLL. It contains 38968 Ya-
hoo News articles in English for training and
10000 for testing. These are manually la-
beled with their corresponding category la-
bels; overall, there are 413 possible labels.

Chinese E-commerce MLL dataset: This
is a propriety dataset that contains product
descriptions of 230364 e-commerce products
in Chinese for training and 49689 for testing.
Each product is tagged with labels about the
product categories; overall there are 240 tags.

3.2 MLL Approaches

Since our post-processing techniques are MLL al-
gorithm independent, we picked three MLL ap-
proaches to apply our post-processing techniques:
Naive Bayes, CNN, and DocTag2Vec. From
our perspective, we can treat these approaches as
black-box that for a given instance generate the set
of predicted labels S C L.

e Naive Bayes (NB) MLL: Given a sequence
of words, the probability of a tag is evaluated
by multiplying the prior probability of the tag
and the probabilities of observing the words
given the tag, pre-computed from the training
data.

CNN MLL (Kim, 2014): Originally de-
signed for text classification tasks, the model
views sequence of word embeddings as a ma-
trix and applies two sequential operations:
convolution and max-pooling. First, features

'available publicly via Webscope:
https://webscope.sandbox.yahoo.com/catalog.php?
datatype=1&did=84

Highest Priors Greedy
Dataset MLL Approach | P@K | Default Baseline-1 Baseline-2 MST Knapsack
1 0.6821 0.6277 0.5927 0.6942 0.6976 (+1.5%)
Yahoo News DocTag2Vec 2 0.6461 0.6132 0.5836 0.6689 (+2.2%) 0.6568
3 0.6218 0.6052 0.5750 0.6485 (+2.6%) 0.6203
1 0.5309 | 0.5718 (+4.0%) 0.5563 0.5510 0.5331
Chinese Ecom DocTag2Vec 2 0.5454 | 0.5748 (+2.9%) 0.5664 0.5716 0.5442
3 0.4813 0.4928 0.5802 0.5820 (+10%) 0.4884
1 0.8554 0.7658 0.6898 0.8483 0.8479
Chinese Ecom CNN 2 0.7387 0.7164 0.6545 0.7814 (+4.2%) 0.7450
3 0.6095 0.5921 0.6646 0.7249 (+11.5%) 0.6287
1 0.8752 0.8526 0.7545 0.8982 0.9057 (+3.0%)
Chinese Ecom NB 2 0.8481 0.8167 0.6738 0.8456 0.8538 (+0.5%)
3 0.7913 0.7519 0.7129 0.8101 (+1.8%) 0.7385

Table 1: P@K for various values of K for the two datasets considered and for different MLL algorithms.
Here default means not using a coherence stage. In brackets are shown the improvements in precision
over default by the best performing coherence approach.

are extracted by a convolution layer with sev-
eral filters of different window size. Then
the model applies a max-over-time pooling
operation over the extracted features. The
features are then passed through a fully con-
nected layer with dropout and sigmoid acti-
vations where each output node indicates the
probability of a tag.

ail

e DocTag2Vec (Chen et al, 2017): Re-
cently proposed DocTag2Vec embeds in-
stances (documents in this case), tags, and
words simultaneously into a low-dimensional
space such that the documents and the tags
associated with them are embedded close to
each other. Inference is done via a SGD step
to embed a new document, followed by k-
nearest neighbors to find the closed tags in
the space.

3.3

o Highest Priors (Baseline-1): Given the train-
ing data, compute the prior probabilities of
each label and re-rank labels in S according
to the decreasing order of these prior proba-
bilities to produce the new set L.

Post-Processing Techniques

e Greedy (Baseline-2): Given the pairwise
conditional probabilities among the output la-
bels, select most probable pairs above certain
threshold 7; we experimented with values in
range [0.01, 0.1] and used 7 = 0.06 in
the final experiments.

64

e MST: Steiner Tree Approximation via MST.
The edge weights are computed via the con-
ditional co-occurrence of the labels in the
training data and the directionality is en-
forced via the criterion described in Section
2.1.

e (-1 Knapsack: We set C' = 15 and solve
the optimization problem described in Sec-
tion 2.2.

3.4 Results

The P@K values are shown in Table 1 for the two
datasets and for various coherency algorithms ap-
plied over multiple MLL approaches. The two
baselines—highest priors and greedy—work rea-
sonably well but the best performing approaches
are MST and Knapsack. For most of the cases
MST works well and even in the scenarios where
Knapsack beats MST, they both are close in per-
formance. By using a post-processing step for co-
herency we generally see a lift of around 2 — 4%
in most of the cases and sometimes a lift of more
than 10% is observed. We note that one can de-
sign the problem with more deeper conditions i.e.,
P(Ly|Lg, L3 ... L) but only single label depen-
dency has been used in our experiments. With
deeper dependencies, more training data is re-
quired to reliably learn prior probabilities. Also
as the number of labels increase, the number of
conditionals increases, thus the inference becomes
computationally expensive.

Table 2: Example tags for various Yahoo News articles. Tags highlighted in red did not appear in
true labels. Superscripts on the tags denote following D: Output from DocTag2Vec system (Default in
Table 1), Knap: Output from Knapsack, MST: Output from Steiner Tree Approximation. Tags without

superscript were not predicted at inference.

Doc 1 telecommunication®MST company-legal-&-law-matters®K"P-MST "meroers -acquisitions-&-takeovers
laws-and-regulations,entertainment®, handheld-&-connected-devicesP-MST
Doc 2 fashion®MST clothes-&-apparel,hollywoodPMST
celebrity®>MSTKnap entertainment®MSTKmP 1myy5icPMST contests-&-giveawaysP
Doc 3 handheld-&-connected-devicesP>"MSTKMP telecommunication®MST-Knap money
investrnent—&—company—information,investment,sectors—&—industriesD,internet—&—networking—technologyD
‘ Doc 4 ‘ autosP"MSTKnap strikes financial-technical-analysis,company-earningsP-Xnap ‘
Doc 5 public-transportation®MST-Knap trayel-and-transportationP-MST-Knap
celebrity,musiCD’MST’K“ap,transport—accidentD’MST'K“ap,entertainmentD
‘ Doc 6 ‘ family-healthPMSTKnap mental-health®MST biology,pregnancy® parentingP>MSTKap tests & procedures® ‘
Doc 7 laws-and-regulationsP>MSTKP company-legal-&-law-matters?-MST-Knap,
money,investment-&-company-information,investment,lighting—&—accessoriesD

4 Discussion and Conclusion

Table 2 illustrates MLL output of sample docu-
ments from Yahoo News corpus. We observed
Knapsack algorithm is more conservative at sub-
set selection compared to MST. Tags predicted by
Default system include tags that are related to true
tags but do not appear in the true tag subset e.g., in
Doc 1 handheld-&-connected-devices is related
to telecommunications, similarly Doc 2 and Doc
5 has one related tag and one spurious tag — in
both cases MST and KNAPSACK prune the spu-
rious tags. In Doc 2 music is related/coherent
and contest-&-giveaways is spurious/incoherent.
In Doc 5 transport-accident is related/coherent
and entertainment is a spurious tag.

In this paper we presented two post-processing
techniques to improve precision of any MLL algo-
rithm. In addition to experiments discussed in the
paper, we conducted experiments with other com-
binatorial optimization algorithms as used in pre-
vious works viz., facility location (p-median) (Al-
guliev et al., 2011; Ma and Wan, 2010; Cheung
et al., 2009; Andrews and Ramakrishnan, 2008)
and other graph-based centrality methods (Wolf
and Gibson, 2004; Li et al., 2006; Guinaudeau and
Strube, 2013). However, we did not observe sig-
nificant improvement over default (unprocessed)
output. While many approaches exist that utilize
the label-correlation and dependency information
during training, to the best of our knowledge, this
is the first work that uses this knowledge as part of
a post-processing step that is independent of MLL
algorithms.

65

Acknowledgements

We are grateful to TC Liou, Chasel Su, Yu-Ting
Chang, Brook Yang for their contributions to this
project. We also wish to thank Kapil Thadani,
Parikshit Shah and the anonymous reviewers for
their feedback.

References

Rasim M Alguliev, Ramiz M Aliguliyev, and Chin-
giz A Mehdiyev. 2011. psum-sade: a modi-
fied p-median problem and self-adaptive differen-
tial evolution algorithm for text summarization. Ap-
plied Computational Intelligence and Soft Comput-
ing 2011:11.

Rumen Andonov, Vincent Poirriez, and Sanjay Ra-
jopadhye. 2000. Unbounded knapsack problem:
Dynamic programming revisited. European Journal
of Operational Research 123(2):394—407.

Nicholas Andrews and Naren Ramakrishnan. 2008.
Seeded discovery of base relations in large cor-
pora. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing. ACL,
pages 591-599.

Kush Bhatia, Himanshu Jain, Purushottam Kar, Prateek
Jain, and Manik Varma. 2015. Locally non-linear
embeddings for extreme multi-label learning. CoRR
abs/1507.02743.

Sheng Chen, Akshay Soni, Aasish Pappu, and Yashar
Mehdad. 2017. Doctag2vec: An embedding based
multi-label learning approach for document tagging.
In 2nd Workshop on Representation Learning for
NLP.

Yao-nan Chen and Hsuan-tien Lin. 2012. Feature-
aware label space dimension reduction for multi-
label classification. In Advances in NIPS 25, pages
1529-1537.

Jackie Chi Kit Cheung, Giuseppe Carenini, and Ray-
mond T Ng. 2009. Optimization-based content se-
lection for opinion summarization. In Proceedings
of the 2009 Workshop on Language Generation and
Summarisation. ACL, pages 7-14.

Krzysztof Dembszynski, Willem Waegeman, Weiwei
Cheng, and Eyke Hiillermeier. 2010. On label
dependence in multilabel classification. In ICML
Workshop on Learning from Multi-label data.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the National Bureau of Standards B
71(4):233-240.

EN Gilbert and HO Pollak. 1968. Steiner mini-
mal trees. SIAM Journal on Applied Mathematics
16(1):1-29.

Camille Guinaudeau and Michael Strube. 2013.
Graph-based local coherence modeling. In ACL (1).
pages 93-103.

Yuhong Guo and Suicheng Gu. 2011. Multi-label clas-
sification using conditional dependency networks.
In IJCAI. volume 22, page 1300.

Tsutomu Hirao, Yasuhisa Yoshida, Masaaki Nishino,
Norihito Yasuda, and Masaaki Nagata. 2013.
Single-document summarization as a tree knapsack
problem. In EMNLP. volume 13, pages 1515-1520.

Sheng-Jun Huang and Zhi-Hua Zhou. 2012. Multi-
label learning by exploiting label correlations lo-
cally. In Tiventy-Sixth AAAI Conference on Artificial
Intelligence.

Heng Ji, Benoit Favre, Wen-Pin Lin, Dan Gillick, Dilek
Hakkani-Tur, and Ralph Grishman. 2013. Open-
domain multi-document summarization via infor-
mation extraction: Challenges and prospects. In
Multi-source, Multilingual Information Extraction
and Summarization, Springer, pages 177-201.

Ashish Kapoor, Raajay Viswanathan, and Prateek Jain.
2012. Multilabel classification using bayesian com-
pressed sensing pages 2645-2653.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882 .

Xiangnan Kong, Michael K Ng, and Zhi-Hua Zhou.
2013. Transductive multilabel learning via label set
propagation. IEEE Transactions on Knowledge and
Data Engineering 25(3):704-719.

Wenjie Li, Mingli Wu, Qin Lu, Wei Xu, and Chunfa
Yuan. 2006. Extractive summarization using inter-
and intra-event relevance. In Proceedings of the 21st

66

International Conference on Computational Lin-
guistics and the 44th annual meeting of the Associa-
tion for Computational Linguistics. Association for
Computational Linguistics, pages 369-376.

Hui Lin and Jeff Bilmes. 2010. Multi-document sum-
marization via budgeted maximization of submod-

ular functions. In Human Language Technologies:
The 2010 NAACL. ACL, pages 912-920.

Tengfei Ma and Xiaojun Wan. 2010. Multi-document
summarization using minimum distortion. In Data
Mining (ICDM), 2010 IEEE 10th International Con-
ference on. IEEE, pages 354-363.

Ryan McDonald. 2007. A study of global infer-
ence algorithms in multi-document summarization.
In European Conference on Information Retrieval.
Springer, pages 557-564.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Haji¢. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
HLT and EMNLP. ACL, pages 523-530.

Kurt Mehlhorn. 1988. A faster approximation algo-
rithm for the steiner problem in graphs. Information
Processing Letters 27(3):125-128.

Yi-Feng Pan, Xinwen Hou, and Cheng-Lin Liu. 2011.
A hybrid approach to detect and localize texts in
natural scene images. IEEE Transactions on Image
Processing 20(3):800-813.

Akshay Soni and Yashar Mehdad. 2017. Ripml: A re-
stricted isometry property based approach to multil-
abel learning. arXiv preprint arXiv:1702.05181 .

Grigorios Tsoumakas, Anastasios Dimou, Eleftherios
Spyromitros, Vasileios Mezaris, Ioannis Kompat-
siaris, and Ioannis Vlahavas. 2009. Correlation-
based pruning of stacked binary relevance models
for multi-label learning.

Ramakrishna Varadarajan and Vagelis Hristidis. 2006.
A system for query-specific document summariza-
tion. In Proceedings of the 15th ACM international
conference on Information and knowledge manage-
ment. ACM, pages 622—-631.

Florian Wolf and Edward Gibson. 2004. Paragraph-,
word-, and coherence-based approaches to sentence
ranking: A comparison of algorithm and human per-
formance. In Proceedings of the 42nd ACL. page
383.

Zoulficar Younes, Fahed Abdallah, and Thierry
Denceux. 2008. Multi-label classification algorithm
derived from k-nearest neighbor rule with label de-

pendencies. In Signal Processing Conference, 2008
16th European. 1IEEE, pages 1-5.

Hsiang-Fu Yu, Prateek Jain, Purushottam Kar, and In-
derjit S. Dhillon. 2014. Large-scale Multi-label
Learning with Missing Labels. In ICML.

Learning Kernels over Strings using Gaussian Processes

Daniel Beck*

Trevor Cohn

Computing and Information Systems
University of Melbourne, Australia
{d.beck, t.cohn}@unimelb.edu.au

Abstract

Non-contiguous word sequences are
widely known to be important in mod-
elling natural language. However they are
not explicitly encoded in common text
representations. In this work we propose
a model for text processing using string
kernels, capable of flexibly representing
non-contiguous sequences. Specifically,
we derive a vectorised version of the
string kernel algorithm and their gradi-
ents, allowing efficient hyperparameter
optimisation as part of a Gaussian Process
framework. Experiments on synthetic data
and text regression for emotion analysis
show the promise of this technique.

1 Introduction

Text representations are a key component in any
Natural Language Processing (NLP) task. A com-
mon approach for this is to average word vectors
over a piece of text. For instance, a bag-of-words
(BOW) model uses one-hot encoding as vectors
and it is still a strong baseline for many tasks.
More recently, approaches based on dense word
representations (Turian et al., 2010; Mikolov et al.,
2013) also showed to perform well.

However, averaging vectors discards any word
order information from the original text, which
can be fundamental for more involved NLP prob-
lems. Convolutional and recurrent neural net-
works (CNNs/RNNs) can keep word order but still
treat a text fragment as a contiguous sequence of
words, encoding a bias towards short- over long-
distance relations between words. Some RNN
models like the celebrated LSTMs (Hochreiter

*This work was partially done while the first author was
at The University of Sheffield, United Kingdom.

67

and Schmidhuber, 1997) perform better in cap-
turing these phenomena but still have limitations.
Recent work (Tai et al., 2015; Eriguchi et al.,
2016) showed evidence that LSTM-based mod-
els can be enhanced by adding syntactic infor-
mation, which can encode relations between non-
contiguous words. This line of work requires the
employment of accurate syntactic parsers, restrict-
ing their applicability to specific languages and/or
text domains.

In this work we propose to revisit an approach
which goes beyond contiguous word representa-
tions: string kernels (SKs). Their main power
comes from the ability to represent arbitrary non-
contiguous word sequences through dynamic pro-
gramming algorithms. Our main contribution is a
model that combines SKs with Gaussian Processes
(GPs) (Rasmussen and Williams, 2006), allowing
us to leverage efficient gradient-based methods to
learn kernel hyperparameters. The reasoning be-
hind our approach is that by optimising hyperpa-
rameters in a fine-grained way we can guide the
kernel to learn better task-specific text representa-
tions automatically.

To enable the learning procedure we redefine
the SK algorithm in a vectorised form and derive
its gradients. We perform experiments using syn-
thetic data, giving evidence that the model can
capture non-trivial representations. Finally, we
also show how the approach fares in a real dataset
and explain how the learned hyperparameters can
be interpreted as text representations.

2 String Kernels

Here we give a brief intuition! on string kernels,
based on the formulation proposed by Cancedda

"We give a thorough explanation of the original SK equa-
tions in the Supplementary Material, as well as a detailed
derivation of our vectorised version with its hyperparameter
gradients.

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 6773,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

et al. (2003). Let |s| be the length of a string s,
s; the j—th symbol in s and s._; the prefix con-
taining the full string s except for the last symbol.
Define sim(a, b) as a similarity measure between
individual symbols a and b. Given two strings s
and ¢ and a maximum n-gram length n, the string
kernel k(s,t) can be obtained using the recursion

ky(s,t) = 1,forall s, ¢,
foralli=1,...,n—1:
Ki(sa,t) = Agki(s,t) + k! (sa,t),
K/ (sa,tb) = \gk{ (sa, t) + A2,sim(a, b)ki_, (s, 1),
kn(sa,t) = ky(s,t)+
lt]

M\ Z sim(a, tj)k},_1(s,t.—1),
J

k(s,t) = piki(s,t),
=1

where A, and)\, are decay hyperparameters for
symbol gaps and matches, respectively, and p; is
the weight for the kernel of n-gram order ¢. The
decay hyperparameters smooth the kernel values
when sequences are very similar to each other
while the n-gram weights help to tune the signal
coming from different subsequence lengths.

Our goal is optimise the kernel hyperparame-
ters in a fine-grained way using gradient-based
methods. For this, we first redefine the kernel in
a vectorised form. This not only eases gradient
derivations but also allow our implementation to
capitalise on recent advances in parallel process-
ing and linear algebra libraries for better perfor-
mance.?> Given two strings s and ¢, the equations
for our vectorised version are defined as

S = E.E],
K, =1,
K = D K{Dyy,
K{ =\, (SOK),
ki =AY (SO Kk,
7.k
k(s,t) = p'k,

where E; and E; are matrices of symbol embed-
dings for each string, ® is the Hadamard product

2Our open-source implementation is based on TensorFlow
(Abadi et al., 2015).

68

and D; € R? x R¢ is the matrix

I 0 1 [€]—27]
0 Ay Ay /\‘gai3
0 0 X Ag
Dy=1|: : :
0 0 O)\2
0 0 0 0

with £ € {|s],|t|} being the corresponding string
length for s or t. The purpose of D is to unroll
the recursion from the original kernel equations.
For the matrices E, we focus on dense word em-
beddings but they could also be one-hot vectors,
simulating hard matching between symbols.

Given this formulation, the hyperparameter gra-
dients can be easily derived. From the vectorised
definition, we can see that gradients with respect
to p are simply k, the intermediate n-gram spe-
cific kernel values. For A\, and A, the gradients
simply follow the kernel equations in an analo-
gous manner. Note that the gradient calculations
do not affect the time or space complexity of the
main kernel, and in practice they can be obtained
together using a single algorithm since they share
many common terms.

Finally, we incorporate the kernel into a Gaus-
sian Process regression model (henceforth, GP-
SK). We assume the label y for an input string s
is sampled from a function f(s) ~ GP(0, k(s, 1)),
with ¢ iterating over all other strings in a dataset.
With this, we can define the marginal likelihood as

log p(yls, 6) = log /f p(yls. 0, F)p(f),

yI'G-ly _log|G| nlog2m
B 2 2 2

where G is the Gram matrix with respect to the
training set s and @ is the set of kernel hyperpa-
rameters. By taking its derivative and plugging in
the kernel gradients, we can optimise its hyperpa-
rameters using gradient-based methods.?

2.1 Complexity and Runtime Analysis

The original string kernel algorithm has complex-
ity O(n|s||s'|), i.e., quadratic in the size of the
largest string. Our vectorised version is cubic,
O(nf?), where ¢ = max(|s|, |s|), due to two ma-
trix multiplications in the equations for K}. An-
other way of reaching this result is to realise that

3We refer the reader to Rasmussen and Williams (2006,
Chap.5) for an in-depth explanation of this procedure.

K/ is actually not needed anymore: all calcula-
tions can be made by updating K/ only. In fact,
Lodhi et al. (2002) introduced the term k" as a
way to reduce the complexity from O(n|s||s|?) to
O(nls||s'|). The complexity for the gradient cal-
culations is also O(nf3).

However, even though our vectorised version
has higher complexity, in practice we see large
gains in runtime. We assess this empirically
running the following experiment with synthetic
strings:

e We employ characters as symbols with a one-
hot encoding as the embedding, using all En-
glish ASCII letters, including uppercase (52
symbols in total);

e The maximum subsequence length is set to 5;

e 100 instances are generated randomly by uni-
formly sampling a character until reaching
the desired string length.

We test our kernels with lengths ranging from 10
to 100.

Figure 1 shows wall-clock time measurements
as the string lengths increase.* It is clear that the
vectorised version is vastly faster than the original
one, with up to two orders of magnitude. Com-
paring the CPU and GPU vectorised implemen-
tations, we see that we can reap benefits using
a GPU when dealing with long sentences. GPU
processing can be further enhanced by allowing
portions of the Gram matrix to be calculated in
batches instead of one instance at a time.

These results are intriguing because we do not
expect a quadratic complexity algorithm to be out-
performed by a cubic one. It is important to note
that while we made efforts to optimise the code,
there is no guarantee that either of our implemen-
tations is making the most of the underlying hard-
ware. We plan to investigate these matters in more
detail in the future.

3 Experiments

We assess our approach empirically with two sets
of experiments using natural language sentences
as inputs in a regression setting.’ The first one

“Experiments were done in a machine with an Intel Xeon
E5-2687W 3.10GHz as CPU and a GTX TITAN X as GPU.

5Code to replicate the experiments in this section
is available at https://github.com/beckdaniel/
ijenlpl7_sk. This also include the performance exper-
iments in Section 2.1.

69

3]
o
(=]

m— MNon-vectorised
Wectorised {CPU)
= Wectorised (GPU)

150 ~

100 ~

(¥}
(=]
1

Wall-clock time (seconds)

[=]

String length

Figure 1: Wall-clock time measurements for the
SK versions using different string lengths. Time is
measured in seconds and correspond to the calcu-
lation of a 100 x 100 Gram matrix with random
strings of a specific length.

uses synthetically generated response variables,
providing a controlled environment to check the
modelling capacities of our method. The second
set uses labels from an emotion analysis dataset
and serve as a proof of concept for our approach.

3.1 Synthetic Labels

Consider an ideal scenario where the data is dis-
tributed according to a GP-SK. Here we aim at an-
swering two questions: 1) whether we can retrieve
the original distribution through optimisation and
2) whether a simpler model can capture the same
distribution. The first gives us evidence on how
feasible is to learn such a model while the second
justify the choice of a SK compared to simpler al-
ternatives.

To answer these questions we employ the fol-
lowing protocol. First we define a GP-SK with the
following hyperparameter values:

Ag=05 X\,=02 02=0.1
p3 = 0.25

pw =10 pe =05

where o is the label GP noise. This choice of hy-
perparameter values is arbitrary: our goal is sim-
ply to check if we can retrieve these values through
optimisation. The same procedure could be ap-
plied for different values.

After defining the GP-SK model we calculate
the its corresponding Gram matrix using a set of
sentences and their respective word embeddings.
This matrix contains the covariances of a multi-
variate Gaussian distribution with mean vector O
and we can sample from this Gaussian to create
synthetic labels. As inputs we use a random sam-
ple of sentences from the Penn Treebank (Marcus

et al., 1993) and represent each word as a 100d
GloVe embedding (Pennington et al., 2014).

The data sampled from the procedure above
is used to train another GP-SK with randomly
initialised hyperparameters, which are then opti-
mised. We run this procedure 20 times, using the
same inputs but sampling new labels every time.

Hyperparameter stability Figure 2 shows the
hyperparameter values retrieved after optimisa-
tion, for increasing training set sizes. The decay
hyperparameters are the most stable ones, being
retrieved with high confidence independent of the
dataset size. The original noise value is also ob-
tained but it needs more instances (1000) for that.

The n-gram coefficients are less stable com-
pared to the other hyperparameters, although
the uncertainty seems to diminish with larger
datasets. A possible explanation is the presence
of some level of overspecification, meaning that
very different coefficient values may reach similar
marginal likelihoods, which in turn corresponds to
multiple plausible explanations of the data. Solu-
tions for this include imposing bounds to the coef-
ficients or fixing them, while freely optimising the
more stable hyperparameters.

Predictive performance To evaluate if the GP-
SK models can be subsumed by simpler ones, we
assess the predictive performance on a disjoint test
set containing 200 sentences. Test labels were
sampled from the same GP-SK distribution used
to generate the training labels, simulating a setting
where all the data follows the same distribution.

Figure 3 shows results across different training
set sizes, in Pearson’s r correlation. We compare
with GP baselines trained on averaged embed-
dings, using either a linear or a Squared Exponen-
tial (SE)” kernel. The SK model outperforms the
baselines, showing that even a non-linear model
can not capture the GP-SK distribution.

To investigate the influence of hyperparameter
optimisation, we also show results in Figure 3 for a
SK model with randomly initialised hyperparame-
ter values. Clearly, optimisation helps to improve
the model, even in the low data scenarios.

3.2 Emotion Analysis

As a first step towards working with real world
data, we employ the proposed approach in an emo-
®nlp.stanford.edu/projects/glove. We use

the version trained on Wikipedia and Gigaword.
7 Also known as RBF kernel.

70

2.0 Aﬁ A?“
15+
1.0+ e
0.5 -é—i—*—-—-—
ocoft |
o
=] 2
2 o i
g 20 — T
. 15 1 ! 1
Q 1oF 1 1 R
s U H o
£ 10} 1 T
E -—
g 05+] 4 - D
2 00F . ﬁ - T
>
e
2.0 .lil2 . H3
. []
15+ 1 - T
- ! 1
1.0} H Q* | B
05 |_| =] E
ooftd ' I L — =1
P P P XQQQ © P P XQQQ

number of instances

Figure 2: String kernel hyperparameter optimisa-
tion results. Original hyperparameter values are
shown as black lines while each box corresponds
to a specific dataset size. Red lines show the me-
dian values, while box limits correspond to the
[0.25,0.75] quantiles.

1.0 . . T
0.8/————"4".‘_
R
R -1
| PERTERERNT S -
- .ot e -
S 06F T - * q
o]
T e . e
5 04}, e 1
e @ SK(rdm)
e—e SK (opt
0.2+ . (opt) g
eo-® Linear
e o SE
0.0 L

200
number of instances

50 100 500 1000

Figure 3: Prediction results, averaged over 20
runs. “SK (rdm)” corresponds to string kernel with
random hyperparameter values and “SK (opt)”,
with optimised hyperparameters.

tion analysis setting, where the goal is to model la-
tent emotions in text. We use the “Affective Text”
dataset from the SemEval2007 shared task (Strap-
parava and Mihalcea, 2007), composed of 1,250
News headlines annotated with 6 scores, one per
emotion. Scores are in the [0—100] range and were
provided by human judges. The models, baselines
and embeddings are the same used in Section 3.1.
Instead of using a fixed split, we perform 10-fold

NLPD | MAE | r1
SK 4.06 10.53 0.586
Linear 4.09 11.03 0.539
SE 4.03 10.09 0.611

Table 1: Emotion analysis results, averaged over
all emotions and cross-validation folds.

Xg 736 x 107 A, 0.0918
w1 12.37 w2 3373 ps 15451
m 2.58 us 8.54

Table 2: SK hyperparameter values for a single
model predicting the emotion surprise.

cross validation and average the results.

Table 1 compares the performance of GP-SK
with the baselines trained on averaged embed-
dings. Besides Pearson’s r correlation, we also
compare the models in terms of Mean Absolute
Error (MAE) and Negative Log Predictive Density
(NLPD), a metric that takes into account the full
predictive distribution into account (Quifionero-
Candela et al., 2006). The main figure is that GP-
SK outperforms the linear baseline but lags behind
the SE one. This shows that non-linearities present
in the data can not be captured by the GP-SK
model. Since the string kernel is essentially a dot
product over exponentially-sized vectors, it is not
surprising that it is unable to capture non-linear
behaviour. This gives us evidence that developing
non-linear extensions of string kernels could be a
promising avenue for future work.

Inspecting hyperparameters Probing the hy-
perparameters can give us insights about what
kind of representation the kernel is learning. On
Table 2 we show the values for one of the models
that predict the emotion surprise. We can see that
Ag has a very low value, while the p values show
a preference for subsequences up to 3 words. This
lets us conclude that the kernel learned a text rep-
resentation close to contiguous trigrams.

4 Related Work

String kernels were originally proposed for text
classification (Lodhi et al., 2002; Cancedda et al.,
2003) while recent work apply them for native lan-
guage identification (Ionescu et al., 2014) and sen-
timent analysis (Giménez-Pérez et al., 2017), with
promising results. Hyperparameter optimisation
in these works is done via grid search and could

71

potentially benefit from our proposed approach.

Gaussian Processes have been recently em-
ployed in a number of NLP tasks such as emo-
tion analysis (Beck et al., 2014), detection of tem-
poral patterns in microblogs (Preoiuc-Pietro and
Cohn, 2013), rumour propagation in social media
(Lukasik et al., 2015) and translation quality esti-
mation (Cohn and Specia, 2013; Shah et al., 2013;
Beck et al., 2016). These previous works encode
text inputs as fixed-size vectors instead of working
directly on the text inputs.

Among other recent work that aim at learning
general structured kernels, the most similar to ours
is Beck et al. (2015), who use GPs to learn tree
kernels. Lei et al. (2017) unroll string kernel com-
putations and derive equivalent neural network ar-
chitectures. In contrast, our work put the learning
procedure inside a GP model, inheriting the ad-
vantages of Bayesian model selection procedures.
Nevertheless, many of their kernel ideas could be
applied to a GP setting, which we leave for future
work.

5 Conclusion

In this paper we provided the first steps in combin-
ing string kernels and Gaussian Processes for NLP
tasks, allowing us to learn the text representations
used by the kernels by optimising its hyperparam-
eters in a fine-grained way. Experiments showed
promising results in capturing text patterns that are
not modelled by simpler baselines.

For future work, we plan to extend the model
to account for non-linear representations, using
approaches such as Arc-cosine kernels (Cho and
Saul, 2009) and also applying the ideas from Lei
et al. (2017). Another important avenue to pursue
is to scale the model to larger datasets using recent
advances in Sparse GPs (Titsias, 2009; Hensman
et al., 2013). These in turn can enable richer ker-
nel parameterisations not only for strings but other
structures as well.

Acknowledgements

Daniel Beck was supported by funding from
CNPg/Brazil (No. 237999/2012-9) and from
the Australian Research Council (DP160102686).
Trevor Cohn is the recipient of an Australian Re-
search Council Future Fellowship (project num-
ber FT130101105). The authors would also like
to thank the anonymous reviewers for their com-
ments.

References

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafael
Josefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaogiang Zheng. 2015. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Distributed
Systems.

Daniel Beck, Trevor Cohn, Christian Hardmeier, and
Lucia Specia. 2015. Learning Structural Kernels for
Natural Language Processing. Transactions of the
Association for Computational Linguistics, 3:461—
473.

Daniel Beck, Trevor Cohn, and Lucia Specia. 2014.
Joint Emotion Analysis via Multi-task Gaussian Pro-
cesses. In Proceedings of EMNLP, pages 1798-
1803.

Daniel Beck, Lucia Specia, and Trevor Cohn. 2016.
Exploring Prediction Uncertainty in Machine Trans-
lation Quality Estimation. In Proceedings of
CoNLL.

Nicola Cancedda, Eric Gaussier, Cyril Goutte, and
Jean-Michel Renders. 2003. Word-Sequence Ker-
nels. The Journal of Machine Learning Research,
3:1059-1082.

Youngmin Cho and Lawrence K Saul. 2009. Ker-
nel Methods for Deep Learning. In Proceedings of
NIPS, pages 1-9.

Trevor Cohn and Lucia Specia. 2013. Modelling An-
notator Bias with Multi-task Gaussian Processes:
An Application to Machine Translation Quality Es-
timation. In Proceedings of ACL, pages 32-42.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016. Tree-to-Sequence Attentional Neu-
ral Machine Translation. In Proceedings of ACL.

Rosa M. Giménez-Pérez, Marc Franco-Salvador, and
Paolo Rosso. 2017. Single and Cross-domain Polar-
ity Classification using String Kernels. In Proceed-
ings of EACL, pages 558-563.

James Hensman, Nicolo Fusi, and Neil D. Lawrence.

2013. Gaussian Processes for Big Data. In Pro-
ceedings of UAI, pages 282-290.
Sepp Hochreiter and Jiirgen Schmidhuber. 1997.

Long Short-term Memory. Neural Computation,
9(8):1735-80.

72

Radu Tudor Ionescu, Marius Popescu, and Aoife
Cahill. 2014. Can characters reveal your native lan-
guage? A language-independent approach to native
language identification. In Proceedings of EMNLP,
pages 1363-1373.

Tao Lei, Wengong Jin, Regina Barzilay, and Tommi
Jaakkola. 2017. Deriving Neural Architectures from
Sequence and Graph Kernels. In Proceedings of
ICML.

Huma Lodhi, Craig Saunders, John Shawe-Taylor,
Nello Cristianini, and Chris Watkins. 2002. Text
Classification using String Kernels. The Journal of
Machine Learning Research, 2:419-444.,

Michal Lukasik, Trevor Cohn, and Kalina Bontcheva.
2015. Point Process Modelling of Rumour Dynam-
ics in Social Media. In Proceedings of ACL, pages
518-523.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313-330.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed Repre-
sentations of Words and Phrases and their Composi-
tionality. In Proceedings of NIPS, pages 1-9.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global Vectors for
Word Representation. In Proceedings of EMNLP,
pages 1532-1543.

Daniel Preoiuc-Pietro and Trevor Cohn. 2013. A tem-
poral model of text periodicities using Gaussian Pro-
cesses. In Proceedings of EMNLP, pages 977-988.

Joaquin Quifionero-Candela, Carl Edward Rasmussen,
Fabian Sinz, Olivier Bousquet, and Bernhard
Scholkopf. 2006. Evaluating Predictive Uncertainty
Challenge. MLCW 2005, Lecture Notes in Com-
puter Science, 3944:1-27.

Carl Edward Rasmussen and Christopher K. L
Williams. 2006. Gaussian processes for machine
learning, volume 1. MIT Press Cambridge.

Kashif Shah, Trevor Cohn, and Lucia Specia. 2013.
An Investigation on the Effectiveness of Features for
Translation Quality Estimation. In Proceedings of
MT Summit X1V.

2007.
In

Carlo Strapparava and Rada Mihalcea.
SemEval-2007 Task 14 : Affective Text.
Proceedings of SemEval, pages 70-74.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of ACL.

Michalis K. Titsias. 2009. Variational Learning of In-
ducing Variables in Sparse Gaussian Processes. In
Proceedings of AISTATS, volume 5, pages 567-574.

Joseph Turian, Lev Ratinov, and Yoshua Bengio.
2010. Word Representations: A Simple and General
Method for Semi-supervised Learning. In Proceed-
ings of ACL, pages 384-394.

73

Substring Frequency Features for Segmentation of Japanese Katakana
Words with Unlabeled Corpora

Yoshinari Fujinuma*
Computer Science
University of Colorado
Boulder, CO

Yoshinari.Fujinumalcolorado.edu

Abstract

Word segmentation is crucial in natu-
ral language processing tasks for unseg-
mented languages. In Japanese, many out-
of-vocabulary words appear in the pho-
netic syllabary katakana, making segmen-
tation more difficult due to the lack of
clues found in mixed script settings. In this
paper, we propose a straightforward ap-
proach based on a variant of tf-idf and ap-
ply it to the problem of word segmentation
in Japanese. Even though our method uses
only an unlabeled corpus, experimental re-
sults show that it achieves performance
comparable to existing methods that use
manually labeled corpora. Furthermore,
it improves performance of simple word
segmentation models trained on a manu-
ally labeled corpus.

1 Introduction

In languages without explicit segmentation, word
segmentation is a crucial step of natural lan-
guage processing tasks. In Japanese, this prob-
lem is less severe than in Chinese because of
the existence of three different scripts: hiragana,
katakana, and kanji, which are Chinese charac-
ters.! However, katakana words are known to
degrade word segmentation performance because
of out-of-vocabulary (OOV) words which do not
appear manually segmented corpora (Nakazawa
et al., 2005; Kaji and Kitsuregawa, 2011). Cre-
ation of new words is common in Japanese; around

*Part of the work was done while the first author was at
Amazon Japan.

'Hiragana and katakana are the two distinct character sets
representing the same Japanese sounds. These two character
sets are used for different purposes, with katakana typically
used for transliterations of loanwords. Kanji are typically
used for nouns.

74

Alvin C. Grissom II
Mathematics and Computer Science
Ursinus College
Collegeville, PA

agrissom@ursinus.edu

20% of the katakana words in newspaper articles
are OOV words (Breen, 2009). For example, some
katakana compound loanwords are not transliter-
ated but rather “Japanized” (e.g., 7V U ¥ A X
> K gasorinsutando “gasoline stand”, meaning
“gas station” in English) or abbreviated (e.g., A
< — N7 % ¥ — A sumatofonkésu (‘“‘smart-
phone case”), which is abbreviated as A~ K7 —
A sumahokésu). Abbreviations may also undergo
phonetic and corresponding orthographic changes,
as in the case of A~ — N 7 * ¥ sumatofon
(“smartphone”), which, in the abbreviated term,
shortens the long vowel a to a, and replaces 7 %
fo with & ho. This change is then propagated to
compound words, such as A ¥ K7 — A suma-
hokesu (“smartphone case”). Word segmentation
of compound words is important for improving
results in downstream tasks, such as information
retrieval (Braschler and Ripplinger, 2004; Alfon-
seca et al., 2008), machine translation (Koehn and
Knight, 2003), and information extraction from
microblogs (Bansal et al., 2015).

Hagiwara and Sekine (2013) incorporated an
English corpus by projecting Japanese transliter-
ations to words from an English corpus; how-
ever, loanwords that are not transliterated (such as
sumaho for “smartphone”) cannot be segmented
by the use of an English corpus alone. We inves-
tigate a more efficient use of a Japanese corpus
by incorporating a variant of the well-known tf-
idf weighting scheme (Salton and Buckley, 1988),
which we refer to as term frequency-inverse sub-
string frequency or tf-issf. The core idea of our ap-
proach? is to assign scores based on the likelihood
that a given katakana substring is a word token,
using only statistics from an unlabeled corpus.

20ur code is available at https://www.github.com/
akkikiki/katakana_segmentation.

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 74-79,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

Our contributions are as follows:

1. We show that a word segmentation model
using tf-issf alone outperforms a previously
proposed frequency-based method and that
it produces comparable results to various
Japanese tokenizers.

. We show that tf-issf improves the F1-score of
word segmentation models trained on manu-
ally labeled data by more than 5%.

2 Proposed Method

In this section, we describe the katakana word seg-
mentation problem and our approach to it.

2.1 Term Frequency-Inverse Substring
Frequency

Let S be a sequence of katakana characters, Y be
the set of all possible segmentations, y € Y be
a possible segmentation, and y; be a substring of
y. Then, for instance, y = y1y2...y, 1S a possible
word segmentation of S with n segments.

We now propose a method to segment katakana
OOV words. Our approach, term frequency-
inverse substring frequency (tf-issf), is a variant
of the tf-idf weighting method, which computes a
score for each candidate segmentation. We calcu-
late the score of a katakana string y; with

tf-issf(y;) = i‘;(éi)) ,

where ¢ f(y;) is the number of occurrences of y;
as a katakana term in a corpus and sf(y;) is the
number of unique katakana terms that have y; as
a substring. We regard consecutive katakana char-
acters as a single katakana term when computing
tf-issf.

We compute the product of tf-issf scores over a
string to score the segmentation

)

Score(y) = H tf-issf(y;), (2)
Yi€y
and choose the optimal segmentation y* with
y* = argmax Score(y|S). (3)

yey

Intuitively, if a string appears frequently as
a word substring, we treat it as a meaning-
less sequence.> While substrings of consecutive

3A typical example is a single character substring. How-

ever, it is possible for single-character substrings could be
word tokens.

75

ID | Notation | Feature

1 Yi unigram

2 Yi—1,Yi bigram

3 length(y;) | num. of characters in y;

Table 1: Features used for the structured percep-
tron.

katakana can, in principle, be a meaningful char-
acter n-gram, this rarely occurs, and tf-issf suc-
cessfully penalizes the score of such sequences of
characters.

Figure 1 shows an example of a word lattice
for the loan compound word “smartphone case”
with the desired segmentation path in bold. When
building a lattice, we only create a node for a sub-
string that appears as a term in the unlabeled cor-
pus and does not start with a small katakana letter*
or a prolonged sound mark “—", as such charac-
ters are rarely the first character in a word. Includ-
ing terms or consecutive katakana characters from
an unlabeled corpus reduces the number of OOV
words.

2.2 Structured Perceptron with tf-issf

To incorporate manually labeled data and to com-
pare with other supervised Japanese tokenizers,
we use the structured perceptron (Collins, 2002).
This model represents the score as

Score(y) = w - ¢(y). (4)
where ¢(y) is a feature function and w is a weight
vector. Features used in the structured perceptron
are shown in Table 1. We use the surface-level
features used by Kaji and Kitsuregawa (2011) and
decode with the Viterbi algorithm. We incorpo-
rate tf-issf into the structured perceptron as the ini-
tial feature weight for unigrams instead of initial-
izing the weight vector to 0.5 Specifically, we use
log(tf-issf(y;) + 1) for the initial weights to avoid
overemphasizing the tf-issf value (Kaji and Kit-
suregawa, 2011). In this way, we can directly ad-
just tf-issf values using a manually labeled corpus.
Unlike the approach of Xiao et al. (2002), which
uses tf-idf to resolve segmentation ambiguities in
Chinese, we regard each katakana term as one doc-
ument to compute its inverse document (substring)
frequency.

4Such letters are 7 a, £ i, 7 u, T e, * o0, 71 ka, 7 ke,
Y tsu, ¥ ya, L yu, 32 yo,and 7 wa.

SWe also attempt to incorporate tf-issf as an individual
feature, but this does not improve the segmentation results.

> ANRT—X
sumahokesu
BOS A YR r—2
— 1 su ["] maho kesu EOS
T
AN _ > z
sumaho ’ ke su

Figure 1: An example lattice for a katakana word segmentation. We use the Viterbi algorithm to find the
optimal segmentation from the beginning of the string (BOS) to the end (EOS), shown by the bold edges
and nodes. Only those katakana substrings which exist in the training corpus as words are considered.
This example produces the correct segmentation, A ¥ & / 7 — A sumaho / késu (“smartphone case”).

3 Experiments

We now describe our experiments. We run our
proposed method under two different settings: 1)
using only an unlabeled corpus (UNLABEL), and
2) using both an unlabeled corpus and a labeled
corpus (BOTH). For the first experiment, we estab-
lish a baseline result using an approach proposed
by Nakazawa et al. (2005) and compare this with
using tf-issf alone. We conduct an experiment in
the second setting to compare with other super-
vised approaches, including Japanese tokenizers.

3.1 Dataset

We compute the tf-issf value for each katakana
substring using all of 2015 Japanese Wikipedia
as an unlabeled training corpus. This consists of
1,937,006 unique katakana terms.

Following Hagiwara and Sekine (2013), we
test on both the general domain and on a do-
main with more OOV words. We use the Bal-
anced Corpus of Contemporary Written Japanese
(BCCW1J) (Maekawa et al., 2014) core data with
40,827 katakana entries as the general domain
test data. We use 3-fold cross-validation to
train a structured perceptron classifier. To test
on a more challenging domain with more OOV
words (Saito et al., 2014) and even fewer space
boundaries (Bansal et al., 2015), we also ask an
annotator to label Twitter hashtags that only use
katakana. We gather 273, 711 tweets with at least
one hashtag from September 25, 2015 to October
28, 2015 using the Twitter Streaming APL® This
provides a total of 4,863 unique katakana hash-
tags, of which 1, 251 are observed in BCCW] core

Shttps://dev.twitter.com/streaming/overview

76

data. We filter out duplicate hashtags because the
Twitter Streaming API collects a set of sample
tweets that are biased compared with the overall
tweet stream (Morstatter et al., 2013). We follow
the BCCWIJ annotation guidelines (Ogura et al.,
2011) to conduct the annotation.’

3.2 Baselines

We follow previous work and use a frequency-
based method as the baseline (Nakazawa et al.,
2005; Kaji and Kitsuregawa, 2011):

(H?:l tf(yi))

%—i—a

3=

&)

y* = arg max
yey
where [is the average length of all segmented sub-
strings. Following Nakazawa et al. (2005) and
Kaji and Kitsuregawa (2011), we set the hyper-
parameters to C' = 2500, N = 4, and o = 0.7.
In addition, we filter out segmentations that have
a segment starting with a small katakana letter or
a prolonged sound mark “— ”. The key difference
between the baseline and tf-issf is that the length
of a segmented substring is considered in the base-
line method. An advantage of tf-issf over the base-
line is that hyperparameters are not required.
Unsupervised segmentation (Goldwater et al.,
2006; Mochihashi et al., 2009) can also be applied
to katakana word segmentation; however, doing so
this on a large corpus is still challenging (Chen,
2013). Our work focuses on fast and scalable
frequency-based methods.
We compare the performance of the word seg-
mentation model trained with the structured per-
"In addition, we stipulate that we always split transliter-

ated compound words according to their spaces when they
are back-transliterated to their original language.

BCCWJ Twitter Hashtags
Method WER | P R F1 WER | P R F1
Frequency Baseline 174 .865 .890 .878 576 578 | 716 | .640
(UNLABEL) | tf-issf 119 913 907 910 312 758 | 784 | 771
Structured unigram .023 979 984 982 .330 21| 767 | 743
Perceptron | +bigram .023 979 984 981 316 733 | 772 | 752
(BOTH) tf-issf .016 .987 .989 .988 274 778 | .820 | .798
+bigram 014 989 990 989 .256 793 | 827 | 810
Tokenizer MeCab+IPADic | .155 902 .865 .883 424 718 | .624 | .667
MeCab+UniDic | .004* | .998* | .996* | .997* || .377 704 | 767 | 734
JUMAN .105 934 908 921 282 818 | 751 | .783
Kytea .010% | .992* | 993* | 993* || .254 798 | .823 | .811
RakutenMA 077% | .936% | .953* | .944* || 383 700 | 752 | 725

Table 2: Segmentation results for katakana words in BCCWJ and katakana Twitter hashtags. Follow-
ing Hagiwara and Sekine (2013), Kytea, MeCab with UniDic (MeCab+UniDic), and RakutenMA results
on BCCW]J are reported here for reference since these tokenizers use BCCW] as a training corpus.

ceptron and tf-issf against that of state-of-the-
art Japanese tokenizers JUMAN 7.01 (Kurohashi
et al., 1994); MeCab 0.996 (Kudo et al., 2004)
with two different dictionaries, IPADic (Asahara
and Matsumoto, 2003) and UniDic (Den et al.,
2007); Kytea 0.4.7 (Neubig et al., 2011); and
RakutenMA (Hagiwara and Sekine, 2014).

3.3 Results

We use precision (P), recall (R), Fl-score (F1),
and word error rate (WER) to evaluate the perfor-
mance of each method. The evaluation results are
shown in Table 2.3

The use of tf-issf in the UNLABEL setting
outperforms the other frequency-based method
with statistical significance under McNemar’s Test
with p < 0.01 and yields comparable perfor-
mance against supervised methods on BCCWJ.
In Table 2, we show that tf-issf outperforms the
frequency-based method proposed by Nakazawa
et al. (2005). Although tf-issf only uses the statis-
tics from Wikipedia, it achieves superior perfor-
mance to MeCab with IPADic (MeCab+IPADic)
and comparable performance to JUMAN.

The main limitation of using tf-issf alone is
that it cannot completely avoid the frequency
bias of the corpus. For instance, the most fre-
quent katakana sequence occurring in Japanese
Wikipedia is Y > 7 linku (“link™), which is both
ambiguous—potentially referring to either “rink”
or “link”—and frequent, because it is the abbrevi-
ation for “hyperlinks”. As a result, the tf-issf score
of this string is much higher than average, which
causes the word TF > — NV > 7 enajidolinku
(“energy drink™) to be segmented as TF ¥ — /

8Because the length feature only degrades the segmenta-
tion performance, we exclude the results from the tables.

77

R /Y > 7 enaji/do/linku (“energy / d / rink™).
This problem can be ameliorated by incorporating
BCCW!] to readjust the tf-issf values.

Table 2 also shows the segmentation result for
Twitter hashtags. Here, the tf-issf values are
readjusted using the structured perceptron and the
whole of the BCCWJ core data to make a fair
comparison with other tokenizers. Incorporating
tf-issf into the structured perceptron improves the
F1-score, from .743 to .798, when combined with
unigrams. Although Kytea performs slightly bet-
ter in terms of F1-score, tf-issf combined with bi-
grams achieves slightly higher recall because of
fewer OOV words.

Table 3 shows the examples of segmentations
produced for the OOV words that are not present
in the BCCW]I training data. Tokenizers trained
on BCCWJ except for RakutenMA fail to seg-
ment A Y 7= — A “smartphone case” because
the word A < 7K “smartphone” does not appear in
BCCW]J. Using tf-issf alone is also not sufficient
to produce correct segmentations for all examples,
and only tf-issf combined with structure percep-
tron successfully segments all examples.

4 Related Work

We now review relevant work on Japanese seg-
mentation and describe the key ways in which our
approach differs from previous ones.

Japanese word segmentation has an extensive
history, and many Japanese tokenizers have been
developed, from the rule-based tokenizer JUMAN
(Kurohashi et al., 1994) to statistical tokenizers,
MeCab (Kudo et al., 2004), Kytea (Neubig et al.,
2011), and RakutenMA (Hagiwara and Sekine,
2014). However, these Japanese tokenizers require
either manual tuning or a manually labeled corpus.

Method

“Smartphone Apps”

“Ueno Daiki”

“My Number”

Gold data

A KT 7V sumaho / apuri

T/ | XA ¥ ueno/ daiki

<A | FVN— mai/nanba

Baseline
tf-issf (UNLABEL)

A BT 7V sumaho / apuri
A KT TV sumaho / apuri

71T/ 7 IR 1% ule/noldalitki
DL/ | XA ¥ ueno/daiki

<A [F > 7N— mai/nanba
<A F VN — mainanba

tf-issf (BOTH)
MeCab+IPADic
MeCab+UniDic
JUMAN

Kytea
RakutenMA

A KT 7Y sumaho / apuri
AR BT 7Y sumahoapuri
A KT 7V sumahoapuri
AR KT 7Y sumaho / apuri
AR BT 7Y sumahoapuri
A KT TV sumaho / apuri

7T/ | XA ¥ ueno/ daiki
DL/ | XA ¥ ueno/ daiki
I/ | XA F ueno/ daiki
YT/ R4 ¥ uenodaiki

DI/ | XA ¥ ueno/ daiki
YL) | XA ¥ ueno/ daiki

<A | F VN— mai/nanba
<A | F > 7N— mai/nanba
<A | F V78— mai/nanba
<A | F VN— mai/nanba
<A | F > 7N— mai/nanba
<A F VN — mainanba

Table 3: Examples of segmentation results for katakana words in Twitter hashtags using different seg-
mentation methods. The correct segmentations are produced by tf-issf (BOTH) on these examples, while

all others fail to achieve this.

4.1 Approaches Using Unlabeled Corpora

Closer to our own work, Koehn and Knight (2003)
and Nakazawa et al. (2005) investigate segment-
ing compound words using an unlabeled corpus.
These approaches do not achieve high precision
on katakana words (Kaji and Kitsuregawa, 2011),
however. To improve the segmentation accuracy,
Kaji and Kitsuregawa (2011) incorporate a rule-
based paraphrase feature (e.g., a middle dot “ -)
to use an unlabeled corpus as training data with-
out manual annotation. This method still requires
manual selection of the characters used as word
boundaries. Other studies use transliterations
to segment katakana words using explicit word
boundaries from the original English words (Kaji
and Kitsuregawa, 2011; Hagiwara and Sekine,
2013). However, as not all katakana words are
transliterations, it is advantageous to use a mono-
lingual corpus.

4.2 TF-IDF-based Segmentation

Some similar work has been done on Chinese.
Xiao et al. (2002) used tf-idf of context words
to resolve segmentation ambiguities of Chinese
words, but this approach assumes only two seg-
mentation forms: combined and separated. This
is adequate for two-character words in Chi-
nese, which comprise the majority of Chinese
words (Suen, 1986), but not for potentially very
long katakana words in Japanese. In contrast to
their approach, we regard each katakana term as
one document and compute the inverse document
frequency. The tf-issf approach also does not re-
quire context words since we compute the term
frequency of each katakana term in question in-
stead of the frequency of its context words. Thus,
we need not assume that the training corpus has
been automatically segmented by an existing to-

78

kenizer, which might include segmentation errors
involving context words.

In contrast to these approaches, we use a new
frequency-based method, inspired by tf-idf that
uses an unlabeled corpus to tackle word segmenta-
tion of character sequences of unbounded length.

5 Conclusion

In this paper, we introduce tf-issf, a simple and
powerful word segmentation method for Japanese
katakana words. We show that using tf-issf alone
outperforms the baseline frequency-based method.
Furthermore, when tf-issf is incorporated into the
structured perceptron together with simple fea-
tures on a manually labeled corpus, it achieves
comparable performance to other state-of-the-art
Japanese tokenizers, outperforming all in recall.

5.1 Future Work

While our work focuses on the peculiarities of
Japanese katakana words, tf-issf may be appli-
cable to other languages. We leave this for fu-
ture work. Further research is also necessary
to determine the extent to which tf-issf is de-
pendent on the domain of the corpora, and how
transferable these gains are across various do-
mains. Investigating the phonetic and correspond-
ing orthographic changes that occur with short-
ened Japanese katakana words and their transfer-
ence to new compounds may also lead to further
improvements in segmentation results.

Acknowledgments

We would like to thank the anonymous reviewers
and Michael J. Paul for providing helpful com-
ments.

References

Enrique Alfonseca, Slaven Bilac, and Stefan Phar-
ies. 2008. Decompounding Query Keywords from
Compounding Languages. In Proceedings of ACL-
HLT, pages 253-256.

Masayuki Asahara and Yuji Matsumoto. 2003. Ipadic
version 2.7.0 user’s manual (in Japanese). NAIST,
Information Science Division.

Piyush Bansal, Romil Bansal, and Vasudeva Varma.
2015. Towards Deep Semantic Analysis of Hash-
tags. In Proceedings of ECIR, pages 453-464.

Martin Braschler and Birbel Ripplinger. 2004. How
effective is stemming and decompounding for ger-
man text retrieval? Information Retrieval, 7(3-
4):291-316.

James Breen. 2009. Identification of Neologisms in
Japanese by Corpus Analysis. In E-lexicography
in the 21st century: New Challenges, New Applica-
tions, pages 13-21.

Ruey-Cheng Chen. 2013. An Improved MDL-based
Compression Algorithm for Unsupervised Word
Segmentation. In Proceedings of ACL, pages 166—
170.

Michael Collins. 2002. Discriminative Training Meth-
ods for Hidden Markov Models: Theory and Exper-
iments with Perceptron Algorithms. In Proceedings
of EMNLP, pages 1-8.

Yasuharu Den, Toshinobu Ogiso, Hideki Ogura, At-
sushi Yamada, Nobuaki Minematsu, Kiyotaka Uchi-
moto, and Hanae Koiso. 2007. The Development of
an Electronic Dictionary for Morphological Analy-
sis and its Application to Japanese Corpus Linguis-
tics (in Japanese). Japanese Linguistics, 22:101—
123.

Sharon Goldwater, Thomas L. Griffiths, and Mark
Johnson. 2006. Contextual Dependencies in Un-
supervised Word Segmentation. In Proceedings of
ACL, pages 673-680.

Masato Hagiwara and Satoshi Sekine. 2013. Accurate
Word Segmentation using Transliteration and Lan-
guage Model Projection. In Proceedings of ACL,
pages 183-189.

Masato Hagiwara and Satoshi Sekine. 2014.
Lightweight Client-Side Chinese/Japanese Mor-
phological Analyzer Based on Online Learning. In
Proceedings of COLING, pages 39-43.

Nobuhiro Kaji and Masaru Kitsuregawa. 2011. Split-
ting Noun Compounds via Monolingual and Bilin-
gual Paraphrasing: A Study on Japanese Katakana
Words. In Proceedings of EMNLP, pages 959-969.

Philipp Koehn and Kevin Knight. 2003. Empirical
Methods for Compound Splitting. In Proceedings
of EACL, pages 187-193.

79

Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto.
2004. Applying Conditional Random Fields to
Japanese Morphological Analysis . In Proceedings
of EMNLP, pages 230-237.

Sadao Kurohashi, Toshihisa Nakamura, Yuji Mat-
sumoto, and Makoto Nagao. 1994. Improvements of
Japanese Morphological Analyzer JUMAN. In Pro-
ceedings of The International Workshop on Sharable
Natural Language, pages 22-28.

Kikuo Maekawa, Makoto Yamazaki, Toshinobu
Ogiso, Takehiko Maruyama, Hideki Ogura, Wakako
Kashino, Hanae Koiso, Masaya Yamaguchi, Makiro
Tanaka, and Yasuharu Den. 2014. Balanced corpus
of contemporary written Japanese. Language Re-
sources and Evaluation, 48(2):345-371.

Daichi Mochihashi, Takeshi Yamada, and Naonori
Ueda. 2009. Bayesian Unsupervised Word Segmen-
tation with Nested Pitman-Yor Language Modeling.
In Proceedings of ACL-IJCNLP, pages 100—108.

Fred Morstatter, Jiirgen Pfeffer, Huan Liu, and Kath-
leen M. Carley. 2013. Is the Sample Good Enough?
Comparing Data from Twitter’s Streaming API with
Twitter’s Firehose. In Proceedings of ICWSM, pages
400-408.

Toshiaki Nakazawa, Daisuke Kawahara, and Sadao
Kurohashi. 2005. Automatic Acquisition of Basic
Katakana Lexicon from a Given Corpus. In Pro-
ceedings of IJCNLP, pages 682-693.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori.
2011. Pointwise Prediction for Robust, Adaptable
Japanese Morphological Analysis. In Proceedings
of ACL-HLT, pages 529-533.

Hideki Ogura, Hanae Koiso, Yumi Fujike, Sayaka
Miyauchi, and Yutaka Hara. 2011. Morphological
Information Guildeline for BCCW1J: Balanced Cor-
pus of Contemporary Written Japanese, 4th Edition
(in Japanese). Research report.

Itsumi Saito, Kugatsu Sadamitsu, Hisako Asano, and
Yoshihiro Matsuo. 2014. Morphological Analysis
for Japanese Noisy Text based on Character-level
and Word-level Normalization. In Proceedings of
COLING, pages 1773—-1782.

Gerard Salton and Christopher Buckley. 1988. Term-
weighting Approaches in Automatic Text Retrieval.
Information Processing & Management, 24(5):513—
523.

Ching Y Suen. 1986. Computational Studies of the
Most Frequent Chinese Words and Sounds, vol-
ume 3. World Scientific.

Luo Xiao, Sun Maosong, and Tsou Benjamin. 2002.
Covering Ambiguity Resolution in Chinese Word
Segmentation Based on Contextual Information. In
Proceedings of COLING, pages 1-7.

MONPA: Multi-objective Named-entity and Part-of-speech Annotator for
Chinese using Recurrent Neural Network

Yu-Lun Hsieh
SNHCC, TIGP, Academia Sinica, and
National Cheng Chi University, Taiwan

morphe@iis.sinica.edu.tw

Yung-Chun Chang
Graduate Institute of Data Science,
Taipei Medical University, Taiwan

changyc@tmu.edu.tw

Yi-Jie Huang, Shu-Hao Yeh, Chun-Hung Chen, and Wen-Lian Hsu
IIS, Academia Sinica, Taiwan

{aszx4510,night, hep_chen, hsu}@iis.sinica.edu.tw

Abstract

Part-of-speech (POS) tagging and named
entity recognition (NER) are crucial steps
in natural language processing. In ad-
dition, the difficulty of word segmenta-
tion places extra burden on those who
deal with languages such as Chinese, and
pipelined systems often suffer from error
propagation. This work proposes an end-
to-end model using character-based recur-
rent neural network (RNN) to jointly ac-
complish segmentation, POS tagging and
NER of a Chinese sentence. Experi-
ments on previous word segmentation and
NER competition datasets show that a sin-
gle joint model using the proposed ar-
chitecture is comparable to those trained
specifically for each task, and outperforms
freely-available softwares. Moreover, we
provide a web-based interface for the pub-
lic to easily access this resource.

1 Introduction

Natural language processing (NLP) tasks often
rely on accurate part-of-speech (POS) labels and
named entity recognition (NER). Moreover, for
languages that do not have an obvious word
boundary such as Chinese and Japanese, segmen-
tation is another major issue. Approaches that at-
tempt to jointly resolve two of these tasks have re-
ceived much attention in recent years. For exam-
ple, Ferraro et al. (2013) proposed that joint solu-
tions usually lead to the improvement in accuracy
over pipelined systems by exploiting POS infor-
mation to assist word segmentation and avoiding
error propagation. Recent researches (Sun, 2011;
Qian and Liu, 2012; Zheng et al., 2013; Zeng et al.,
2013; Qian et al., 2015) also focus on the develop-
ment of a joint model to perform Chinese word

80

segmentation, POS tagging, and/or informal word
detection.

However, to the best of our knowledge, no exist-
ing system can perform word segmentation, POS
tagging, and NER simultaneously. In addition,
even though there are methods that achieved high
performances in previous competitions hosted by
the Special Interest Group on Chinese Language
Processing (SIGHAN)!, there is no off-the-shelf
NLP tools for Traditional Chinese NER but only
two systems for word segmentation and POS tag-
ging, which poses a significant obstacle for pro-
cessing text in Traditional Chinese. These prob-
lems motivate us to devise a unified model that
serves as a steppingstone for future Chinese NLP
research.

In light of the recent success in applying neu-
ral networks to NLP tasks (Sutskever et al., 2014;
Lample et al., 2016), we propose an end-to-end
model that utilizes bidirectional RNNs to jointly
perform segmentation, POS tagging, and NER in
Chinese. This work makes the following major
contributions. First, the proposed model conducts
multi-objective annotation that not only handles
word segmentation and POS tagging, but also can
recognize named entities in a sentence simultane-
ously. We also show that these tasks can be effec-
tively performed by the proposed model, achiev-
ing competitive performances to state-of-the-art
methods on word segmentation and NE recogni-
tion of previous SIGHAN shared tasks. More-
over, our system not only outperforms off-the-
shelf NLP tools, but also provides accurate NER
results. Lastly, we provide an accessible online
API? that has been utilized by several research
groups.

"http://sighan.cs.uchicago.edu/
’Please visit http://monpa.iis.sinica.edu.
tw:9000/chunk

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 8085,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

C2 E|2|2|AA E—®—>
| === T

Cn !

Bidirectional
LSTM Encoder

_FW. BW. \
C1 [o o]a a]l—e—

attention
weights |

softmax =+ T1
€~
—>|£|— softmax > | 2

DTy

¥
—’E— softmax Tn

LSTM
Decoder

Figure 1: Overview of the encoder-decoder model with attention mechanism. Character embeddings C
to), of the input sentence is sequentially fed into the bidirectional LSTM, and the concatenated output
is multiplied by attention weights and sent to the decoder for predicting the tag sequence 77 to 7,,. For
simplicity, multiple layers of encoder and decoder as well as dropout layers between them are omitted.

2 Methods

Figure 1 illustrates the overview of our model,
which in essence is an encoder-decoder (Sutskever
et al., 2014) with attention mechanism (Luong
et al., 2015). The input is a sequence of Chi-
nese characters that may contain named entities,
and the output is a sequence of POS tags and pos-
sibly NEs in the form of BIES tags. Our model
mainly consists of: embedding layer, recurrent en-
coder layers, attention layer, and decoder layers.
Detailed description of these layers are as follows.

Embedding Layer converts characters into em-
beddings (Mikolov et al., 2013), which are dense,
low-dimensional, and real-valued vectors. They
capture syntactic and semantic information pro-
vided by its neighboring characters. In this
work, we utilize pre-trained embeddings using
word2vec and over 1 million online news ar-
ticles. Recurrent Encoder Layers use LSTM,
or Long Short-Term Memory (Hochreiter and
Schmidhuber, 1997), cells which have been shown
to capture long-term dependencies (Greff et al.,
2017). An LSTM cell contains a “memory” cell
c; and three “gates”, i.e., input, forget, and out-
put. The input gate modulates the current input
and previous output. The forget gate tunes the
content from previous memory to the current. Fi-
nally, the output gate regulates the output from the
memory. Specifically, let x; be the input at time ¢,
and i, f;, o; correspond to input, forget, and out-
put gates, respectively. c; denotes the memory cell
and hy is the output. The learnable parameters in-

81

clude W; ¢, . and U; ¢, .. They are defined as:

iy = o(Wixy + Uihy 1)
ft = O'(Wth + Ufhtfl)
O = O'(WOXt + Uoht—l)

ét = tanh(cht + Ucht—l)
cg=fioci1+io0¢
h; = o; o tanh(cy)

% _ 9

where “o” denotes the element-wise product of
vectors and o represents the sigmoid function. We
employ a straightforward extension named Bidi-
rectional RNN (Graves et al., 2005), which en-
codes sequential information in both directions
(forward and backward) and concatenate the fi-
nal outputs. In this way, the output of one time
step will contain information from its left and right
neighbors. For tasks such as POS and NER where
the label of one character can be determined by
its context, bidirectional learning can be benefi-
cial. Attention Layer is proposed by Luong et al.
(2015) in an attempt to tackle the problem of find-
ing corresponding words in the source and target
languages when conducting machine translation.
It computes a weighted average of all the output
from the encoder based on the current decoded
symbol, which is why it is also named “Global At-
tention.” We consider it to be useful for the cur-
rent tasks based on the same reasoning as using
bidirectional encoding. Finally, Recurrent De-
coder Layers take the sequence of output from
the attention layer and project them onto a V-
dimensional vector where V' equals the number of

possible POS and NE tags. The loss of the model
is defined as the averaged cross-entropy between a
output sequence and true label sequence.

3 Experiments

Test corpora from five previous SIGHAN shared
tasks, which have been widely adopted for Tradi-
tional Chinese word segmentation and NER, were
used to evaluate the proposed system. Besides the
participating systems in the above shared tasks,
we also compare with existing word segmenta-
tion toolkits Jieba and CKIP (Hsieh et al., 2012).
The word segmentation datasets were taken from
SIGHAN shared tasks of years 2003-2008, and
NER dataset is from 2006. We follow the standard
train/test split of the provided data, where 10,000
sentences of the training set are used as the vali-
dation set. Details of the word segmentation and
NER datasets are shown in Table 1 and 2, respec-
tively. Three metrics are used for evaluation: pre-
cision (P), recall (R) and F;-score (F), defined by

2x PxR
p=--- ="
P+ R

For word segmentation, a token is considered to be
correct if both the left and right boundaries match
those of a word in the gold standard. For the NER
task, both the boundaries and the NE type must be
correctly identified.

Table 1: Statistics of the word segmentation
datasets (Number of words).

AS CityU
Year
#Train #Test #Train #Test
2003 5.8M 12K 240K 35K
2005 545M 122K 146M 41K
2006 55M 91K 1.6M 220K
2008 1.5M 91K - -

Table 2: Statistics of the 2006 NER dataset (Num-
ber of words).

#Train/Test Words

Person

36K/8K 48K/7K

Location Organization

28K /4K

82

3.1 Experimental Setup

In order to obtain multi-objective labels of the
training data, we first merge datasets from the
2006 SIGHAN word segmentation and NER
shared tasks. Since rich context information is
able to benefit deep learning-based approach, we
augment the training set by collecting online news
articles®. There are three steps for annotating the
newly-created dataset. We first collect a list of
NEs from Wikipedia and use it to search for NEs
in the corpus, where longer NEs have higher pri-
orities. Then, an NER tool (Wu et al., 2006)
is utilized to label NEs. Finally, CKIP is uti-
lized to segment and label the remaining words
with POS tags. Three variants of the proposed
model are tested, labeled as RNNgugg, RNNya,
and RNNcues+yva. RNNcouygg is trained using
only word segmentation and NER datasets from
the 2006 City University (CU) corpus; RNNya
is trained using only online news corpus, and
RNNcuo6+va 1s trained on a combination of the
above corpora.

We implemented the RNN model using
pytorch*. The maximum sentence length is set
to 80, where longer sentences were truncated and
shorter sentences were padded with zeros. The
forward and backward RNN each has a dimen-
sion of 300, identical to that of word embeddings.
There are three layers for both encoder and de-
coder. Dropout layers exist between each of the
recurrent layers. The training lasts for at most 100
epochs or when the accuracy of the validation set
starts to drop.

4 Results and Discussion

Note that since we combined external resources,
performances of the compared methods are from
the open track of the shared tasks. Table 3a
lists the results of the RNN-based models and
top-performing systems for the word segmenta-
tion subtask on the Academia Sinica (AS) dataset.
First of all, RNNs exhibit consistent capabilities in
handling data from different years and is compa-
rable to the best systems in the competition. In ad-
dition, it is not surprising that the RNNy4 model
perform better than RNNcy. Nevertheless, our
method can be further improved by integrating the
CUO06 corpus, demonstrated by the results from

3News articles are collected from the Yahoo News website
and contains about 3M words.

“https://github.com/pytorch/pytorch

Table 3: Results for word segmentation on the Academia Sinica (AS) and City University (CU) datasets
from different years of SIGHAN shared tasks. Bold numbers indicate the best performance in that

column.
(a) AS dataset, open track (b) CU dataset, open track
System F-score System F-score
2003 2005 2006 2008 2003 2005 2006
Gao et al. (2005) 95.8 Ma and Chen (2003) 95.6
Yang et al. (2003) 90.4 Gao et al. (2005) 954
Low et al. (2005) 95.6 Peng et al. (2004) 94.6
Chen et al. (2005) 94.8 Yang et al. (2003) 87.9
Zhao et al. (2006) 95.9 Low et al. (2005) 96.2
Jacobs and Wong (2006) 95.7 Chen et al. (2005) 94.5
Wang et al. (2006) 95.3 Zhao et al. (2006) 97.7
Chan and Chong (2008) 95.6 Wang et al. (2006) 97.7
Mao et al. (2008) 93.6 Jacobs and Wong (2006) 97.4
Jieba 83.0 809 81.3 81.8 Jieba 80.3 81.2 824
CKIP 96.6 942 94.6 949 CKIP 89.7 89.0 89.8
RNNcyos 88.4 86.8 87.1 874 RNNcuog 87.6 858 87.8
RNNva 944 928 93.0 933 RNNvya 88.0 87.2 88.5
RNNcuos+va 946 932 936 93.8 RNNcuvos+vA 91.5 90.1 91.7

the RNNcuyps+ya model. This indicates that RNN
can easily adapt to different domains with data
augmentation, which is an outstanding feature of
end-to-end models. As for the CU dataset listed in
Table 3b, all of the RNN models show consider-
able decrease in F-score. We postulate that it may
be due to the training data, which is processed us-
ing an external tool focused on texts from a differ-
ent linguistic context. It is also reported by (Wu
et al., 2006) that segmentation criteria in AS and
CU datasets are not very consistent. However, by
fusing two corpora, the RNNcyog+ya can even
surpass the performances of CKIP. Finally, com-
parison with Jieba validates that the RNN model
can serve as a very effective toolkit for NLP re-
searchers as well as the general public.

Table 4 lists the performances of proposed mod-
els and the only system that participated in the
open track of the 2006 SIGHAN NER shared task.
We can see that RNNcyog outperforms the model
from Yu et al. (2006), confirming RNN’s capabil-
ity on jointly learning to segment and recognize
NEs. Interestingly, RNNya obtains a much lower
F-score for all NE types. And RNNcugs+ya
can only obtain a slightly better F-score for per-
son recognition but not the overall performance of
RNNcuog, even with the combined corpus. We

83

believe that boundary mismatch may be a major
contributing factor here. We also observe that
there are a large number of one-character NEs
such as abbreviated country names, which can not
be easily identified using solely character features.

Table 4: Results from the 2006 SIGHAN NER
shared task (open track). Bold numbers indicate
the best performance in that column.

F-score
System
PER LOC ORG Overall
Yu et al. (2006) 80.98 86.04 68.01 80.51
RNNcuos 81.13 86.92 68.77 80.68
RNNvya 70.54 67.80 31.35 52.62
RNNcuos+va 83.01 82.46 54.57 75.28

5 Conclusions

We propose an end-to-end model to jointly con-
duct segmentation, POS and NE labeling in Chi-
nese. Experimental results on past word segmen-
tation and NER datasets show that the proposed
model is comparable to those trained specifically
for each task, and outperforms freely-available
toolkits. Additionally, we implement a web inter-

face for easy access. In the future, we will inte-
grate existing knowledge bases, in order to provide
a more advanced tool for the NLP community.

Acknowledgments

We are grateful for the constructive comments
from three anonymous reviewers. This work
was supported by grant MOST106-3114-E-001-
002 from the Ministry of Science and Technology,
Taiwan.

References

Samuel WK Chan and Mickey WC Chong. 2008. An
agent-based approach to Chinese word segmenta-
tion. In IJCNLP. pages 112-114.

Aitao Chen, Yiping Zhou, Anne Zhang, and Gor-
don Sun. 2005. Unigram language model for Chi-
nese word segmentation. In Proceedings of the 4th
SIGHAN Workshop on Chinese Language Process-
ing. Association for Computational Linguistics Jeju
Island, Korea, pages 138—141.

Jeffrey P Ferraro, Hal Daumé III, Scott L DuVall,
Wendy W Chapman, Henk Harkema, and Peter J
Haug. 2013. Improving performance of natural lan-
guage processing part-of-speech tagging on clini-
cal narratives through domain adaptation. Journal
of the American Medical Informatics Association

20(5):931-939.

Jianfeng Gao, Mu Li, Andi Wu, and Chang-Ning
Huang. 2005. Chinese word segmentation and
named entity recognition: A pragmatic approach.
Computational Linguistics 31(4):531-574.

Alex Graves, Santiago Ferndndez, and Jiirgen Schmid-
huber. 2005. Bidirectional Istm networks for im-
proved phoneme classification and recognition. Ar-
tificial Neural Networks: Formal Models and Their
Applications—ICANN 2005 pages 753-753.

Klaus Greff, Rupesh K Srivastava, Jan Koutnik,
Bas R Steunebrink, and Jiirgen Schmidhuber. 2017.
LSTM: A search space odyssey. IEEE transactions
on neural networks and learning systems PP(99):1—
11.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Lstm
can solve hard long time lag problems. In Ad-
vances in neural information processing systems.
pages 473-479.

Yu-Ming Hsieh, Ming-Hong Bai, Jason S Chang,
and Keh-Jiann Chen. 2012. Improving PCFG chi-
nese parsing with context-dependent probability re-
estimation. CLP 2012 page 216.

Aaron J Jacobs and Yuk Wah Wong. 2006. Maxi-
mum entropy word segmentation of Chinese text. In
COLING* ACL 2006. page 185.

84

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of NAACL-HLT . pages 260-270.

Jin Kiat Low, Hwee Tou Ng, and Wenyuan Guo. 2005.
A maximum entropy approach to Chinese word seg-
mentation. In Proceedings of the Fourth SIGHAN
Workshop on Chinese Language Processing. volume
1612164, pages 448-455.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Lisbon, Portugal, pages 1412—
1421. http://aclweb.org/anthology/D15-1166.

Wei-Yun Ma and Keh-Jiann Chen. 2003. Introduction
to ckip Chinese word segmentation system for the
first international Chinese word segmentation bake-
off. In Proceedings of the second SIGHAN work-
shop on Chinese language processing-Volume 17.
Association for Computational Linguistics, pages
168-171.

Xinnian Mao, Yuan Dong, Saike He, Sencheng Bao,
and Haila Wang. 2008. Chinese word segmentation
and named entity recognition based on conditional
random fields. In IJJCNLP. pages 90-93.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111-3119.

Fuchun Peng, Fangfang Feng, and Andrew McCallum.
2004. Chinese segmentation and new word detec-
tion using conditional random fields. In Proceed-
ings of the 20th international conference on Compu-
tational Linguistics. Association for Computational
Linguistics, page 562.

Tao Qian, Yue Zhang, Meishan Zhang, Yafeng
Ren, and Donghong Ji. 2015. A transition-based
model for joint segmentation, pos-tagging and nor-
malization. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Lisbon, Portugal, pages 1837-1846.
http://aclweb.org/anthology/D15-1211.

Xian Qian and Yang Liu. 2012. Joint Chi-
nese word segmentation, pos tagging and pars-
ing. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning. Association for Computational
Linguistics, Jeju Island, Korea, pages 501-511.
http://www.aclweb.org/anthology/D12-1046.

Weiwei Sun. 2011. A stacked sub-word model
for joint chinese word segmentation and part-
of-speech tagging. In Proceedings of the 49th
Annual Meeting of the Association for Com-
putational Linguistics: Human Language Tech-
nologies. Association for Computational Linguis-
tics, Portland, Oregon, USA, pages 1385-1394.
http://www.aclweb.org/anthology/P11-1139.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104-3112.

Xinhao Wang, Xiaojun Lin, Dianhai Yu, Hao Tian, and
Xihong Wu. 2006. Chinese word segmentation with
maximum entropy and n-gram language model. In
COLING* ACL 2006. page 138.

Chia-Wei Wu, Shyh-Yi Jan, Richard Tzong-Han
Tsai, and Wen-Lian Hsu. 2006. On using
ensemble methods for Chinese named en-

tity recognition. In Proceedings of the Fifth
SIGHAN Workshop on Chinese Language Pro-
cessing. Association for Computational Lin-
guistics, Sydney, Australia, pages 142-145.
http://www.aclweb.org/anthology/W/W06/W06-
0122.

Jin Yang, Jean Senellart, and Remi Zajac. 2003. Sys-
tran’s Chinese word segmentation. In Proceedings
of the second SIGHAN workshop on Chinese lan-

85

guage processing-Volume 17. Association for Com-
putational Linguistics, pages 180-183.

Xiaofeng Yu, Marine Carpuat, and Dekai Wu. 2006.
Boosting for Chinese named entity recognition. In
Proceedings of the Fifth SIGHAN Workshop on Chi-
nese Language Processing. pages 150-153.

Xiaodong Zeng, Derek F. Wong, Lidia S. Chao,
and Isabel Trancoso. 2013. Graph-based semi-
supervised model for joint chinese word seg-
mentation and part-of-speech tagging. In Pro-
ceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Sofia, Bulgaria, pages 770-779.
http://www.aclweb.org/anthology/P13-1076.

Hai Zhao, Chang-Ning Huang, Mu Li, et al. 2006. An
improved Chinese word segmentation system with
conditional random field. In Proceedings of the Fifth
SIGHAN Workshop on Chinese Language Process-
ing. Sydney: July, volume 1082117.

Xiaoqing Zheng, Hanyang Chen, and Tianyu Xu. 2013.
Deep learning for Chinese word segmentation and
POS tagging. In Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics, Seattle, Washington, USA, pages 647-657.
http://www.aclweb.org/anthology/D13-1061.

Recall is the Proper Evaluation Metric for Word Segmentation

Yan Shao and Christian Hardmeier and Joakim Nivre
Department of Linguistics and Philology, Uppsala University
{yan.shao, christian.hardmeier, joakim.nivre}@lingfil.uu.se

Abstract

We extensively analyse the correlations
and drawbacks of conventionally em-
ployed evaluation metrics for word seg-
mentation. Unlike in standard information
retrieval, precision favours under-splitting
systems and therefore can be misleading
in word segmentation. Overall, based on
both theoretical and experimental analysis,
we propose that precision should be ex-
cluded from the standard evaluation met-
rics and that the evaluation score obtained
by using only recall is sufficient and better
correlated with the performance of word
segmentation systems.

1 Introduction

Word segmentation (WS) or tokenisation can be
viewed as correctly identifying valid boundaries
between characters (Goldwater et al., 2007). It
is the initial step for most higher level natural
language processing tasks, such as part-of-speech
tagging, syntactic analysis, information retrieval
and machine translation. Thus, correct segmen-
tation is crucial as segmentation errors propagate
to higher level tasks.

Because only correctly segmented words are
meaningful to higher level tasks, word level pre-
cision, recall and their evenly-weighted average
F1-score that are customised from information re-
trieval (IR) (Kent et al., 1955) are conventionally
used as the standard evaluation metrics for WS
(Sproat and Emerson, 2003; Qiu et al., 2015).

In this paper, we thoroughly investigate preci-
sion and recall in addition to true negative rate in
the scope of WS, with a special focus on the draw-
backs of precision. Precision and Fl-score can
be misleading as an under-splitting system may
obtain higher precision despite having fewer cor-

86

rectly segmented words. Additionally, we conduct
word segmentation experiments to investigate the
connections between precision and recall as well
as their correlations with actual performance of
segmenters. Overall, we propose that precision
should be excluded and that using recall as the sole
evaluation metric is more adequate.

2 Evaluation Metrics for WS

2.1 Precision and Recall

By employing word-level precision and recall, the
adequacy of a word segmenter is measured via
comparing to the annotated reference. The cor-
rectly segmented words are regarded as true pos-
itives (TP). To obtain precision, TP is normalised
by the prediction positives (PP), which is equal to
total number of words returned by the system. For
recall, we divide TP by the real positives (RP), the
total number of words in the reference. The com-
plement of RP is referred to as real negatives (RN).

In the evaluation setup for standard IR tasks,
there is no entanglement between RP and RN. For
any instances 7, and 7,, in RP and RN, they can be
in the same output set I of an IR system as:

Vi, € RP,Vi, € RN,31,{ip,in} C I

Precision and recall are thus not directly corre-
lated. For IR, system performance is well mea-
sured only if both precision and recall are used as
it is trivial to optimise with respect to either preci-
sion or recall, but difficult to improve both. This
is not the case for WS. In contrast to the situation
in IR, the characters as basic elements are fixed in
WS. We only predict the boundaries whereas the
characters can be neither added nor deleted, which
makes positives and negatives correlated.

In Table 1, the source Chinese sentence and its
English translation in the form of character strings

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 86-90,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

Source sentences: LJE =AY John likes Mary
Reference Segmentations: 2B /EK /FSTH John / likes / Mary
Segmenters T1 \ T2 I S1 | S2 \ S3
Output 27/ E KA | EENEW || N I | R E AW | 2T S
TP 0 0 1 1 2
P 0 0 12= 05 /5= 02 2/4= 05
R 0 0 1/3=0.33 1/3=0.33 2/3=0.67
F 0 0 0.40 0.25 0.57
TNR 1-6/18 = 0.67 1-1/18= 094 | 1-1/18= 0.94 1-4/18 = 0.77 1-2/18 = 0.89
Output J/o/h/m/l/i/k/e/s/M/a/tly | John likes Mary || John /likes Mary | John /l/i/k/e/s/M/a/t/y | John /likes /M/a/rly
TP 0 0 1 1 2
P 0 0 12= 0.5 1/710= 0.1 2/6= 033
R 0 0 1/3= 033 1/3= 033 2/3=0.67
F 0 0 0.40 0.15 0.44
TNR 1-13/88 = 0.85 1-1/88 = 099 || 1-1/88 = 0.99 1-9/88 = 0.90 1-4/88 = 0.95

Table 1: Sample sentences along with the output of two trivial segmenters (T1, T2) and three other
segmenters (S1, S2, S3). True Positives (TP), Precision (P), recall (R), Fl-score (F) and true negative

rate (TNR) are calculated respectively.

are presented along with the outputs of five hand-
crafted segmenters. In WS, a TP simultaneously
rejects the associated true negatives (TN). For the
English sentence in Table 1, the positive segment
John never appears simultaneously with its asso-
ciated negatives Joh, Jo or ohn in the output. This
positively correlates precision and recall, because
if we modify a boundary that optimises recall, the
precision will also improve. In WS, 100% recall
guarantees 100% precision and it is non-trivial to
optimise one without the other.

In the most trivial case, a segmenter either pre-
dicts and returns all the possible word bound-
aries (T1, extremely over-splitting) or fails to iden-
tify any boundaries at all (T2, extremely under-
splitting). In the example, both strategies yield
zero scores for both precision and recall as both
fail to return any TP.

Despite not being completely trivial, S1 is heav-
ily under-splitting while S2 is the opposite. Both
return one correctly segmented word for the sen-
tences in both languages. Their corresponding
recalls are therefore equal as TP is normalised
by RP, which is hard-constrained by the refer-
ences. However, adopting precision as the met-
ric, S1 yields substantially higher scores as it re-
turns much fewer PP. Referring to the trivial ex-
amples as well as the fact that only 7P are mean-
ingful to higher-level applications, S1 and S2 per-
form equally poorly, which is consistent with re-
call but not precision. Furthermore, a segmenter
with less TP may achieve higher precision if it is
drastically under-segmenting, as demonstrated by
the comparison between S1 and S3.

87

2.2 True Negative Rate

Neither recall nor precision measure how well the
system rejects the negatives. True negative rate
(TNR) is therefore proposed by Powers (2011) as
the complement. Jiang et al. (2011) show that seg-
menters measured by TNR are better correlated
than precision and recall with their actual per-
formances within IR systems. For WS, it is not
straightforward to compute 7NR by directly nor-
malising the true negatives (TN) by the real nega-
tives (RN). However, it can be indirectly computed
via TP, PP, RP and the total number of possible
output TW given a sentence. Regarding the input
characters as a string, TW is equal to the number
of substrings as M, where N is the number of
the characters. RN can then be computed by sub-
tracting RP, the number of words in reference. The
false negatives (FN) generated by the segmenter
can be obtained by subtracting TP from PP, total
number of words return by the segmenter. To put
everything together:

TN =N IV PP

v 1w _rp
When PP equals TP, we will have a TNR of 1,
indicating that a WS system correctly rejects all
TN if and only if all the PP are TP. Since TW
is bounded by the input sentence length and RP
is bounded by the reference, TNR is negatively
correlated to PP as longer segmented word elim-
inates more TN and generates less FN in gen-
eral. As shown in Table 1, TNR heavily favours
under-splitting systems. T2 obtains the highest
TNR in the table despite being trivial. S1 also ob-

tains higher scores than S3, despite having lower
TP. Overall, TNR is very insensitive and not al-
ways well-correlated to actual performances of
segmenters.

2.3 Boundary-Based Evaluation

Instead of directly evaluating the performance in
terms of TP at word-level, an alternative is to use
boundary-based evaluation (Palmer and Burger,
1997). The drawback is that incorrectly seg-
mented words that are not interesting to higher-
level applications still contribute to the scores as
long as one of the two associated boundaries is
correctly detected.

3 Experiments

To further investigate the correlations and draw-
backs of the metrics discussed in the previous
section experimentally, we employ a neural-based
word segmenter to see how they measure the seg-
mentation performance in a real scenario. The seg-
menter is a simplified version of the joint segmen-
tation and POS tagger introduced in Shao et al.
(2017). It is fully character-based. The vector
representations of input characters are passed to
the prevalent bidirectional recurrent neural net-
work equipped with gated recurrent unit (GRU)
(Cho et al., 2014) as the basic cell. A time-wise
softmax layer is added as the inference for the
recurrent layers to obtain probability distribution
of binary tags that indicate the boundaries of the
words. Cross-entropy with respect to time step
is applied as the loss function. We train the seg-
menter for 30 epochs and pick the weights of the
best epoch that minimises the loss on the develop-
ment set.

The Chinese and English sections of Universal
Dependencies v2.0 are employed as the experi-
mental data sets. We follow the conventional splits
of the data sets. For Chinese, the concatenated tri-
gram model in Shao et al. (2017) is applied. Table
2 shows the experimental results on the test sets
in terms of different metrics using the standard
argmax function to obtain the final output. The
segmenter is relatively under-splitting for Chinese
as it yields higher recall than precision, which is
opposite to English. The segmenter nonetheless
achieves state-of-the-art performance on both lan-
guages.'

"http://universaldependencies.org/conll 17/results-
words.html

88

P R F TNR
92.85 9346 93.16 99.81
99.33 99.09 99.21 99.99

Chinese
English

Table 2: Evaluation scores on the test sets in preci-
sion (P), recall (R), F1-score (F) and true negative
rate (TNR).

Score

&7 \ \ \ \ \ \ \ ‘E.
0.1 0.2 0.3 040506 070809 1
A
—o— P, —e— R, F.p,—~TNRj

+Pen+Ren457Fen+ TNRen

Figure 1: Evaluation scores on Chinese (zh) and
English (en) in precision (P), recall (P), F1-score
(F) and true negative rate (TNR) with different ra-
tios of most probable boundaries .

To get a more fine-grained picture, instead of
using argmax when decoding, we manually set a
threshold to determine the word boundaries with
respect to the scores returned by the inference
layer of the neural network. All the possible out-
put tags are ranked according to their scores of
being a word boundary. For each test experi-
ment, we accept the A x 100 percent most prob-
able word boundaries and regard the rest as non-
word boundaries. The segmenter therefore tends
towards under-splitting when A is closer to 0 and
over-splitting when A is closer to 1. The segmenter
becomes trivial when X is equal to O or 1, corre-
sponding to the extreme under-splitting and over-
splitting segmenters T1 and T2 introduced in Ta-
ble 1 respectively.

Figure 1 presents the evaluation scores accord-
ing to the metrics under consideration with respect
to different)\ in the interval of 0.05. With the op-
timal A%, the segmenter achieves comparable F1-
scores to those reported in Table 2. For Chinese,
A% is around 0.6, indicating there are roughly 60%
true boundaries out of all the possible segmenta-

tion points between consecutive characters. For
English, A% is 0.2 as the fact that English words
are relatively more coarse-grained and composed
of more characters on average. In general, preci-
sion and recall are positively correlated. When A
is close to its the optimal, the values of both pre-
cision and recall increase. However, when A is far
away from both the optima and O, precision and re-
call vary very substantially, clearly indicating that
precision heavily favours under-splitting systems.

When A equals 0, we obtain near-zero scores
with trivial under-splitting. In contrast, the over-
splitting segmenter with) is equal to 1 yields a no-
table amount of true positives, due to the fact that
there is a considerable amount of single-character
words, especially in Chinese. This implies that ac-
tually trivial over-splitting is relatively better than
under-splitting in practise, even though it is not
favoured by precision.

For Chinese, the optimal \% for precision is 0.6,
whereas A%, for recall is 0.65. They would be dif-
ferent for English as well if a smaller interval of
A were adopted. A}, corresponds to the system
with most correctly segmented words, whereas A\
is slightly biased towards under-splitting systems.
The difference between A} and A% is marginal
only when the segmenter performs very well as in
the case of English.

Next, we investigate how the metrics behave in
a learning curve experiment with ordinary argmax
decoding. Instead of using the complete training
set, for each test experiment, a controlled num-
ber of sentences are used for training the seg-
menter. The results are shown in Figure 2, in
which the training set is extended gradually by 200
sentences. As expected, the segmenter is better
trained and more accurate with a larger training
set, which is in accordance with recall as it al-
ways increases when the training set is expanded.
However, despite being closely correlated with re-
call in general, precision notably drops for Chi-
nese when enlarging the train set from 800 to
1,000 as well as from 1,800 to 2,000, implying the
segmenter becomes relatively over-splitting and
obtains lower precision despite having more cor-
rectly segmented words. Similarly for English,
the precision decreases when the training set is en-
larged from 1,200 to 1,400.

The experimental results of TNR is also consis-
tent with our analysis in the previous section. In
WS, the values of both RN in the reference as well

&9

1
0.95
ot
s 09
%)
0.85 B
0.8% a
| | | | | | | |
2 4 6 8 10 12 14 16 18 20

N/100
—o— P,p—— Ry F.p——TNRy

+Pen+Ren%Fen+TNRen

Figure 2: Evaluation scores on Chinese (zh) and
English (en) in precision (P), recall (P), Fl-score
(F) and true negative rate (TNR) with different
numbers of training instances N.

as PN by the system are drastically greater than
the corresponding values of the positives. Thus,
TN is high regardless of how the segmenter per-
forms, which makes TNR very insensitive and in-
appropriate as an evaluation metric for WS.

4 Conclusion

We discuss and analyse precision, recall in addi-
tion to true negative rate (7NR) as the evaluation
metrics for WS both theoretically and experimen-
tally in this paper. Unlike standard evaluation for
IR, all the metrics are positively correlated in gen-
eral. It is non-trivial to optimise the segmenter
towards either precision or recall. The difference
between precision and recall is notable only if the
segmenter is strongly over- or under-splitting. In
either case, precision as the evaluation is mislead-
ing as it heavily favours under-splitting systems.
Additionally, TNR is very insensitive and not suit-
able to evaluate WS either.

Under the circumstances, we propose that pre-
cision should be excluded from the conventional
evaluation metrics. As opposed to precision, re-
call is hard-constrained by the reference and there-
fore not biased towards neither under-splitting nor
over-splitting systems. It explicitly measures the
correctly segmented words that are meaningful
to higher level tasks. Employing recall solely is
therefore sufficient and more adequate as the eval-
uation metric for WS.

Acknowledgments

We acknowledge the computational resources pro-
vided by CSC in Helsinki and Sigma2 in Oslo
through NelC-NLPL (www.nlpl.eu). This work
is supported by the Chinese Scholarship Council
(CSC) (No. 201407930015).

References

Kyunghyun Cho, Bart Van Merriénboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259 .

Sharon Goldwater, Thomas L Griffiths, Mark Johnson,
et al. 2007. Distributional cues to word boundaries:
Context is important. In Proceedings of the 31st
Annual Boston University Conference on Language
Development. pages 239-250.

Mike Tian-Jian Jiang, Cheng-Wei Shih, Richard
Tzong-Han Tsai, and Wen-Lian Hsu. 2011. Eval-
uation via negativa of Chinese word segmentation
for information retrieval. In Proceedings of the 25th
Pacific Asia Conference on Language, Information
and Computation. Institute of Digital Enhancement
of Cognitive Processing, Waseda University, Singa-
pore, pages 100—109.

Allen Kent, Madeline M Berry, Fred U Luehrs, and
James W Perry. 1955. Machine literature searching
VIII. operational criteria for designing information
retrieval systems. Journal of the Association for In-
Sformation Science and Technology 6(2):93—-101.

David Palmer and John Burger. 1997. Chinese word
segmentation and information retrieval. In AAAI
Spring Symposium on Cross-Language Text and
Speech Retrieval. pages 175-178.

David Martin Powers. 2011. Evaluation: from preci-
sion, recall and F-measure to ROC, informedness,
markedness and correlation .

Xipeng Qiu, Peng Qian, Liusong Yin, Shiyu Wu, and
Xuanjing Huang. 2015. Overview of the NLPCC
2015 shared task: Chinese word segmentation and
POS tagging for micro-blog texts. In National CCF
Conference on Natural Language Processing and
Chinese Computing. Springer, pages 541-549.

Yan Shao, Christian Hardmeier, Jorg Tiedemann, and
Joakim Nivre. 2017. Character-based joint segmen-
tation and POS tagging for Chinese using bidirec-
tional RNN-CRF. arXiv preprint arXiv:1704.01314

Richard Sproat and Thomas Emerson. 2003. The first
international Chinese word segmentation bakeoff.
In Proceedings of the second SIGHAN workshop on
Chinese language processing-Volume 17. Associa-
tion for Computational Linguistics, pages 133—143.

90

Low-Resource Named Entity Recognition with Cross-Lingual,
Character-Level Neural Conditional Random Fields

Ryan Cotterell and Kevin Duh
Department of Computer Science
Johns Hopkins University
Baltimore, MD 21218
ryan.cotterell@jhu.edu

Abstract

Low-resource named entity recognition is
still an open problem in NLP. Most state-
of-the-art systems require tens of thou-
sands of annotated sentences in order to
obtain high performance. However, for
most of the world’s languages it is unfea-
sible to obtain such annotation. In this pa-
per, we present a transfer learning scheme,
whereby we train character-level neural
CRFs to predict named entities for both
high-resource languages and low-resource
languages jointly. Learning character rep-
resentations for multiple related languages
allows transfer among the languages, im-
proving Fj by up to 9.8 points over a log-
linear CRF baseline.

1 Introduction

Named entity recognition (NER) presents a chal-
lenge for modern machine learning, wherein a
learner must deduce which word tokens refer to
people, locations and organizations (along with
other possible entity types). The task demands that
the learner generalize from limited training data
and fo novel entities, often in new domains. Tradi-
tionally, state-of-the-art NER models have relied
on hand-crafted features that pick up on distribu-
tional cues as well as portions of the word forms
themselves. In the past few years, however, neu-
ral approaches that jointly learn their own features
have surpassed the feature-based approaches in per-
formance. Despite their empirical success, neural
networks have remarkably high sample complexity
and still only outperform hand-engineered feature
approaches when enough supervised training data
is available, leaving effective training of neural net-
works in the low-resource case a challenge.

For most of the world’s languages, there is a very

91

Sandra works for Google in Manhattan, New York.
B-PER (6] (0] B-ORG (6] B-LOC I-LOC I-LOC

Figure 1: Example of an English sentence annotated with its
typed named entities.

limited amount of training data for NER; CoNLL—
the standard dataset in the field—only provides an-
notations for 4 languages (Tjong Kim Sang, 2002;
Tjong Kim Sang and De Meulder, 2003). Cre-
ating similarly sized datasets for other languages
has a prohibitive annotation cost, making the low-
resource case an important scenario. To get around
this barrier, we develop a cross-lingual solution:
given a low-resource target language, we addition-
ally offer large amounts of annotated data in a lan-
guage that is genetically related to the target lan-
guage. We show empirically that this improves the
quality of the resulting model.

In terms of neural modeling, we introduce a
novel neural conditional random field (CRF) for
cross-lingual NER that allows for cross-lingual
transfer by extracting character-level features using
recurrent neural networks, shared among multiple
languages and; this tying of parameters enables
cross-lingual abstraction. With experiments on 15
languages, we confirm that feature-based CRFs out-
perform the neural methods consistently in the low-
resource training scenario. However, with the ad-
dition of cross-lingual information, the tables turn
and the neural methods are again on top, demon-
strating that cross-lingual supervision is a viable
method to reduce the training data state-of-the-art
neural approaches require.

2 Neural Conditional Random Fields

Named entity recognition is typically framed as
a sequence labeling task using the BIO scheme
(Ramshaw and Marcus, 1995; Baldwin, 2009), i.e.,
given an input sentence, the goal is to assign a label

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 91-96,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

to each token: B if the token is the beginning of an
entity, or I if the token is inside an entity, or O if
the token is outside an entity (see Fig. 1). Follow-
ing convention, we focus on person (per), location
(loc), organization (org), and miscellaneous (misc)
entity types, resulting in 9 tags: {B-ORG, I-ORG,
B-PER, I-PER, B-LOC, I-LOC, B-MISC, I-MISC}.

Conditional Random Fields (CRFs), first intro-
duced in Lafferty et al. (2001), generalize the classi-
cal maximum entropy models (Berger et al., 1996)
to distributions over structured objects, and are an
effective tool for sequence labeling tasks like NER.
We briefly overview the formalism here and then
discuss its neural parameterization.

2.1 CRFs: A Cursory Overview

We start with two discrete alphabets X and A. In
the case of sentence-level sequence tagging, 3. is a
set of words (potentially infinite) and A is a set of
tags (generally finite; in our case |A| = 9). Given
t=1t1---t, € A"and w w1 w, € X7,
where n is the sentence length. A CRF is a globally
normalized conditional probability distribution,

n

po(t|w) =

where 1 (t;—1,t;,w;0) > 0 is an arbitrary non-
negative potential function' that we take to be a
parametric function of the parameters 6 and the
partition function Zg(w) is the sum over all tag-
gings of length n.

So how do we choose) (t;—1,t;, w;0)? We
discuss two alternatives, which we will compare
experimentally in §5.

2.2 Log-Linear Parameterization

Traditionally, computational linguists have stuck to
a simple log-linear parameterization, i.e.,

Y (ti-1,ti, w; 0) = exp ("7Tf (tiflatiaw)) :

(2)
where i € R? and the user defines a feature func-
tion f : ¥ x ¥ x A" — R? that extracts relevant
information from the adjacent tags ¢;_; and ¢; and
the sentence w. In this case, the model’s parame-
ters are @ = {m}. Common binary features include
word form features, e.g., does the word at the i po-
sition end in -ation?, and contextual features, e.g.,
is the word next to (i—1)" word the? These binary

"'We slightly abuse notation and use to as a distinguished
beginning-of-sentence symbol.

92

features are conjoined with other indicator features,
e.g., is the iM tag I-LOC? We refer the reader to
Sha and Pereira (2003) for standard CRF feature
functions employed in NER, which we use in this
work. The log-linear parameterization yields a con-
vex objective and is extremely efficient to compute
as it only involves a sparse dot product, but the
representational power of model depends fully on
the quality of the features the user selects.

2.3 (Recurrent) Neural Parameterization

Modern CRFs, however, try to obviate the hand-
selection of features through deep, non-linear pa-
rameterizations of ¥ (t;_1,t;, w; @). This idea is
far from novel and there have been numerous at-
tempts in the literature over the past decade to find
effective non-linear parameterizations (Peng et al.,
2009; Do and Artieres, 2010; Collobert et al., 2011;
Vinel et al., 2011; Fujii et al., 2012). Until re-
cently, however, it was not clear that these non-
linear parameterizations of CRFs were worth the
non-convexity and the extra computational cost. In-
deed, on neural CRFs, Wang and Manning (2013)
find that “a nonlinear architecture offers no benefits
in a high-dimensional discrete feature space.”

However, recently with the application of
long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) recurrent neural networks
(RNNs) (Elman, 1990) to CRFs, it has become
clear that neural feature extractors are superior to
the hand-crafted approaches (Huang et al., 2015;
Lample et al., 2016; Ma and Hovy, 2016). As our
starting point, we build upon the architecture of
Lample et al. (2016), which is currently competi-
tive with the state of the art for NER.

Y (tio1,ti,w; 0) = 3)
exp <a(ti_1,ti)+o(ti)TW s(w)i) ,

where a(t;_1,t;) is the weight of transitioning from
t—1totand o(t;),s(w); € R" are the output tag
and word embedding for the i word, respectively.
We define sentence’s embeddings as the concate-
nation of an LSTM run forward and backward?

s(w) = |LSTMp(w); LSTMp(w)|. (4)
Note that the embedding for the i word in
this sentence is s(w);. The input vector w

>We take 7 = 100 and use a two-layer LSTM with 200
hidden units, each.

[Wi, .., W}w|] to this BILSTM is a vector of em-
beddings: we define

wi = [LSTMg (c1 -+ cjuy)) s €(wi)], (5)

where cp - - - Clu,| are the characters in word w;. In
other words, we run an LSTM over the character
stream and concatenate it with a word embedding
for each type. Now, the parameters @ are the set of
all the LSTM parameters and other embeddings.

3 Cross-Lingual Extensions

One of the most striking features of neural net-
works is their ability to abstract general represen-
tations across many words. Our question is: can
neural feature-extractors abstract the notion of a
named entity across similar languages? For exam-
ple, if we train a character-level neural CRF on
several of the highly related Romance languages,
can our network learn a general representation enti-
ties in these languages?

3.1 Cross-Lingual Architecture

We now describe our novel cross-lingual architec-
ture. Given a language label ¢, we want to create a
language-specific CRF pg(t | w, £) with potential:

W (ti—1,ti,w, 0,0) =exp (a(ti—1,t;)+ (6)
uTtanh(W [s(w); 1(£)]+ b)),

where 1(¢) € R" is an embedding of the lan-
guage ID, itself. Importantly, we share some
parameters across languages: the transitions be-
tween tags a() and the character-level neural net-
works that discover what a form looks like. Re-
call s(w) is defined in Eq. 4 and Eq. 5. The
part LSTMy (cl e c|wi|) is shared cross-lingually
while e(w;) is language-specific.

Now, given a low-resource target language 7 and
a source language o (potentially, a set of m high-
resource source languages {o;}7" ;). We consider
the following training objective

L£(0)=) logpe (t|w,7)+

t.w)eD,
WP S ogpe (6| w,o),
(t,w)€Dqs

(7

where p is a trade-off parameter, D; is the set of
training examples for the target language and D,
is the set of training data for the source language o.
In the case of multiple source languages, we add
a summand to the set of source languages used, in
which case set have multiple training sets Dy,;.

93

Language Code Family Branch
Galician gl Indo-European Romance
Catalan cl Indo-European Romance
French fr Indo-European Romance
Italian it Indo-European Romance
Romanian o Indo-European Romance
Spanish es Indo-European Romance
West Frisian fy Indo-European Germanic
Dutch nl Indo-European Germanic
Tagalog tl Austronesian Philippine
Cebuano ceb Austronesian Philippine
Ukranian uk Indo-European ~ Slavic
Russian ru Indo-European Slavic
Marathi mr Indo-European Indo-Aryan
Hindi hi Indo-European Indo-Aryan
Urdu ur Indo-European Indo-Aryan

Table 1: List of the languages used in our experiments with
their ISO 639-1 codes, family and the branch in that family.

In the case of the log-linear parameterization,
we simply add a language-specific atomic fea-
ture for the language-id, drawing inspiration from
Daumé III (2007)’s approach for domain adaption.
‘We then conjoin this new atomic feature with the
existing feature templates, doubling the number of
feature templates: the original and the new feature
template conjoined with the language ID.

4 Related Work
We divide the discussion of related work topically.

Character-Level Neural Networks. In recent
years, many authors have incorporated character-
level information into taggers using neural net-
works, e.g., dos Santos and Zadrozny (2014) em-
ployed a convolutional network for part-of-speech
tagging in morphologically rich languages and
Ling et al. (2015) a LSTM for a myriad of dif-
ferent tasks. Relatedly, Chiu and Nichols (2016)
approached NER with character-level LSTMs, but
without using a CRF. Our work firmly builds upon
on this in that we, too, compactly summarize the
word form with a recurrent neural component.

Neural Transfer Schemes. Previous work has
also performed transfer learning using neural net-
works. The novelty of our work lies in the cross-
lingual transfer. For example, Peng and Dredze
(2017) and Yang et al. (2017), similarly oriented
concurrent papers, focus on domain adaptation
within the same language. While this is a related
problem, cross-lingual transfer is much more in-
volved since the morphology, syntax and semantics
change more radically between two languages than

languages ‘ low-resource (|D;| = 100)

high-resource (|D;| = 10000)

T 0; ‘ log-linear neural A log-linear neural A

gl — 57.64 49.19 —8.45 87.23 89.42 +2.19
gl es 71.46 76.40 +4.94 87.50 89.46 +1.96
gl ca 67.32 75.40 +8.08 87.40 89.32 +1.92
gl it 63.81 70.93 +7.12 87.34 89.50 +2.16
gl fr 58.22 68.02 +9.80 87.92 89.38 +1.46
gl ro 59.23 67.76 +8.44 87.24 89.19 +1.95
fy — 62.71 58.43 —4.28 90.42 91.03 +40.61
fy nl 68.15 7212 +3.97 90.94 91.01 +0.07
. — 58.15 56.98 —1.17 74.24 79.03 +4.79
tl ceb 75.29 81.79 +46.50 74.02 79.51 +5.48
uk — 61.40 60.65 —0.75 85.63 87.39 +1.75
uk ru 70.94 76.74 +5.80 86.01 87.42 +1.41
mr — 42.76 39.02 —3.73 70.98 74.95 +4.86
mr hi 54.25 60.92 +6.67 70.45 7449 +4.04
mr ur 49.32 58.92 49.60 70.75 74.81 +4.07

Table 2: Results comparing the log-linear and neural CRFs in various settings. We compare the log-linear linear and the neural
CREF in the low-resource transfer setting. The difference (A) is blue when positive and red when negative.

between domains.

Projection-based Transfer Schemes. Projec-
tion is a common approach to tag low-resource
languages. The strategy involves annotating one
side of bitext with a tagger for a high-resource
language and then project the annotation the over
the bilingual alignments obtained through unsu-
pervised learning (Och and Ney, 2003). Using
these projected annotations as weak supervision,
one then trains a tagger in the target language.
This line of research has a rich history, starting
with Yarowsky and Ngai (2001). For a recent
take, see Wang and Manning (2014) for project-
ing NER from English to Chinese. We emphasize
that projection-based approaches are incomparable
to our proposed method as they make an additional
bitext assumption, which is generally not present
in the case of low-resource languages.

5 Experiments

Fundamentally, we want to show that character-
level neural CRFs are capable of generalizing the
notion of an entity across related languages. To
get at this, we compare a linear CRF (see §2.2)
with standard feature templates for the task and a
neural CRF (see §2.3). We further compare three
training set-ups: low-resource, high-resource and

94

low-resource with additional cross-lingual data for
transfer. Given past results in the literature, we
expect linear CRF to dominate in the low-resource
settings, the neural CRF to dominate in the high-
resource setting. The novelty of our paper lies in
the consideration of the low-resource with transfer
case: we show that neural CRFs are better at trans-
ferring entity-level abstractions cross-linguistically.

5.1 Data

We experiment on 15 languages from the cross-
lingual named entity dataset described in Pan et al.
(2017). We focus on 5 typologically diverse® tar-
get languages: Galician, West Frisian, Ukranian,
Marathi and Tagalog. As related source languages,
we consider Spanish, Catalan, Italian, French, Ro-
manian, Dutch, Russian, Cebuano, Hindi and Urdu.
For the language code abbreviations and linguistic
families, see Tab. 1. For each of the target lan-
guages, we emulate a truly low-resource condition,
creating a 100 sentence split for training. We then
create a 10000 sentence superset to be able to com-
pare to a high-resource condition in those same

3While most of these languages are from the Indo-
European family, they still run the gauntlet along a number of
typological axes, e.g., Dutch and West Frisian have far less
inflection compared to Russian and Ukrainian and the Indo-
Aryan languages employ postpositions (attached to the word)
rather than prepositions (space separated).

languages. For the source languages, we only cre-
ated a 10000 sentence split. We also create disjoint
validation and test splits, of 1000 sentences each.

5.2 Results

The linear CREF is trained using L-BFGS until con-
vergence using the CRF suite toolkit.* We train
our neural CRF for 100 epochs using ADADELTA
(Zeiler, 2012) with a learning rate of 1.0. The re-
sults are reported in Tab. 2. To understand the
table, take the target language (7) Galician. In
terms of F1, while the neural CRF outperforms the
log-linear CREF the high-resource setting (89.42 vs.
87.23), it performs poorly in the low-resource set-
ting (49.19 vs. 56.64); when we add in a source lan-
guage (o0;) such as Spanish, F} increases to 76.40
for the neural CRF and 71.46 for the log-linear
CRF. The trend is similar for other source lan-
guages, such as Catalan (75.40) and Italian (70.93).

Overall, we observe three general trends. 1)
In the monolingual high-resource case, the neu-
ral CRF outperforms the log-linear CRF. ii) In the
low-resource case, the log-linear CRF outperforms
the neural CREF. iii) In the transfer case, the neural
CRF wins, however, indicating that our character-
level neural approach is truly better at generalizing
cross-linguistically in the low-resource case (when
we have little target language data), as we hoped. In
the high-resource case (when we have a lot of target
language data), the transfer learning has little to no
effect. We conclude that our cross-lingual neural
CREF is a viable method for the transfer of NER.
However, there is a still a sizable gap between the
neural CRF trained on 10000 target sentences and
the transfer case (100 target and 10000 source),
indicating there is still room for improvement.

6 Conclusion

We have investigated the task of cross-lingual trans-
fer in low-resource named entity recognition using
neural CRFs with experiments on 15 typologically
diverse languages. Overall, we show that direct
cross-lingual transfer is an option for reducing sam-
ple complexity for state-of-the-art architectures. In
the future, we plan to investigate how exactly the
networks manage to induce a cross-lingual entity
abstraction.

4
http://www.chokkan.org/software/crfsuite/

95

Acknowledgments

We are grateful to Heng Ji and Xiaoman Pan for
sharing their dataset and providing support.

References

Breck Baldwin. 2009. Coding chunkers as tag-
gers: 10, BIO, BMEWO, and BMEWO-+.
http://bit.ly/2xRo8Ni.

Adam L. Berger, Vincent J. Della Pietra, and Stephen
A. Della Pietra. 1996. A maximum entropy ap-
proach to natural language processing. Computa-
tional Linguistics, 22(1):39-71.

Jason Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional LSTM-CNNSs. Trans-
actions of the Association of Computational Linguis-
tics, 4:357-370.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493-2537.

Hal Daumé III. 2007. Frustratingly easy domain adap-
tation. In Proceedings of the 45th Annual Meeting of
the Association of Computational Linguistics, pages
256-263, Prague, Czech Republic. Association for
Computational Linguistics.

Trinh-Minh-Tri Do and Thierry Artieres. 2010. Neu-
ral conditional random fields. In Proceedings of the
Thirteenth International Conference on Artificial In-
telligence and Statistics, pages 177-184.

Jeffrey L. Elman. 1990. Finding structure in time. Cog-
nitive Science, 14(2):179-211.

Yasuhisa Fujii, Kazumasa Yamamoto, and Seiichi Nak-
agawa. 2012. Deep-hidden conditional neural fields
for continuous phoneme speech recognition. In Pro-
ceedings of the International Workshop of Statistical
Machine Learning for Speech Processing (IWSML).

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735-1780.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
arXiv preprint arXiv:1508.01991.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning (ICML),
pages 282-289.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.

In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260-270, San Diego, California. Association
for Computational Linguistics.

Wang Ling, Chris Dyer, Alan W. Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1520-1530, Lisbon, Portu-
gal. Association for Computational Linguistics.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNN5s-
CREF. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1064—1074. Associa-
tion for Computational Linguistics.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, 29(1):19-51.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual name tagging and linking for 282 languages.
In Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), Vancouver, Canada. Association for
Computational Linguistics.

Jian Peng, Liefeng Bo, and Jinbo Xu. 2009. Condi-
tional neural fields. In Advances in Neural Informa-
tion Processing Systems (NIPS), pages 1419-1427.

Nanyun Peng and Mark Dredze. 2017. Multi-task do-
main adaptation for sequence tagging. In Proceed-
ings of the 2nd Workshop on Representation Learn-
ing for NLP, Vancouver, Canada. Association for
Computational Linguistics.

Lance A. Ramshaw and Mitchell P. Marcus. 1995. Text
chunking using transformation-based learning. In
Proceedings of the 3rd ACL Workshop on Very Large
Corpora, pages 82-94. Association for Computa-
tional Linguistics.

Cicero Nogueira dos Santos and Bianca Zadrozny.
2014. Learning character-level representations for
part-of-speech tagging. In International Conference
on Machine Learning (ICML), volume 32, pages
1818-1826.

Fei Sha and Fernando C. N. Pereira. 2003. Shal-
low parsing with conditional random fields. In Hu-
man Language Technology Conference of the North
American Chapter of the Association for Computa-
tional Linguistics, HLT-NAACL 2003.

Erik F. Tjong Kim Sang. 2002. Introduction to the
CoNLL-2002 shared task: Language-independent
named entity recognition. August, 31:1-4.

96

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142-147.

Antoine Vinel, Trinh-Minh-Tri Do, and Thierry
Artieres. 2011. Joint optimization of hidden condi-
tional random fields and non linear feature extrac-
tion. In 2011 International Conference on Docu-
ment Analysis and Recognition (ICDAR), pages 513—
517. IEEE.

Mengqiu Wang and Christopher D. Manning. 2013. Ef-
fect of non-linear deep architecture in sequence la-
beling. In Proceedings of the Sixth International
Joint Conference on Natural Language Processing,
pages 1285-1291, Nagoya, Japan. Asian Federation
of Natural Language Processing.

Mengqiu Wang and Christopher D. Manning. 2014.
Cross-lingual pseudo-projected expectation regular-
ization for weakly supervised learning. Transac-
tions of the Association for Computational Linguis-
tics.

Zhilin Yang, Ruslan Salakhutdinov, and William W3.
Cohen. 2017. Transfer learning for sequence tag-
ging with hierarchical recurrent networks. In Inter-

national Conference on Learning Representations
(ICLR).

David Yarowsky and Grace Ngai. 2001. Inducing mul-
tilingual POS taggers and NP brackets via robust
projection across aligned corpora. In Human Lan-
guage Technology Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics, HLT-NAACL 2001.

Matthew D. Zeiler. 2012. ADADELTA: an adap-
tive learning rate method. arXiv preprint
arXiv:1212.5701.

Segment-Level Neural Conditional Random Fields
for Named Entity Recognition

Motoki Sato!? Hiroyuki Shindo'?

Ikuya Yamada?® Yuji Matsumoto':>

! Nara Institute of Science and Technology
2 RIKEN Center for Advanced Intelligence Project (AIP)
3 Studio Ousia
{ sato.motoki.sa7, shindo, matsu }Q@is.naist.jp, ikuya@ousia. jp

Abstract

We present Segment-level Neural CRF,
which combines neural networks with a
linear chain CRF for segment-level se-
quence modeling tasks such as named
entity recognition (NER) and syntactic
chunking. Our segment-level CRF can
consider higher-order label dependencies
compared with conventional word-level
CRF. Since it is difficult to consider all
possible variable length segments, our
method uses segment lattice constructed
from the word-level tagging model to re-
duce the search space. Performing exper-
iments on NER and chunking, we demon-
strate that our method outperforms con-
ventional word-level CRF with neural net-
works.

1 Introduction

Named entity recognition (NER) and syntactic
chunking are segment-level sequence modeling
tasks, which require to recognize a segment from
a sequence of words. A segment means a se-
quence of words that may compose an expres-
sion as shown in Figure 1. Current high per-
formance NER systems use the word-level lin-
ear chain Conditional Random Fields (CRF) (Laf-
ferty et al., 2001) with neural networks. Espe-
cially, it has been shown that the combination
of LSTMs (Hochreiter and Schmidhuber, 1997,
Gers et al., 2000), convolutional neural networks
(CNNs) (LeCun et al., 1989), and word-level CRF
achieves the state-of-the-art performance (Ma and
Hovy, 2016). Figure 1 shows an overview of the
word-level CRF for NER.

However, the word-level neural CRF has two
main limitations: (1) it captures only first-order
word label dependencies thus it cannot capture

97

Input | Barack " Hussein " Obama ”

Word-level
CRFs

v B-PER
A
Z| I-PER (1)
E-PER I\/ E-PER|§

B o

A B-PER B-PER B-PER [\

« I-PER
[roor |>
\

I-PER A | I1-PER [(F3
7 {

E-PER [{}3

=

E-PER

Segment-level
CRFs

ROOT |{
\| B-PER | E-PER
PERSON

B-PER | I-PER | E-PER
PERSON

Figure 1: The difference between word-level CRF
and segment-level CRF. The segment-level CRF
can consider higher-order label dependencies.

segment-level information; (2) it is not easy to in-
corporate dictionary features directly into a word-
level model since named entities and syntactic
chunks consist of multiple words rather than a sin-
gle word. To overcome the limitation of first-order
label dependencies, previous work propose the
higher-order CRF, which outperforms first-order
CRF on NER task (Sarawagi and Cohen, 2005)
and morphological tagging task (Mueller et al.,
2013).

In this paper, we extend a neural CRF from
word-level to segment-level and propose Segment-
level Neural CRF. Our method has two main
advantages: (1) segment-level linear chain CRF
can consider higher-order word label dependen-
cies (e.g., the relations between named entities and
the other words); (2) it is easy to incorporate dic-
tionary features into the model directly since a dic-
tionary entry and a segment (e.g., a named entity)
are in one-to-one correspondence.

Our experiments on chunking and NER demon-
strate that our method outperforms conventional
word-level neural CRF.

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 97-102,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

2 Word-level Neural CRF

As a baseline method, we use word-level neu-
ral CRF proposed by (Ma and Hovy, 2016) since
their method achieves state-of-the-art performance
on NER. Specifically, they propose Bi-directional
LSTM-CNN CRF (BLSTM-CNN-CRF) for se-
quential tagging. Here, we briefly review their
BLSTM-CNN-CRF model.

Let w; be the t-th word in an input sentence
and Cy = cgl), ces cgk) be the character sequence
of wy. BLSTM-CNN-CRF uses both word-level
embedding w; € Rdword and character-level em-
bedding c; € Rfrar, Given a word sequence

X = wy, ..., w,, the model outputs a score vector

o; as follows.

¢t = CNNgpor (Cy),

Xt = WiDcy,

h; = Bi-LSTM(x¢, hy—1,hy 1) (1)
= LSTMy(x¢, hy—1) @ LSTMy(x¢, hyy1),

o; = softmax(Wpgh; + brg),

where CNN_.,- is the character-level CNN func-
tion, @ is the concatenation of two vectors,
LSTMy is the forward LSTM function, LSTM,
is the backward LSTM function, Bi-LSTM is the
Bi-LSTM function, respectively. Then, Wrg €
RI7 X dnidaden s the weight matrix to learn, byg €
RI71 is the bias vector to learn, | 7| is the size of
tag set 7, dpiqden 1S the size of hidden layer of Bi-
LSTM, and o; € RI7! is the score vector in which
each element is the probability of a possible tag.

In BLSTM-CNN-CRF, CRF is applied to the
output layer. The conditional probability of CRF
is defined as follows:

A(Yi-1Yi, Ogyi))

exp(oz(yi) + Ayi—l yYi)a

n

H ¢(yi—1 » Yis Ogyi))
p(ylo; A) =

n)

/ 1 (i)
Z H¢(yi—1ayi70i)

yeyi=1
Yi
where (z)(yi—la Yis OE) '
yi €4{0,...,|7|—1} is the index of tag, 05‘7) is the
j-th element of the vector 0;. Then, A € RI7XI7]
is a transition score matrix, Ay, , . is a transition
'While (Ma and Hovy, 2016) define ¢(yi—1,yi,0;) =
exp(Wy, _, v:0i + Ay, _,,y:) as the potential function where

W is the weight vector corresponding to label pair (yi—1, y;),
we use the simple potential function here.

) is the potential function',

98

score for jumping from tag y;_1 to y;, and) indi-
cates all possible paths.

At test time, the predicted sequence is obtained
by finding the highest score in a all possible paths
using Viterbi algorithm as follows:

argmax p(y|o;; A).
yey

3 Segment-level Neural CRF

y

In this section, we describe our proposed method.
Our segment-level neural CRF consists of the fol-
lowing two steps:

(i) A segment lattice is constructed from a se-
quence of words by pruning unlikely BIO
tags to reduce a search space. This is because
it is difficult to consider all possible variable
length segments in practice.

(i) We use a linear chain CRF to find the highest
score path on the segment lattice.

3.1 Constructing Segment Lattice

A segment lattice is a graph structure where each
path corresponds to a candidate segmentation path
as shown in the lower part of Figure 1. The
segment lattice is a kind of semi-Markov model
(Sarawagi and Cohen, 2005). To construct the
segment lattice, we firstly give an input sentence
to the word-level tagging model, then obtain the
score vector o, for each word that gives the prob-
abilities of possible BIO tags. Then, we generate
the candidate BIO tags whose scores are greater
than the threshold 7'. After that, we construct the
segment lattice by generating admissible segments
from the candidate BIO tags. For example, we
generate the PERSON segment from the candidate
BIO tags {B-PER, I-PER, E-PER}.

The threshold 7' is a hyper-parameter for our
model. We describe how to choose the threshold
T in Section 4.3. While it has been shown that
the CRF layer is required to achieve the state-of-
the-art performance in Ma and Hovy (2016), we
observe that the CRF has no significant effect on
the final performance for the lattice construction.
Therefore, we use BLSTM-CNN (without CRF)
as the word-level tagging model in this paper.

3.2 Segment-level Vector Representation

To find the highest score path in the segment
lattice, we use a standard linear chain CRF at
segment-level. Since each segment has vari-
able length, we need to obtain fixed-dimensional

Segment-level
CRFs

i

) P NN
aroty “eee- 000
A A A

CNN

Input | Barack| Hussein l Obama | I man |

Figure 2: Details of the Segment-level Neural
CRF model.

segment-level vector representation for neural net-
works.

Figure 2 shows the details of the segment-level
neural CRF model. Let u; = wp, Wp1, - - ., W, be
the ¢-th segment in a segment lattice, b is the start-
ing word index, and e is the ending word index. To
obtain the fixed-dimensional vector u; € Rfnode
for the segment u;, we apply a CNN to the hidden
vector sequence hy.. = hy, hyiq,...,he by Eq.
(1), and compute the score vector z; as follows:

CNNnode(hb2€)7
softmax(Wpsr; + brg),

r;

Z;

where CNN,, 4. is the CNN function for the seg-
ment vector, Wyg € RWIXdnode s the weight
matrix to learn, byg € Rénode is the bias vector
to learn, || is the size of named entity type set
N, dpoqe is the size of the segment vector, and
zZ; € RM1 is the score vector in which each ele-
ment is the probability of a possible NE type.

Finally, we apply a linear chain CRF to find the
highest score path in the segment lattice as we de-
scribe in Section 2.

3.3 Dictionary Features for NER

In this subsection, we describe the use of two addi-
tional dictionary features for NER. Since an entry
of named entity dictionary and the segment in our
model are in one-to-one correspondence, it is easy
to directly incorporate the dictionary features into
our model. We use following two dictionary fea-
tures on NER task.

Binary feature The binary feature e; € R%ict
indicates whether the i-th segment (e.g., a named
entity) exists in the dictionary or not. We use the
embedding matrix W g;; € R2%ddict where d ;e
is the size of the feature embedding. e € {0, 1} is
the binary index which indicates whether the seg-
ment exists in the dictionary or not. Using the in-
dex e, we extract the column vector e; € Rdict

99

from Wy, and concatenate the segment vector
r; and e;. The concatenated segment vector r;
is defined as r; = r; ® e;. Wy is a ran-
domly initialized matrix and updated in the train-
ing time. To incorporate the popularity of the
Wikipedia entity into our method, we also con-
catenate one-dimensional vector constructed from
the page view count for one month period into e;.
The page view count is normalized by the number
of candidate segments in the segment lattice. The
Wikipedia dictionary is constructed by extracting
the titles of all Wikipedia pages and the titles of all
redirect pages from the Wikipedia Dump Data’.

Wikipedia embedding feature Another addi-
tional feature is the Wikipedia embeddings pro-
posed by Yamada et al. (2016). Their method
maps words and entities (i.e., Wikipedia entities)
into the same continuous vector space using the
skip-gram model (Mikolov et al., 2013). We use
only the 300 dimensional entity embeddings in
this paper. Please refer to Yamada et al. (2016)
for more detail.

4 Experiments

4.1 Datasets

We evaluate our method on two segment-level se-
quence tagging tasks: NER and text chunking?.

For NER, we use CoNLL 2003 English NER
shared task (Tjong Kim Sang and De Meulder,
2003). Following previous work (Ma and Hovy,
2016), we use BIOES tagging scheme in the word-
level tagging model.

For text chunking, we use the CoNLL 2000 En-
glish text chunking shared task (Tjong Kim Sang
and Buchholz, 2000). Following previous work
(Sggaard and Goldberg, 2016), the section 19 of
WSJ corpus is used as the development set. We
use BIOES tagging scheme in the word-level tag-
ging model and measure performance using F1
score in all experiments.

4.2 Model Settings

To generate a segment lattice, we train word-level
BLSTM-CNN with the same hyper-parameters
used in Ma and Hovy (2016): one layer 200 di-
mentional Bi-directional LSTMs for each direc-
tion, 30 filters with window size 3 in character-

>The dump data of Wikipedia is available in Wikimedia
http://dumps.wikimedia.org/. We use the dump

data at 2016-09-20.
30ur code will be available from http:/xxxx

Oracle
Threshold | Train Dev Test
T=0.05 9993 99.71 99.27
T=0.0005 |99.99 9996 99.71
T=0.00005 | 100.0 99.98 99.83

Table 1: Threshold T" and Oracle score on NER.

Test
Prec. Recall F1
BLSTM-CNN 89.04 9040 89.72
BLSTM-CNN-CRF? 90.82 91.11 90.96
Our method 91.07 9150 91.28
+ Binary Dict 91.05 91.69 91.37
+ WikiEmb Dict 91.29 9158 91.44
+ Binary + WikiEmb | 91.47 91.62 91.55
Ma and Hovy (2016) 91.35 91.06 91.21

Table 2: Result of CoNLL 2003 English NER.

level CNN, and 100 dimentional pre-trained word
embedding of GloVe (Pennington et al., 2014). At
input layer and output layer, we apply dropout
(Srivastava et al., 2014) with rate at 0.5. In our
model, we set 400 filters with window size 3 in
CNN for segment vector. To optimize our model,
we use AdaDelta (Zeiler, 2012) with batch size 10
and gradient clipping 5. We use early stopping
(Caruana et al., 2001) based on performance on
development sets.

4.3 How to choose threshold

The threshold 7' is a hyper-parameter for our
model. We choose the threshold 7" based on how
a segment lattice maintains the gold segments in
the training and development sets. The threshold
T and the oracle score are shown in Table 1. In
our experiment, the 7" = 0.00005 is used in NER
task and 7" = 0.0005 is used in chunking task.

4.4 Results and Discussions

The results of CoNLL 2003 NER is shown in Ta-
ble 2. By adding a CRF layer to BLSTM-CNN,
it improves the F1 score from 89.72 to 90.96.
This result is consistent with the result of (Ma and
Hovy, 2016). By using segment-level CREF, it fur-
ther improves the F1 score from 90.96 to 91.28.
Furthermore, by using the binary dictionary fea-
ture, it improves the F1 score from 91.28 to 91.37
and by using the Wikipedia embedding feature, it

3This is same method in (Ma and Hovy, 2016) and this
F-1 score is the result of our implementation.

100

Test
Prec. Recall F1
BLSTM-CNN 90.85 9192 91.38
BLSTM-CNN-CRF | 94.67 9443 94.55
Our method 94.55 95.12 94.84

Table 3: Result of CoNLL 2000 Chunking.

improves the F1 score from 91.28 to 91.44. Even-
tually, we achieve the F1 score 91.55 with two dic-
tionary features.

The results of CoNLL 2000 Chunking is shown
in Table 3. Similar to NER task, by adding a
CRF layer to BLSTM-CNN, it improves the F1
score from 91.38 to 94.55. Furthermore, by using
segment-level CRF, it improves the F1 score from
94.55 to 94.84.

In both experiments, it improves the F1 score
by using segment-level CRF. On the NER experi-
ment, the additional dictionary features help to ob-
tain further improvement.

5 Related Work

Several different neural network methods have
been proven to be effective for NER (Collobert
et al,, 2011; Chiu and Nichols, 2016; Lample
et al., 2016; Ma and Hovy, 2016). Ma and Hovy
(2016) demonstrate that combining LSTM, CNN
and CRF achieves the state-of-the-art performance
on NER and chunking tasks.

Mueller et al. (2013) show that higher-order
CRF outperforms first-order CRF. Our work dif-
fers from their work in that it can handle segments
of variable lengths and thus it is easy to incorpo-
rate dictionary features directly.

Zhuo et al. (2016) propose Gated Recursive
Semi-CRF, which models a sequence of segments
and automatically learns features. They combine
Semi-CRF (Sarawagi and Cohen, 2005) and neu-
ral networks. However they report the F1 score
89.44% on NER and 94.73* on Chunking which
are lower than the scores of our method.

Kong et al. (2016) propose segmental recurrent
neural networks (SRNNs). SRNNs are based on
Bi-LSTM feature extractor and uses dynamic pro-
gramming algorithm to reduce search space.

6 Conclusion
In this paper, we propose the segment-level se-
quential modeling method based on a segment lat-

“This is under the setting without external resource. They
add Brown clusters features and report the F1 score 95.01.

tice structure. Our experimental results show that
our method outperforms conventional word-level
neural CRF. Furthermore, two additional dictio-
nary features help to obtain further improvement
on NER task.

Acknowledgments

Part of this work was supported by JST CREST
Grant Number JPMJCR1513, Japan.

References

Rich Caruana, Steve Lawrence, and C. Lee Giles. 2001.
Overfitting in neural nets: Backpropagation, conju-
gate gradient, and early stopping. In T. K. Leen,
T. G. Dietterich, and V. Tresp, editors, Advances
in Neural Information Processing Systems 13, MIT
Press, pages 402—-408.

Jason Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional Istm-cnns. Transac-
tions of the Association for Computational Linguis-
tics 4:357-370.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. J. Mach. Learn. Res. 12:2493-2537.

Felix A Gers, Jiirgen Schmidhuber, and Fred Cummins.
2000. Learning to forget: Continual prediction with
Istm. Neural Computation 12(10):2451-2471.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735-1780.

Lingpeng Kong, Chris Dyer, and Noah A Smith. 2016.
Segmental recurrent neural networks. In Proceed-
ings of the International Conference on Learning
Representations (ICLR).

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA,
USA, ICML 01, pages 282-289.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics: Human Language Technolo-
gies. Association for Computational Linguistics,
San Diego, California, pages 260-270.

Yann LeCun, Bernhard Boser, John S Denker, Don-
nie Henderson, Richard E Howard, Wayne Hubbard,

101

and Lawrence D Jackel. 1989. Backpropagation ap-
plied to handwritten zip code recognition. Neural
computation 1(4):541-551.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional 1stm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Lin-
guistics, Berlin, Germany, pages 1064—1074.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111-3119.

Thomas Mueller, Helmut Schmid, and Hinrich
Schiitze. 2013. Efficient higher-order CRFs for mor-
phological tagging. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics, Seattle, Washington, USA, pages 322-332.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 1532—-1543.

Sunita Sarawagi and William W Cohen. 2005. Semi-
markov conditional random fields for information
extraction. In L. K. Saul, Y. Weiss, and L. Bottou,
editors, Advances in Neural Information Processing
Systems 17, MIT Press, pages 1185-1192.

Anders Sggaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics,
volume 2, pages 231-235.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15:1929-1958.

Erik F Tjong Kim Sang and Sabine Buchholz. 2000.
Introduction to the conll-2000 shared task: Chunk-
ing. In Proceedings of the 2nd workshop on Learn-
ing language in logic and the 4th conference on
Computational natural language learning-Volume
7. Association for Computational Linguistics, pages
127-132.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4.
Association for Computational Linguistics, pages
142-147.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and
Yoshiyasu Takefuji. 2016. Joint learning of the em-
bedding of words and entities for named entity dis-
ambiguation. In Proceedings of The 20th SIGNLL
Conference on Computational Natural Language
Learning. Association for Computational Linguis-
tics, Berlin, Germany, pages 250-259.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701 .

Jingwei Zhuo, Yong Cao, Jun Zhu, Bo Zhang, and Za-
iging Nie. 2016. Segment-level sequence modeling
using gated recursive semi-markov conditional ran-
dom fields. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Compu-
tational Linguistics, Berlin, Germany, pages 1413—
1423.

102

Integrating Vision and Language Datasets
to Measure Word Concreteness

Gitit Kehat and James Pustejovsky
Department of Computer Science
Brandeis University
Waltham, MA 02453 USA

{gititkeh, jamesp}@brandeis.edu

Abstract

We present and take advantage of the in-
herent visualizability properties of words
in visual corpora (the textual components
of vision-language datasets) to compute
concreteness scores for words. Our simple
method does not require hand-annotated
concreteness score lists for training, and
yields state-of-the-art results when evalu-
ated against concreteness scores lists and
previously derived scores, as well as when
used for metaphor detection.

1 Introduction

One of the most pervasive problems in cognitive
science, linguistics, and Al has been establishing
the semantic relationship between language and
vision (Miller and Johnson-Laird, 1976; Wino-
grad, 1972; Jackendoff, 1983; Waltz, 1993). In re-
cent years, new datasets have emerged that enable
researchers to approach this question from a new
angle: that of determining both how linguistic ex-
pressions are grounded in visual images, and how
features of visual images are expressible in lan-
guage. To this end, large vision and language (VL)
datasets have become increasingly popular, mostly
used in combined VL tasks, such as visual caption-
ing and question answering, image retrieval and
more. However, visual corpora, the language cor-
pora created in the service of image annotation,
have properties that have yet to be exploited. Nat-
urally, they tend to prefer concrete object labels
and tangible event descriptions over abstract con-
cepts and private or mental states (Dodge et al.,
2012).

In this work, we provide further evidence that
visual corpora are indeed less abstract than gen-
eral corpora, and characterize this as a property of
what we term a word’s visibility score. We then

show how this notion can be used to measure the
concreteness of words, and demonstrate the use-
fulness of our calculated scores in solving the re-
lated problem of metaphor detection.

2 Related Work and Background

"

woman in shorts is standing

behind the man @ i

yellow fire
hydrant

I love that crazy cat in the hat.

Figure 1: Visual Genome (top) with multiple cap-
tions, and SBU with a user-generated caption per
image.

2.1 Abstractness and concreteness

A common notion for the concreteness of a word
is to what extent the word represents things that
can be perceived directly through the five senses
(Brysbaert et al., 2014; Turney et al., 2011), such
as tiger and wet. Accordingly, an abstract word

Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 103-108,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

represents a concept that is far from immediate
perception, or alternatively, could be explained
only by other words (as opposed to be demon-
strated through image, taste, etc.), like fun and
truth.

Concreteness scores are currently applied in
tasks like concept visualization and image descrip-
tion generation, event detection in text and more.
Previous methods for measuring words’ concrete-
ness used annotated datasets for training. The list
by Turney et al. (2011) contains 114k pairs of
words and concreteness scores, automatically gen-
erated by an algorithm trained on the MRC dataset
(Coltheart, 1981). Koper and im Walde (2017)
generated a huge concreteness scores list for 3M
words, using 32K pairs from the list by Brysbaert
et al. (2014) to train a neural network model with
high correlation scores with the existed lists.

2.2 Vision and Language Datasets

VL datasets come in different formats, but they all
match together visual and textual pieces of infor-
mation. The visual pieces can be photos, clip-arts,
paintings, etc., and the textual ones range from full
texts and sentences to single words (see Figure 1).
There are surprisingly few works that analyze vi-
sual corpora in terms of their linguistic properties.
Dodge et al. (2012) found that Flickr captions have
more references to physical objects. Ferraro et al.
(2015) compared visual corpora using a set of lin-
guistic criteria, including an abstract-to-concrete
ratio to estimate the concreteness level of a cor-
pus. We further discuss this task in Section 3.

3 The Concreteness Level of a Corpus

We demonstrate the differences in the concrete-
ness level of several corpora using two concrete-
ness ratings (or “concreteness scores”) lists, each
contains pairs of a word and a score, in some scale,
and potentially additional meta-data regarding the
annotation agreement. See Table 1 for examples.
The list of 40K concreteness ratings by Brys-
baert et al. (2014) contains ratings from 1.0 (ab-
stract) to 5.0 (concrete) for almost 40K terms, 37K
of them are unigrams', along with metadata like
the standard deviation over the scores assigned to
a term by the 30 annotators. The authors aimed
to represent all English lemmas, for each they in-
cluded several forms, each was scored separately
(according to the definition in Section 2.1).

"The rest are bigrams, we worked with unigrams only.

104

40K (1.04-5.0) | MRC (158-670)
turtle 5.0 (sd=0.0) 644
boat 4.93 (sd=0.37) 637
milk 4.92 (sd=0.39) 670
side 3.68 (sd=1.33) 394
symbol 3.11 (sd=1.37) 402
clean 3.07 (sd=1.41) 392
impossible 1.66 (sd=1.06) 198
immortality | 1.52 (sd=0.87) 209
justification | 1.52 (sd=0.83) 219

Table 1: Examples for words in the concreteness
lists annotated as mostly concrete, in the middle,
and mostly abstract.

The MRC psycholinguistic database (Colt-
heart, 1981) contains 4,295 words and concrete-
ness scores (range from 158 to 670), given by hu-
man subjects through psychological experiments.

3.1 Descriptions of Corpora Studied

Brown corpus (Francis and Kucera, 1964). Fol-
lowing Ferraro et al. (2015), a representative of a
non-visual “general”/“balanced” corpus.

Visual Genome (Krishna et al., 2016). The
largest VL dataset to date, containing 5.4M region
descriptions for more than 108K images, visual
question answers and more, all created through
crowd-sourcing. We used the set of all region de-
scriptions (see Figure 1) as corpus.

SBU Captioned Photo Dataset (Ordonez et al.,
2011). Another large scale dataset, containing user
generated image descriptions for 1M images, cre-
ated by quering Flickr. As a result, the captions
are not necessarily full or accurate (see Figure 1).

Flickr 30K (Young et al., 2014). 5 captions per
image for more than 31K real-world images from
Flickr, created through crowd-sourcing.

Microsoft COCO (Lin et al., 2014). Includes
object segmentation and 5 captions per image for
more than 300K images from Flickr.

ImageNet (Deng et al., 2009). A dataset
matching images and the corresponding WordNet
synsets (Miller et al., 1990). We gathered all avail-
able annotated synsets as the ImageNet corpus.

We also created a set of non-visual Brown cor-
pora by subtracting each of the corpora from the
Brown corpus, to each we refer as Brownyy —
V' C in relation to some visual corpus VC'.

3.2 Setup and Comparison Results

Given a corpus, we divided the words in each
concreteness scores list into two non-overlapping
sets (words contained in the corpus and words not

Corpus C-list | Words-in | Words-out | Ave-in | Ave-out | Diff/Range% | Abs-ratio
40K | 18191 18742 3.02 291 2.74%
Brown MRC | 3639 553 442.17 | 443.62 | -0.28% 15.24%
Visual Genome 40K | 14968 21965 35 2.61 22.49% . ‘
MRC | 3263 929 465.62 | 360.66 | 20.5%
40K | 11786 | 25147 352 [271 20.52% |
MSCOco MRC | 2919 1273 469.21 | 380.79 | 17.26% 12.96%

. 40K | 9874 27059 3.57 2.75 20.76% ‘
Flickr 30k MRC | 2669 1523 471.45 | 39138 | 15.63% 14.98%
ImaceNet 40K | 8397 28536 3.96 2.68 32.52% o ‘

& MRC | 2365 1827 505.31 | 360.87 | 28.21%
40K | 20746 16187 33 2.55 18.85% ‘
SBU MRC | 3789 403 452.67 | 34541 | 20.94% 3:74%
Table 2: Corpus concreteness measuring using different concreteness score lists.

Corpus | D/IR% 40K | DIR%MRC 4 Predicting Concreteness Scores
Brounnyy — VG -14.47% -20.35%
Brownyy — MSCOCO | -11.37% -17.13% The leading principal here is that words contained
Brownnyv — Flickr30k -10.30% -15.76% in visual tend to h ionificantlv hich
Brownny — ImageNet | -12.15% 2621% in visual corpora tend to have significantly higher
Brownnyv — SBU -15.13% -22.28% concreteness scores, and words in non-visual cor-

Table 3: The Diff/Range% of the
Brown corpora.

non-visual

contained in the corpus), and calculated the aver-
age concreteness score of each set, as well as the
difference of the two averages normalized by the
score range of the list (‘Diff/Range%’) (see Table
2). We can see the clear differences between the
concreteness level of the Brown corpus (negligi-
ble Diff/Range%) and the rest of the visual corpora
(15.0% - 32%), which show nicely that the Brown
corpus is indeed “balanced” in terms of concrete-
ness. The ‘Abs-ratio’ column refers to previous
results by Ferraro et al. (2015), who calculated an
abstract-to-concrete ratio (Abs-ratio) with a fixed
common-abstract-terms list, where corpus words
in the list were considered as “abstract” and the
rest as “concrete”. The results were highly depen-
dent on corpus size (with more words outside the
fixed list (“concrete”) as vocabulary grows). Ac-
cordingly, the Abs-ratios of the Brown corpus and
most of the visual corpora were very similar, and
large corpora such as the SBU got significantly
lower ratios.

Table 3 shows the same calculations on the non-
visual Brown corpora. The large negative ratios
((-26)% - (-10)%) show that these corpora are less
concrete than the original Brown corpus, and are
much more abstract than all the visual corpora.

105

pora tend to have significantly lower scores. We
do not use concreteness scores lists for training,
but only a visual corpus and a generic corpus to
build visibility scores for each word, from which a
concreteness score is estimated.

4.1 Visibility Scores

The concreteness score of a word w consists of the
concrete visibility score and the abstract visibility
score, both are normalized sums computed in the
same manner (with only the reference corpus dif-
ferent, a visual for the concrete case and a non-
visual for the abstract case). Each term nei(w) in
the set of n-best nearest neighbors of w (extracted
from a model of 300-dimensional vectors for 3M
terms from the Google News dataset %) contained
in the reference corpus contributes its cosine sim-
ilarity to w (in(w) = 1.0 if w is in the reference
corpus, o/w 0.0), then the sum is normalized by
the sum of all similarities:

ConVisEmbScore(w) =

ZTL(’LU) + Znei(ul)EVisCor Slm(w7 nez)
in(w) + 3,00 STm(w, nei)

)

AbsVisEmbScore(w) =

’L’I’l(’u)) + Znei(w)EBrown—VisCor Slm(w7 nez)
in(w) + 32, 0w Sim(w, nei)

@

2available at https://code.google.com/archive/p/word2vec

max-sd [num-neigh [Spearman[Pearson [MSE
Turney 0.74 0.74 0.58
max(sd) | 1o 0.72 0.72 0.61
=189 | 50 0.71 0.70 0.72
10 0.63 0.62 111
Turney 0.79 0.81 0.89
med(sd) | 10 0.78 0.81 0.69
=122 | 59 0.77 0.79 0.78
10 0.71 0.73 113
Turney 0.80 0.82 0.99
Elleﬁ%(s‘i) 100 0.79 0.82 0.69
=1. 50 0.78 0.81 0.78
10 0.72 0.75 112

Table 4: Predicting concreteness scores.

The overall concreteness score for w is then:

ConcretenessScore(w)
ConVisEmbScore(w) — AbsVisEmbScore(w)

3

(2) and (1) range from 0.0 (non of the neighbors
is in the reference corpus) to 1.0 (all of them are).
Hence, (3) ranges between —1.0 and 1.0, where a
higher score means more concrete word.

Notice that no corpus-frequencies were taken
into account in the above sums. This is because
VL datasets are often human-focused with unreal-
istic high-weight for terms describing people. In
addition, words in the corpora were only lower-
caesd but not stemmed since we noticed it cut off
too much information, leading to poorer results
(due to the loss of potential discriminating con-
creteness features that are characteristic of many
derivational suffixes). For example, 40K’s scores
for several unstemmed forms of the stem woman:
woman (4.46), womanhood (2.55), womanishness
(1.79), womanize (2.82), womanlike (3.14).

4.2 Results and Discussion

To best demonstrate the strength of our method,
we present the results gathered by using a uni-
fied visual corpus that is both large enough to
be used as a reference corpus, and has higher
Diff/Range ratios. This unified corpus, which we
call the Big Visual Corpus (BVC) consists of the
Visual Genome, MSCOCO, Flickr30K, and Ima-
geNet, and contains over 98K lowercaesd (but oth-
erwise non-normalized) terms. Its Diff/Range%,
according to the 40K and MRC lists are 25.5% and
24.53%, respectively. The generic corpus used is
the Brown corpus, and respectively, the non-visual
reference corpus is Brownyy — BV C.

We follow the simple practice from K&per and
im Walde (2017) and map all scores into the same

106

interval using the following continuous function:

b—a)(x — min)

flw) = (+a,)

maxr — min

where [min, maz] is the original interval and [a, b]
the new interval. In our case, a = 1.04 (the min-
imum unigram score in the 40K list) and b
5.0. We then compute the correlation between
our scores and the 40K list’s scores and compare
them to the correlations of the previously calcu-
lated scores by Turney et al. (2011) (see Table 4).
We parameterize over both the number of neigh-
bors (up to 100) taken into account in (1) and
(2) and the maximal standard deviation (sd) of
words in the 40K list we consider in computing
the correlations. Using the mean sd as a threshold
shows better correlations with the subset consid-
ered. Also, considering more neighbors improves
all evaluation metrics.

5 Metaphor Detection

We utilize our concreteness scores to solve the
task of Metaphor Detection, where a set of literal
and non-literal samples is given, and the goal is
to classify each into the correct class. We follow
Black’s (1979) observation that a metaphor is es-
sentially an interaction between two terms, creat-
ing an implication-complex to resolve two incom-
patible meanings. Operationally, we follow Tur-
ney et al. and their adoption of Lakoff and John-
son’s (1980) notion that metaphor is a way to move
knowledge from a concrete domain to an abstract
one. Hence, there should be a correlation between
the “degree of abstractness in a word’s context [...]
with the likelihood that the word is used metaphor-
ically.” (Turney et al., 2011). We show our results
on two annotated datasets:

5.1 The TSV Dataset

This dataset by Tsvetkov et al. (2014) in-
cludes several sets with instances annotated as
“metaphorical” or “literal” by 5 annotators, from
which we experimented with two sets. The
first set, which we call TSV-AN, contains 200
adjective-noun (AN) pairs, 100 instances per class.
For example, “clean conscience” is annotated as
metaphorical, and ‘“clean air” as literal. The
second set, which we call TSV-SVO, contains
subject-verb-object (SVO) triples or pairs (when
missing ‘S’/°0’), 111 for each class.

We build a logistic regression model using 10-
fold cross-validation for each of the TSV-AN and

Dataset Features Precision | Recall | F1
Linguistic 0.73 0.80 0.76
Visual 0.60 0.91 0.73

TSV-AN | Multimodal | 0.67 096 | 0.79
Vis-Emb. 0.84 0.72 0.77

TSV-SVO | Vis-Emb. 0.83 0.80 0.81

Table 5: Results of our method (Vis-Emb.) on the
dataset by Tsvetkov et al. compared to previous
results by Shutova et al.

TSV-SVO sets. The feature vector for each phrase
in the sets is simple, consists of our assigned con-
creteness score for each word in the phrase. For
the second set, we divide each triple into two
pairs to get 150 “literal” ‘SV’/*VO’ pairs and 165
“metaphorical” ones. We flipped the feature vec-
tor of the ‘“VO’ pairs to represent scores in the
form of ‘OV’, so that the nouns and verb would
appear at consistent places in the vector. As a ref-
erence to our results, we bring previous results by
Shutova et al. (2016), who used linguistic embed-
ding model, visual embedding model, and a mul-
timodal model that mixed the two (see Table 5).

5.2 The TroFi dataset

The dataset by Birke and Sarkar (2006) con-
tains annotated “literal” and “non-literal” sen-
tences from the Wall Street Journal for 50 verbs.
We follow the exact same algorithm used in Tur-
ney et al. (2011) on a subset of 25 verbs, while
replacing their concreteness scores with ours.

We build a 5-dimensional feature vector for
each sentence, composed of the average concrete-
ness score of words with each of the following
part-of-speech tags: noun, proper noun, verb, ad-
jective, adverb. When there are no words with
a specific POS tag in the sentence, the value 0.0
is assigned to the corresponding place in the vec-
tor. The feature vectors are then used in a logistic
regression classifier to build a separate model for
each verb using 10-fold cross-validation. Table 6
shows our results along with the previous results
by Turney et al. (and their probability-matching
case).

6 Conclusion and Future Work

Even without the matching images, the captions
in vision and language datasets contain useful in-
formation regarding the visibility of words appear-
ing in them. In addition, the connection between
the visibility of a word and its concreteness level
is well known from psychological experiments.

107

Features Accuracy | Fl-score
Vis-Emb. 0.713 0.657
Turney et al. 0.734 0.639
Probability Matching | 0.605 0.500

Table 6: Classifying the sentences related to 25
verbs in the TroFi dataset. Accuracy and F1-score
are macro-averaged.

We exploited these properties in crafting visibility
scores, based only on the occurrences of a word’s
neighbors (in the semantic space) in the visual cor-
pora, and calculated a concreteness score out of
them for the word. We then experimented within
the related task of metaphor detection, and showed
comparable results to previous works. Our method
and algorithm, though relatively simple and intu-
itive, give surprisingly good (comparable) results,
while not requiring any multimodal processing at
all.

Acknowledgments

We would like to thank the three anonymous re-
viewers for their suggestions and comments.

This work was supported by Contract W911NF-
15-C-0238 with the US Defense Advanced Re-
search Projects Agency (DARPA) and the Army
Research Office (ARO).

References

Julia Birke and Anoop Sarkar. 2006. A cluster-
ing approach for nearly unsupervised recognition
of nonliteral language. In EACL 2006, 11st Con-
ference of the European Chapter of the Associ-
ation for Computational Linguistics, Proceedings
of the Conference, April 3-7, 2006, Trento, Italy.
http://aclweb.org/anthology/E/E06/E06-1042.pdf.

Max Black. 1979. More about metaphor.[in] a. ortony
(ed.), metaphor and thought.

Marc Brysbaert, Amy Beth Warriner, and Victor Ku-
perman. 2014. Concreteness ratings for 40 thousand

generally known english word lemmas. Behavior
research methods 46(3):904-911.

Max Coltheart. 1981. The mrc psycholinguis-
tic database. The Quarterly Journal of Ex-
perimental Psychology Section A 33(4):497-505.
https://doi.org/10.1080/14640748108400805.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Fei-Fei Li. 2009. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE
Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR 2009), 20-25

June 2009, Miami, Florida, USA. pages 248-255.
https://doi.org/10.1109/CVPRW.2009.5206848.

Jesse Dodge, Amit Goyal, Xufeng Han, Alyssa
Mensch, Margaret Mitchell, Karl Stratos, Kota
Yamaguchi, Yejin Choi, III Hal Daumé, Alexan-
der C. Berg, and Tamara L. Berg. 2012. De-
tecting visual text. In Proceedings of the 2012
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies. Association
for Computational Linguistics, Stroudsburg,
PA, USA, NAACL HLT ’12, pages 762-772.
http://dl.acm.org/citation.cfm?id=2382029.2382153.

Francis Ferraro, Nasrin Mostafazadeh, Ting-Hao (Ken-
neth) Huang, Lucy Vanderwende, Jacob Devlin,
Michel Galley, and Margaret Mitchell. 2015. A
survey of current datasets for vision and lan-
guage research. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2015, Lisbon, Por-
tugal, September 17-21, 2015. pages 207-213.
http://aclweb.org/anthology/D/D15/D15-1021.pdf.

W Nelson Francis and Henry Kucera. 1964.
Brown corpus. Department of Linguistics,
Brown University, Providence, Rhode Island 1.
http://icame.uib.no/brown/bcm.html.

Ray Jackendoff. 1983. Semantics and cognition. MIT
Press.

Maximilian Kdper and Sabine Schulte im Walde. 2017.
Improving verb metaphor detection by propagating
abstractness to words, phrases and individual senses.
SENSE 2017 page 24.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A. Shamma,
Michael S. Bernstein, and Fei-Fei Li. 2016. Vi-
sual genome: Connecting language and vision us-
ing crowdsourced dense image annotations. CoRR
abs/1602.07332. http://arxiv.org/abs/1602.07332.

George Lakoff and Mark Johnson. 1980. Metaphors
we live by. University of Chicago press.

Tsung-Yi Lin, Michael Maire, Serge J. Belongie,
James Hays, Pietro Perona, Deva Ramanan, Pi-
otr Dollar, and C. Lawrence Zitnick. 2014. Mi-
crosoft COCO: common objects in context. In
Computer Vision - ECCV 2014 - 13th European
Conference, Zurich, Switzerland, September 6-
12, 2014, Proceedings, Part V. pages 740-755.
https://doi.org/10.1007/978-3-319-10602-1,48.

George A Miller, Richard Beckwith, Christiane Fell-
baum, Derek Gross, and Katherine J Miller.
1990. Introduction to wordnet: An on-line lexi-
cal database. International journal of lexicography

3(4):235-244.

George A Miller and Philip N Johnson-Laird. 1976.
Language and perception.. Belknap Press.

108

Vicente Ordonez, Girish Kulkarni, and Tamara L. Berg.

2011. Im2text: Describing images using 1 million
captioned photographs. In Advances in Neural
Information Processing Systems 24: 25th Annual
Conference on Neural Information Processing
Systems 201 1. Proceedings of a meeting held 12-14
December 2011, Granada, Spain.. pages 1143—
1151. http://papers.nips.cc/paper/4470-im2text-
describing-images-using-1-million-captioned-
photographs.

Ekaterina Shutova, Douwe Kiela, and Jean Maillard.

2016. Black holes and white rabbits: Metaphor
identification with visual features. In NAACL HLT
2016, The 2016 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, San Diego
California, USA, June 12-17, 2016. pages 160—170.
http://aclweb.org/anthology/N/N16/N16-1020.pdf.

Yulia Tsvetkov, Leonid Boytsov, Anatole Gershman,

Eric Nyberg, and Chris Dyer. 2014. Metaphor
detection with cross-lingual model transfer. In
Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics,
ACL 2014, June 22-27, 2014, Baltimore, MD,
USA, Volume 1: Long Papers. pages 248-258.
http://aclweb.org/anthology/P/P14/P14-1024.pdf.

Peter D. Turney, Yair Neuman, Dan Assaf, and Yohai

Cohen. 2011. Literal and metaphorical sense iden-
tification through concrete and abstract context. In
Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2011, 27-31 July 2011, John Mcintyre Conference
Centre, Edinburgh, UK, A meeting of SIGDAT, a
Special Interest Group of the ACL. pages 680-690.
http://www.aclweb.org/anthology/D11-1063.

David L Waltz. 1993. Relating images, concepts, and

words. In Intelligent Systems, Springer, pages 21—
38.

Terry Winograd. 1972. Understanding natural lan-

guage. Cognitive psychology 3(1):1-191.

Peter Young, Alice Lai, Micah Hodosh, and

Julia Hockenmaier. 2014. From image
descriptions to visual denotations: New
similarity —metrics for semantic inference
over event descriptions. TACL 2:67-78.

https://tacl2013.cs.columbia.edu/ojs/index.php/tacl
/article/view/229.

Semantic Features Based on Word Alignments
for Estimating Quality of Text Simplification

Tomoyuki Kajiwara' and Atsushi Fujita*

"Tokyo Metropolitan University, Tokyo, Japan
*National Institute of Information and Communications Technology, Kyoto, Japan
kajiwara-tomoyuki@ed.tmu.ac. jp,atsushi.fujita@nict.go.jp

Abstract

This paper examines the usefulness of se-
mantic features based on word alignments
for estimating the quality of text simpli-
fication. Specifically, we introduce seven
types of alignment-based features com-
puted on the basis of word embeddings
and paraphrase lexicons. Through an em-
pirical experiment using the QATS dataset
(gtajner et al., 2016b), we confirm that
we can achieve the state-of-the-art perfor-
mance only with these features.

1 Introduction

Text simplification is the task of rewriting com-
plex text into a simpler form while preserving its
meaning. Systems that automatically pursue this
task can potentially be used for assisting reading
comprehension of less language-competent peo-
ple, such as learners (Petersen and Ostendorf,
2007) and children (Belder and Moens, 2010).
Such systems would also improve the performance
of other natural language processing tasks, such as
information extraction (Evans, 2011) and machine
translation (MT) (gtajner and Popovié, 2016).

Similarly to other text-to-text generation tasks,
such as MT and summarization, the outputs of text
simplification systems have been evaluated sub-
jectively by humans (Wubben et al., 2012; Stajner
et al., 2014) or automatically by comparing with
handcrafted reference texts (Specia, 2010; Coster
and Kauchak, 2011; Xu et al., 2016). However, the
former is costly and not replicable, and the latter
has achieved only a low correlation with human
evaluation.

On the basis of this backdrop, Quality Estima-
tion (QE) (Specia et al., 2010), i.e., automatic eval-
uation without reference, has been drawing much
attention in the research community. In the shared

109

Metrics ‘ Tlength Tlabel
BLEU -0.765 0.245
METEOR | -0.617 0.257
TER 0.741 -0.233
WER 0.757 -0.230

Table 1: The QATS training data shows that typ-
ical MT metrics are strongly biased by the length
difference between original and simple sentences
(Tiengtn), While they are less correlated with the
manually-labeled quality (7gper)-

task on quality assessment for text simplification
(QATS),! two tasks have been addressed (gtajner
etal., 2016b). One is to estimate a real-value qual-
ity score for given sentence pair, while the other
is to classify given sentence pair into one of the
three classes (good, ok, and bad). In the classifica-
tion task of the QATS workshop, systems based
on deep neural networks (Paetzold and Specia,
2016a) and MT metrics (gtajner etal., 2016a) have
achieved the best performance. However, deep
neural networks are rather unstable because of the
difficulty of training on a limited amount of data;
for instance, the QATS dataset offers only 505 sen-
tence pairs for training. MT metrics are incapable
of properly capturing deletions that are prevalent
in text simplification (Coster and Kauchak, 2011),
as they are originally designed to gauge seman-
tic equivalence. In fact, as shown in Table 1,
well-known MT metrics are strongly biased by the
length difference between original and simple sen-
tences, even though it is rather unrelated with the
quality of text simplification assessed by humans.

In order to properly account for the surface-
level inequivalency occurring in text simplifica-
tion, we examine semantic similarity features
based on word embeddings and paraphrase lexi-
cons. Unlike end-to-end training with deep neural
networks, we quantify word-level semantic corre-

"http://gats2016.github.io/shared.html

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 109-115,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

spondences using two pre-compiled external re-
sources: (a) word embeddings learned from large-
scale monolingual data and (b) a large-scale para-
phrase lexicon. Using the QATS dataset, we em-
pirically demonstrate that a supervised classifier
trained upon such features achieves good perfor-
mance in the classification task.

2 Semantic Features Based on Word
Alignments

We bring a total of seven types of features
that are proven useful for the similar task, i.e.,
finding corresponding sentence pairs within En-
glish Wikipedia and Simple English Wikipedia
(Hwang et al.,, 2015; Kajiwara and Komachi,
2016). Specifically, we assume that some of these
features are useful to capture inequivalency be-
tween original sentence and its simplified version
introduced during simplification, such as lexical
paraphrases and deletion of words and phrases.

Throughout this section, original sentence and
its simplified version are referred to as x and y,
respectively.

2.1 AES: Additive Embeddings Similarity

Given two sentences, x and ¢, AES between them
is computed as follows.

|z ||

AES(z,y) =cos | > F, Y (1)
i=1 j=1

where each sentence is vectorized with the sum
of the word embeddings of its component words,
Z; and ¥;, assuming the additive compositionality
(Mikolov et al., 2013).

2.2 AAS: Average Alignment Similarity

AAS (Song and Roth, 2015) averages the co-
sine similarities between all pairs of words within
given two sentences, x and y, calculated over their
embeddings.

AAS(z,y)

lz| |yl
ZZ cos(Zi, 7j) (2)
=1 j=1

2.3 MAS: Maximum Alignment Similarity

AAS inevitably involves noise, as many word
pairs are semantically irrelevant to each other.
MAS (Song and Roth, 2015) reduces this kind of

noise by considering only the best word alignment
for each word in one sentence as follows.

|z

1
MAS(z,y) |x| Zmaxcos(xl,yj) 3)

As MAS is asymmetric, we calculate it for each
direction, i.e., MAS(z,y) and MAS(y, =), unlike
Kajiwara and Komachi (2016) who has averaged
these two values.

2.4 HAS: Hungarian Alignment Similarity

AAS and MAS deal with many-to-many and one-
to-many word alignments, respectively. On the
other hand, HAS (Song and Roth, 2015) is based
on one-to-one word alignments.

The task of identifying the best one-to-one word
alignments H is regarded as a problem of bipartite
graph matching, where the two sets of vertices re-
spectively comprise words within each sentence x
and y, and the weight of a edge between x; and y;
is given by the cosine similarity calculated over
their word embeddings. Given H identified us-
ing the Hungarian algorithm (Kuhn, 1955), HAS
is computed by averaging the similarities between
embeddings of the aligned pairs of words.

1 oo
HAS(z,y) = H Z cos(Z;, ;) (4
(i.j)EH

where |H| = min(|z|,|y|), as H contains only
one-to-one word alignments.

2.5 WMD: Word Mover’s Distance

WMD (Kusner et al., 2015) is a special case of
the Earth Mover’s Distance (Rubner et al., 1998),
which solves the transportation problem of words
between two sentences represented by a bipartite
graph.” Let n be the vocabulary size of the lan-
guage, WMD is computed as follows.

WMD(z,y) = min Z Z Ayveud(Zy,)
u=1v=1
(5)

n
1
subject to : ZA“” = mfreq(azu, x)

v=1

Z»Auv =

*Note that the vertices in the graph represent the word
types, unlike the token-based graph for HAS.

freq(yv, Y)

where A, is a nonnegative weight matrix repre-
senting the flow from a word z,, in to a word ¥,
in y, eud(-, -) the Euclidean distance between two
word embeddings, and freq(-, -) the frequency of a
word in a sentence.

2.6 DWE: Difference of Word Embeddings

We also introduce the difference between sentence
embeddings so as to gauge their differences in
terms of meaning and simplicity. As the represen-
tation of a sentence, we used the averaged word
embeddings (Adi et al., 2017).

|| |yl

1 . 1 N
DWE(z,y) = > @ - ol > G (6
i=1 j=1

2.7 PAS: Paraphrase Alignment Similarity

PAS (Sultan et al., 2014, 2015) is computed based
on lexical paraphrases. This feature has been
proven useful in the semantic textual similarity
task of SemEval-2015 (Agirre et al., 2015).

PA(z,y) + PA(y, x)

PAS(z,y) [+ o] (7)
|| .
1 dj:x; e yi€y
PA(z, = J
() ; {O otherwise

where x; < y; holds if and only if the word pair
(xi,y;) is included in a given paraphrase lexicon.

3 Experiment

The usefulness of the above features was evaluated
through an empirical experiment using the QATS
dataset (Stajner et al., 2016b).

3.1 Data

The QATS dataset consists of 505 and 126 sen-
tence pairs for training and test, respectively,
where each pair is evaluated from four different
aspects: Grammaticality, Meaning preservation,
Simplicity, and Overall quality. Evaluations are
given by one of the three classes: good, ok, and
bad.

We used two pre-compiled external resources to
compute our features. One is the pre-trained 300-
dimensional CBOW model? to compute the fea-
tures based on word embeddings, while the other
is PPDB 2.0 (Pavlick et al., 2015)* for PAS.

Shttps://code.google.com/archive/p/

word2vec/
*nttp://paraphrase.org/

111

3.2 Evaluation Metrics

Each system is evaluated by the three metrics as
in the QATS classification task (Stajner et al.,
2016b): Accuracy (A), Mean Absolute Error (E)
and Weighted F-score (F). To compute Mean Ab-
solute Error, class labels were converted into three
equally distant numeric scores retaining their rela-
tion, i.e., good = 1, ok = 0.5, and bad = 0.

3.3 Baseline Systems

As the baseline, we employed four types of sys-
tems from the QATS workshop (Stajner et al.,
2016b): two typical baselines and two top-ranked
systems. “Majority-class” labels all the sentence
pairs with the most frequent class in the training
data. “MT-baseline” combines BLEU (Papineni
et al., 2002), METEOR (Lavie and Denkowski,
2009), TER (Snover et al., 2006), and WER (Lev-
enshtein, 1966), using a support vector machine
(SVM) classifier.

SimpleNets (Paetzold and Specia, 2016a) has
two different forms of deep neural network ar-
chitectures: multi-layer perceptron (SimpleNets-
MLP) and recurrent neural network (SimpleNets-
RNN). SimpleNets-MLP uses seven features of
each sentence: the number of characters, tokens,
and word types, 5-gram language model probabil-
ities estimated on the basis of either SUBTLEX
(Brysbaert and New, 2009), SubIMDB (Paet-
zold and Specia, 2016b), Wikipedia, and Simple
Wikipedia (Kauchak, 2013). SimpleNets-RNN,
which does not require such feature engineering,
uses embeddings of word N-grams.

SMH (§tajner et al., 2016a) has two types of
classifiers: logistic classifier (SMH-IBk/Logistic)
and random forest classifier (SMH-RandForest,
SMH-RandForest-b). Both are trained relying on
the automatic evaluation metrics for MT, such as
BLEU, METEOR, and TER, in combination with
the QE features for MT (Specia et al., 2013).

Instead of reimplementing the above baseline
systems, we excerpted their performance scores
from (Stajner et al., 2016b).

3.4 Systems with Proposed Features

We evaluated our proposed features in the su-
pervised classification fashion as previous work.
Specifically, we compared three types of super-
vised classifiers that had been also used in the
above baseline systems: SVM, MLP, and Rand-
Forest. Hyper-parameters of each system were de-

System Grammaticality Meaning Simplicity Overall

AT E| F1 |A7T E| F7 |AT E|l FT | AT E| F7
Majority-class 76.2 183 659 | 579 29.0 425|556 294 39.7 | 437 282 265
MT-baseline 76.2 183 659 | 66.7 202 62.7 | 50.8 262 483 | 381 41.7 375
SimpleNets-MLP 746 171 688 | 659 21.0 635 | 532 270 498 | 381 325 337
SimpleNets-RNN (N = 2) 754 187 655 | 579 274 513|500 270 475|524 258 46.1
SimpleNets-RNN (N = 3) 746 19.1 65.1 | 51.6 282 466 | 524 250 50.0 | 47.6 27.8 40.8
SMH-IBk/Logistic 706 194 716 | 69.1 202 68.1 | 500 282 51.1 | 476 282 475
SMH-RandForest 754 175 718 | 659 206 644 | 524 278 53.0 | 444 31.8 445
SMH-RandForest-b 754 183 700 | 619 238 59.7 | 57.1 254 564 | 484 29.0 48.6
Best score among the above 762 171 71.8 | 69.1 20.2 68.1 | 57.1 250 564 | 524 258 48.6
Our SVM 762 183 659 | 651 222 583 | 57.1 27.8 439 | 579 234 577
Our MLP 683 246 669 | 595 254 564|595 234 582|524 258 519
Our RandForest 762 183 659 | 66.7 230 632 | 635 21.8 598 | 51.6 266 483
Our SVM w/ MT-baseline 76.2 183 659 | 66.7 21.0 63.7 | 57.1 27.0 469 | 476 29.0 468
Our MLP w/ MT-baseline 63.5 26,6 638 | 643 214 627 | 524 262 532 | 46.0 31.8 455
Our RandForest w/ MT-baseline | 76.2 183 659 | 61.9 246 57.6 | 627 226 56.1 | 460 29.0 43.6

Table 2: Results on QATS classification task. The best scores of each metric are highlighted in bold.
Scores other than ours are excerpted from Stajner et al. (2016b).

Feature set C o' Grammaticality =~ Meaning Simplicity ~ Overall

ALL 1.0 0.1 76.2 65.1 57.1 579
-AES 1.0 0.1 76.2 65.1 57.1 57.1
-MAS(original, simple) | 0.1 0.1 76.2 57.9 55.6 56.4
-MAS(simple, original) 1.0 0.1 76.2 64.3 57.1 54.8
-PAS 0.1 0.1 76.2 57.9 55.6 532
-DWE 0.01 1.0 76.2 57.9 55.6 51.6
-WMD 0.01 0.1 76.2 57.9 55.6 46.8
-AAS 0.1 0.1 76.2 57.9 55.6 452
-HAS 0.01 0.01 76.2 57.9 55.6 35.7

Table 3: Ablation analysis on accuracy. Features are in descending order of overall accuracy.

termined through 5-fold cross validation using the
training data, regarding accuracy in terms of over-
all quality as the objective.

For the SVM classifier, we used the RBF kernel.
The trinary classification was realized by means
of the one-versus-the-rest strategy. For a given set
of features, we examined all the combinations of
hyper-parameters among C' € {0.01,0.1, 1.0} and
v € {0.01,0.1,1.0}; for the full set of features,
C = 1.0 and v = 0.1 were chosen.

As for the MLP classifier, among 1 to 3 lay-
ers with all the combinations of dimensionality
among {100, 200, 300, 400,500} and “ReLu” for
the activation function among {Logistic, tanh,
ReLu}, the 2-layer one with 200 x 200 dimen-
sionality was optimal. We used Adam (Kingma
and Ba, 2015) as the optimizer.

For the RandForest classifier, we examined all
the combinations of the following three hyper-
parameters: {10, 50,100,500, 1000} for num-
ber of trees, {5, 10, 15,20, co} for the maximum
depth of each tree, and {1, 5,10, 15,20} for the
minimum number of samples at leaves. The op-
timal combination for the full set of features was
(500,15, 1).

112

3.5 Results

Experimental results are shown in Table 2. The
SVM classifier based on our features greatly out-
performed the state-of-the-art methods in terms of
overall quality. The RandForest classifier some-
how achieved the best simplicity scores ever, even
though we had optimized the system with respect
to the accuracy of overall quality. As we ex-
pected, MLP did not beat the other two classi-
fiers, presumably due to the scarcity of the train-
ing data. The bottom three rows reveal that the
performance in terms of overall quality was de-
teriorated when MT-baseline features were incor-
porated on top of our feature set. This suggests
that word embeddings are superior to surface-level
processing in finding corresponding words within
sentence pairs.

Focusing on the overall quality, we conducted
an ablation analysis of the SVM classifier. The
analysis revealed, as shown in Table 3, that HAS,
AAS, and WMD were the most important fea-
tures. This can be explained by the role of word
alignments during the computation. Since MT
metrics, such as BLEU, rely only on surface-
level matches, they are insensitive to meaning-

While historians concur that the result it-
self was not manipulated, the voting pro-
cess was neither free nor secret.

Original

Most historians agree that the result was
not fixed, but the voting process was nei-
ther free nor secret.

Simple

(while, but), (concur, agree),
(itself, most), (manipulated, fixed),
and identical word pairs.

Hungarian
Alignment

Table 4: An example of word alignment. Differ-
ences between the original and simplified versions
are presented in bold. This is a sentence pair from
good class on overall quality. HAS using word-
level similarity reaches 0.85, while BLEU is 0.54.

Feature Tlength T'label
AES -0.661 0.185
AAS -0.335 0318
MAS(original, simple) | -0.817 0.226
MAS(simple, original) 0.092 -0.090
HAS 0.061 -0.050
WMD 0.788 -0.215
PAS -0.120 -0.039

Table 5: Correlation between each feature and the
difference of sentence length and the manually-
labeled quality. Note that DWE cannot be in-
cluded, as it is not a scalar value but the differential
vector between original and simplified sentences.

preserving rewritings from original sentence to
simple one. On the other hand, as exemplified
in Table 4, HAS and some other features can de-
tect the linkages between complex words and their
simpler counterparts. As a result of properly cap-
turing the alignments between such lexical para-
phrases, our system successfully classified this
sentence into good in terms of overall quality.

We expected that AAS could yield noise, as it
involves irrelevant pairs of words, but in fact, it
contributed to the QATS task. We speculate that it
helps to evaluate the appropriateness of substitut-
ing a word to other one considering the semantic
matching with the given context, as in lexical sim-
plification (Biran et al., 2011) and lexical substitu-
tion (Melamud et al., 2015; Roller and Erk, 2016;
Apidianaki, 2016).

The contribution of WMD was expected as it
was proven effective in the sentence alignment
task of English Wikipedia and Simple English
Wikipedia (Kajiwara and Komachi, 2016).

Table 5 shows that some of our semantic sim-
ilarity features are also strongly biased by the
length difference between original and simple sen-
tences, as MT metrics (cf. Table 1). Nonetheless,

113

HAS was not biased by the length difference al-
most at all, and AAS and WMD highly correlated
with the manually-labeled quality.

4 Conclusions

We presented seven types of semantic similarity
features based on word alignments for quality esti-
mation of text simplification. Unlike existing MT
metrics, our features can flexibly deal with word
alignments, taking deletions and paraphrases into
account. Our SVM classifier based on these fea-
tures achieved the best performance on the QATS
dataset.

Acknowledgments

This work was carried out when the first author
was taking up an internship at NICT, Japan. We
are deeply grateful to the anonymous reviewers for
their insightful comments and suggestions. This
work was conducted under the program ‘“Promo-
tion of Global Communications Plan: Research,
Development, and Social Demonstration of Mul-
tilingual Speech Translation Technology” of the
Ministry of Internal Affairs and Communications
(MIC), Japan.

References

Yosshi Adi, Einat Kermany, Yonatan Belinkov, Ofer
Lavi, and Yoav Goldberg. 2017. Fine-grained
Analysis of Sentence Embeddings Using Auxiliary
Prediction Tasks. In International Conference on
Learning Representations.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, German Rigau, Larraitz Uria, and Janyce
Wiebe. 2015. SemEval-2015 Task 2: Semantic Tex-
tual Similarity, English, Spanish and Pilot on Inter-
pretability. In Proceedings of the 9th International
Workshop on Semantic Evaluation. pages 252-263.

Marianna Apidianaki. 2016. Vector-space models for
PPDB paraphrase ranking in context. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing. pages 2028-2034.

Jan De Belder and Marie-Francine Moens. 2010. Text
Simplification for Children. In Proceedings of
the SIGIR Workshop on Accessible Search Systems.
pages 19-26.

Or Biran, Samuel Brody, and Noemie Elhadad. 2011.
Putting it Simply: a Context-Aware Approach to
Lexical Simplification. In Proceedings of the 49th

Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies.
pages 496-501.

Marc Brysbaert and Boris New. 2009. Moving beyond
Kucera and Francis: A Critical Evaluation of Cur-
rent Word Frequency Norms and the Introduction
of a New and Improved Word Frequency Measure
for American English. Behavior Research Methods
41(4):977-990.

William Coster and David Kauchak. 2011. Simple En-
glish Wikipedia: A New Text Simplification Task.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies. pages 665—669.

Richard J. Evans. 2011. Comparing methods for
the syntactic simplification of sentences in informa-
tion extraction. Literary and Linguistic Computing
26(4):371-388.

William Hwang, Hannaneh Hajishirzi, Mari Ostendorf,
and Wei Wu. 2015. Aligning Sentences from Stan-
dard Wikipedia to Simple Wikipedia. In Proceed-
ings of the 2015 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies. pages
211-217.

Tomoyuki Kajiwara and Mamoru Komachi. 2016.
Building a Monolingual Parallel Corpus for Text
Simplification Using Sentence Similarity Based on
Alignment between Word Embeddings. In Proceed-
ings of the 26th International Conference on Com-
putational Linguistics. pages 1147-1158.

David Kauchak. 2013. Improving Text Simplifica-
tion Language Modeling Using Unsimplified Text
Data. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics.
pages 1537-1546.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In Proceed-
ings of the 3rd International Conference on Learn-
ing Representations.

Harold W. Kuhn. 1955. The Hungarian Method for
the Assignment Problem. Naval Research Logistics
Quarterly 2:83-97.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian
Weinberger. 2015. From Word Embeddings To Doc-
ument Distances. In Proceedings of The 32nd In-

ternational Conference on Machine Learning. pages
957-966.

Alon Lavie and Michael Denkowski. 2009. The ME-
TEOR Metric for Automatic Evaluation of Machine
Translation. Machine Translation 23(2-3):105-115.

Vladimir Iosifovich Levenshtein. 1966. Binary Codes
Capable of Correcting Deletions, Insertions and Re-
versals. Soviet Physics Doklady 10(8):707-710.

114

Oren Melamud, Omer Levy, and Ido Dagan. 2015. A
Simple Word Embedding Model for Lexical Substi-
tution. In Proceedings of the 1st Workshop on Vector
Space Modeling for Natural Language Processing.
pages 1-7.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed Representa-
tions of Words and Phrases and Their Composition-
ality. In Advances in Neural Information Processing
Systems. pages 3111-3119.

Gustavo H. Paetzold and Lucia Specia. 2016a. Sim-
pleNets: Evaluating Simplifiers with Resource-
Light Neural Networks. In LREC 2016 Workshop
& Shared Task on Quality Assessment for Text Sim-
plification. pages 42-46.

Gustavo H. Paetzold and Lucia Specia. 2016b. Un-
supervised Lexical Simplification for Non-Native
Speakers. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence. pages 3761—
3767.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a Method for Automatic
Evaluation of Machine Translation. In Proceedings
of 40th Annual Meeting of the Association for Com-
putational Linguistics. pages 311-318.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch,
Benjamin Van Durme, and Chris Callison-Burch.
2015. PPDB 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing. pages 425—
430.

Sarah E. Petersen and Mari Ostendorf. 2007. Text Sim-
plification for Language Learners: A Corpus Anal-
ysis. In Proceedings of the Speech and Language
Technology in Education Workshop. pages 69-72.

Stephen Roller and Katrin Erk. 2016. PIC a Different
Word: A Simple Model for Lexical Substitution in
Context. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies. pages 1121-1126.

Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas.
1998. A Metric for Distributions with Applications
to Image Databases. In Proceedings of the Sixth In-
ternational Conference on Computer Vision. pages
59-66.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A Study of
Translation Edit Rate with Targeted Human Anno-
tation. In Proceedings of the 7th Conference of the
Association for Machine Translation in the Ameri-
cas. pages 1-9.

Yangqiu Song and Dan Roth. 2015. Unsupervised
Sparse Vector Densification for Short Text Simi-
larity. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies. pages 1275-1280.

Lucia Specia. 2010. Translating from Complex to Sim-
plified Sentences. In Proceedings of the 9th Interna-
tional Conference on Computational Processing of
the Portuguese Language. pages 30-39.

Lucia Specia, Dhwaj Raj, and Marco Turchi. 2010.
Machine Translation Evaluation versus Quality Es-
timation. Machine Translation 24(1):39-50.

Lucia Specia, Kashif Shah, Jose G.C. de Souza, and
Trevor Cohn. 2013. QuEst - A translation quality es-
timation framework. In Proceedings of the 51st An-
nual Meeting of the Association for Computational
Linguistics. pages 79-84.

Md Arafat Sultan, Steven Bethard, and Tamara Sum-
ner. 2014. Back to Basics for Monolingual Align-
ment: Exploiting Word Similarity and Contextual
Evidence. Transactions of the Association for Com-
putational Linguistics 2:219-230.

Md Arafat Sultan, Steven Bethard, and Tamara Sum-
ner. 2015. DLSQCU: Sentence Similarity from
Word Alignment and Semantic Vector Composition.
In Proceedings of the 9th International Workshop on
Semantic Evaluation. pages 148—-153.

Sanja Stajner, Ruslan Mitkov, and Horacio Saggion.
2014. One Step Closer to Automatic Evaluation
of Text Simplification Systems. In Proceedings of
the 3rd Workshop on Predicting and Improving Text
Readability for Target Reader Populations. pages 1—
10.

Sanja §tajner and Maja Popovié. 2016. Can Text Sim-
plification Help Machine Translation? Baltic Jour-
nal of Modern Computing 4(2):230-242.

Sanja Stajner, Maja Popovi¢, and Hanna Béchara.
2016a. Quality Estimation for Text Simplification.
In LREC 2016 Workshop & Shared Task on Quality
Assessment for Text Simplification. pages 15-21.

Sanja Stajner, Maja Popovi¢, Horacio Saggion, Lu-
cia Specia, and Mark Fishel. 2016b. Shared Task
on Quality Assessment for Text Simplification. In
LREC 2016 Workshop & Shared Task on Quality As-
sessment for Text Simplification. pages 22-31.

Sander Wubben, Antal van den Bosch, and Emiel
Krahmer. 2012. Sentence Simplification by Mono-
lingual Machine Translation. In Proceedings of the
50th Annual Meeting of the Association for Compu-
tational Linguistics. pages 1015-1024.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze
Chen, and Chris Callison-Burch. 2016. Optimizing
Statistical Machine Translation for Text Simplifica-
tion. Transactions of the Association for Computa-
tional Linguistics 4:401-415.

115

Injecting Word Embeddings with Another Language’s Resource : An
Application of Bilingual Embeddings

Prakhar Pandey Vikram Pudi

Manish Shrivastava

International Institute of Information Technology
Hyderabad, Telangana, India
prakhar.pandey@research.iiit.ac.in
{vikram,manish.shrivastava}@.iiit.ac.in

Abstract

Word embeddings learned from text cor-
pus can be improved by injecting knowl-
edge from external resources, while at
the same time also specializing them for
similarity or relatedness. These knowl-
edge resources (like WordNet, Paraphrase
Database) may not exist for all languages.
In this work we introduce a method to in-
ject word embeddings of a language with
knowledge resource of another language
by leveraging bilingual embeddings. First
we improve word embeddings of Ger-
man, Italian, French and Spanish using re-
sources of English and test them on variety
of word similarity tasks. Then we demon-
strate the utility of our method by creating
improved embeddings for Urdu and Tel-
ugu languages using Hindi WordNet, beat-
ing the previously established baseline for
Urdu.

1 Introduction

Recently fast and scalable methods to generate
dense vector space models have become very pop-
ular following the works of (Collobert and We-
ston, 2008; Mikolov et al., 2013; Pennington et al.,
2014). These methods take large amounts of text
corpus to generate real valued vector representa-
tion for words (word embeddings) which carry
many semantic properties.

Mikolov et al. (2013b) extended this model
to two languages by introducing bilingual embed-
dings where word embeddings for two languages
are simultaneously represented in the same vec-
tor space. The model is trained such that word
embeddings capture not only semantic informa-
tion of monolingual words, but also semantic re-
lationships across different languages. A number

116

of different methods have since been proposed to
construct bilingual embeddings (Zou et al., 2013;
Vulic and Moens, 2015; Coulmance et al., 2016).

A disadvantage of learning word embeddings
only from text corpus is that valuable knowl-
edge contained in knowledge resources like Word-
Net (Miller, 1995) is not used. Numerous meth-
ods have been proposed to incorporate knowledge
from external resources into word embeddings for
their refinement (Xu et al., 2014; Bian et al., 2014;
Mrksic et al., 2016). (Faruqui et al., 2015) intro-
duced retrofitting as a light graph based technique
that improves learned word embeddings.

In this work we introduce a method to im-
prove word embeddings of one language (tar-
get language) using knowledge resources from
some other similar language (source language).
To accomplish this, we represent both languages
in the same vector space (bilingual embeddings)
and obtain translations of source language’s re-
sources. Then we use these translations to im-
prove the embeddings of the target language by
using retrofitting, leveraging the information con-
tained in bilingual space to adjust retrofitting pro-
cess and handle noise. We also show why a dic-
tionary based translation would be ineffective for
this problem and how to handle situations where
vocabulary of target embeddings is too big or too
small compared to size of resource.

(Kiela et al., 2015) demonstrated the advantage
of specializing word embeddings for either sim-
ilarity or relatedness, which we also incorporate.
Our method is also independent of the way bilin-
gual embeddings were obtained. An added advan-
tage of using bilingual embeddings is that they are
better than monolingual counterparts due to incor-
porating multilingual evidence (Faruqui and Dyer,
2014; Mrksi¢ et al., 2017).

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 116—121,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

2 Background
2.1 Bilingual Embeddings

Various methods have been proposed to generate
bilingual embeddings. One class of methods learn
mappings to transform words from one monolin-
gual model to another, using some form of dic-
tionary (Mikolov et al., 2013b; Faruqui and Dyer,
2014). Another class of methods jointly optimize
monolingual and cross-lingual objectives using
word aligned parallel corpus (Klementiev et al.,
2012; Zou et al., 2013) or sentence aligned par-
allel corpus (Chandar A P et al., 2014; Hermann
and Blunsom, 2014). Also there are other meth-
ods which use monolingual data and a smaller set
of sentence aligned parallel corpus (Coulmance
etal., 2016) and those which use non-parallel doc-
ument aligned data (Vulic and Moens, 2015).

We experiment with translation invariant bilin-
gual embeddings by (Gardner et al., 2015). We
also experiment with method proposed by (Artetxe
et al., 2016) where they learn a linear transform
between two monolingual embeddings with mono-
lingual invariance preserved. They use a small
bilingual dictionary to accomplish this task. These
methods are useful in our situation because they
preserve the quality of original monolingual em-
beddings and do not require parallel text (benefi-
cial in case of Indian languages).

2.2 Retrofitting

Retrofitting was introduced by (Faruqui et al.,
2015) as a light graph based procedure for enrich-
ing word embeddings with semantic lexicons. The
method operates post processing i.e it can be ap-
plied to word embeddings obtained from any stan-
dard technique such as Word2vec, Glove etc. The
method encourages improved vectors to be simi-
lar to the vectors of similar words as well as sim-
ilar to the original vectors. This similarity rela-
tion among words (such as synonymy, hypernymy,
paraphrase) is derived from a knowledge resource
such as PPDB, WordNet etc. Retrofitting works as
follows:

Let matrix () contain the word embeddings to
be improved. Let V' = {wy, ws...w, } be the vocab-
ulary which is equal to number of rows in) and
d be the dimension of word vectors which is equal
to number of columns. Also let) be the ontol-
ogy that contains the intra word relations that must
be injected into the embeddings. The objective of
retrofitting is to find a matrix Q such that the new

117

word vectors are close to their original vectors as
well as vectors of related words. The function to
be minimized to accomplish this objective is:

n

Slailla—al*+ D> Billa — gl

i=1 (i)EE

(Q)

The iterative update equation is:

_ Yjtigek Bijj + oudi
> jiig)eE Pig + o

i

« and [are the parameters used to control the
process. We discuss in Section 3.2 how we set
them to adapt the process to bilingual settings.

2.3 Dictionary based approach

Before discussing our method, we would like to
point that using a dictionary for translating the lex-
ical resource and then retrofitting with this trans-
lated resource is not feasible. Firstly obtaining
good quality dictionaries is a difficult and costly
process'. Secondly it is not necessary that one
would obtain translations that are within the vo-
cabulary of the embeddings to be improved. To
demonstrate this, we obtain translations for em-
beddings of 3 languages® and show the results in
Table 1. In all cases the number of translations that
are also present in the embedding’s vocabulary are
too small.

Language Vocab Matches
German 43,527 9,950
Italian 73,427 24,716
Spanish 41,779 16,547

Table 1: Using a dictionary based approach

3 Approach

Let S, T and R be the vocabularies of source, tar-
get and resource respectively. Size of R is always
fixed while size of S and " depends on embed-
dings. The relation between S, T" and R is shown
in Figure 1. Sets S and R have one to one map-
ping which in not necessarily onto, while 7" and
S have many to one mapping. Consider the ideal
case where every word in R is also in S and every
word in S has the exact translation from 7' as its
nearest neighbour in the bilingual space. Then the

leg. Google and Bing Translate APIs have become paid.
2using Yandex Translate APL, it took around 3 days

ragazzo
fighio

Figure 1: Relationships between Source, Target
and Resource Vocabularies.

simple approach for translation would be assign-
ing every s; € S its nearest neighbour ¢; € T as
the translation.

First problem is that in practical settings these
conditions are almost never satisfied. Secondly the
sizes of S, T and R can be very different. Suppose
the size of .S, T is large compared to R or the size
of T'is large but size of S is comparatively smaller.
In both cases size of translated resource will be too
small to make impact. Thirdly words common to
both R and S will be lesser than the total words in
R. So the size of R accessible to 1" using .S will
be even lesser. A mechanism is therefore required
to control the size of translated resource and fil-
ter incorrect translations. We accomplish this as
follows:

3.1 Translating knowledge resource

For translation we adapt a dual approach that al-
lows control over the size of the translated list. We
iterate through 7" (not .5) looking for translations
in S. A translation is accepted or rejected based
on whether the cosine similarity between words is
above the threshold 7. This method stems from
the fact that mapping between 7" and S' is many to
one. So the Italian word ragazzo is translated to
boy, but we can also translate (and subsequently
retrofit) figlio to boy (Figure 1) in order to get a
larger translated resource list with some loss in
quality of list. Thus n gives us direct control over
the size of translated resource list. Then to trans-
late the list of related words, we translate normally
(i.e from S to T'). Algorithm 1 summarizes this
process.

3.2 Retrofitting to translated resource

We modify the retrofitting procedure to accommo-
date noisy translations as follows:

As discussed earlier, retrofitting process con-
trols the relative shift of vectors by two parameters
« and 3, where « controls the movement towards

original vector and § controls movement towards
vectors to be ﬁtted with. (Faruqui et al., 2015) set
aas 1 and B as + where is the number of vectors
to be fitted with. Thus they give equal weights to
each vector.

Cosine similarity between a word and its trans-
lation is a good measure of the confidence in its
translation. We use it to set 3 such that differ-
ent vectors get different weights. A word for
which we have higher confidence in translation
(i.e higher cosine similarity) is given more weight
when retrofitting. Therefore w; being the weights,
«, (3 are set as :

Y

:E ws,

i=1

Bi:wi

Further reduction in weights of noisy words can
be done by taking powers of cosine similarity. An
example in Table 2 shows weights of similar words
for Italian word professore derived by taking pow-
ers of cosine similarity (we refer to this power as
filter parameter).

Words Similarity | Weights
educatore 0.955 0.796
harvard 0.853 0.452
insegnando 0.980 0.903
insegnata 0.990 0.951

Table 2: Taking power of weights reduces weights
of noisy words (here harvard). Here filter = 5.

Algorithm 1 Translating Knowledge Resource
Input : Source (.5), Target ('), Resource (R), n

Output Translated Knowledge Resource
R*

R* =]

for ¢ in T do

ts < NearestNeighbour(S)
if similarity(t,ts) > n then
lexicons — S|ts]
for [in lexicons do
ly «— NearestNeighbour(T)
weight «— similarity(l,l;)
R*[t].add(ly, weight)
end for
else
continue
end if
end for

118

.. Half En- | Full En-

Language Vocab TRL Tasks Original riched riched
MC30 0.631 0.643 0.662
18,802 | RG65 0.503 0.531 0.600
German 433271 37408 | WS353 sim) | 0.600 0.631 0.635
Simlex999 0.333 0.356 0.373
. 22022 | WS353 (sim) | 0.595 0.640 0.652
Italian 34271 44309 | Simlex999 0.247 0.283 0.313
. 17.434 | MC30 0312 0.286 0.412
Spanish ALTTO 1 35034 | RG6S 0.608 0.615 0.634
French 40523 | 16293 | pGes 0.547 0.582 0.673

: 32,602 ' ' '
Table 3: Retrofitting Translation Invariant Bilingual Embeddings for German, Italian, Spanish and

French using English Paraphrase Database. (TRL stands for Translated Resource Length)

4 Datasets and Benchmarks

For English as source language, we use the Para-
phrase Database (Ganitkevitch et al., 2013) to spe-
cialize embeddings for similarity as it gives the
best results (compared to other sources like Word-
Net). To specialize embeddings for relatedness,
we use University of South Florida Free Asso-
ciation Norms (Nelson et al., 2004) as indicated
by (Kiela et al., 2015). For Hindi as source
language, we use Hindi WordNet (Bhattacharyya
et al., 2010). Whenever the size of resource is big
enough, we first inject word embeddings with half
of the dataset (random selection) followed by full
length dataset to demonstrate the sequential gain
in performance.

Multilingual WS353 and SimLex999 datasets are
by (Leviant and Reichart, 2015). We also use
German RG65 (Gurevych, 2005), French RG65
(Joubarne and Inkpen, 2011) and Spanish MC30,
RG65 (Hassan and Mihalcea, 2009; Camacho-
Collados et al., 2015). For Indian languages we
use datasets provided by (Akhtar et al., 2017).

5 Results

In this section we present the experimental results
of our method.?> Before discussing the results we
explain how different parameters are chosen. We
do 10 iterations of retrofitting process for all our
experiments because 10 iterations are enough for
convergence (Faruqui et al., 2015) and also using
the same value for all experiments avoids over-
fitting. The value of filter parameter is set as 2

3The implementation of our method is available at
https://github.com/prakhar987/InjectingBilingual

119

because we believe the embeddings that we use are
well trained and low in noise. This value can be
increased further if word embeddings being used
are very noisy but in most cases a value of 2 is
enough. 7 value, as explained in previous sections
is set such that the translated resource obtained is
of sufficient length. If more lexicons in translated
resource are required, relax 7 and vice-versa.

5.1 European Languages

Table 3 shows the result of retrofitting translation
invariant bilingual embeddings of four European
languages for similarity using English Paraphrase
Database. For each language we set n as 0.70 and
filter as 2. The embeddings are evaluated specif-
ically on datasets measuring similarity. All em-
beddings are 40 dimensional. To show that our
method is effective, the embeddings are first fitted
with only half of the database followed by fitting
with full length database. Table 3 also contains in-
formation about the size of vocabulary and trans-
lated resource. One can compare the size of trans-
lated resource that we get using our method to the
dictionary based approach.

Table 4 shows the results of specializing word
embeddings for relatedness using the USF Asso-
ciation Norms and evaluation on WS353 related-
ness task. We test only with German and Italian as
only these languages had datasets to test for relat-
edness.

Language | Original| Fitted
German 0.461 0.520
Italian 0.460 0.523

Table 4: Specializing for relatedness

We also experiment with embeddings of large
dimensions (300) and large vocabulary size
(200,000) for English and Italian bilingual embed-
dings obtained by method described by (Artetxe
et al., 2016). Table 5 shows the improvements at-
tained for similarity task for Italian with 64,434
words in the translated resource, = 0.35 and
filter = 2 (notice n is much smaller since we
want translated resource size to be comparable to
size of vocabulary).

Task Original | Fitted
WS353 0.648 0.680
SimLex999 | 0.371 0.405

Table 5: Improving large embeddings

5.2 Indian Languages

To demonstrate the utility of our method, we ex-
periment with Indian languages, taking Hindi as
the source language (which has Hindi WordNet).
For target language, we take one language (Urdu)
which is very similar to Hindi (belongs to same
family) and one language (Telugu) which is very
different from Hindi (descendants from same fam-
ily). The vocabulary size of Urdu and Telugu were
129,863 and 174,008 respectively. The results are
shown in Table 6. Here again we fit with half
length followed by full length of Hindi WordNet.
As expected, we get much higher gains for Urdu
compared to Telugu.*

Language | Original H.alf F}l“
Fitted Fitted

Telugu 0.427 0.436 0.440

Urdu 0.541 0.589 0.612

Table 6: Retrofitting Indian languages

6 Conclusion

In this work we introduced a method to improve
word embeddings of a language using resources
from another similar language. We accomplished
this by translating the resource using bilingual
embeddings and modifying retrofitting while han-
dling noise. Using our method, we also created
new benchmark on Urdu word similarity dataset.

“enriched embeddings and evaluation scripts can be
downloaded from https://goo.gl/tN6p3w

120

References

Syed Sarfaraz Akhtar, Arihant Gupta, Avijit Vajpayee,
Arjit Srivastava, and Manish Shrivastava. 2017.
Word similarity datasets for indian languages: An-
notation and baseline systems. In Proceedings of the
11th Linguistic Annotation Workshop, pages 91-94.
Association for Computational Linguistics.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2016.
Learning principled bilingual mappings of word em-
beddings while preserving monolingual invariance.
In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, EMNLP
2016, pages 2289-2294.

Pushpak Bhattacharyya, Prabhakar Pande, and Laxmi
Lupu. 2010. Hindi wordnet. Language Resources
and Evaluation (LRE).

Jiang Bian, Bin Gao, and Tie-Yan Liu. 2014.
Knowledge-powered deep learning for word embed-
ding. In Proceedings of the European Conference
on Machine Learning and Knowledge Discovery in
Databases - Volume 8724, pages 132-148.

Jos Camacho-Collados, Mohammad Taher Pilehvar,
and Roberto Navigli. 2015. A framework for the
construction of monolingual and cross-lingualword
similarity datasets. In Proceedings of 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing of the Asian Fed-
eration of Natural Language Processing, volume 2,
pages 1-7.

Sarath Chandar A P, Stanislas Lauly, Hugo Larochelle,
Mitesh Khapra, Balaraman Ravindran, Vikas C
Raykar, and Amrita Saha. 2014. An autoencoder
approach to learning bilingual word representations.
In Proceedings of Neural Information Processing
Systems, pages 1853—1861.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th International Conference on
Machine Learning, pages 160—167.

Jocelyn Coulmance, Jean-Marc Marty, Guillaume
Wenzek, and Amine Benhalloum. 2016. Trans-
gram, fast cross-lingual word-embeddings. CoRR,
abs/1601.02502.

Manaal Faruqui, Jesse Dodge, Sujay K. Jauhar, Chris
Dyer, Eduard Hovy, and Noah A. Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
Proceedings of NAACL.

Manaal Faruqui and Chris Dyer. 2014. Improving vec-
tor space word representations using multilingual
correlation. In Proceedings of EACL.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The paraphrase
database. In Proceedings of NAACL-HLT, pages
758-764.

Matt Gardner, Kejun Huang, Evangelos Papalex-
akis, Xiao Fu, Partha Talukdar, Christos Falout-
sos, Nicholas Sidiropoulos, and Tom Mitchell. 2015.
Translation invariant word embeddings. In Proceed-
ings of EMNLP.

Iryna Gurevych. 2005. Using the structure of a con-
ceptual network in computing semantic relatedness.
IJCNLP 2005, pages 767-778.

Samer Hassan and Rada Mihalcea. 2009. Cross-lingual
semantic relatedness using encyclopedic knowledge.
In Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume
3, pages 1192-1201.

Karl Moritz Hermann and Phil Blunsom. 2014. Multi-
lingual models for compositional distributed seman-
tics. CoRR, abs/1404.4641.

Colette Joubarne and Diana Inkpen. 2011. Compar-
ison of semantic similarity for different languages
using the google n-gram corpus and second- order
co-occurrence measures. In Proceedings of the 24th
Canadian Conference on Advances in Artificial In-
telligence, pages 216-221.

Douwe Kiela, Felix Hill, and Stephen Clark. 2015.
Specializing word embeddings for similarity or re-
latedness. In Proceedings of EMNLP.

Alexandre Klementiev, Ivan Titov, and Binod Bhat-
tarai. 2012. Inducing crosslingual distributed rep-
resentations of words. In Proceedings COLING,
pages 1459-1474.

Ira Leviant and Roi Reichart. 2015. Judgment lan-
guage matters: Multilingual vector space models for
judgment language aware lexical semantics. CoRR,
abs/1508.00106.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. 2013b.
Exploiting similarities among languages for ma-
chine translation. CoRR, abs/1309.4168.

George A. Miller. 1995. Wordnet: A lexical database
for english. Communications of the ACM, pages 39—
41.

Nikola Mrksic, Diarmuid o) Séaghdha, Blaise Thom-
son, Milica Gasic, Lina Maria Rojas-Barahona, Pei-
Hao Su, David Vandyke, Tsung-Hsien Wen, and
Steve J. Young. 2016. Counter-fitting word vectors
to linguistic constraints. In Proceedings of NAACL,
pages 142-148.

Nikola Mrksié, Ivan Vulié, Diarmuid o} Séaghdha, Ira
Leviant, Roi Reichart, Milica Gasi¢, Anna Korho-
nen, and Steve Young. 2017. Semantic special-
isation of distributional word vector spaces using
monolingual and cross-lingual constraints. Transac-
tions of the Association for Computational Linguis-
tics.

121

Douglas L. Nelson, Cathy L. McEvoy, and Thomas A.
Schreiber. 2004. The university of south florida free
association, rhyme, and word fragment norms. Be-
havior Research Methods, Instruments, & Comput-
ers, 36(3):402-407.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 12, pages 1532—
1543.

Ivan Vulic and Marie-Francine Moens. 2015. Bilin-
gual word embeddings from non-parallel document-
aligned data applied to bilingual lexicon induction.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing of the Asian Federation of Natu-
ral Language Processing, Volume 2: Short Papers,
pages 719-725.

Chang Xu, Yalong Bai, Jiang Bian, Bin Gao, Gang
Wang, Xiaoguang Liu, and Tie-Yan Liu. 2014. Rc-
net: A general framework for incorporating knowl-
edge into word representations. In Proceedings of
the 23rd ACM International Conference on Confer-
ence on Information and Knowledge Management,
pages 1219-1228.

Will Y. Zou, Richard Socher, Daniel Cer, and Christo-
pher D. Manning. 2013. Bilingual word embeddings
for phrase-based machine translation. In Proceed-
ings of EMNLP, pages 1393-1398.

Improving Black-box Speech Recognition using Semantic Parsing

Rodolfo Corona and Jesse Thomason and Raymond J. Mooney
Department of Computer Science, University of Texas at Austin
{rcorona, jesse, mooney}@cs.utexas.edu

Abstract

Speech is a natural channel for human-
computer interaction in robotics and consumer
applications. Natural language understand-
ing pipelines that start with speech can have
trouble recovering from speech recognition er-
rors. Black-box automatic speech recogni-
tion (ASR) systems, built for general purpose
use, are unable to take advantage of in-domain
language models that could otherwise amelio-
rate these errors. In this work, we present
a method for re-ranking black-box ASR hy-
potheses using an in-domain language model
and semantic parser trained for a particular
task. Our re-ranking method significantly im-
proves both transcription accuracy and seman-
tic understanding over a state-of-the-art ASR’s
vanilla output.

1 Introduction

Voice control makes robotic and computer systems
more accessible in consumer domains. Collect-
ing sufficient data to train ASR systems using cur-
rent state of the art methods, such as deep neural
networks (Graves and Jaitly, 2014; Xiong et al.,
2016), is difficult. Thus, it is common to use well-
trained, cloud-based ASR systems. These sys-
tems use general language models not restricted
to individual application domains. However, for
an ASR in a larger pipeline, the expected words
and phrases from users will be biased by the ap-
plication domain. The general language model of
a black-box ASR leads to more errors in transcrip-
tion. These errors can cause cascading problems
in a language understanding pipeline.

In this paper, we demonstrate that an in-
domain language model and semantic parser can
be used to improve black-box ASR transcription
and downstream semantic accuracy. We consider
a robotics domain, where language understand-
ing is key for ensuring effective performance and

122

positive user experiences (Thomason et al., 2015).
We collect a dataset of spoken robot commands
paired with transcriptions and semantic forms to
evaluate our method.! Given a list of ASR hy-
potheses, we re-rank the list to choose the hypoth-
esis scoring best between an in-domain trained
semantic parser and language model (Figure 1).
This work is inspired by other re-ranking meth-
ods which have used prosodic models (Anan-
thakrishnan and Narayanan, 2007), phonetic post-
processing (Twiefel et al., 2014), syntactic pars-
ing (Zechner and Waibel, 1998; Basili et al.,
2013), as well as features from search engine re-
sults (Peng et al., 2013).

Other work has similarly employed semantics
to improve ASR performance, for example by as-
signing semantic category labels to entire utter-
ances and re-ranking the ASR n-best list (Morbini
et al., 2012), jointly modeling the word and se-
mantic tag sequence (Deoras et al., 2013), and
learning a semantic grammar for use by both the
ASR system and semantic parser (Gaspers et al.,
2015). Closest to our work is that of Erdogan et
al. (2005), which uses maximum entropy mod-
eling to combine information from the semantic
parser and ASR’s language model for re-ranking.
Although their method could be adapted for use
with a black-box ASR, their parsing framework
employs a treebanked dataset of parses (Davies
et al., 1999; Jelinek et al., 1994). In contrast, the
Combinatory Categorial Grammar (CCG) frame-
work which we use in this work only requires that
the root-level semantic form be given along with
groundings for a small number of words (see sec-
tion 2.2), significantly reducing the cost of data
collection. Further, although they also experiment
with an out-of-the-box language model, they only

'Our dataset will be made available upon request.
Source code can be found in: https://github.com/
thomason-jesse/nlu_pipeline/tree/speech

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 122-127,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

Utterance
A

Hypothesis List

Top Re-ranked
Hypothesis
I

| (

ASR Hypothesis

Semantic Form

Parser Confidence | LM Confidence

1

Bring a

Bring a prison to Mr. John Smith

bring(hamburger, john)

5.310e-8 0.005 Bring a prism to Mr. Smith

prism to Mr.

John Smith

bring(a(’ x:i.(object(x))),smith)

Bring a prism to Ms. John Smith

bring(a(A x:i.(prism(x))).john)

0.49 0.339

Bring a prism to Mr. John Smith

bring(a(x:i.(prism(x))),john)

0.49 0.64

Figure 1: Our proposed methodology. The black-box ASR outputs an ordered list of its top hypotheses.
Each hypothesis is given confidence scores by an in-domain semantic parser and language model, which
are then used to re-rank the list. In this example, the parser has learned that “Mr.” and “Ms.” are
functionally equivalent, while the language model has learned that “Mr.” co-occurs with “John” more
than “Ms.” does. Together, they guide us to select the correct transcription.

measure for improvements in transcription accu-
racy, which may not entail improvements in lan-
guage understanding (Wang et al., 2003).

To the best of our knowledge, our method is the
first to improve language understanding by em-
ploying a low-cost semantic parser and language
model post-hoc on a high-cost, black-box ASR
system. This significantly lowers word error rate
(WER) while increasing semantic accuracy.

2 Methodology

Given a user utterance U, the black-box ASR
system generates a list of m-best hypotheses H.
For each hypothesis h € H, we produce an in-
terpolated score? S(h) from its language model
score Sy, (h) and semantic parser score Ssep ().
Parser confidence scores vary by orders of mag-
nitude between hypotheses, making it difficult to
find a meaningful interpolation weight o between
the language model and semantic parser. We
therefore normalize over the sum of scores in each
hypothesis list for each model. We then choose the
highest scoring hypothesis h*:

h* = a,r%g]ax (S(h)); (1)
S(h)=(1—a) - Spm(h) +a-Ssem(h). (2)

2In order to avoid underflow errors, all computations are
done in log space.

*We do not assume a black-box ASR system will provide
confidence scores for its n-best list. Google Speech API, for
example, often only shows confidence for the top hypothesis.
Preliminary experiments using proxy scores based on rank
did not improve performance.

123

2.1 Language Model

We implement an in-domain language model us-
ing the SRI Language Modeling Toolkit (Stolcke
etal., 2002). We use a trigram back-off model with
Witten-Bell discounting (Witten and Bell, 1991)
and an open vocabulary. We use perplexity-based,
length-normalized scores to compare hypotheses
with different numbers of word tokens.

2.2 Semantic Parsing Model

For semantic parsing, we used a CCG (Steedman
and Baldridge, 2011) based probabilistic CKY
parser.

The parser consists of a lexicon whose entries
are words paired with syntactic categories and se-
mantic forms (see Table 1 for example lexical en-
tries). CCG categories may be atomic or func-

Surface Form | CCG Category | Semantic Form
walk S/PP Az.(walk(x))
to PP/NP Az.(x)
john N john

Table 1: Example lexical entries in our domain.
Given an initial lexicon, additional entries are in-
duced by the parser during training for use at test
time.

tional, with functional categories specifying com-
binatory rules for adjacent categories. These may
be expressed logically by representing semantic
forms using a formalism such as lambda calculus.
For example, consider the combination between
the functional category (N P/N) and the atomic
category N, along with its pertaining lambda cal-

S : bring(a(Az.(red(z) A card(z))), jane)

/\

S/NP : Ay.(bring(y, jane))

/\

(S/NP)/NP : Az.(Ay.(bring(y, x))) NP :jane NP/N:AP.(a(Az.(P(2))))

give jane

NP : a(\z.(red(z) A card(z)))

/\

N : Az.(red(z) A card(z))

/\

N/N : AP.Az.(red(z) A P(z)) N:card

red

card

Figure 2: A parse tree of the phrase “give jane a red card.” The token give is an imperative, taking two
noun phrases on its right which represent the recipient and the patient of the action (the robot is the im-
plicit agent in the command). jane immediately resolves to a noun phrase. red is an adjectival predicate,
consuming the noun predicate card on its right, the result of which is consumed by the determiner a in

order to form a complete noun phrase.

culus expression:

(NP/N) N = NP
(A\z.(z) y =y

The combinatory rules of a CCG implicitly define
a grammar. An example CCG parse tree may be
seen in Figure 2.

Following Zettlemoyer and Collins (2005), gold
labels for parsing contain only root-level sema-
natic forms, and only a small set of bootstrapping
lexical entries are provided. This necessitates that
latent parse trees be inferred and that additional
lexical entries be induced during training.

Given a corpus of training examples 7' of sen-
tences paired with their semantic forms, we fol-
low the framework proposed by (Liang and Potts,
2015) and train a perceptron model to greedily
search for the maximally scoring parse of each
hypothesis. We bootstrap the parser’s lexicon en-
tries with mappings for words from 20 randomly
selected examples from our validation set, which
were parsed by hand to obtain the latent trees.
Sample templates used to create our dataset are
shown in Table 2.

To normalize likelihoods between hypotheses
of different lengths, we calculate average like-
lihoods for CCG productions and semantic null
nodes, then expand the semantic parse trees to ac-
commodate the maximum token length for utter-
ances when scoring.

Because our application is human-robot inter-
action, we give the parser a budget of 10 seconds

124

per hypothesis during the re-ranking process.* If a
valid parse is not found in time, the hypothesis is
given a confidence score of zero. If no hypotheses
from a list are parsed, the re-ranking decision falls
solely to the language model.

3 Experimental Evaluation

We evaluate chosen hypotheses by word error rate
(WER), semantic form accuracy (whether the cho-
sen hypothesis’ semantic parse exactly matched
the gold parse), and semantic form F1 score, the
average harmonic mean of the precision and re-
call of hypotheses’ semantic predicates with their
corresponding gold predicates (see Table 3 for ex-
ample F1 computations). In the robotic command
domain, higher F1 can mean shorter clarification
dialogs with users when there are misunderstand-
ings, since the intended (gold) semantic parse’s
predicates are better represented for parses with
higher F1. We compare the ASR’s top hypothe-
sis to re-ranking (Eq. 2) using only the language
model (o = 0), only the semantic parser (o = 1),
and a weighted combination of the two (o = 0.7).

3.1 Dataset

We collected a corpus of speech utterances from
32 participants, consisting of both male and fe-
male, native and non-native English speakers. Par-
ticipants were asked to read sentences from a com-
puter screen for 25 minutes each, resulting in a to-
tal of 5,161 utterances. The sentences read were

“We found that hypotheses successfully parsed within the
budget were parsed in 1.94 seconds on average, suggesting
that a stricter budget can be used.

Template Example Sentences

Corresponding Semantic Form

(f) (w) to (p)’s office

roll over to dr bell’s office
can you please walk to john’s office
run over to professor smith’s office

walk(the(Az.(office(x) A possesses(z, tom))))
walk(the(z.(office(x) A possesses(z, john))))
walk(the(Az.(office(x) A possesses(z, john))))

() (d) (@) to (p)

go and bring coffee to jane
please deliver a red cup to tom
would you take the box to jack

bring(coffee, jane)
bring(a(Az.(red(z) A cup(z))), tom)
bring(box, jack)

() (s) (p) in (1)

please look for ms. jones in the lab
can you find jack in room 3.512
search for the ta in the kitchen

searchroom(3414b, jane)
searchroom(3512, jack)
searchroom(kitchen, jack)

Table 2: Example templates used to generate our dataset. Our template parameterization includes items
(1), people (p), locations (1), filler words (f), and actions such as walk (w), delivery(d), and search (s).
Parameter instances had multiple referring expressions (e.g. “john” and “professor smith” both refer to
the person john). Eight distinct templates were used across the 3 actions, with 70 items, 69 adjectives,
over 20 referents for people, and a variety of wordings for actions and filler, resulting in over 400 million

possible utterances.

generated using templates for commanding a robot
in an office domain (Table 2). The use of templates
allowed for the automatic generation of ground
truth transcriptions and semantic forms for each
spoken utterance.

3.2 Experimental Setup and Results

To test our methodology, we used the Google
Speech APL? a state-of-the-art, black-box ASR
system which has been used in recent robotics
tasks (Arumugam et al., 2017; Kollar et al., 2013).
For each utterance, 10 hypotheses were requested
from Google Speech.® An average of 9.2 hypothe-
ses were returned per utterance (the API some-
times returns fewer than requested). We held out 2
speakers from our dataset as validation for hyper-
parameter tuning, leaving 30 speakers for a 27/3
(90%/10%) training and test set split using 10-fold
cross validation.

We set the language model and semantic parser
hyperparameters using the held-out validation set.
Performance of the ASR’s top hypothesis (ASR)
was tested against re-ranking solely based on
semantic-parser scores (SemP), solely on lan-
guage model scores (LM), and on an interpolation
of these with & = 0.7 which maximized semantic
form accuracy on the validation set (Both).

Table 4 summarizes the results of these models
on the test set. All of our model’s scores are statis-
tically significantly better than the ASR baseline
(p < 0.05 with a Student’s independent paired t-
test). Additionally, SemP and Both perform sig-

Shttps://cloud.google.com/speech/

SPreliminary experiments showed diminishing returns for
hypothesis lists of size n > 10. Therefore, n was set to 10
for the accuracy vs. runtime tradeoff.

125

nificantly better than LM in F1 while the Both
condition performs significantly better than LM
in semantic accuracy without a significant loss in
WER or F1 performance against LM and SemP,
respectively.

3.3 Discussion

All re-ranking conditions significantly improve
word error rate, semantic parsing accuracy, and se-
mantic form F1 scores against using the ASR’s top
hypothesis.

When examining the overall parsing accuracy
of our models, we found that 37.5% of the ASR
hypothesis lists generated for test utterances had at
least 1 out of vocabulary (OOV) word per hypoth-
esis. Our semantic parser is closed-vocabulary at
test time, ignoring OOV words, which can contain
valuable semantic information.

Consistent with intuition, using a language
model alone decreases WER most. Semantic ac-
curacy increases when interpolating confidences
from the semantic parser and language model,
meaning there are cases where the hypothesis the
semantic parser most favors has an incorrect se-
mantic form even while another hypothesis in the
list gives the correct one. In this case, a lower
confidence parse from a better-worded transcript
is more likely to be correct, and we need both the
semantic parser and the language model to select
it.

There is no significant difference in semantic
accuracy performance between solely using the
language model or semantic parser, but interpolat-
ing the two gives a significant improvement over
just using a language model. The semantic parser
and interpolation conditions give significantly bet-

Semantic Form P/ R| F1

bring(cup, jane) % % 1.0
bring(a(Az.(red(z)A cup(x))), jane) % % 0.857

bring(jane, jane) % % 0.8

Table 3: Example F1 computations for the phrase “Bring Jane a cup”. Here, the relevant (gold) predicates

are bring, cup, and jane. F1 is the harmonic mean of the precision (P) and recall (R): F1=

Model WER Acc F1
Oracle | 13.4+42 | 279+3.8 | 39.3+3.9
ASR 3084+4.6 | 7.38£19 | 15.9%+3.0
SemP 208+£5.3 | 248+39 | 383+£4.1
LM 157+£4.7 | 227+£33 | 31.7£4.1
Both 16.8£4.6 | 26.3 +3.7 | 38.1+4.1
Table 4: Average performance of re-ranking

with standard deviation using semantic parsing
(SemP), language model (LM), and Both against
the black-box ASR’s top hypothesis. Oracle de-
notes the best possible performance achievable
through re-ranking per metric (i.e. choosing the
hypothesis from the ASR that optimizes for each
metric in turn).

ter F1 performance over a language model alone.
These results show that the integration of semantic
information into the speech recognition pipeline
can significantly improve language understand-
ing.

4 Conclusion and Future Work

We have shown that post-hoc re-ranking of a
black-box ASR’s hypotheses using an in-domain
language model and a semantic parser can signifi-
cantly improve the accuracy of transcription and
semantic understanding. Using both re-ranking
components together improves parsing accuracy
over either alone without sacrificing WER reduc-
tion.

A natural extension to this work would be to test
re-ranking using a neural language model, which
has been shown to encode some semantic informa-
tion in addition to capturing statistical regularities
in word sequences (Bengio et al., 2003).

Our approach should improve language under-
standing in robotics applications. The increase
in F1 should help expedite dialogues because it
would entail fewer predicates needing clarification
from the user. Additionally, due to the large pro-
portion of OOV words that we encountered from
ASR, in the future we will use an open-vocabulary

126

P-R
2 PR

semantic parser, perhaps through leveraging dis-
tributional semantic representations in order to in-
duce the meaning of novel words. By adapting ex-
isting work on learning semantic parsers for robots
through dialog (Thomason et al., 2015) to incor-
porate ASR, a robot equipped with our pipeline
could iteratively learn the meaning of new words
and expressions it encounters in the wild.

Acknowledgments

We thank our reviewers for their helpful feedback
and requests for clarification. This work is sup-
ported by an NSF EAGER grant (IIS-1548567), an
NSF NRI grant (IIS-1637736), and a National Sci-
ence Foundation Graduate Research Fellowship to
the second author.

References

Sankaranarayanan Ananthakrishnan and Shrikanth
Narayanan. 2007. Improved speech recognition us-
ing acoustic and lexical correlates of pitch accent in
a n-best rescoring framework. In Proc. Int. Conf.
Acoust., Speech, Signal Process., Honolulu, HI, vol-
ume 4, pages 873-876. IEEE.

Dilip Arumugam, Siddharth Karamcheti, Nakul
Gopalan, Lawson L. S. Wong, and Stefanie Tellex.
2017. Accurately and Efficiently Interpreting
Human-Robot Instructions of Varying Granularities.
In Robotics: Science and Systems.

Roberto Basili, Emanuele Bastianelli, Giuseppe
Castellucci, Daniele Nardi, and Vittorio Perera.
2013. Kernel-based discriminative re-ranking for
spoken command understanding in HRIL In
Congress of the Italian Association for Artificial In-
telligence, pages 169—180. Springer.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137-1155.

K. Davies, Robert E. Donovan, Mark Epstein, Mar-
tin Franz, Abraham Ittycheriah, Ea-Ee Jan, Jean-
Michel LeRoux, David Lubensky, Chalapathy Neti,
Mukund Padmanabhan, Kishore Papineni, Salim

Roukos, Andrej Sakrajda, Jeffrey S. Sorensen,
Borivoj Tydlitit, and Todd Ward. 1999. The IBM
conversational telephony system for financial appli-
cations. In Sixth European Conference on Speech
Communication and Technology, EUROSPEECH
1999, Budapest, Hungary, September 5-9, 1999.

Anoop Deoras, Gokhan Tur, Ruhi Sarikaya, and Dilek
Hakkani-Tiir. 2013. Joint discriminative decoding
of word and semantic tags for spoken language
understanding. In IEEE Transactions on Audio,
Speech, and Language Processing, pages 1612—
1621. IEEE.

Hakan Erdogan, Ruhi Sarikaya, Stanley F Chen,
Yuqing Gao, and Michael Picheny. 2005. Us-
ing semantic analysis to improve speech recogni-
tion performance. Computer Speech & Language,
19(3):321-343.

Judith Gaspers, Philipp Cimiano, and Britta Wrede.
2015. Semantic parsing of speech using grammars
learned with weak supervision. In HLT-NAACL,
pages 872-881.

Alex Graves and Navdeep Jaitly. 2014. Towards end-
to-end speech recognition with recurrent neural net-
works. In ICML, volume 14, pages 1764—1772.

Frederick Jelinek, John Lafferty, David Magerman,
Robert Mercer, Adwait Ratnaparkhi, and Salim
Roukos. 1994. Decision tree parsing using a hidden
derivation model. In Proceedings of the workshop
on Human Language Technology, pages 272-2717.
Association for Computational Linguistics.

Thomas Kollar, Vittorio Perera, Daniele Nardi, and
Manuela Veloso. 2013. Learning environmental
knowledge from task-based human-robot dialog. In
Robotics and Automation (ICRA), 2013 IEEE Inter-
national Conference on, pages 4304—4309. IEEE.

Percy Liang and Christopher Potts. 2015. Bringing
machine learning and compositional semantics to-
gether. Annu. Rev. Linguist., 1(1):355-376.

Fabrizio Morbini, Kartik Audhkhasi, Ron Artstein,
Maarten Van Segbroeck, Kenji Sagae, Panayiotis
Georgiou, David R Traum, and Shri Narayanan.
2012. A reranking approach for recognition and
classification of speech input in conversational di-
alogue systems. In Spoken Language Technology
Workshop (SLT), 2012 IEEE, pages 49-54. IEEE.

Fuchun Peng, Scott Roy, Ben Shahshahani, and
Francoise Beaufays. 2013. Search results based n-
best hypothesis rescoring with maximum entropy
classification. In ASRU, pages 422-427.

Mark Steedman and Jason Baldridge. 2011. Combi-
natory categorial grammar. Non-Transformational
Syntax: Formal and Explicit Models of Grammar.
Wiley-Blackwell, pages 181-224.

Andreas Stolcke et al. 2002. Srilm-an extensible lan-
guage modeling toolkit. In Intl. Conf. on Spoken
Language Processing, pages 901- 904.

127

Jesse Thomason, Shiqi Zhang, Raymond Mooney, and
Peter Stone. 2015. Learning to interpret natural lan-
guage commands through human-robot dialog. In
Proceedings of the 24th International Joint Confer-
ence on Artificial Intelligence (IJCAI), pages 1923—
1929.

Johannes Twiefel, Timo Baumann, Stefan Heinrich,
and Stefan Wermter. 2014. Improving domain-
independent cloud-based speech recognition with
domain-dependent phonetic post-processing. In
Twenty-Eighth AAAI Conference on Artificial Intel-
ligence. Quebec City, Canada, pages 1529-1536.

Ye-Yi Wang, Alex Acero, and Ciprian Chelba. 2003.
Is word error rate a good indicator for spoken lan-
guage understanding accuracy. In IEEE Workshop
on Automatic Speech Recognition and Understand-
ing, pages 577-582, St. Thomas, US Virgin Is-
lands. Institute of Electrical and Electronics Engi-
neers, Inc.

Tan H Witten and Timothy C Bell. 1991. The zero-
frequency problem: Estimating the probabilities of
novel events in adaptive text compression. [EEE
Transactions on Information Theory, 37(4):1085—
1094.

Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank
Seide, Mike Seltzer, Andreas Stolcke, Dong Yu, and
Geoffrey Zweig. 2016. Achieving human parity in
conversational speech recognition. arXiv preprint
arXiv:1610.05256.

Klaus Zechner and Alex Waibel. 1998. Using chunk
based partial parsing of spontaneous speech in un-
restricted domains for reducing word error rate in
speech recognition. In Proceedings of the 36th An-
nual Meeting of the Association for Computational
Linguistics and 17th International Conference on
Computational Linguistics-Volume 2, pages 1453—
1459. Association for Computational Linguistics.

Luke S Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial gram-
mars. In Proceedings of the Conference on Un-
certainty in Artificial Intelligence (UAI), pages 658—
666.

Revisiting the Design Issues of Local Models for
Japanese Predicate-Argument Structure Analysis

Yuichiroh Matsubayashi® and Kentaro Inui®®
#Tohoku University, "RIKEN Center for Advanced Intelligence Project
{y-matsu, inui}@ecei.tohoku.ac.]jp

Abstract

The research trend in Japanese predicate-
argument structure (PAS) analysis is shift-
ing from pointwise prediction models with
local features to global models designed
to search for globally optimal solutions.
However, the existing global models tend
to employ only relatively simple local fea-
tures; therefore, the overall performance
gains are rather limited. The importance
of designing a local model is demonstrated
in this study by showing that the per-
formance of a sophisticated local model
can be considerably improved with recent
feature embedding methods and a feature
combination learning based on a neural
network, outperforming the state-of-the-
art global models in F; on a common
benchmark dataset.

1 Introduction

A predicate-argument structure (PAS) analysis is
the task of analyzing the structural relations be-
tween a predicate and its arguments in a text
and is considered as a useful sub-process for a
wide range of natural language processing appli-
cations (Shen and Lapata, 2007; Kudo et al., 2014;
Liu et al., 2015).

PAS analysis can be decomposed into a set of
primitive subtasks that seek a filler token for each
argument slot of each predicate. The existing
models for PAS analysis fall into two types: local
models and global models. Local models indepen-
dently solve each primitive subtask in the point-
wise fashion (Seki et al., 2002; Taira et al., 2008;
Imamura et al., 2009; Yoshino et al., 2013). Such
models tend to be easy to implement and faster
compared with global models but cannot handle
dependencies between primitive subtasks. Re-

128

cently, the research trend is shifting toward global
models that search for a globally optimal solution
for a given set of subtasks by extending those local
models with an additional ranker or classifier that
accounts for dependencies between subtasks (Ilida
et al., 2007a; Komachi et al., 2010; Yoshikawa
et al., 2011; Hayashibe et al., 2014; Ouchi et al.,
2015; lida et al., 2015, 2016; Shibata et al., 2016).

However, even with the latest state-of-the-art
global models (Ouchi et al., 2015, 2017), the best
achieved I remains as low as 81.4% on a com-
monly used benchmark dataset (Iida et al., 2007b),
wherein the gain from the global scoring is only
0.3 to 1.0 point. We speculate that one reason
for this slow advance is that recent studies pay too
much attention to global models and thus tend to
employ overly simple feature sets for their base lo-
cal models.

The goal of this study is to argue the impor-
tance of designing a sophisticated local model be-
fore exploring global solution algorithms and to
demonstrate its impact on the overall performance
through an extensive empirical evaluation. In this
evaluation, we show that a local model alone is
able to significantly outperform the state-of-the-art
global models by incorporating a broad range of
local features proposed in the literature and train-
ing a neural network for combining them. Our best
local model achieved 13% error reduction in Fj
compared with the state of the art.

2 Task and Dataset

In this study, we adopt the specifications of the
NAIST Text Corpus (NTC) (Iida et al., 2007b), a
commonly used benchmark corpus annotated with
nominative (NOM), accusative (ACC), and dative
(DAT) arguments for predicates. Given an input
text and the predicate positions, the aim of the PAS
analysis is to identify the head of the filler tokens

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 128—133,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

for each argument slot of each predicate.

The difficulty of finding an argument tends to
differ depending on the relative position of the
argument filler and the predicate. In particular,
if the argument is omitted and the corresponding
filler appears outside the sentence, the task is much
more difficult because we cannot use the syntactic
relationship between the predicate and the filler in
a naive way. For this reason, a large part of pre-
vious work narrowed the focus to the analysis of
arguments in a target sentence (Yoshikawa et al.,
2011; Ouchi et al., 2015; Iida et al., 2015), and
here, we followed this setting as well.

3 Model

Given a tokenized sentence s and a target predicate
p in s with the gold dependency tree ¢, the goal of
our task is to select at most one argument token a
for each case slot of the target predicate.

Taking z, = (a,p, s, t) as input, our model es-
timates the probability p(c|z,) of assigning a case
label ¢ € {NOM, ACC,DAT,NONE} for each token
a in the sentence, and then selects a token with
a maximum probability that exceeds the output
threshold 6, for c. The probability p(c|x,) is mod-
eled by a neural network (NN) architecture, which
is a fully connected multilayer feedforward net-
work stacked with a softmax layer on the top (Fig-
ure 1).

g = softmax(Wyy1hy +bpy1) (1)
hi = ReLUBN(W:hi_1 +b)) (2)
hi = ReLUBN(Wym + b)) 3)
m = [hpath, Wp, Wa, f(Za)] S

The network outputs the probabilities g of as-
signing each case label for an input token a, from
automatically learned combinations of feature rep-
resentations in input m. Here, h; is an ¢-th hidden
layer and n is the number of hidden layers. We
apply batch normalization (BN) and a ReLLU acti-
vation function to each hidden layer.

The input layer m for the feedforward network
is a concatenation of the three types of feature rep-
resentations described below: a path embedding
hpath, word embeddings of the predicate and the
argument candidate w,, and w,, and a traditional
binary representation of other features f(x).

3.1 Lexicalized path embeddings

When an argument is not a direct dependent of a
predicate, the dependency path is considered as

129

[Nom | Acc | DAT |NONE|p(C|xa)

()
l |
l l

) |) ()]

Rpan Wa) 20wy f(xg)

[

softmax
T

RelLU+BN
T

RelLU+BN
-

Path
embedding

Word
embeddings

Binary
features

(

Predicate

Figure 1: Network structure of our NN model

] "
Arg IA ————— r— — — — Predicate ‘
. ALz 2 = s
Path: iy % At G LI
POS: Noun Caseparticle Verb Comma Verb
Party leader-ACC visit, request-PAST
0.5 g w &8 z
s 4 -~ 3 -3 hoE8E > g L
- | ® [1 2 |°
| 5 [

' Path
! embedding

RNN

Figure 2: Path embedding

important information. Moreover, in some con-
structions such as raising, control, and coordina-
tion, lexical information of intermediate nodes is
also beneficial although a sparsity problem occurs
with a conventional binary encoding of lexicalized
paths.

Roth and Lapata (2016) and Shwartz et al.
(2016) recently proposed methods for embedding
a lexicalized version of dependency path on a sin-
gle vector using RNN. Both the methods embed
words, parts-of-speech, and directions and labels
of dependency in the path into a hidden unit of
LSTM and output the final state of the hidden unit.
We adopt these methods for Japanese PAS analy-
sis and compare their performances.

As shown in Figure 2, given a dependency path
from a predicate to an argument candidate, we first
create a sequence of POS, lemma, and dependency
direction for each token in this order by traversing
the path.! Next, an embedding layer transforms
the elements of this sequence into vector represen-
tations. The resulting vectors are sequentially in-
put to RNN. Then, we use the final hidden state

' We could not use dependency labels in the path since
traditional parsing framework in Japanese does not have de-
pendency labels. However, particles in Japanese can roughly
be seen as dependency relationship markers, and, therefore,
we think these adaptations approximate the original methods.

For surface, lemma, POS,
predicate | type of conjugated form,
P nominal form of nominal verb,

voice suffixes (-reru, -seru, -dekiru, -tearu)
For surface, lemma, POS, NE tag,
argument | whether a is head of bunsetsu,
candidate | particles in bunsetsu,
a right neighbor token’s lemma and POS
Between | case markers of other dependents of p,
predicate | whether a precedes p,
and whether a and p are in the same bunsetsu,
argument | token- and dependency-based distances,
candidate | naive dependency path sequence

Table 1: Binary features

as the path-embedding vector. We employ GRU
(Cho et al., 2014) for our RNN and use two types
of input vectors: the adaptations of Roth and La-
pata (2016), which we described in Figure 2, and
Shwartz et al. (2016), which concatenates vectors
of POS, lemma and dependency direction for each
token into a single vector.

3.2 Word embedding

The generalization of a word representation is one
of the major issues in SRL. Fitzgerald et al. (2015)
and Shibata et al. (2016) successfully improved
the classification accuracy of SRL tasks by gen-
eralizing words using embedding techniques. We
employ the same approach as Shibata et al. (2016),
which uses the concatenation of the embedding
vectors of a predicate and an argument candidate.

3.3 Binary features

Case markers of the other dependents Our
model independently estimates label scores for
each argument candidate. However, as argued
by Toutanova et al. (2008) and Yoshikawa et al.
(2011), there is a dependency between the argu-
ment labels of a predicate.

In Japanese, case markers (case particles) par-
tially represent a semantic relationship between
words in direct dependency. We thus introduce a
new feature that approximates co-occurrence bias
of argument labels by gathering case particles for
the other direct dependents of a target predicate.

Other binary features The other binary fea-
tures employed in our models have mostly been
discussed in previous work (Imamura et al., 2009;
Hayashibe et al., 2011). The entire list of our bi-
nary features are presented in Table 1.

130

4 Experiments

4.1 Experimental details

Dataset The experiments were performed on the
NTC corpus v1.5, dividing it into commonly used
training, development, and test divisions (Taira
et al., 2008).

Hyperparameters We chose the hyperparame-
ters of our models to obtain a maximum score in
Iy on the development data. We select 2, 000 for
the dimension of the hidden layers in the feedfor-
ward network from {256, 512, 1000, 2000, 3000},
2 for the number of hidden layers from {1, 2, 3, 4},
192 for the dimension of the hidden unit in GRU
from {32,64, 128,192}, 0.2 for the dropout rate
of GRUs from {0.0,0.1,0.2,0.3,0.5}, and 128 for
the mini-batch size on training from {32, 64, 128}.
We employed a categorical cross-entropy loss
for training, and used Adam with 3; = 0.9, 3 =
0.999, and € = le — 08. The learning rate for
each model was set to 0.0005. All the model were
trained with early stopping method with a maxi-
mum epoch number of 100, and training was ter-
minated after five epochs of unimproved loss on
the development data. The output thresholds for
case labels were optimized on the training data.

Initialization All the weight matrices in GRU
were initialized with random orthonormal matri-
ces. The word embedding vectors were initialized
with 256-dimensional Word2Vec? vectors trained
on the entire Japanese Wikipedia articles dumped
on September 1Ist, 2016. We extracted the body
texts using WikiExtractor,? and tokenized them
using the CaboCha dependency parser v0.68 with
JUMAN dictionary. The vectors were trained on
lemmatized texts. Adjacent verbal noun and light
verb were combined in advance. Low-frequent
words appearing less than five times were replaced
by their POS, and we used trained POS vectors
for words that were not contained in a lexicon of
Wikipedia word vectors in the PAS analysis task.
We used another set of word/POS embedding
vectors for lexicalized path embeddings, initial-
ized with 64-dimensional Word2Vec vectors. The
embeddings for dependency directions were ran-
domly initialized. All the pre-trained embedding
vectors were fine-tuned in the PAS analysis task.
The hyperparameters for Word2 Vec are “-cbow

Zhttps://code.google.com/archive/p/Word2 Vec/
*https://github.com/attardi/wikiextractor

All F1 in different dependency distance
Model Binary feats. Fi (o) | Prec. | Rec. Dep | Zero | 2 | 3| 4125
B all 82.02 (£0.13) 83.45 | 80.64 | 89.11 | 49.59 | 57.97 | 47.2 | 37 21
B —cases 81.64 (£0.19) || 83.88 | 79.52 | 88.77 | 48.04 | 56.60 | 45.0 | 36 21
WB all 82.40 (4+0.20) 85.30 | 79.70 | 89.26 | 49.93 | 58.14 | 474 | 36 23
WBP-Roth all 82.43 (£0.15) || 84.87 | 80.13 | 89.46 | 50.89 | 58.63 | 494 | 39 24
WBP-Shwartz all 83.26 (£0.13) 85.51 | 81.13 | 89.88 | 51.86 | 60.29 | 49.0 | 39 22
WBP-Shwartz —word 83.23 (£0.11) || 85.77 | 80.84 | 89.82 | 51.76 | 60.33 | 49.3 | 38 21
WBP-Shwartz —{word, path} 83.28 (£0.16) 85.77 | 80.93 | 89.89 | 51.79 | 60.17 | 49.4 | 38 23
WBP-Shwartz (ens) | —{word, path} 83.85 85.87 | 81.93 | 90.24 | 53.66 | 61.94 | 51.8 | 40 24
WBP-Roth —{word, path} 82.26 (£0.12) || 84.77 | 79.90 | 89.28 | 50.15 | 57.72 | 49.1 | 38 24
BP-Roth —{word, path} 82.03 (£0.19) || 84.02 | 80.14 | 89.07 | 49.04 | 57.56 | 46.9 | 34 18
WB —{word, path} 82.05 (4£0.19) || 85.42 | 78.95 | 89.18 | 47.21 | 5542 | 439 | 34 21
B —{word, path} || 78.54 (£0.12) || 79.48 | 77.63 | 85.59 | 40.97 | 49.96 | 36.8 | 22 9.1

Table 2: Impact of each feature representation.

1 -window 10 -negative 10 -hs O -sample le-5 -
threads 40 -binary O -iter 3 -min-count 10”.

Preprocessing We employed a common exper-
imental setting that we had an access to the gold
syntactic information, including morpheme seg-
mentations, parts-of-speech, and dependency re-
lations between bunsetsus. However, instead of
using the gold syntactic information in NTC, we
used the output of CaboCha v0.68 as our input
to produce the same word segmentations as in the
processed Wikipedia articles. Note that the train-
ing data for the parser contain the same document
set as in NTC v1.5, and therefore, the parsing ac-
curacy for NTC was reasonably high.

The binary features appearing less than 10 times
in the training data were discarded. For a path se-
quence, we skipped a middle part of intermediate
tokens and inserted a special symbol in the center
of the sequence if the token length exceeded 15.

4.2 Results

In the experiment, in order to examine the impact
of each feature representation, we prepare arbi-
trary combinations of word embedding, path em-
bedding, and binary features, and we use them as
input to the feedforward network. For each model
name, W, P, and B indicate the use of word em-
bedding, path embedding, and binary features, re-
spectively. In order to compare the performance
of binary features and embedding representations,
we also prepare multiple sets of binary features.
The evaluations are performed by comparing pre-
cision, recall, and I} on the test set. These values
are the means of five different models trained with

113

— word” indicates the removal of surface and lemma
features. “— cases” and “— path” indicate the removal of the case markers of other dependents and binary
path features, respectively. The task Zero is equivalent to the cases where the dependency distance > 2.

131

the same training data and hyperparameters.

Impact of feature representations The first
row group in Table 2 shows the impact of the case
markers of the other dependents feature. Com-
pared with the model using all the binary features,
the model without this feature drops by 0.3 point
in F} for directly dependent arguments (Dep),
and 1.6 points for indirectly dependent arguments
(Zero). The result shows that this information sig-
nificantly improves the prediction in both Dep and
Zero cases, especially on Zero argument detection.

The second row group compares the impact
of lexicalized path embeddings of two different
types. In our setting, WBP-Roth and WB com-
pete in overall I, whereas WBP-Roth is partic-
ularly effective for Zero. WBP-Shwartz obtains
better result compared with WBP-Roth, with fur-
ther 0.9 point increase in comparison to the WB
model. Moreover, its performance remains with-
out lexical and path binary features. The WBP-
Shwartz (ens)—{word, path} model, which is the
ensemble of the five WBP-Shwartz—{word, path}
models achieves the best Fj score of 83.85%.

To highlight the role of word embedding and
path embedding, we compare B, WB, BP-Roth,
and WBP-Roth models on the third row group,
without using lexical and path binary features.
When we respectively remove W and P-Roth from
WBP-Roth, then the performance decreases by
0.23 and 0.21 in Fy. Roth and Lapata (2016)
reported that F; decreased by 10 points or more
when path embedding was excluded. However, in
our models, such a big decline occurs when we

Dep Zero
Model ALL ALL \ NOM \ ACC \ DAT ALL \ NOM \ ACC \ DAT
On NTC 1.5
WBP-Shwartz (ens) —{word, path} || 83.85 || 90.24 | 91.59 | 95.29 | 62.61 || 53.66 | 56.47 | 44.7 16
B 82.02 || 89.11 | 90.45 | 94.61 | 6091 || 49.59 | 52.73 | 38.3 11
(Ouchi et al., 2015)-local 78.15 || 85.06 | 86.50 | 92.84 | 30.97 || 41.65 | 4556 | 21.4 0.8
(Ouchi et al., 2015)-global 79.23 || 86.07 | 88.13 | 92.74 | 38.39 || 44.09 | 48.11 24.4 4.8
(Ouchi et al., 2017)-multi-seq 81.42 || 88.17 | 88.75 | 93.68 | 64.38 || 47.12 | 50.65 | 32.4 7.5
Subject anaphora resolution on modified NTC, cited from (lida et al., 2016)
(Ouchi et al., 2015)-global 57.3
(lida et al., 2015) 41.1
(Tida et al., 2016) 52.5

Table 3: Comparisons to previous work in F

omit both path and word embeddings. This result
suggests that the word inputs at both ends of the
path embedding overlap with the word embedding
and the additional effect of the path embedding is
rather limited.

Comparison to related work Table 3 shows the
comparison of F] with existing research. First,
among our models, the B model that uses only
binary features already outperforms the state-of-
the-art global model on NTC 1.5 (Ouchi et al.,
2017) in overall F; with 0.6 point of improvement.
Moreover, the B model outperforms the global
model of Ouchi et al. (2015) that utilizes the basic
feature set hand-crafted by Imamura et al. (2009)
and Hayashibe et al. (2011) and thus contains al-
most the same binary features as ours. These re-
sults show that fine feature combinations learned
by deep NN contributes significantly to the perfor-
mance. The WBP-Shwartz (ens)—{word, path}
model, which has the highest performance among
our models shows a further 1.8 points improve-
ment in overall F;, which achieves 13% error re-
duction compared with the state-of-the-art grobal
model (81.42% of (Ouchi et al., 2017)-multi-seq).

Tida et al. (2015) and Iida et al. (2016) tackled
the task of Japanese subject anaphora resolution,
which roughly corresponds to the task of detect-
ing Zero NOM arguments in our task. Although
we cannot directly compare the results with their
models due to the different experimental setup, we
can indirectly see our model’s superiority through
the report on lida et al. (2016), wherein the repli-
cation of Ouchi et al. (2015) showed 57.3% in Fj,
whereas Iida et al. (2015) and lida et al. (2016)
gave 41.1% and 52.5%, respectively.

As a closely related work to ours, Shibata et al.
(2016) adapted a NN framework to the model of

132

Ouchi et al. (2015) using a feedforward network
for calculating the score of the PAS graph. How-
ever, the model is evaluated on a dataset annotated
with a different semantics; therefore, it is difficult
to directly compare the results with ours.
Unfortunately, in the present situation, a com-
prehensive comparison with a broad range of prior
studies in this field is quite difficult for many his-
torical reasons (e.g., different datasets, annotation
schemata, subtasks, and their own preprocesses or
modifications to the dataset). Creating resources
that would enable a fair and comprehensive com-
parison is one of the important issues in this field.

5 Conclusion

This study has argued the importance of design-
ing a sophisticated local model before exploring
global solution algorithms in Japanese PAS anal-
ysis and empirically demonstrated that a sophisti-
cated local model alone can outperform the state-
of-the-art global model with 13% error reduction
in Fj. This should not be viewed as a matter of
local models vs. global models. Instead, global
models are expected to improve the performance
by incorporating such a strong local model.

In addition, the local features that we employed
in this paper is only a part of those proposed in the
literature. For example, selectional preference be-
tween a predicate and arguments is one of the ef-
fective information (Sasano and Kurohashi, 2011;
Shibata et al., 2016), and local models could fur-
ther improve by combining these extra features.

Acknowledgments

This work was partially supported by JSPS KAK-
ENHI Grant Numbers 15H01702 and 15K16045.

References

Kyunghyun Cho, Bart Van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the Properties
of Neural Machine Translation : Encoder Decoder
Approaches. In SSST-8, pages 103—111.

Nicholas Fitzgerald, Oscar Tackstrom, Kuzman
Gancheyv, and Dipanjan Das. 2015. Semantic Role
Labeling with Neural Network Factors. In EMNLP,
pages 960-970.

Yuta Hayashibe, Mamoru Komachi, and Yuji Mat-
sumoto. 2011. Japanese Predicate Argument Struc-
ture Analysis Exploiting Argument Position and
Type. In IJCNLP, pages 201-209.

Yuta Hayashibe, Mamoru Komachi, and Yuji Mat-
sumoto. 2014. Japanese Predicate Argument Struc-
ture Analysis by Comparing Candidates in Differ-
ent Positional Relations between Predicate and Ar-
guments. Journal of Natural Language Processing,
21(1):3-25.

Ryu Iida, Kentaro Inui, and Yuji Matsumoto. 2007a.
Zero-anaphora resolution by learning rich syntactic
pattern features. Transactions on Asian and Low-
Resource Language Information Processing, 6(4):1—
22.

Ryu lida, Mamoru Komachi, Kentaro Inui, and Yuji
Matsumoto. 2007b. Annotating a Japanese Text
Corpus with Predicate-Argument and Coreference
Relations. In Linguistic Annotation Workshop,
pages 132—139.

Ryu lida, Kentaro Torisawa, Chikara Hashimoto, Jong-
Hoon Oh, and Julien Kloetzer. 2015. Intra-sentential
Zero Anaphora Resolution using Subject Sharing
Recognition. In EMNLP, pages 2179-2189.

Ryu Iida, Kentaro Torisawa, Jong-Hoon Oh, Cana-
sai Kruengkrai, and Julien Kloetzer. 2016. Intra-
Sentential Subject Zero Anaphora Resolution using
Multi-Column Convolutional Neural Network. In
EMNLP, pages 1244—1254.

Kenji Imamura, Kuniko Saito, and Tomoko Izumi.
2009. Discriminative Approach to Predicate-
Argument Structure Analysis with Zero-Anaphora
Resolution. In ACL-IJCNLP, pages 85-88.

Mamoru Komachi, Ryu lida, Kentaro Inui, and Yuji
Matsumoto. 2010. Argument structure analysis of
event-nouns using lexico-syntactic patterns of noun
phrases. Journal of Natural Language Processing,
17(1):141-159.

Taku Kudo, Hiroshi Ichikawa, and Hideto Kazawa.
2014. A Joint Inference of Deep Case Analy-
sis and Zero Subject Generation for Japanese-to-
English Statistical Machine Translation. In ACL,
pages 557-562.

133

Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman
Sadeh, and Noah A. Smith. 2015. Toward Ab-
stractive Summarization Using Semantic Represen-
tations. In NAACL, pages 1076-1085.

Hiroki Ouchi, Hiroyuki Shindo, Kevin Duh, and Yuji
Matsumoto. 2015. Joint Case Argument Identifi-
cation for Japanese Predicate Argument Structure
Analysis. In ACL-IJCNLP, pages 961-970.

Hiroki Ouchi, Hiroyuki Shindo, and Yuji Matsumoto.
2017. Neural Modeling of Multi-Predicate Inter-
actions for Japanese Predicate Argument Structure
Analysis. In ACL, pages 1591-1600.

Michael Roth and Mirella Lapata. 2016. Neural Se-
mantic Role Labeling with Dependency Path Em-
beddings. In ACL, pages 1192-1202.

Ryohei Sasano and Sadao Kurohashi. 2011. A Dis-
criminative Approach to Japanese Zero Anaphora
Resolution with Large-scale Lexicalized Case
Frames. In IJCNLP, pages 758-766.

Kazuhiro Seki, Atsushi Fujii, and Tetsuya Ishikawa.
2002. A Probabilistic Method for Analyzing
Japanese Anaphora Integrating Zero Pronoun Detec-
tion and Resolution. In COLING, pages 911-917.

Dan Shen and Mirella Lapata. 2007. Using Semantic
Roles to Improve Question Answering. In EMNLP-
CoNLL, pages 12-21.

Tomohide Shibata, Daisuke Kawahara, and Sadao
Kurohashi. 2016. Neural Network-Based Model for
Japanese Predicate Argument Structure Analysis. In
ACL, pages 1235-1244.

Vered Shwartz, Yoav Goldberg, and Ido Dagan. 2016.
Improving Hypernymy Detection with an Integrated
Pattern-based and Distributional Method. In ACL,
pages 2389-2398.

Hirotoshi Taira, Sanae Fujita, and Masaaki Nagata.
2008. A Japanese Predicate Argument Structure
Analysis using Decision Lists. In EMNLP, pages
523-532.

Kristina Toutanova, Aria Haghighi, and Christopher D
Manning. 2008. A Global Joint Model for Se-
mantic Role Labeling. Computational Linguistics,
34(2):161-191.

Katsumasa Yoshikawa, Masayuki Asahara, and Yuji
Matsumoto. 2011. Jointly Extracting Japanese
Predicate-Argument Relation with Markov Logic.
In IJCNLP, pages 1125-1133.

Koichiro Yoshino, Shinsuke Mori, and Tatsuya Kawa-
hara. 2013. Predicate Argument Structure Analy-
sis using Partially Annotated Corpora. In IJCNLP,
pages 957-961.

Natural Language Informs the Interpretation of Iconic Gestures:
A Computational Approach

Ting Han and Julian Hough and David Schlangen
Dialogue Systems Group // CITEC // Faculty of Linguistics and Literary Studies
Bielefeld University
firstname.lastname@uni-bielefeld.de

Abstract

When giving descriptions, speakers often
signify object shape or size with hand ges-
tures. Such so-called ‘iconic’ gestures rep-
resent their meaning through their rele-
vance to referents in the verbal content,
rather than having a conventional form.
The gesture form on its own is often am-
biguous, and the aspect of the referent that
it highlights is constrained by what the lan-
guage makes salient. We show how the
verbal content guides gesture interpreta-
tion through a computational model that
frames the task as a multi-label classifi-
cation task that maps multimodal utter-
ances to semantic categories, using anno-
tated human-human data.

1 Introduction

Besides natural language, human communication
often involves other modalities such as hand ges-
tures. As shown in Figure 1, when describing
two lanterns, one can describe “two lanterns” ver-
bally, while showing the relative position with
two hands facing each other. Interestingly, when
the same gesture is accompanied by the utterance
“a ball”, the same gesture may indicate shape.
These gestures (referred to as ‘iconic gestures’ in
gesture studies (McNeill, 1992)) are characterised
as conveying meanings through similarity to ref-
erents in verbal content, rather than conventional
forms of shape/trajectory. Hence, the interpreta-
tion of iconic gestures largely depends on verbal
content.

Although this theory has been proposed and
confirmed in various gesture studies (Feyereisen
and De Lannoy, 1991; McNeill, 1992; Kita and
Ozyﬁrek, 2003; Kita et al., 2007; Ozyﬁrek et al.,
2008; Bergmann et al., 2014, 2013b), it has not

134

L

L4

Figure 1: Speech / gesture description of a vir-
tual scene: “...sind halt zwei Laternen” (““[there]
are two lanterns”). Gestures indicate the amount
(two) and relative placement of the two lanterns,
while speech indicates the entity name and
amount. From (Liicking et al., 2010).

attracted much attention from works on human-
computer interfaces (HClIs), which usually assume
that gestures have predefined meanings either
through conventional agreements (e.g., “thumb
up” for “great”), or defined by the system (e.g.,
“circling” for “circle”) (Stiefelhagen et al., 2004;
Burger et al., 2012; Lucignano et al., 2013;
Rodomagoulakis et al., 2016). Hence, the systems
can only interpret a limited number of gestures by
classifying gestures based on the shape/trajectory
of hands, then combining the information with
language. We propose that, in order to incor-
porate iconic gestures in HClIs, natural language
should be taken as an important resource to inter-
pret iconic gestures.

The relation between speech and iconic gestures
has certainly been investigated in previous work.
Empirical studies such as (Kita and Ozyiirek,
2003; Kita et al., 2007) analysed speech and ges-
ture semantics with statistical methods and show
that the semantics of speech and gestures coor-
dinate with each other. However, it remains un-
clear how to computationally derive the semantics
of iconic gestures and build corresponding mul-
timodal semantics together with the accompany-
ing verbal content. In this paper, we address this
“how” question and present a computational ap-

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 134—139,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

Verbal utterance U~ “two, lanterns”
Gesture G

Speech semantics

two hands facing each other
[entity, amount]
Gesture semantics

Multi-modal
semantics

[relative position, amount]

[entity,

amount]

relative position,

Figure 2: Example of a multimodal utterance, and
semantic categories.

proach that predicts speech and gesture seman-
tic categories using speech and gesture input as
features. Speech and gesture information within
the same semantic category can then be fused
to form a complete multimodal meaning, where
previous methods on representing multimodal se-
mantic (Bergmann and Kopp, 2008; Bergmann
et al., 2013a; Lascarides and Stone, 2009; Gior-
golo, 2010) can be applied. Consequently, this
enables HCIs to construct and represent multi-
modal semantics of natural communications in-
volving iconic gestures.

We investigated whether language informs the
interpretation of iconic gestures with the data from
the SAGA corpus (Liicking et al., 2010). From
the SAGA corpus, we take gesture-speech ensem-
bles as well as semantic category annotations of
speech and gestures according to the information
they convey. Using words and annotations of ges-
tures to represent verbal content and gesture in-
formation, we conducted experiments to map lan-
guage and gesture inputs to semantic categories.
The results show that language is more informa-
tive than gestures in terms of predicting iconic ges-
ture semantics and multimodal semantics.

2 Task formulation

We now describe the task formally. Suppose a ver-
bal utterance U is accompanied by a gesture GG
(as shown in Figure 2), we represent the speech-
gesture ensemble as (U, G). The ultimate goal is
to map the input information of (U, G) to a set of
semantic categories according to the information
they convey (as shown in Figure 3), then compose
the multi-modal semantics of the ensemble with
information in the same category across speech
and gestures.

We define a mapping function f that takes a
speech-gesture ensemble (U, GG) as input, and out-
puts semantic categories c;, computed by the set
of features of U and (. Additionally, we as-

135

relative ’o’bj_1 :zx; 91)\1
position) \obj2:(xz y2)'

Figure 3: Mapping a speech-gesture ensemble to
semantic categories in blue rectangles (U and G in-
dicate speech and gesture). Dashed rectangles in-
dicate the value of each semantic category, which
are not included in our current work.

f(U, G)

sume each modality has its own meaning function
fu(U) and f4(G). In this paper, we make the as-
sumption that multi-modal meaning outputted by
f(U, G) is in fact the union of f,(U) and f,(G):

fu(U) = {e1, ca}
fo(G) = {c2, c3}
f(U, G) = {61,62,63}

ey

Figure 3 shows an example of mapping the ver-
bal utterance “two lanterns” to semantic categories
{amount, entity}, while mapping the gesture to
categories: {amount, relative position}. The se-
mantics of the ensemble (U, GG) is composed of the
semantic categories and their values (in the dashed
boxes). In this work we focus on predicting the se-
mantic category rather than their value, which we
leave for future work.

We derive input features for the mapping task
from speech and gestures respectively:

a) Language features: The word tokens of each
verbal utterance are taken as a bag-of-words to
represent linguistic information. b) Gesture fea-
tures: Hand movements and forms, including hand
shape, palm direction, path of palm direction,
palm movement direction, wrist distance, wrist
position, path of wrist, wrist movement direction,
back of hand direction and back of hand direc-
tion movement, are derived as gesture features (as
there was no hand motion data, these features were
manually annotated, see below for details).

Modelling the learning task We frame the ver-
bal utterance/gesture multimodal semantic cate-
gory mapping problem as a multi-label classifi-
cation task (Tsoumakas and Katakis, 2006) where
several labels are predicted for an input.

Given an input feature vector X, we predict a
set of semantic category labels {ci,---,¢;}, of

which the length is variable. The prediction task
can be further framed as multiple binary classifica-
tion tasks. Technically, we trained a linear support
vector classifier (SVC)! for each semantic label ¢;
(6 label classifiers in total). Given an input feature
X, we apply all semantic label classifiers to the
feature vector. If a semantic label classifier gives
positive prediction for input X, we assign the se-
mantic label to the input. For example, given fea-
ture vector of the input utterance “two lanterns”,
only the amount and entiry label classifiers give
positive predictions, thus we assign amount and
entity to the input utterance.

The word/gesture utterances are encoded as
several-hot feature vectors as input of the classi-
fiers, which will be explained now.

3 The SAGA corpus

We conducted the experiments with the SAGA
corpus (Liicking et al., 2010), which provides fine-
grained annotations for speech and gestures.

The data The corpus consists of 25 dialogues
of route and sight descriptions of a virtual town.
In each dialogue, a route giver gave descriptions
(e.g., route directions, shape, size and location of
buildings) of the virtual town to a naive route fol-
lower with speech (in German) and gestures. The
dialogues were recorded with three synchronised
cameras from different perspectives.

In total, 280 minutes of video and audio data
were recorded. The audio was manually tran-
scribed and aligned with videos; the gestures were
manually annotated and segmented according to
video and audio recordings. We selected 939
speech-gesture ensembles out of 973 annotations
(Bergmann et al., 2011), omitting 34 without full
annotations of speech/gesture semantic categories
and gesture features. The semantic categories
were annotated according to the semantic infor-
mation that speech and gestures contained. In our
data set, each item is a tuple of 4 elements: (words,
gesture features, speech semantic categories, ges-
ture semantic categories).

There are 5 gesture semantic category labels:
shape, size, direction, relative position, amount;
the speech semantic labels consist of these and an
extra label of entity (6 labels in total). Since there
was only one gesture labeled as direction, we treat

! penalty: 02, vpenalty parameter C=1.0, maxi-

mum iteration 1000, wusing an implementation in
http://scikit-learn.org.

[Speech Gesture

800 600
(%]
[0}
Q 0
§ 600 H 450
2 ©
2 400 © 300
° 3
! g
g 200 E 150
Z
0 0
1 2 >2 @ A2 S & £
F & & O F
) ?‘@ Qg; Q«\@
(@ (b)

Figure 4: (a) Histogram of semantic labels per ut-
terance/gesture. (b) Histogram of semantic labels.
(Rel_Pos indicates relative position.)

it as a rare instance, and removed it from the eval-
uation experiments. From these the multi-modal
category labels are derived as the union of those
two sets for each ensemble.

Data statistics Bergmann et al. (2011) provides
detailed data statistics regarding the relation of
speech and gestures of the corpus. As we focus on
speech and gesture semantics only here, we report
statistics only for the 939 speech-gesture ensem-
bles. On average, each verbal utterance is com-
posed of 3.15 words. 386 gestures (41%) provide
a semantic category on top of the verbal utterance
(e.g., speech: {amount, shape}, gesture: {relative
position}), 312 (33%) gestures convey the same
amount of semantic information as the verbal ut-
terance (e.g., speech: {amount, shape}, gesture:
{amount, shape}), and 241 (26%) conveys part of
the semantics of the verbal utterance (e.g., speech:
{amount, shape}, gesture: {amount}).

As shown in Table 4 (a), 56% of verbal utter-
ances and 80% of gestures are annotated with only
a single label. On average, each gesture was an-
notated with 1.23 semantic labels and each utter-
ance with 1.51 semantic labels. As shown in Fig-
ure 4 (b), there are many more utterances labeled
with shape, relative position and entity than the
other labels, making the data unbalanced. More-
over, there are considerably more gestures anno-
tated with labels of shape and relative position.

Gesture features Since there is no tracked hand
motion data, we used the manual annotations to
represent gestures. For instance, the gesture in
Figure 1 is annotated as: Left hand: [5_bent,
PAB/PTR, BAB/BUP, C-LW, D-CE]; right hand:
[C_small, PTL, BAB/BUP, LINE, MD, SMALL,
C-LW, D-CE] in the order of hand shape, hand

136

palm direction, back of hand direction, wrist po-
sition. (See (Liicking et al., 2010) for the details
of the annotation scheme). Other features such as
path of palm direction which are not related to this
static gesture were set as 0.

We treated these annotated tokens as “words”
that describe gestures. Annotations with more
than 1 token were split into a sequence of tokens
(e.g., BAB/BUP to BAB, BUP). Therefore, ges-
ture feature sequences have variable lengths, in the
same sense as utterances have variable amount of
word tokens.

4 Experiments

We randomly selected 70% of the gesture-speech
ensembles as a training set, using the rest as a
test set. We designed 3 experiments to investi-
gate whether and to what degree language and ges-
tures inform mono-modal and multimodal seman-
tics. Each experiment was conducted under 3 dif-
ferent setups, namely, using: a) only gesture fea-
tures; b) only language features; c) gesture fea-
tures and language features, as shown in Table 1.

Metrics We calculated F1-score, precision and
recall for each label, and find their average,
weighted by the number of true instances for each
label, so that imbalanced labels are taken into ac-
count.

4.1 Results

Language semantics As shown in Table 1, the
most informative features of language semantic
categories are words on their own. It achieves
an Fl-score of 0.79 for each label, well above
a chance level baseline accuracy 0.17. While
as expected, gesture features are not very infor-
mative for language semantics, the gesture-only
still classifier outperforms the chance level base-
line with 0.38. The combination of features in
the joint classifier results in slightly worse perfor-
mance than language features alone, suggesting
some of the gestural semantics may be comple-
mentary to, rather than identical to, the language
semantics.

Gesture semantics While language features
help predict the semantics of their own modal-
ity, the same is not true of gesture features. The
language-only classifier achieves an Fl-score of
0.78 when predicting gesture semantics, while the
gesture features-only setting only achieves 0.61.

137

Semantics | Features | Precision | Recall | F1-
score

L 0.85 0.75 0.79

Language | G 0.47 0.37 0.38
L+G 0.86 0.69 0.75

L 0.80 0.78 0.78

Gesture G 0.59 0.63 0.61
L+G 0.82 0.77 0.78

L 0.82 0.80 | 0.81
Multimodal| G 0.62 0.60 | 0.58
L+G 0.83 0.80 | 0.80

Table 1: Evaluation results. (L and G indicates
language and gesture.)

Combining language and gesture features does
not improve performance, but results in a slightly
higher precision score (+0.02). This is consistent
with previous observations in gesture studies (Fey-
ereisen and De Lannoy, 1991) that iconic gestures
are difficult to interpret without speech. Even hu-
mans perform poorly on such a task without verbal
content.

In our setup, the abstract gesture features might
be one of the reasons for poor performance. Only
10 manually annotated categories were used to
represent gestures, so these features might not be
optimal for a computational model. It is possible
that with more accurate gesture features (e.g. mo-
tion features), gestures can be better represented
and more informative for interpreting gesture se-
mantics.

Multimodal semantics As gestures can add
meaningful semantic information not present in
concurrent speech, we trained and evaluated clas-
sifiers on multimodal semantic categories. We as-
sume these are the union of the gesture and lan-
guage semantics for a given ensemble (as in func-
tion f in (1) above). As per the data statistics,
there are the same possible 6 atomic categories
as the language semantics (though they can come
from the gesture as well as from the speech). As
shown in Table 1, the language-only classifier per-
forms best on this set with an Fl-score of 0.81,
marginally outperforming the combined language
and gesture features system’s 0.80. Both signifi-
cantly outperform the gesture-only classifier. As
with the results on gesture semantics, this sug-
gests that multimodal meaning and meaning of
iconic gesture relies heavily on speech, in accor-

Feature weight

4 6 8

IS

N

Feature weight

o

2
Relative position classifier: hand features

4 6 8

2 4 6

H

N

Feature weight

o

2
Size classifier: hand features

4 6

Figure 5: Featuring ranking according to coefficient values (weights assigned to the features, see
(Liicking et al., 2010) for the details of the annotation scheme).

dance with the finding that the majority of gestures
are inherently underspecified semantically by their
physical form alone (Rieser, 2015).

Regarding individual semantic categories, we
find gesture features are more informative for
shape and relative positions; language is more in-
formative for size, direction and amount in our
dataset. Figure 5 shows the gesture and lan-
guage feature ranking results for classifiers of en-
tity and relative position accordingly. For rel-
ative position label prediction, the most infor-
mative language features are the words “rechts”
(right) and “links” (left), while hand shape, such
as b_bent_loose_spread (an open palm, thumb ap-
plied sideways, but not clearly folded and with a
weak hand tension) and 5_loose (an open palm
with a weak hand tension) are the two most in-
formative gesture features. For size label predic-
tion, the most informative language features are
words that specify size such as “klein” (small) and
“grof3” (big); the most informative gesture feature
is back of hand palm direction (btb, back of hand
palm facing towards body).

5 Conclusion

Language and co-verbal gestures are widely ac-
cepted as an integral process of natural commu-
nication. In this paper, we have shown that natural
language is informative for the interpretation of a
particular kind of gesture, iconic gestures. With
the task of mapping speech and gesture informa-
tion to semantic categories, we show that language

138

is more informative than gesture for interpreting
not only gesture meaning, but also the overall mul-
timodal meaning of speech and gesture. This work
is a step towards HCIs which take language as an
important resource for interpreting iconic gestures
in more natural multimodal communication. In fu-
ture work, we will predict speech/gesture seman-
tics using raw hand motion features and investi-
gate prediction performance in an online, contin-
uous fashion. This forms part of our ongoing in-
vestigation into the interplay of speech and gesture
semantics.

Acknowledgements

We are grateful to Kirsten Bergmann and Stefan
Kopp for sharing the SAGA corpus. The first au-
thor is supported by the China Scholarship Coun-
cil (CSC). This work was also supported by the
Cluster of Excellence Cognitive Interaction Tech-
nology CITEC (EXC 277) at Bielefeld Univer-
sity, funded by the German Research Foundation
(DFG).

References

Kirsten Bergmann, Volkan Aksu, and Stefan Kopp.
2011. The relation of speech and gestures: temporal
synchrony follows semantic synchrony. In Proceed-
ings of the 2nd Workshop on Gesture and Speech in
Interaction (GeSpIn 2011).

Kirsten Bergmann, Florian Hahn, Stefan Kopp, Hannes
Rieser, and Insa Ropke. 2013a. Integrating gesture
meaning and verbal meaning for german verbs of

motion: Theory and simulation. In Proceedings of
the Tilburg Gesture Research Meeting (TiGeR 2013).

Kirsten Bergmann, Sebastian Kahl, and Stefan Kopp.
2013b. Modeling the semantic coordination of
speech and gesture under cognitive and linguistic
constraints. In International Workshop on Intelli-
gent Virtual Agents, pages 203-216. Springer.

Kirsten Bergmann, Sebastian Kahl, and Stefan Kopp.
2014. How is information distributed across speech
and gesture? a cognitive modeling approach. Cogni-
tive Processing, Special Issue: Proceedings of Kog-
Wis, pages S84-S87.

Kirsten Bergmann and Stefan Kopp. 2008. Multimodal
content representation for speech and gesture pro-
duction. In Proceedings of the 2nd Workshop on
Multimodal Output Generation, pages 61-68.

B. Burger, L. Ferrané, F. Lerasle, and G. Infantes. 2012.
Two-handed gesture recognition and fusion with
speech to command a robot. Autonomous Robots,
32(2):129-147.

Pierre Feyereisen and Jacques-Dominique De Lannoy.
1991. Gestures and speech: Psychological investi-
gations. Cambridge University Press.

Gianluca Giorgolo. 2010. Space and Time in Our
Hands. Ph.D. thesis, Netherlands Graduate School
of Linguistics.

Sotaro Kita and Asli Ozyiirek. 2003. What does
cross-linguistic variation in semantic coordination of
speech and gesture reveal?: Evidence for an inter-
face representation of spatial thinking and speaking.
Journal of Memory and language, 48(1):16-32.

Sotaro Kita, Asli Ozyﬁrek, Shanley Allen, Amanda
Brown, Reyhan Furman, and Tomoko Ishizuka.
2007. Relations between syntactic encoding and co-
speech gestures: Implications for a model of speech
and gesture production. Language and cognitive
processes, 22(8):1212—-1236.

Alex Lascarides and Matthew Stone. 2009. A formal
semantic analysis of gesture. Journal of Semantics,
26(4):393-449.

Lorenzo Lucignano, Francesco Cutugno, Silvia Rossi,
and Alberto Finzi. 2013. A dialogue system for mul-
timodal human-robot interaction. In Proceedings of
the 15th ACM on International conference on multi-
modal interaction, pages 197-204. ACM.

Andy Liicking, Kirsten Bergmann, Florian Hahn, Ste-
fan Kopp, and Hannes Rieser. 2010. The biele-
feld speech and gesture alignment corpus (saga).
In LREC 2010 workshop: Multimodal corpora—
advances in capturing, coding and analyzing mul-
timodality.

David McNeill. 1992. Hand and Mind: What Gestures
Reveal About Thought.

139

Asli Ozyiirek, Sotaro Kita, Shanley Allen, Amanda
Brown, Reyhan Furman, and Tomoko Ishizuka.
2008. Development of cross-linguistic variation in
speech and gesture: Motion events in english and
turkish. Developmental psychology, 44(4):1040.

Hannes Rieser. 2015. When hands talk to mouth. ges-
ture and speech as autonomous communicating pro-
cesses. SEMDIAL 2015 goDIAL, page 122.

Isidoros Rodomagoulakis, Nikolaos Kardaris, Vas-
silis Pitsikalis, E Mavroudi, Athanasios Katsamanis,
Antigoni Tsiami, and Petros Maragos. 2016. Multi-
modal human action recognition in assistive human-
robot interaction. In Acoustics, Speech and Sig-
nal Processing (ICASSP), 2016 IEEE International
Conference on, pages 2702-2706. IEEE.

Stiefelhagen, C. Fugen, R. Gieselmann,
H. Holzapfel, K. Nickel, and A. Waibel. 2004.
Natural human-robot interaction using speech, head
pose and gestures. In 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS) (IEEE Cat. No.0O4CH37566), volume 3,
pages 2422-2427.

Grigorios Tsoumakas and Ioannis Katakis. 2006.
Multi-label classification: An overview. Interna-
tional Journal of Data Warehousing and Mining,
3(3).

Modelling Representation Noise in Emotion Analysis using Gaussian
Processes

Daniel Beck”
Computing and Information Systems
The University of Melbourne, Australia
d.beck@unimelb.edu.au

Abstract

Emotion Analysis is the task of modelling la-
tent emotions present in natural language. La-
belled datasets for this task are scarce so learn-
ing good input text representations is not triv-
ial. Using averaged word embeddings is a sim-
ple way to leverage unlabelled corpora to build
text representations but this approach can be
prone to noise either coming from the embed-
ding themselves or the averaging procedure.
In this paper we propose a model for Emotion
Analysis using Gaussian Processes and kernels
that are better suitable for functions that ex-
hibit noisy behaviour. Empirical evaluations in
a emotion prediction task show that our model
outperforms commonly used baselines for re-
gression.

1 Introduction

The goal of Emotion Analysis is to infer latent emo-
tions from textual data (Strapparava and Mihalcea,
2007). This problem has theoretic roots in psycholin-
guistics studies such as Clore et al. (1987) and Ortony
et al. (1987), which aim to understand connections be-
tween emotions and words. However, Emotion Anal-
ysis also has motivations from an applied perspective,
being closely related to Opinion Mining (Pang and Lee,
2008). The main difference is that the latter is usually
concerned with coarse polarity predictions, while the
former aims at modelling different emotional aspects
in a more fine-grained level. Table 1 shows some ex-
amples taken from the “Affective Text” dataset (Strap-
parava and Mihalcea, 2007), in which human judges
annotate news headlines according to the taxonomy
proposed by Ekman (1993). Each label is a score in
the [0 — 100] range, where 0 means lack of the cor-
responding emotion and 100 corresponds to maximal
emotional load.

Given the nature of the task and the available
datasets, a sensible approach for Emotion Analysis is
through regression models that map texts to emotion

* This work was partially done while the author was at
The University of Sheffield, United Kingdom.

140

scores. This requires the choice of a suitable text repre-
sentation so it can be incorporated into a model. Bag-
of-words (BOW) are a common approach that works
well in the presence of large amounts of data but it
is unsuitable for Emotion Analysis datasets since they
tend to be scarce.

An alternative is to leverage unlabelled data through
the use of word embeddings (Deerwester et al., 1990;
Turian et al., 2010; Mikolov et al., 2013). To obtain
a fixed vector representation for a text, one can aver-
age the embeddings for each word present in the text.
While this method can lose linguistic information such
as word order, for some tasks it still gives good empiri-
cal performance (Hu et al., 2014; Kenter and de Rijke,
2015). However, word embeddings are known to be
prone to noise due to the different contexts captured
in the training procedure (Nguyen et al., 2016). This
effect can be potentialised by simple averaging proce-
dures.

In this work we propose to use Gaussian Processes
(GPs) (Rasmussen and Williams, 2006) to develop
Emotion Analysis models that capture noisy functions
that map text representations to the emotion scores.
More specifically, we propose the use of the Matern
class of kernels to address this problem. Empirical
evaluations show that our approach can outperform
simpler out-of-the-box choices commonly employed in
regression tasks. Overall, we show that properly moti-
vated choices of kernels can bring benefits in prediction
performance.

While the focus of this work is on Emotion Analy-
sis, the methods proposed here are general and can be
applied to other text regression settings.

2 Gaussian Process Regression

In this Section we introduce the basic concepts around
GP regression. We follow closely the definition of GPs
in Rasmussen and Williams (2006).

Let X = {(Xla yl)v (X2a y2)7 LR (Xnvyn)} be a
dataset where each x € RP” is a D-dimensional in-
put and y € R is its corresponding response variable.
A GP prior is defined as a stochastic model over the
latent function f that maps the inputs in X to their cor-

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 140-145,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

anger disgust fear joy sadness surprise
Storms kill, knock out power, cancel flights 3 9 82 0 60 0
Morrissey may cheer up Eurovision 0 0 2 61 0 10
Archaeologists find signs of early chimps’ tool use 0 0 2 23 0 64
Republicans plan to block Iraq debate 60 17 0 0 37 7
European Space Agency 0 0 0 2 0 0

Table 1: Emotion annotation examples, taken from the Affective Text dataset. Scores are in the [0 — 100] range.

responding response variables. Formally,
f(x) ~ GP(m(x), k(x,x')),

where m(x) is the mean function and k(x,x’) is the
kernel or covariance function, which describes the co-
variance between values of f at the different locations
of x and x’. For simplicity, we assume m(x) = 0.
The GP prior is combined with a likelihood via
Bayes’ rule to obtain a posterior over the latent func-

tion:
_ pyX, fp(f)
V="K

where X and y are the training inputs and response
variables, respectively. In regression, we usually as-
sume a Gaussian likelihood for y, i.e., each y; =
f(xi) +n, where ~ N(0,02) is added white noise.
This allows us to have an exact, closed formula so-
lution for the posterior, which is itself a Gaussian
p(fIX,y) ~ N(y,K + 02I), where K is the Gram
matrix of kernel evaluations between inputs.

To obtain predictions for an unseen input x, we in-
tegrate over all possible values of f. Since we assume
a Gaussian likelihood for the unseen response variable
Yx, We can obtain its distribution exactly,

pyelx, X, y) = N (ful s, 03)
Hsx = kZ(K + O'2In)71y
02 = k(x.,%x.) — kT (K + 0°1,,) 'k,

p(fIX

where k., = [(X1,X4), (X2,Xs), ..., (Xn,X)] is the
vector of kernel evaluations between the unseen input
and each training input.

Choosing an appropriate kernel is a crucial step in
defining a GP model. One common choice is to employ
the squared exponential (SE) kernel,!

ksg(x,x’) = o, exp(—%) ,

D 2

where 7?2 = Z (@i —z)” 62%)
i=1

is the scaled distance between the two inputs, o, is a
scale hyperparameter and ¢ is a lengthscale hyperpa-
rameter.

The SE kernel is vastly used not only in GP models
but also in Support Vector Machines (SVMs) since it is

! Also known as Radial Basis Function (RBF) kernel.

141

a simple way to have a flexible non-linear model over
the data. However, from a GP perspective it assumes
the process is infinitely mean-square differentiable.? In
practice, this means the resulting GP encodes functions
with strong smoothness, which is not an ideal property
in the presence of high amounts of noise.

2.1 Matern kernels

Matern kernels (Rasmussen and Williams, 2006, Sec.
4.2.1) are an alternative class of kernels that relax the
smoothness assumptions made by the SE kernels. For-
mally, they define GPs which are v-times mean-square
differentiable only. Common values for v are the half-
integers % and %, resulting in the following kernels:

kmagz (%, %) = 0y (1 + V3r2) exp(—V3r2)
2
v) = 0 (14V5r7 + 2) xp(—VBr9).

Higher values for v are usually not very useful since
the resulting behaviour is hard to distinguish from limit
case v — 00, which retrieves the SE kernel.

On Figure 1 we plot samples from three GP priors
with Matern kernels with different values for v. We
can see that lower values for v result in noisier func-
tions. When v =! we recover a simple exponential
kernel, equivalent to Brownian motion in one dimen-
sion (Rasmussen and Williams, 2006, Sec. 4.2). The
Matern class of kernels allows us to find a compromise
between full noise behaviour and extreme smoothness,
as in the case of SE.

2.2 Hyperparameter Optimisation

Most kernels rely on appropriate choices of hyper-
parameters, a problem of model selection. In non-
Bayesian approaches such as SVMs, an usual approach
for this is grid search, where we evaluate a set of val-
ues on a development set and choose the one with best
performance. This approach can be brittle as values are
constrained to the grid. It also does not scale well with
the number of hyperparameters.

GPs have an elegant way to perform model selection:
maximising the (log) marginal likelihood with respect

*Mean-square differentiability is a commonly used gen-
eralisation of differentiability applied to stochastic functions.
See (Rasmussen and Williams, 2006, Sec. 4.1.1) for more
details.

Figure 1: Sample functions from Matern kernels with
different values for . The black line is equivalent to a
sample from an SE kernel.

to the training data,

yTK 1y B log |K| _ nlog 27w
2 2 2

where K = K +021,, and 6 represents the set of hyper-
parameters (such as the lengthscale ¢ and the bias term
b). The main advantage of this method is that we can
define gradients of the marginal likelihood and employ
gradient ascent optimisers, which are much faster than
grid and random search.

Another advantage of this method is that it obviates
the need of a validation set, making full use of the
whole available training data. To understand why, we
can inspect the terms of the marginal likelihood for-
mula: the first one is the dara-fit term and it is the
only one that depends on the outputs; the second one
is the complexity penalty, which depends only on the
inputs and the third one is a normalisation constant. In-
tuitively, the optimisation procedure balances between
complex models that highly fit the data and simple
models that give a lower complexity penalty, prevent-
ing overfitting.

logp(y|X, 0) = —

)

3 Experiments

We performed a set of experiments using two freely
available datasets for Emotion Analysis, in order to as-
sess our proposed models.’

3.1 Data and Preprocessing

The first dataset was employed in the SemEval2007
Affective Text shared task (Strapparava and Mihalcea,
2007) and is composed of a set of news headlines man-
ually annotated by human judges.* We combined the

3Code to replicate all experiments in this section
is available at https://github.com/beckdaniel/
ijecnlpl7_emo

4 Available at web.eecs.umich.edu/-mihalcea/
downloads.html#affective

142

official “dev” and “test” sets from the shared task into
a single dataset containing 1,250 instances in total.

To put our models in perspective with the state-
of-the-art, we also tested them in the recently re-
leased dataset for the WASSA2017 workshop shared
task (Mohammad and Bravo-Marquez, 2017b).> The
dataset is composed of tweets annotated with four of
the six Ekman emotions (anger, fear, joy and sadness),
with ratings originally provided by Best-Worst Scal-
ing and transformed into values in the [0 — 1] inter-
val (Mohammad and Bravo-Marquez, 2017a). Unlike
SemEval2007, this dataset has different instances per
emotion. We combined the official “train” and “dev”
sets and use that as our full training set, for each emo-
tion.

All texts were tokenised®, lowercased and we used
100-dimensional GloVe embeddings (Pennington et al.,
2014) to represent each word’. To obtain a fixed vector
representation for each headline we used the average
of its word embeddings, ignoring out-of-vocabulary
words.

3.2 Models

We compared the performance of the proposed Matern
kernels with models based on linear and SE kernels.
All GP models have hyperparameters optimised using
100 iterations of L-BFGS. Our implementation is based
on the GPy toolkit.?

We also compared our approach with two non-
Bayesian approaches commonly used in the literature,
ridge regression and support vector regression (SVR)
with an SE kernel. For these models we used grid
search to optimise hyperparameters. The grid search
procedure uses 3-fold cross-validation within the train-
ing set, using two folds for training and one fold as
a development set. Hyperparameter values are selected
by averaging the best results obtained for each fold. We
use the scikit-learn toolkit (Pedregosa et al., 2011) as
our underlying implementation. The hyperparameter
grid for each model is shown on Table 2.

Ridge

A (regularisation coefficient) [0.01,0.1, 1,10, 100]
SVR

C (error penalty) [0.01,0.1, 1,10, 100]

€ (margin size)
£ (SE kernel lengthscale)

[0.001,0.01,0.1, 1, 10]
[0.01,0.1, 1, 10, 100]

Table 2: Hyperparameter grids for the non-Bayesian
baselines.

SAvailabe at http://saifmohammad.com/
WebPages/EmotionIntensity-SharedTask.
html

®We used the NLTK (Bird et al., 2009) PTB tokeniser.

"We used the GloVe version trained on a combination
of Wikipedia and Gigaword, available at n1lp.stanford.
edu/projects/glove

8github.com/SheffieldML/GPy

3.3 Evaluation

We evaluated our models using Pearson’s 7 correlation
measure and Negative Log Predictive Density (NLPD)
(Quifionero-Candela et al., 2006). Pearson’s 7 is the
main metric used in previous work in Emotion Analy-
sis and also other regression tasks. NLPD corresponds
to the likelihood of the test label given the correspond-
ing predictive distribution and it is a common way to
compare GP models. It is not applicable for models
that give point estimates as predictions (such as SVR)
but it is useful when information about the predictive
distributions is available. Higher Pearson’s r and lower
NLPD correspond to better performance.

For the SemEval2007 dataset we performed our ex-
periments using 10-fold cross-validation and average
the results. For the WASSA2017 dataset, we tested the
performance on the official “test” sets for each emotion
to make results comparable with the original shared
task submissions.

3.4 Results on SemEval2007

Table 3 shows the results for all models, averaged over
the emotions. We can see that both models based on
Matern kernels outperformed the baselines. Within the
Matern models there is a slight preference over the
Matern ¥ in terms of Pearson’s 7 but it is not signi-
ficative.

rT NLPD|
Baselines
Ridge 0.547 -
SVR 0.593 -
GP Linear 0.549 4.10
GP SE 0.596 4.07
Proposed Models
GP Matern % 0.616 4.05
GP Matern % 0.609 4.05

Table 3: Results on SemEval2007, averaged over all
emotions and all 10 cross-validation folds.

In Table 4 we discriminate the results over each par-
ticular emotion, where we observe some interesting
phenomena. For joy we can see that a linear GP shows
higher Pearson’s r compared to a GP with an SE kernel.
To investigate this we inspected the individual folds for
the GP SE model and we found out one of the models
ended up with very low lengthscale, which resulted in
an interpolation behaviour leading to overfitting. The
Matern models did not suffer from this.

The emotion where we see the least gains from our
proposed models is fear, which is also the one with
higher absolute correlation in all models. This might
be a case of diminishing returns, where we do not see
much gains from using a more involved kernel because
the emotion is already well explained by simpler mod-
els.

143

3.5 Results on WASSA2017

Table 5 shows the results for WASSA2017, averaged
over all emotions/datasets. We see similar trends to the
SemEval2007 results, with the Matern kernels outper-
forming the baselines and a small preference for the
Matérn % variant.

On Table 6 we compare our models with the official
shared task baseline and the wiining submission. The
Matern % model would be placed in 11th place of a to-
tal of 22 submissions, which is a promising result con-
sidering that it can be applied to other feature sets be-
yond word embeddings. To show this, we train another
model using the 300 dimensional version of GloVe em-
beddings, which gives further gains in terms of Pear-
son’s r, reaching 10th place in the official results.

The best performing submissions at this shared task
used a range of other features beyond word embed-
dings, such as emotion lexicons and character ngrams.
For future work, we plan to apply our models to these
feature sets to check if they can also benefit from the
flexibility coming from Matérn kernels.

4 Related Work

Emotion Analysis has been studied in other domains
beyond News headlines. Alm et al. (2005) studied
emotions in the context of children’s fairy tales and de-
veloped a corpus annotated at the sentence level. They
use coarse-grained labels, which account for the pres-
ence or absence of emotions in each sentence. Mihal-
cea and Strapparava (2012) focused on analysing emo-
tions from music, combining information from song
lyrics and melody notes. They consider more fine-
grained labels in this work and show promising results.

The work of Beck et al. (2014) is similar to ours,
which focuses on applying multi-task GPs to encode
interactions between emotions. Unlike our approach,
they use a simple bag-of-words representation and an
SE kernel as the underlying GP model. Compared to
our model, they show much lower correlation scores
(their best model achieves 0.399 Pearson’s r on the
SemEval2007 dataset), although these are not strictly
comparable since they use different data splits and do
not perform cross-validation. However, their approach
is orthogonal to ours: combining the Matérn kernels
within a multi-task GP framework can be a promising
avenue for future work.

Gaussian Processes have recently been proposed in
a range of NLP tasks. In regression, GPs have been
used to predict how long expert translators take to post-
edit the output of Machine Translation systems (Cohn
and Specia, 2013; Shah et al., 2013; Beck et al., 2016).
GPs have also been used in social media settings,
such as modelling temporal information about word
usage (Preoiuc-Pietro and Cohn, 2013), user profiling
(Lampos et al., 2014) and detecting rumour spreading
(Lukasik et al., 2015). Many of these works rely on
the ability to encode prior knowledge about the task
through the use of appropriate kernels.

Anger Disgust Fear Joy Sadness Surprise
T NLPD T NLPD r NLPD r NLPD r NLPD r NLPD
Baselines
Ridge 0.584 - 0.445 - 0.680 - 0.539 - 0.636 - 0.399 -
SVR 0.632 - 0.510 - 0.732 - 0.558 - 0.687 - 0.438 -
GP Linear 0.587 3.94 0.449 3.81 0.681 4.16 0.539 4.35 0.636 4.31 0.404 4.06
GP SE 0.638 3.92 0.515 3.80 0.737 4.08 0.531 433 0.693 4.25 0.462 4.03
Proposed models
GP Mateérn %2 0.650 3.90 0.540 3.76 0.740 4.07 0.595 4.29 0.700 4.24 0.472 4.03
GP Matern %2 0.647 391 0.533 3.78 0.740 4.08 0.592 4.29 0.698 4.24 0.445 4.01
Table 4: Emotion specific results for SemEval2007.
r1 NLPD| also plan to apply the ideas showed here to other NLP
- problems with similar settings. In particular, we be-
Baselines . .
. lieve the proposed approach can be useful in any set-
Ridge 0.528 - . . .
; ting where (noisy) embeddings should be mapped to
GP Linear 0.527 -0.365 .
manually provided scores.
GP SE 0.551 -0.375
Proposed Models Acknowledgements
GP Matern % 0.571 -0.390 Daniel Beck 4 by fund "
GP Matern % 0567 -0.386 anie eck was supporte y funding from

Table 5: Results for WASSA2017, using the official
test set provided at the shared task.

r1
Proposed Models
GP Matern % 0.571
GP Matern % + 300d embs 0.627
Shared task submissions
Best baseline 0.660
Winning submission 0.747

Table 6: Comparison with other WASSA 2017 shared
task submissions.

5 Conclusions

Emotion Analysis is a task that relies on scarce, noisy
and potentially biased datasets. The use of word em-
beddings can help tackle sparsity problems but furthers
add noise to the data being modelled. In this paper
we proposed a Gaussian Process approach for Emo-
tion Analysis that can better incorporate these aspects.
Empirical findings showed that noisy behaviour can be
better modelled by Matern kernels compared to other
commonly used kernels in the literature.

An interesting avenue for future work is to address
noise and bias in the response variables as well. For
the kind of labels we employ in Emotion Analysis, a
possible extension is to remove the Gaussian constraint
and employ different likelihoods, such as a Beta distri-
bution over the scale limits, for instance. This how-
ever makes the model intractable and approximation
schemes (such as the one proposed by Opper and Ar-
chambeau (2008)) should be employed. Finally, we

CNPq/Brazil (No. 237999/2012-9) and from the
Australian Research Council (DP #160102686).
The author would also like to thank the anonymous
reviewers for their comments.

References

Cecilia Ovesdotter Alm, Dan Roth, and Richard
Sproat. 2005. Emotions from text: machine learning
for text-based emotion prediction. In Proceedings of
EMNLP, pages 579-586.

Daniel Beck, Trevor Cohn, and Lucia Specia. 2014.
Joint Emotion Analysis via Multi-task Gaussian Pro-
cesses. In Proceedings of EMNLP, pages 1798—
1803.

Daniel Beck, Lucia Specia, and Trevor Cohn. 2016.
Exploring Prediction Uncertainty in Machine Trans-
lation Quality Estimation. In Proceedings of
CoNLL.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media.

Gerald L. Clore, Andrew Ortony, and Mark A. Foss.
1987. The psychological foundations of the affec-
tive lexicon. Journal of Personality and Social Psy-
chology, 53(4):751-766.

Trevor Cohn and Lucia Specia. 2013. Modelling An-
notator Bias with Multi-task Gaussian Processes: An
Application to Machine Translation Quality Estima-
tion. In Proceedings of ACL, pages 32—42.

Scott Deerwester, Susan T. Dumais, George W. Furnas,
Thomas K. Landauer, and Richard Harshman. 1990.
Indexing by Latent Semantic Analysis. Journal of
the American Society For Information Science, 41.

144

Paul Ekman. 1993. Facial Expression and Emotion.
American Psychologist, 48(4):384-392.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai
Chen. 2014. Convolutional Neural Network Archi-
tectures for Matching Natural Language Sentences.
In Proceedings of NIPS, pages 2042-2050.

Tom Kenter and Maarten de Rijke. 2015. Short Text
Similarity with Word Embeddings Categories and
Subject Descriptors. In Proceedings of CIKM, pages
1411-1420.

Vasileios Lampos, Nikolaos Aletras, Daniel Preoiuc-
Pietro, and Trevor Cohn. 2014. Predicting and Char-
acterising User Impact on Twitter. In Proceedings of
EACL, pages 405-413.

Michal Lukasik, Trevor Cohn, and Kalina Bontcheva.
2015. Point Process Modelling of Rumour Dynam-
ics in Social Media. In Proceedings of ACL, pages
518-523.

Rada Mihalcea and Carlo Strapparava. 2012. Lyrics,
Music, and Emotions. In Proceedings of the Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 590-599.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed Represen-
tations of Words and Phrases and their Composition-
ality. In Proceedings of NIPS, pages 1-9.

Saif M. Mohammad and Felipe Bravo-Marquez. 2017a.
Emotion Intensities in Tweets. In Proceedings of
*SEM.

Saif M. Mohammad and Felipe Bravo-Marquez.
2017b. WASSA-2017 Shared Task on Emotion In-
tensity. In Proceedings of WASSA.

Kim Anh Nguyen, Sabine Schulte im Walde, and
Ngoc Thang Vu. 2016. Neural-based Noise Filtering
from Word Embeddings. In Proceedings of COL-
ING, pages 2699-2707.

Manfred Opper and Cédric Archambeau. 2008.
The Variational Gaussian Approximation Revisited.
Neural Computation, 21(3):786-792.

Andrew Ortony, Gerald L. Clore, and Mark A. Foss.
1987. The Referential Struture of the Affective Lex-
icon. Cognitive Science, 11:341-364.

Bo Pang and Lillian Lee. 2008. Opinion Mining and
Sentiment Analysis. Foundations and Trends in In-
formation Retrieval, 2(1-2):1-135.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Duborg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. 2011.
Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825-2830.

145

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global Vectors for
Word Representation. In Proceedings of EMNLP,
pages 1532-1543.

Daniel Preoiuc-Pietro and Trevor Cohn. 2013. A tem-
poral model of text periodicities using Gaussian Pro-
cesses. In Proceedings of EMNLP, pages 977-988.

Joaquin Quifionero-Candela, Carl Edward Rasmussen,
Fabian Sinz, Olivier Bousquet, and Bernhard
Scholkopf. 2006. Evaluating Predictive Uncertainty
Challenge. MLCW 2005, Lecture Notes in Computer
Science, 3944:1-217.

Carl Edward Rasmussen and Christopher K. L
Williams. 2006. Gaussian processes for machine
learning, volume 1. MIT Press Cambridge.

Kashif Shah, Trevor Cohn, and Lucia Specia. 2013.
An Investigation on the Effectiveness of Features for
Translation Quality Estimation. In Proceedings of
MT Summit XIV.

2007.
In

Carlo Strapparava and Rada Mihalcea.
SemEval-2007 Task 14 : Affective Text.
Proceedings of SemEval, pages 70-74.

Joseph Turian, Lev Ratinov, and Yoshua Bengio.
2010. Word Representations: A Simple and General
Method for Semi-supervised Learning. In Proceed-
ings of ACL, pages 384-394.

Are Manually Prepared Affective Lexicons Really Useful
for Sentiment Analysis

Minglei Li, Qin Lu and Yunfei Long
{csmli, csginlu, csylong}@comp.polyu.edu.hk

Abstract

In this paper, we investigate the effec-
tiveness of different affective lexicons
through sentiment analysis of phrases.
We examine how phrases can be repre-
sented through manually prepared lexi-
cons, extended lexicons using computa-
tional methods, or word embedding. Com-
parative studies clearly show that word
embedding using unsupervised distribu-
tional method outperforms manually pre-
pared lexicons no matter what affective
models are used in the lexicons. Our con-
clusion is that although different affective
lexicons are cognitively backed by theo-
ries, they do not show any advantage over
the automatically obtained word embed-
ding.

1 Introduction

Sentiment analysis aims to infer the polarity ex-
pressed in a text, which has important applica-
tions for data analysis, such as product review
(Pang et al., 2008), stock market performance
(Nguyen and Shirai, 2015), and crowd opinions
(Rosenthal et al., 2015). Sentiment lexicons play
a critical role in sentiment analysis (Hutto and
Gilbert, 2014). A sentiment lexicon contains a
list of words with sentiment polarity (positive or
negative) or polarity intensity, such as the NRC
Hashtag Lexicon (Mohammad et al., 2013) and
VADER sentiment lexicon (Hutto and Gilbert,
2014). However, sentiment lexicons may fail
for compositional methods to obtain sentiment of
larger text units, such as phrases and sentences.
For example, the phrase avoid imprisonment ex-
presses positive sentiment. However, when we use
sentiment lexicon, it is hard to classify this phrase
because both avoid and imprisonment are nega-

146

tive in both VADER (Hutto and Gilbert, 2014) and
NRC Hasntag (Mohammad et al., 2013) lexicons.

In addition to polarity based sentiment lexicons,
which can be considered as one-dimensional af-
fective lexicons, different multi-dimensional af-
fect models are also proposed to represent affec-
tive information of words, such as the evaluation-
potency-activity (EPA) model (Osgood, 1952)
and the valence-arousal-dominance (VAD) model
(Ressel, 1980). Sentiment can be seen as one of
the dimensions under these affective models, such
as the evaluation dimension of EPA, and the va-
lence dimension of VAD. Aside from the EPA
based lexicon (Heise, 2010), VAD based lexicons
include ANEW (Bradley and Lang, 1999), ex-
tended ANEW (Warriner et al., 2013), and CVAW
(Yu et al., 2016). Although multi-dimensional af-
fective lexicons are theoretically sound, there are
mainly two issues. The first one is how to obtain
good coverage for affective lexicons. The second
one is how to infer the representation of larger text
units using word information in the affective lex-
icons. A previous work uses the average value of
the component words as the final representation of
larger texts (Yu et al., 2016).

Word embedding has recently been used to
represent word semantics, such as word2vec
(Mikolov et al., 2013) and Glove (Pennington
et al., 2014). Word embedding represents a word
as a dense vector, which can be used to measure
semantic similarity of words more accurately.

To infer the representation of larger text units
based on word embedding, different composition
models are proposed, such as weighted addition
and multiplication (Mitchell and Lapata, 2008),
tensor product (Zhao et al., 2015), recursive neu-
ral network (Socher et al., 2013), recurrent neu-
ral network (Irsoy and Cardie, 2014), and conve-
lutional neural network (Kim, 2014). Attempts
have also been made to infer the affective labels

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 146—150,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

of phrases based on the VAD model using compo-
sitional methods (Palogiannidi et al., 2016). How-
ever, between the VAD representation and word
embedding, it is not clear which one is more ef-
fective for sentiment analysis.

Sentiment lexicons, multi-dimensional affective
lexicons, and word embedding all represent a word
with semantic information. Other than word em-
bedding, all the other lexicons are specifically built
for sentiment/affective analysis. Although these
representations can be used for sentiment analysis
of larger text units, there is no systematic compar-
ison to test their effectiveness. In this paper, we
investigate whether the manually annotated senti-
ment/affective lexicons have some advantage over
automatically obtained word embedding on senti-
ment analysis tasks. Our approach is to use differ-
ent word level representations to predict the senti-
ment of phrases to determine which representation
of words is more effective. Experiments clearly
show that word embedding outperforms manual
affective lexicons and extended affective lexicons.

2 Related Work

To apply a sentiment lexicon in sentiment analy-
sis, the simpliest way is to take word present in a
lexicon as a simple feature (Pang et al., 2008). For
intensity-based sentiment lexicons, the sentiment
value can be aggregated by addition of every senti-
ment linked word in a sentence (Hutto and Gilbert,
2014; Vo and Zhang, 2016). Another method is to
use sentiment related features, such as total count
of sentiment tokens, total sentiment score, maxi-
mal sentiment score, etc.(Mohammad et al., 2013;
Tang et al., 2014).

Many efforts have been made to construct
multi-dimensional affective lexicons, such as
ANEW for English (Bradley and Lang, 1999;
Warriner et al., 2013), CVAW for Chinese (Yu
et al.,, 2016), and other languages (Montefinese
et al.,, 2014; Imbir, 2015). However, only few
works use multi-dimensional affective lexicons for
affective analysis. The work by Yu et al. (2016)
uses the average VAD values of individual words
as the VAD value of a sentence. In (Palogiannidi
et al., 2016), affective representation of phrases
is obtained through matrix-vector multiplication,
where modifier words are represented by matrices
and head words are represented as VAD vectors.

When word embedding is used for sentiment
analysis, different composition methods are used

147

to infer the representation of a sentence, such as
simple addition, weighted addition (Mitchell and
Lapata, 2008), recurrent neural networks (Irsoy
and Cardie, 2014), and convolutional neural net-
works (Kim, 2014).

However, there is no systematic comparison
between lexicon based representations and word
embedding representations for sentiment analysis.
This is the motivation of our work.

3 Comparison Method

Our objective is to study the effectiveness of dif-
ferent word representations for units longer than
words for sentiment analysis. To focus more on
the effectiveness of representations, we only study
bigram phrases in this paper. The following is the
list of lexicon resources and embeddings used for
this comparative study.

1. The VADER sentiment lexicon of size 7,502,
annotated through crowdsourcing (Hutto and

Gilbert, 2014). Its value range is [-4, 4].

The NRC Hasntag sentiment lexicon (de-
noted as HSenti) of size 54,129, constructed
automatically based on hashtags (Moham-
mad et al., 2013).

The multi-dimensional EPA lexicon of size
2,000, annotated manually (Heise, 2010) in
three dimensions of evaluation, potency, ac-
tivity in the range of [-4.3, 4.3].

The multi-dimensional VAD lexicon of size
13,915, annotated through crowdsourcing
(Warriner et al., 2013). The annotation is in
three dimensions of valence, arousal, domi-
nance in the range of [1, 9].

. Word embedding of 300 dimension with size
of 2,196,017 trained by the the Glove model
using unsupervised matrix factorization on a
corpus of size 840 billion (Pennington et al.,
2014), denoted as g300.

The manually annotated lexicons have limited
sizes. For fair comparison, we use the state-of-
the-art method proposed by Li et al. (2016), which
train a Ridge regression model using word embed-
ding as features to automatically extend the manu-
ally constructed lexicons so that all the vocabular-
ies of different lexicons are the same size of g300.

Let us use the term base representations to refer
to the different word representations used in this

comparative study. We first construct the repre-
sentation of a phrase from the base representations
of its component words using some composition
functions. Then, we perform sentiment prediction
for phrases to evaluate which of the base represen-
tations is more effective.

In a composition model, the representation of
a phrase is inferred from that of its component
words. Given a phrase p with two component
words w' and w? and their respective base rep-
resentations @' and w2, the representation of p,
denoted by p, can be constructed by a function f:

p= f(u',@?). (1)

Different composition models are proposed for
f (Mitchell and Lapata, 2008). An addition com-
position model can be defined as

2)

The multiplication composition model is de-
fined by element-wise vector multiplication:

7=+ .

1 2

* W

3)

The concatenation composition function that
simply concatenates the two vectors:

p=1

“4)

A more advanced composition model is the
Recurrent Neural Network (RNN). Here we use
the most widely used Long Short Term Memory
(LSTM) network (Hochreiter and Schmidhuber,
1997) as our composition model. It models a word
sequence as:

p= [, @),

iy = o(Usy + Wihi—1 + by), %)

fi= o(Usdy + Wfﬁtfl + gf)v (0)

G, = o (U + Woli—1 + by), (7)

3 = tanh(UyZ + Wohi1 +by), (8)
i = fox P+t G,)

hy = 0y * tanh(,). (10)

Here Z; is the representation of an input word rep-
resentation at step t, w! or w2, {;, ﬁ, ﬁt, Dty G
are internal representations and 0; is current out-
put representation. U;, Uy, U,, U, are the model
matrix parameters. Sentiment prediction is per-
formed on the output representation the final step.

In this work, we use different composition func-
tions to evaluate the effectiveness of different base
representations.

148

4 Evaluation on the Comparisons

The five lexicons introduced in Section 3 are used
for evaluations.

4.1 Experiment Setting

For comparison, we first extracted a set of phrases
with sentiment ratings from the Stanford Senti-
ment Treebank (SST) (Socher et al., 2013), in
which every sentence is parsed and each node in
the parsed tree has a sentiment score ranging be-
tween [0, 1], and obtained by crowdsourcing. We
only extract adjective-noun phrases, noun-noun
phrases and verb-noun phrases, and the size of the
final phrase collection in SST is 9,922. Note that
only 6,736 words are used for this set of phrases
and they are present in all the five lexicons used.

Based on this phrase set, we construct three
sentiment analysis tasks: (1) a regression task to
predict the sentiment score of phrases (labeled as
SST-R); (2) a binary classification task by convert-
ing sentiment scores to discrete labels, where pos-
itive label is no less than 0.6 and negative label is
no more than 0.4 (labeled as SST-2c¢); (3) a ternary
classification task similar to SST-2C except that
there is an addition of neutral label in the range of
0.4-0.6 (labeled as SST-3c¢).

Different evaluation metrics are used for the
three different tasks. Mean absolute error (mae)
and Kendall rank correlation coefficient (7) are
used for SST-R. Accuracy and F-score are used for
SST-2c. Weighted accuracy and weighted F-score
are used for SST-3c. Ridge regression and SVM
with the linear kernel are used for regression and
classification task, respectively'. For LSTM, the
output layer is set differently for regression and
classification tasks respectively 2. The number of
hidden dimensions in LSTM is set to 4. In all the
experiments, 5-fold cross validation is used. Re-
sults are based on the best parameters we can ob-
tain in our experiments.

4.2 Result and Analysis

Table 1 shows the result of the three tasks. Let
us first take a look at the different composition
functions. Multiplication performs the worst in
all categories. On the other hand, LSTM, as
a deep learning method, is the best performer.
Addition and concatenation do have compara-
ble performance and not too off from LSTM

!'Using the scikit-learn tool: scikit-learn.org/
2Using the Keras tool: https://keras.io/

SST-R SST-2¢ SST-3¢
Feature Comp
mae T acc f acc f

VADER mul [0.103 0.240|0.664 0.786|0.608 0.507
VADER add [0.088 0.477]0.889 0.913|0.643 0.578
VADER conc [0.086 0.482(0.888 0.912|0.655 0.591
VADER Istm [0.086 0.487]0.894 0.917|0.667 0.655
HSenti mul |0.110 0.060|0.636 0.777]0.573 0.418
HSenti add [0.102 0.298|0.766 0.826|0.573 0.418
HSenti conc [0.102 0.304|0.768 0.829|0.573 0.418
HSenti Istm |[0.100 0.307|0.770 0.825(0.610 0.556
EPA mul |0.097 0.367|0.833 0.871]0.575 0.420
EPA add [0.092 0.422|0.888 0.913|0.600 0.488
EPA conc |0.092 0.427(0.887 0.912|0.602 0.493
EPA Istm |0.091 0.438{0.893 0.915]0.633 0.605
VAD mul |0.089 0.456]0.897 0.919|0.618 0.544
VAD add [0.090 0.451(0.890 0.913|0.620 0.549
VAD conc |0.089 0.459(0.894 0.917|0.625 0.557
VAD Istm |0.090 0.466|0.891 0.915]0.635 0.602
2300 mul |0.106 0.246]0.635 0.777]0.575 0.420
2300 add [0.074 0.564(0.923 0.939|0.755 0.749
2300 conc |0.073 0.565(0.920 0.937|0.754 0.748
2300 Istm |0.070 0.573|0.926 0.941|0.751 0.749

Table 1: Performance of different word represen-

tations under different composition functions for
SST phrase sentiment analysis. mul: multipli-
cation composition. add: addition composition.
conc: concatenation composition.

on SST-R and SST-2c. Secondly, for the two
sentiment lexicons, VADER performs much bet-

ter than HSenti lexicon.

This may be because

that VADER is manually annotated from crowd-
sourcing whereas HSenti is automatically obtained
which contains more noise. Thirdly, for the two
multi-dimensional affective lexicons, VAD per-
forms slightly better than EPA. It is surprising
that the multi-dimensional lexicons perform even
worse than the sentiment lexicon VADER even
though the annotated size of VAD (13,915) is
much larger than VADER (7,502). This puts a
question mark on the quality of annotation for
multi-dimensional lexicon resources. Fourthly,
word embedding® performs much better than all
the other representations. For instance, it achieves
a relative improvement of 17.7% under 7 for SST-
R over the secondly ranked VADER representa-
tion. Different composition functions for word
embedding perform comparably. In principle,
LSTM would have more benefits if the text length
is longer. In this study, the performance differ-
ence is not obvious because our phrases are only
bigrams.

3We also experiment on different word embedding dimen-
sions including 50,100,200. All are better than the other lex-
icons.

149

In the first experiment, manually constructed af-
fective lexicons are extended for comparison to be
performed on the same set of word list. Since auto-
matically extended lexicons can introduce errors,
we perform the second experiment using only a
manually annotated lexicon. We use the largest
original VAD lexicon without extension to com-
pare with word embedding. In this case, the in-
tersection of VAD and word embedding has 3,908
words. The subset corpus of SST containing these
words has 5,251 phrases. We perform 5-fold cross
validation on this dataset. The result is shown in
Table 2. Again, word embedding achieves much
better result than manually annotated VAD lexi-
con. If coverage issue is considered, word em-
bedding has even more advantages. Interestingly,
comparison between Table 1 and Table 2 shows
that the manually annotated lexicon does not per-
form better than its automatically extended lexicon
even without considering the coverage problem.

Feature Comp SST-R; SST-2¢; SST-3c¢,
mae T acc f acc f
VAD add |0.093 0.450|0.901 0.927|0.614 0.554
VAD conc |0.092 0.465|0.905 0.931]0.624 0.568
VAD Istm |0.093 0.471]0.885 0.916|0.620 0.594
2300 add [0.075 0.575[0.926 0.945|0.759 0.754
2300 conc |0.075 0.575[0.931 0.949|0.762 0.757
2300 Istm |0.071 0.588|0.934 0.951|0.754 0.753

Table 2: Performance of manually annotated VAD
and corresponding word embedding representa-
tions under different composition functions for
phrase sentiment analysis.

5 Conclusion

Automatically obtained word embedding clearly
outperforms both manually and automatically ob-
tained affective lexicons including sentiment lexi-
cons and multi-dimensional affective lexicons. Al-
though different affective models are backed by
cognitive theories and affective lexicons are de-
signed specifically for affective analysis, build-
ing them consumes too much resources and an-
notation quality may still be questioned due to
added complexity. Through a downstream task
of sentiment labeling of phrases, we conclude that
the manually annotated affective lexicons have no
advantage over word embedding under different
composition models. However, affective lexicons
as resources can still be used as additional features
rather than being used alone.

Acknowledgments

This work is supported by HK Polytechnic Univer-
sity (PolyU RTVU and CERG PolyU 15211/14E).

References

Margaret M Bradley and Peter J Lang. 1999. Affective
norms for english words (anew): Instruction manual
and affective ratings. Technical report, Citeseer.

David R Heise. 2010. Surveying cultures: Discovering
shared conceptions and sentiments. John Wiley &
Sons.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735-1780.

Clayton J Hutto and Eric Gilbert. 2014. Vader: A par-
simonious rule-based model for sentiment analysis
of social media text. In Eighth International AAAI
Conference on Weblogs and Social Media.

Kamil K Imbir. 2015. Affective norms for 1,586 polish
words (anpw): Duality-of-mind approach. Behavior
research methods, 47(3):860-870.

Ozan Irsoy and Claire Cardie. 2014. Modeling compo-
sitionality with multiplicative recurrent neural net-
works. arXiv preprint arXiv:1412.6577.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Minglei Li, Yunfei Long, and Qin Lu. 2016. A regres-
sion approach to valence-arousal ratings of words
from word embedding. In International Confer-

ence on Asian Language Processing, pages 120—
123. IEEE.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In ACL, pages
236-244.

Saif M Mohammad, Svetlana Kiritchenko, and Xiao-
dan Zhu. 2013. Nrc-canada: Building the state-
of-the-art in sentiment analysis of tweets. arXiv
preprint arXiv:1308.6242.

Maria Montefinese, Ettore Ambrosini, Beth Fairfield,
and Nicola Mammarella. 2014. The adaptation of
the affective norms for english words (anew) for ital-
ian. Behavior research methods, 46(3):887-903.

Thien Hai Nguyen and Kiyoaki Shirai. 2015. Topic
modeling based sentiment analysis on social media
for stock market prediction. In ACL, pages 1354—
1364.

150

Charles E Osgood. 1952. The nature and measurement
of meaning. Psychological bulletin, 49(3):197.

Elisavet Palogiannidi, Elias losif, Polychronis Kout-
sakis, and Alexandros Potamianos. 2016. A
semantic-affective compositional approach for the
affective labelling of adjective-noun and noun-noun
pairs. In WASSA@NAACL-HLT.

Bo Pang, Lillian Lee, et al. 2008. Opinion mining and
sentiment analysis. Foundations and Trends®) in In-
formation Retrieval, 2(1-2):1-135.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532—
1543.

JA Ressel. 1980. A circumplex model of affect. J.
Personality and Social Psychology, 39:1161-78.

Sara Rosenthal, Preslav Nakov, Svetlana Kiritchenko,
Saif M Mohammad, Alan Ritter, and Veselin Stoy-
anov. 2015. Semeval-2015 task 10: Sentiment anal-
ysis in twitter. In Proceedings of the 9th interna-
tional workshop on semantic evaluation (SemEval
2015), pages 451-463.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
Christopher Potts, et al. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In EMNLP, volume 1631, page 1642.
Citeseer.

Duyu Tang, Furu Wei, Bing Qin, Ming Zhou, and Ting
Liu. 2014. Building large-scale twitter-specific sen-
timent lexicon: A representation learning approach.
In COLING, pages 172-182.

Duy Tin Vo and Yue Zhang. 2016. Dont count, pre-
dict! an automatic approach to learning sentiment
lexicons for short text. In Proceedings of ACL, vol-
ume 2, pages 219-224.

Amy Beth Warriner, Victor Kuperman, and Marc Brys-
baert. 2013. Norms of valence, arousal, and dom-
inance for 13,915 english lemmas. Behavior re-
search methods, 45(4):1191-1207.

Liang-Chih Yu, Lung-Hao Lee, Shuai Hao, Jin Wang,
Yunchao He, Jun Hu, K Robert Lai, and Xuejie
Zhang. 2016. Building chinese affective resources
in valence-arousal dimensions. In Proceedings of
NAACL-HLT, pages 540-545.

Yu Zhao, Zhiyuan Liu, and Maosong Sun. 2015.
Phrase type sensitive tensor indexing model for se-
mantic composition. In AAAI, pages 2195-2202.

MTNA: A Neural Multi-task Model for Aspect Category Classification
and Aspect Term Extraction On Restaurant Reviews

Wei Xue, Wubai Zhou, Tao Li and Qing Wang
School of Computing and Information Sciences
Florida International University
Miami, FL, USA
{wxue004, wzhou005, taoli, gwang028}Qcs.fiu.edu

Abstract

Online reviews are valuable resources not
only for consumers to make decisions be-
fore purchase, but also for providers to get
feedbacks for their services or commodi-
ties. In Aspect Based Sentiment Analy-
sis (ABSA), it is critical to identify as-
pect categories and extract aspect terms
from the sentences of user-generated re-
views. However, the two tasks are of-
ten treated independently, even though
they are closely related. Intuitively, the
learned knowledge of one task should in-
form the other learning task. In this paper,
we propose a multi-task learning model
based on neural networks to solve them to-
gether. We demonstrate the improved per-
formance of our multi-task learning model
over the models trained separately on three
public dataset released by SemEval work-
shops.

1 Introduction

Aspect Based Sentiment Analysis (ABSA) (Liu
and Zhang, 2012; Pontiki et al., 2016) task is pro-
posed to better understand rapidly-growing online
reviews than traditional opinion mining (Pang and
Lee, 2008). ABSA aims to extract fine-grained in-
sights such as named entities, aspects, and sen-
timent polarities. We focus on two subtasks in
ABSA: aspect category classification (ACC) and
aspect term extraction (ATE).

Given a predefined set of aspect categories,
ACC aims to identify all the aspects discussed in
a given sentence, while ATE is to recognize the
word terms of target entities. For example, in
restaurant reviews, suppose we have two aspects
Price and Food. In the sentence “The fish is
carefully selected from all over the world and taste

fresh and delicious.”, the aspect category is Food,
and the aspect term is £ish. There could be mul-
tiple aspect categories implied in one sentence;
while in other sentences, there might be even no
word corresponding to the given aspect category
because of noisy aspect labels or fuzzy definition
of the aspect. For example, the sentence “I had a
great experience.” expresses positive attitude to-
wards the aspect Restaurant, but there is no
corresponding word about it.

Recognizing the commonalities between ACC
and ATE task can boost the performance of both
of them. The aspect information of whole sen-
tence can make it easier to differentiate the target
terms from unrelated words; while recognized tar-
get terms are the hints for predicting aspect cat-
egories. Recently, neural networks have gained
tremendous popularity and success in text clas-
sification (Kim, 2014; Kalchbrenner et al., 2014)
and opinion mining (Irsoy and Cardie, 2014; Liu
et al., 2015). In this paper, we consider ACC
and ATE task together under a multi-task setting.
We conduct experiments and analysis on SemEval
datasets. Our model outperforms the conventional
methods and competing deep learning models that
tackle two problems separately.

2 Model

In this section, we specifically define the two tasks
in ABSA: aspect category classification (ACC)
and aspect term extraction (ATE), then present an
end-to-end model MTNA (Multi-Task neural Net-
works for Aspect classification and extraction) that
interleaves the two tasks.

We define ACC as a supervised classification
task where the sentence should be labeled ac-
cording to a subset of predefined aspect labels,
and ATE as a sequential labeling task where the
word tokens related to the given aspects should be

151

Proceedings of the The Sth International Joint Conference on Natural Language Processing, pages 151-156,
Taipei, Taiwan, November 27 — December 1, 2017 (©2017 AFNLP

Word Embedding BiLSTM Layer

CNN Layer Softmax Layers

for ATE task

HEEE

\

HEEE

RN

O
\\E\}/\

RN

R

\

Max Pooling Layer

Concatenation ‘ ‘ ‘ ‘ ‘

Softmax Layer
for ACC task

]

Figure 1: MTNA on a sequence of five words. The multi-task learning neural network combines BiILSTM
and CNN layers together for ATE and ACC task respectively. One convolutional operation on BiLSTM

layer is shown in the graph.

tagged according to a predefined tagging scheme,
such as IOB (Inside, Outside, Beginning).

2.1 The Multi-task Learning Model

In this section, we describe our model MTNA.

Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997) has memory cells and a
group of adaptive gates to control the informa-
tion flow of the network. It has good performance
in named entity recognition task (NER) to sim-
ply stack embedding layer, Bi-directional LSTM
(BiLSTM) layer and softmax layer together (Lam-
ple et al., 2016). ATE task can be viewed a
special case of NER (Irsoy and Cardie, 2014).
Convolutional Neural Networks (CNNs) have ob-
tained good results in text classification, which
usually consist of convolutional and pooling lay-
ers (Kim, 2014; Kalchbrenner et al., 2014; Toh and
Su, 2016). They can be applied on ACC task im-
mediately.

It should be noted that ACC task and ATE
task are closely related. Aspect terms often im-
plies the related aspect category. If the names of
dishes appear in a sentence, it is easy to infer that
this sentence is about the aspect Food and vice-
versa. Multi-task learning can help the model of
each task to focus its attention to relevant features,
when the other task support the features with evi-

152

dence (Ruder, 2017). Moreover, multi-task learn-
ing can obtain a common representation for all
the tasks in the shared layers, which reduces noise
in each task. We combine BiLSTM for ATE and
CNN for ACC together in a multi-task framework.
The parts for ACC task can utilize extra informa-
tion learned in ATE task so that convolutional lay-
ers can focus on informative features. The tag pre-
diction at each word in ATE task can also receive
the distilled n-gram features of the surrounding
words via convolutional operations.

The architecture of our model is shown in Fig-
ure 1. Specifically, a word embedding layer trans-
forms indexed words to real valued vectors x; with
a pre-trained word embedding matrix (Mikolov
et al., 2013; Pennington et al., 2014). Each sen-
tence is represented by a matrix S. A BiLSTM is
applied on the outputs of word embedding layer
S, in which the two output vectors of the LSTMs
are concatenated into a vector h; for the ¢-th word.
The represented features are further processed by
a one-dimensional convolution layer with a set of
kernels of different widths, so that the new feature
maps c; incorporate the information of words that
are in the receptive field of the convolutions. For
ATE task, we use softmax layer for each word in
the given sentence to predict its tag. We further
add skip connections between the LSTM layers

to the softmax layers, since they are proved effec-
tive for training neural networks (He et al., 2016).
To predict the aspect category of the sentence in
ACC task, we use 1D max-over-time pooling lay-
ers (Collobert et al., 2011) which extracts maxi-
mum values from h; and c;, a concatenation layer
which joins the output vectors, and a softmax layer
to output the probabilities of aspect categories.
The final loss function of our model is a weighted
sum of the loss functions of ACC task and ATE
task. L = Lycc + ALate, Where A is the weight pa-
rameter. L, is the cross-entropy loss function for
ACC task; Ly is the sentence-level log-likelihood
for ATE task (Collobert et al., 2011; Lample et al.,
2016).

3 Experiments

3.1 Datasets

For our experiments, we consider three data sets
from SemEval workshops in recent years: Se-
mEval 2014 Task 4 (SE14) (Pontiki et al., 2014),
SemEval 2015 Task 12 (SE15) (Pontiki et al.,
2015), and SemEval 2016 Task 5 (SE16) (Pontiki
et al., 2016). We use the reviews in restaurant do-
main for all of them, and process SE14 into the
same data format as the others. Each data set con-
tains 2000 - 3000 sentences. For SE15 and SE16,
an aspect label is a combination of an aspect and
an attribute, like “Food#Price”. There are 6 main
aspects and total 12 configurations in SE15, SE16,
while 5 aspects in SE14.

3.2 Experiment Setup

Following the experiment settings used by most
competitors (Toh and Su, 2016; Khalil and El-
Beltagy, 2016; Machacek, 2016) in SemEval
2016, we convert the multi-label aspect classifica-
tion into multiple one-vs-all binary classifications.
F1-score is used to measure the performance of
each model for ACC task, and another F1 measure
adapted for ATE task.

For MTNA model, we use the pre-trained word
embedding GloVe (Pennington et al., 2014) of 200
dimensions to initialize the embedding layer. The
word vectors that are out of GloVe vocabulary are
randomly initialized between -0.1 and 0.1. Dur-
ing the training process, the embedding vectors are
fine-tuned. We choose three kinds of convolution
kernels which have the width of 3, 4, 5. Each of
them has 100 kernels (Kim, 2014). We use tanh
function as the nonlinear active function in con-

153

volution layers based on the results of cross vali-
dation. We train the model with Adadelta (Zeiler,
2012). For each binary classifier, a 5-fold cross
validations is used to tune other hyper-parameters:
mini-batch size from {10,20,50}, dropout rate
from {0.1, 0.2, 0.5}, the dimension of LSTM cells
from {100, 200, 500}, and the weight) in the loss
function from {0.1, 1, 10}.

3.3 Compared methods

Top models in SemEval. For ACC task, NRC-
Can (Kiritchenko et al., 2014) and NLANGP (Toh
and Su, 2015) are top models in 2014 and 2015 re-
spectively, both of which use SVM. NLANG (Toh
and Su, 2016) adopts CNN-like neural network in
2016. For ATE task, CRF (Toh and Wang, 2014;
Toh and Su, 2015, 2016) is the best model on all
of three data sets.

BiLSTM-CREF. To assess whether CNN can
improve the performance of ATE, we use a stan-
dard Bi-directional LSTM with CRF layer (Lam-
ple et al., 2016) as the baseline to tag words.

MTNA-s. To evaluate to what extent that ATE
loss function can improve the performance of the
ACC task, we compare MTNA with its variance
MTNA-s, the loss function of which does not in-
clude that of ATE task. However, this model keeps
LSTM layer as a feature extractor before the con-
volution layers as MTNA does.

4 Results and Analysis

The comparison results of all methods on three
datasets are shown in Table 1.

On ACC task, MTNA outperforms over other
compared methods, which are proposed for a sin-
gle task and cannot utilize the information from
the other task. On ATE task, there are small
improvement compared with conditional random
field. It empirically proves that multi-task learn-
ing can benefit both tasks. MTNA has higher F1-
scores compared with BILSTM-CRF. The results
confirm the effectiveness of additional convolution
features for the ATE task.

MTNA-s, a smaller model without layers for
ATE task, also performs better than CNN. It
proves that LSTM can provide the feature engi-
neering which captures the long-distance depen-
dency (Zhang et al., 2016). On the aspects other
than Restaurant, MTNA-s has slightly lower
scores than MTNA, which again demonstrates the
effectiveness of multi-task learning.

SE14 SE15 SE16
ACC ATE | ACC ATE | ACC ATE
Top models 88.57 84.01 | 62.68 67.11 | 73.03 72.34
BiLSTM-CRF - 8324 - 66.82 - T71.87
MTNA-s 87.95 - | 64.32 - | 75.69 -
MTNA 88.91 83.65 | 65.97 67.73 | 76.42 72.95

Table 1: Comparison results in F1 scores on three datasets.

Model Aspect Category Classification AspectTerm Extraction

Food Restaurant ~ Service Food Restaurant ~ Service

CNN 86.29 65.27 84.02 - - -
Bi-LSTM-CRF - - - 73.96 54.34 87.55
MTNA-s 86.41 67.89 84.93 - - -
MTNA 87.33 66.07 86.09 74.67 56.59 88.70
Ambience Drinks Location | Ambinece Drinks Location

CNN 81.55 67.36 69.25 - - -
Bi-LSTM-CRF - - - 76.23 71.38 56.77
MTNA-s 81.08 69.23 70.06 - - -
MTNA 83.18 68.75 71.43 77.79 72.21 60.16

Table 2: F1 scores of models on SE16 across six aspects

To access the performance of methods across
different aspects, we combine all sentences la-
beled by the same aspect regardless of any at-
tribute, then conduct experiments as before. We
re-implement CNN model, which is used in
NLANG 2016. The results are as shown in Ta-
ble 2. ACC task on the aspect Restaurant is
more difficult than the task on other aspects. Both
CNN and MTNA have lower Fl-scores on this
aspect. The reason is that some sentences have
restaurant names as target terms. However, there
are around 40.1% sentences with Restaurant
label that do not have annotated words in the train-
ing dataset, 41.2% in test dataset. Meanwhile, all
methods have better results in ATE task on the as-
pect Service than on the other aspects, because
target word tokens do not have much variety.

5 Related Work

LSTM (Hochreiter and Schmidhuber, 1997) has
been applied on target extraction (Irsoy and
Cardie, 2014; Liu et al., 2015). In the workshop
of SemEval-2016, this sequential neural network
is used to extract features for the subsequent CRF
prediction (Toh and Su, 2016). In a multi-layer
attention model (Wang et al., 2017), several atten-
tion subnetworks (Bahdanau et al., 2014) are used
to extract aspect terms and opinion terms together
without considering ACC task.

154

As a special case of text classification, ACC
task is often treated as a supervised classification
task. CNN (LeCun et al., 1998) has been used for
sentiment classification (Kim, 2014; Kalchbrenner
et al., 2014) and aspect classification (Toh and Su,
2016).

Collobert et al. (Collobert et al., 2011) proposed
a multi-task learning system using deep learning
methods for various natural language processing
tasks. However, the system with window ap-
proach cannot be jointly trained with that using
sentence window approach. Moreover, only em-
bedding layer (lookup table) and linear layer are
shared among tasks, which limited the utilization
of shared information. On NER task, the pre-
dictions of this model depend only on the infor-
mation of the current word rather than the sur-
rounding context. The most relevant model is
Dependency Sensitive Convolutional Neural Net-
works (DSCNN) (Zhang et al., 2016). The goal
of DSCNN is solely for text classification, but our
model is designed for multi-task learning of ACC
and ATE.

6 Conclusion

We introduce two important tasks, e.g., aspect cat-
egory classification and aspect term extraction in
aspect based sentiment analysis. We propose a
multi-task learning model based on recurrent neu-

ral networks and convolutional neural networks to
solve the two tasks at the same time. Finally, the
comparative experiments demonstrate the effec-
tiveness of our model across three public datasets.
We can utilize other linguistic information, such
as POS tags and the distributional representation
learned from character level convolutional neural
network in the future work.

Acknowledgment

The work was supported in part by the Na-
tional Science Foundation under Grant Nos. IIS-
1213026 and CNS-1461926; and a FIU Disserta-
tion Year Fellowship.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural Machine Translation by Jointly
Learning to Align and Translate. arxiv .

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P Kuksa.
2011. Natural Language Processing (Almost) from
Scratch. Journal of Machine Learning Research
12:2493-2537.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep Residual Learning for Image
Recognition. In CVPR. pages 770-778.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997.
Long Short-Term Memory. Neural computation
9(8):1735-1780.

Ozan Irsoy and Claire Cardie. 2014. Opinion Mining
with Deep Recurrent Neural Networks. In EMNLP.
pages 720-728.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In ACL. pages 655-665.

Talaat Khalil and Samhaa R El-Beltagy. 2016.
NileTMRG at SemEval-2016 Task 5 - Deep Con-
volutional Neural Networks for Aspect Category
and Sentiment Extraction. SemEval @ NAACL-HLT
pages 271-276.

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In EMNLP. pages 1746—
1751.

Svetlana Kiritchenko, Xiaodan Zhu, Colin Cherry, and
Saif M. Mohammad. 2014. NRC-Canada-2014: De-
tecting aspects and sentiment in customer reviews.
In SemEval@COLING. Association for Computa-
tional Linguistics, Stroudsburg, PA, USA, pages
437-442.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural Architectures for Named Entity Recognition.
In NAACL-HLT. pages 260-270.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. 1998. Gradient-based learning applied to
document recognition. IEEE 86(11):2278-2324.

Bing Liu and Lei Zhang. 2012. A Survey of Opinion
Mining and Sentiment Analysis. Mining Text Data
(Chapter 13):415-463.

Pengfei Liu, Shafiq R Joty, and Helen M Meng. 2015.
Fine-grained Opinion Mining with Recurrent Neural
Networks and Word Embeddings. In EMNLP. pages
1433-1443.

Jakub Machacek. 2016. BUTknot at SemEval-2016
Task 5 - Supervised Machine Learning with Term
Substitution Approach in Aspect Category Detec-
tion. SemEval @ NAACL-HLT pages 301-305.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed Repre-
sentations of Words and Phrases and their Composi-
tionality. In NIPS. pages 3111-3119.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and Trends®) in In-
formation Retrieva 2:1-135.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global Vectors for Word
Representation. In EMNLP. pages 1532—1543.

Maria Pontiki, Dimitrios Galanis, Haris Papageorgiou,
Suresh Manandhar, and Ton Androutsopoulos. 2015.
Semeval-2015 task 12: Aspect based sentiment anal-
ysis. In SemEval 2015. Association for Compu-
tational Linguistics, Stroudsburg, PA, USA, pages
486-495.

Maria Pontiki, Dimitrios Galanis, John Pavlopou-
los, Haris Papageorgiou, Ion Androutsopoulos, and
Suresh Manandhar. 2014. Semeval-2014 task
4: Aspect based sentiment analysis. In Se-
mEval@COLING. Association for Computational
Linguistics, Stroudsburg, PA, USA, pages 27-35.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Ion Androutsopoulos, Suresh Manandhar, Moham-
mad AL-Smadi, Mahmoud Al-Ayyoub, Yanyan
Zhao, Bing Qin, Orphee De Clercq, Veronique
Hoste, Marianna Apidianaki, Xavier Tannier, Na-
talia Loukachevitch, Evgeniy Kotelnikov, Niiria Bel,
Salud Maria Jiménez-Zafra, and Giilsen Eryigit.
2016. SemEval-2016 Task 5: Aspect Based Senti-
ment Analysis. In SemEval @ NAACL-HLT. Asso-
ciation for Computational Linguistics, Stroudsburg,
PA, USA, pages 19-30.

Sebastian Ruder. 2017. An Overview of Multi-Task
Learning in Deep Neural Networks. arxiv .

Zhiqiang Toh and Jian Su. 2015. NLANGP: Super-
vised Machine Learning System for Aspect Cate-
gory Classification and Opinion Target Extraction.
In SemEval @ NAACL-HLT . pages 496-501.

Zhiqiang Toh and Jian Su. 2016. NLANGP at
SemEval-2016 Task 5: Improving Aspect Based
Sentiment Analysis using Neural Network Features.
In SemEval @ NAACL-HLT . pages 282-288.

Zhigiang Toh and Wenting Wang. 2014. DLIREC:
Aspect Term Extraction and Term Polarity Classi-
fication System. In SemEval@COLING. Associ-
ation for Computational Linguistics, Stroudsburg,
PA, USA, pages 235-240.

Weya Wang, Sinno Jialin Pan, Daniel Dahlmeier, and
Xiaokui Xiao. 2017. Coupled Multi-Layer At-
tentions for Co-Extraction of Aspect and Opinion
Terms. In AAAI. pages 3316-3322.

Matthew D Zeiler. 2012. ADADELTA: An Adaptive
Learning Rate Method. arxiv .

Rui Zhang, Honglak Lee, and Dragomir Radev. 2016.
Dependency Sensitive Convolutional Neural Net-
works for Modeling Sentences and Documents. In
NAACL-HLT. pages 1512—-1521.

156

Can Discourse Relations be Identified Incrementally?

Frances Yung
Language Science and Technology,
Saarland University,
Saarland Informatic Campus,
66123 Saarbriicken, Germany

Hiroshi Noji Yuji Matsumoto
Information Science,

Nara Institute of Science and Technology

frances@coli.uni-saarland.de

Abstract

Humans process language word by word
and construct partial linguistic structures
on the fly before the end of the sentence
is perceived. Inspired by this cognitive
ability, incremental algorithms for natural
language processing tasks have been pro-
posed and demonstrated promising perfor-
mance. For discourse relation (DR) pars-
ing, however, it is not yet clear to what
extent humans can recognize DRs incre-
mentally, because the latent ‘nodes’ of
discourse structure can span clauses and
sentences. To answer this question, this
work investigates incrementality in dis-
course processing based on a corpus an-
notated with DR signals. We find that
DRs are dominantly signaled at the bound-
ary between the two constituent discourse
units. The findings complement existing
psycholinguis