
IJCNLP 2017

The Eighth International Joint Conference
on Natural Language Processing

Proceedings of the Conference, Vol. 2 (Short Papers)

November 27 - December 1, 2017
Taipei, Taiwan



ii



Gold Sponsors: 

    
 

 
 

Silver Sponsors: 

    

    
 

Bronze Sponsors: 

   

 

Supporters: 

    

    

iii



c©2017 Asian Federation of Natural Language Processing

ISBN 978-1-948087-00-1 (Volume 1: Long Papers)
ISBN 978-1-948087-01-8 (Volume 2: Short Papers)

iv



Preface

Welcome to the 8th International Joint Conference on Natural Language Processing (IJCNLP). IJCNLP
was initiated in 2004 by the Asian Federation of Natural Language Processing (AFNLP) with the major
goal to provide a platform for researchers and professionals around the world to share their experiences
related to natural language processing and computational linguistics. In the past years, IJCNLPs were
held in 7 different places: Hainan Island (2004), Jeju Island (2005), Hyderabad (2008), Singapore (2009),
Chiang Mai (2011), Nagoya (2013) and Beijing (2015). This year the 8th IJCNLP is held in Taipei
Nangang Exhibition Hall on November 27-December 1, 2017.

We are confident that you will find IJCNLP 2017 to be technically stimulating. The conference covers a
broad spectrum of technical areas related to natural language processing and computation. Besides main
conference, the program includes 3 keynote speeches, 6 tutorials, 17 demonstrations, 5 workshops, and
5 shared tasks (new event).

Before closing this brief welcome, we would like to thank the entire organizing committee for their
long efforts to create and event that we hope will be memorable for you. Program chairs Greg Kondrak
and Taro Watanabe coordinate the review process allowing for top quality papers to be presented at
the conference. Workshop chairs Min Zhang and Yue Zhang organize 5 nice pre-conference and post-
conference workshops. Tutorial chairs Sadao Kurohashi and Michael Strube select 6 very good tutorials.
Demo chairs Seong-Bae Park and Thepchai Supnithi recommend 17 demonstrations. Shared Task chairs
Chao-Hong Liu, Preslav Nakov and Nianwen Xue choose 5 interesting shared tasks. Sponsorship chairs
Youngkil Kim, Tong Xiao, Kazuhide Yamamoto and Jui-Feng Yeh design sponsor packages and find
financial supports. We thank all the sponsors. Publicity chairs Pushpak Bhattacharya, Xuanjing Huang,
Gina-Anne Levow, Chi Mai Loung and Sebastian Stüker help circulate the conference information and
promote the conference. We would like to express our special thanks to publication chairs Lung-Hao
Lee and Derek F. Wong. After the hard work, they deliver an excellent proceeding to the participants.

Finally, we would like to thank all authors for submitting high quality research this year. We hope all of
you enjoy the conference program, and your stay at this beautiful city of Taipei.

General Chair

Chengqing Zong, Institute of Automation, Chinese Academy of Sciences, China

Organization Co-Chairs

Hsin-Hsi Chen, National Taiwan University, Taiwan
Yuen-Hsien Tseng, National Taiwan Normal University, Taiwan
Chung-Hsien Wu, National Cheng Kung University, Taiwan
Liang-Chih Yu, Yuan Ze University, Taiwan
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Message from the Program Co-Chairs

Welcome to the 8th International Joint Conference on Natural Language Processing (IJCNLP 2017)
organized by National Taiwan Normal University and the Association for Computational Linguistics
and Chinese Language Processing (ACLCLP) and hosted by The Asian Federation of Natural Language
Processing (AFNLP).

Since the first meeting in 2004, IJCNLP has established itself as a major NLP conference. This year, we
received 580 submissions (337 long and 243 short), which is by far the largest number ever for a stand-
alone IJCNLP conference. From these, 179 papers (103 long and 76 short) were accepted to appear at
the conference, which represents an acceptance rate of 31%. In particular, approximately 46% of the
accepted papers are from Asia Pacific, 30% from North America, and 20% from Europe.

Our objective is to keep the conference to three parallel sessions at any one time. 86 long papers and
21 short papers are scheduled as oral presentations, while 17 long papers and 55 short papers will be
presented as posters.

We are also very pleased to announce three exciting keynote talks by the renowned NLP researchers:
Rada Mihalcea (University of Michigan), Trevor Cohn (University of Melbourne) and Jason Eisner
(Johns Hopkins University).

The conference will conclude with the award presentation ceremony. The Best Paper Award goes
to Nikolaos Pappas and Andrei Popescu-Belis for their paper “Multilingual Hierarchical Attention
Networks for Document Classification.” The Best Student Paper award goes to “Roles and Success in
Wikipedia Talk Pages: Identifying Latent Patterns of Behavior” by Keith Maki, Michael Yoder, Yohan
Jo and Carolyn Rosé.

We would like to thank everyone who has helped make IJCNLP 2017 a success. In particular, the area
chairs (who are listed in the Program Committee section) worked hard on recruiting reviewers, managing
reviews, leading discussions, and making recommendations. The quality of the technical program reflects
the expertise of our 536 reviewers. All submissions were reviewed by at least three reviewers. The
review process for the conference was double-blind, and included an author response period, as well as
subsequent discussions.

We would like to acknowledge the help and advice from the General Chair Chengqing Zong, and the
Local Arrangements Committee headed by Liang-Chih Yu. We thank the Publication Chairs Lung-Hao
Lee and Derek F. Wong for putting together the conference proceedings and handbook, and all the other
committee chairs for their great work.

We hope you will enjoy IJCNLP 2017!

IJCNLP 2017 Program Co-Chairs

Greg Kondrak, University of Alberta
Taro Watanabe, Google
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Organizing Committee

Conference Chair
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Workshop Co-Chairs
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Popović, Soujanya Poria, Daniel Preoţiuc-Pietro, Matthew Purver
Ashequl Qadir, Xian Qian
Dinesh Raghu, Afshin Rahimi, A Ramanathan, Sudha Rao, Pushpendre Rastogi, Georg Rehm,
Martin Riedl, German Rigau, Brian Roark, Michael Roth, Alla Rozovskaya, Rachel Rudinger, At-
tapol Rutherford

x



Ashish Sabharwal, Kugatsu Sadamitsu, Markus Saers, Keisuke Sakaguchi, Germán Sanchis-Trilles,
Ryohei Sasano, Carolina Scarton, David Schlangen, Eva Schlinger, Allen Schmaltz, Djamé Sed-
dah, Satoshi Sekine, Lei Sha, Kashif Shah, Ehsan Shareghi, Shiqi Shen, Shuming Shi, Tomo-
hide Shibata, Sayaka Shiota, Prasha Shrestha, Maryam Siahbani, Avirup Sil, Miikka Silfverberg,
Patrick Simianer, Sameer Singh, Sunayana Sitaram, Jan Šnajder, Wei Song, Yang Song, Sa-kwang
Song, Virach Sornlertlamvanich, Matthias Sperber, Caroline Sporleder, Vivek Srikumar, Manfred
Stede, Mark Steedman, Pontus Stenetorp, Svetlana Stoyanchev, Karl Stratos, Kristina Striegnitz,
L V Subramaniam, Katsuhito Sudoh, Hiroaki Sugiyama, Huan Sun
Sho Takase, David Talbot, Liling Tan, Jiwei Tan, Niket Tandon, Takehiro Tazoe, Joel Tetreault,
Ran Tian, Takenobu Tokunaga, Gaurav Singh Tomar, Sara Tonelli, Fatemeh Torabi Asr, Ming-
Feng Tsai, Richard Tzong-Han Tsai, Masashi Tsubaki, Jun’ichi Tsujii, Yulia Tsvetkov, Zhaopeng
Tu, Cunchao Tu, Francis Tyers
Kiyotaka Uchimoto, Masao Utiyama
Tim Van de Cruys, Keith VanderLinden, Lucy Vanderwende, Vasudeva Varma, Eva Maria Vec-
chi, sriram venkatapathy, Marc Verhagen, David Vilar, David Vilares, Martin Villalba, Svitlana
Volkova, Ivan Vulić
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Invited Talk: Words and People

Rada Mihalcea

University of Michigan

Abstract

What do the words we use say about us and about how we view the world surrounding us? And
what do we - as speakers of those words with our own defining attributes, imply about the words
we utter? In this talk, I will explore the relation between words and people and show how we can
develop cross-cultural word models to identify words with cultural bias – i.e., words that are used
in significantly different ways by speakers from different cultures. Further, I will also show how
we can effectively use information about the speakers of a word (i.e., their gender, culture) to build
better word models.

Biography

Rada Mihalcea is a Professor in the Computer Science and Engineering department at the Uni-
versity of Michigan. Her research interests are in computational linguistics, with a focus on
lexical semantics, multilingual natural language processing, and computational social sciences.
She serves or has served on the editorial boards of the Journals of Computational Linguistics,
Language Resources and Evaluations, Natural Language Engineering, Research in Language in
Computation, IEEE Transactions on Affective Computing, and Transactions of the Association for
Computational Linguistics. She was a program co-chair for the Conference of the Association for
Computational Linguistics (2011) and the Conference on Empirical Methods in Natural Language
Processing (2009), and a general chair for the Conference of the North American Chapter of the
Association for Computational Linguistics (2015). She is the recipient of a National Science Foun-
dation CAREER award (2008) and a Presidential Early Career Award for Scientists and Engineers
awarded by President Obama (2009). In 2013, she was made an honorary citizen of her hometown
of Cluj-Napoca, Romania.
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Invited Talk: Learning Large and Small: How to Transfer NLP Successes to
Low-resource Languages

Trevor Cohn

University of Melbourne

Abstract

Recent advances in NLP have predominantly been based upon supervised learning over large cor-
pora, where rich expressive models, such as deep learning methods, can perform exceptionally
well. However, these state of the art approaches tend to be very data hungry, and consequently do
not elegantly scale down to smaller corpora, which are more typical in many NLP applications.

In this talk, I will describe the importance of small data in our field, drawing particular attention to
so-called “low-” or “under-resourced” languages, for which corpora are scarce, and linguistic an-
notations scarcer yet. One of the key problems for our field is how to translate successes on the few
high-resource languages to practical technologies for the remaining majority of the world’s lan-
guages. I will cover several research problems in this space, including transfer learning between
high- and low-resource languages, active learning for selecting text for annotation, and speech pro-
cessing in a low-resource setting, namely learning to translate audio inputs without transcriptions.
I will finish by discussing open problems in natural language processing that will be critical in
porting highly successful NLP work to the myriad of less-well-studied languages.

Biography

Trevor Cohn is an Associate Professor and ARC Future Fellow at the University of Melbourne,
in the School of Computing and Information Systems. He received Bachelor degrees in Software
Engineering and Commerce, and a PhD degree in Engineering from the University of Melbourne.
He was previously based at the University of Sheffield, and before this worked as a Research
Fellow at the University of Edinburgh. His research interests focus on probabilistic and statistical
machine learning for natural language processing, with applications in several areas including
machine translation, parsing and grammar induction. Current projects include translating diverse
and noisy text sources, deep learning of semantics in translation, rumour diffusion over social
media, and algorithmic approaches for scaling to massive corpora. Dr. Cohn’s research has been
recognised by several best paper awards, including best short paper at EMNLP in 2016. He will
be jointly organising ACL 2018 in Melbourne.
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Invited Talk: Strategies for Discovering Underlying Linguistic Structure

Jason Eisner

Johns Hopkins University

Abstract

A goal of computational linguistics is to automate the kind of reasoning that linguists do. Given
text in a new language, can we determine the underlying morphemes and the grammar rules that
arrange and modify them?

The Bayesian strategy is to devise a joint probabilistic model that is capable of generating the
descriptions of new languages. Given data from a particular new language, we can then seek
explanatory descriptions that have high prior probability. This strategy leads to fascinating and
successful algorithms in the case of morphology.

Yet the Bayesian approach has been less successful for syntax. It is limited in practice by our ability
to (1) design accurate models and (2) solve the computational problem of posterior inference. I
will demonstrate some remedies: build only a partial (conditional) model, and use synthetic data
to train a neural network that simulates correct posterior inference.

Biography

Jason Eisner is Professor of Computer Science at Johns Hopkins University, where he is also af-
filiated with the Center for Language and Speech Processing, the Machine Learning Group, the
Cognitive Science Department, and the national Center of Excellence in Human Language Tech-
nology. His goal is to develop the probabilistic modeling, inference, and learning techniques
needed for a unified model of all kinds of linguistic structure. His 100+ papers have presented
various algorithms for parsing, machine translation, and weighted finite-state machines; formaliza-
tions, algorithms, theorems, and empirical results in computational phonology; and unsupervised
or semi-supervised learning methods for syntax, morphology, and word-sense disambiguation. He
is also the lead designer of Dyna, a new declarative programming language that provides an in-
frastructure for AI research. He has received two school-wide awards for excellence in teaching.
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Abstract

This paper proposes a new attention
mechanism for neural machine transla-
tion (NMT) based on convolutional neu-
ral networks (CNNs), which is inspired
by the CKY algorithm. The proposed at-
tention represents every possible combi-
nation of source words (e.g., phrases and
structures) through CNNs, which imitates
the CKY table in the algorithm. NMT,
incorporating the proposed attention, de-
codes a target sentence on the basis of
the attention scores of the hidden states
of CNNs. The proposed attention en-
ables NMT to capture alignments from un-
derlying structures of a source sentence
without sentence parsing. The evalua-
tions on the Asian Scientific Paper Excerpt
Corpus (ASPEC) English-Japanese trans-
lation task show that the proposed atten-
tion gains 0.66 points in BLEU.

1 Introduction

Recently, neural machine translation (NMT) based
on neural networks (NNs) is known to provide
both high-precision and human-like translation
through its simple architecture. In NMT, the
encoder-decoder model, which is intensively stud-
ied, converts a source-language sentence into a
fixed-length vector and then generates a target-
language sentence from the vector by using re-
current NNs (RNNs) with gated recurrent units
(GRUs) (Cho et al., 2014a) or long short-term
memory (LSTM) (Hochreiter and Schmidhuber,
1997; Gers et al., 2000; Sutskever et al., 2014).
An attention-based NMT (ANMT) is one of the
state-of-the-art technologies for MT, which is an
extension of the encoder-decoder model and pro-
vides highly accurate translation (Luong et al.,

2015; Dzmitry et al., 2015). ANMT is a method of
translation in which the decoder generates a target-
language sentence, referring to the history of the
encoder’s hidden layer state.

The encoder-decoder model has also been ex-
tended to syntax-based NMT, which utilizes struc-
tures of source sentences, target sentences, or
both. In particular, Eriguchi et al. (2016b) have
shown that a source-side structure (i.e., constituent
trees of source sentences) are useful for NMT
on the English-Japanese translation. However,
syntax-based NMT requires sentence parsing in
advance.

This paper proposes a new attention mechanism
for NMT based on convolutional neural networks
(CNNs) to leverage the structures of source sen-
tences in NMT without parsing. In the parsing
field, the CKY algorithm (Kasami, 1965; Younger,
1967) parses a sentence in a bottom-up manner
through the CKY table, which efficiently consid-
ers all possible combinations of words and rep-
resents the structure of the sentence through dy-
namic programming. Inspired by the algorithm,
we incorporate CNNs that imitate the CKY table
into the attention mechanism of ANMT. In par-
ticular, the proposed attention constructs CNNs in
the same order as the calculation procedures in the
CKY table, and then ANMT decodes a target sen-
tence by referring to each state of the hidden lay-
ers of CNNs, which corresponds to each cell in
the CKY table. The proposed attention enables the
ANMT model to capture underlying structures of
a source sentence that are useful for a prediction
of each target word, without sentence parsing in
advance.

The evaluations on the ASPEC English-
Japanese translation task (Nakazawa et al., 2016)
show that the proposed attention gains 0.66 points
in BLEU. Furthermore, they show that our atten-
tion can capture structural alignments (e.g., align-

1



ment to a case structure), which is not a word-level
alignment.

There are several previous studies on NMT
using CNNs (Kalchbrenner and Blunsom,
2013; Cho et al., 2014b; Lamb and Xie, 2016;
Kalchbrenner et al., 2016). Their models consist
of serially connected multi-layer CNNs for en-
coders or decoders, similar to image recognition
CNNs for 1D image processing. Therefore,
their models do not have any direct mecha-
nisms for dealing with the connections between
phrases/words in long distance. Our model adopts
CKY-based connections between multi-layer
CNNs, which enables the NMT to calculate direct
connections between phrases/words in encoders,
and the attention mechanism enables the NMT
to capture structural alignment between decoders
and encoders1.

2 Attention-based NMT (ANMT)

ANMT (Luong et al., 2015; Dzmitry et al., 2015)
is an extension of the encoder-decoder model
(Sutskever et al., 2014; Cho et al., 2014a). The
model uses its RNN encoder to convert a source-
language sentence into a fixed-length vector and
then uses its RNN decoder to generate a target-
language sentence from the vector.

We used a bi-directional two-layer LSTM net-
work as the encoder. Given a source-language sen-
tence x = x1, x2, · · · , xT , the encoder represents
the i-th word, xi, as a d-dimensional vector, vi, by
a word embedding layer. The encoder then com-
putes the hidden state of vi, hi, as follows:

−−→
h

(1)
i = LSTM (1)(vi), (1)
←−−
h

(1)
i = LSTM (1)(vi), (2)
−−→
h

(2)
i = LSTM (2)(

−−→
h

(1)
i ) +

−−→
h

(1)
i , (3)

←−−
h

(2)
i = LSTM (2)(

←−−
h

(1)
i ) +

←−−
h

(1)
i , (4)

hi =
−−→
h

(2)
i +

←−−
h

(2)
i , (5)

where → and ← indicate the forward direction
(i.e., from the beginning to the end of a sentence)
and the reverse direction, respectively. LSTM (1)

and LSTM (2) represent the first- and second-
layer LSTM encoders, respectively. The dimen-

sions of
←−−
h

(1)
i ,
−−→
h

(1)
i ,
←−−
h

(2)
i ,
−−→
h

(2)
i , and hi are d.

1In a preliminary experiment, we directly applied a CNN
to the encoder of the encoder-decoder model. However, the
method (BLEU: 25.91) does not outperform our proposed
method (BLEU: 26.75).

In ANMT, the decoder generates a target-
language sentence, referring to the hidden layer’s
states of the LSTM encoder, hi. The attention
mechanism explained below is called global atten-
tion (dot) (Luong et al., 2015). We used a two-
layer LSTM network as the decoder. The ini-
tial states of the first- and second-layer LSTM de-
coders are initialized as the states of the first- and
second-layer LSTM encoders in the reverse direc-
tion, respectively.

Each state of the hidden layers of LSTM de-
coders, s

(1)
j and s

(2)
j , is calculated by

s
(1)
j = LSTM (1)([wj−1; ŝj−1]), (6)

s
(2)
j = LSTM (2)(s(1)

j ), (7)

where wj−1 indicates word embedding of the out-
put word yj−1, ‘;’ represents a concatenation of
matrices, and ŝj−1 is an attentional vector used
for generating the output word yj−1, which is ex-
plained below2.

The dimensions of wj−1 and ŝj−1 are d. The
attention score αj(i) is calculated as follows:

αj(i) =
exp(hi · s(2)

j )∑T
k=1 exp(hk · s(2)

j )
. (8)

The context vector cj for generating a target-
language sentence is calculated by

cj =
T∑

i=1

αj(i)hi. (9)

The attentional vector ŝj is calculated by using the
context vector as follows:

ŝj = tanh(Wc[s
(2)
j ; cj ]), (10)

and then using the state of this hidden layer, the
probability of the output word yj is given by

p(yj |y<j ,x) = softmax(Wsŝj), (11)

where Wc and Ws represent weight matrices3.

3 NMT with CKY-based Convolutional
Attention

Figure 1 shows the overall structure of the pro-
posed attention. In the proposed attention, a gen-

2Providing an attentional vector as inputs to the LSTM in
the next time step is called input feeding (Luong et al., 2015).

3In our experiments, target sentences are generated by the
greedy algorithm on the basis of output probabilities.

2



��� ���

���

���

Figure 1: Overall View of CKY-based Attention

erative rule in the CKY algorithm is imitated by
the network structure shown in Figure 2. We
call the network as the Deduction Unit (DU). In
a DU, four types of CNNs are connected by a
residual connection4. In Figure 2, the size of fil-
ters and the number of output channels for each
CNN are shown in a parenthesis. In particular, the
filter sizes of CNN1, CNN2, CNN3, and CNN4,
are 1 × 1, 1 × 2, 1 × 1, and 1 × 2, and their
channel numbers are d

2 , d
2 , d, and d, respectively.

Each DU receives d-dimensional vectors (states)
of two cells in a CKY table and computes a d-
dimensional vector for an upper-level cell, which
corresponds to a generation rule in the CKY al-
gorithm. By using DUs, the state of each cell in
a CKY table is induced by folding the states of
lower-level cells in the same order as the calcu-
lation procedures in the CKY algorithm. We call
the network for this overall procedure as the CKY-
CNN. We hereafter denote the state of the j-th cell
in the i-th CKY-CNN layer as h

(cky)
i,j . Note that

the states of the first-layer of the CKY-CNN (i.e.,
h(cky)

1 = (h(cky)
1,1 , ..., h

(cky)
1,T )) are set to the states

of the LSTM encoder (i.e., h = (h1, ..., hT )). In
the CKY-CNN, the state of a cell is induced from
multiple candidates of outputs from DUs, similar
to the CKY algorithm. Specifically, the state of a
cell is set to the output vector with the highest sum
of values of all dimensions as follows:

h
(cky)
i,j = Max1≤k≤i−1DU(h(cky)

k,j , h
(cky)
i−k,j+k)

(12)
4Through a preliminary experiment, we confirmed that

a simple DU composed of one type of CNN did not work
well. Therefore, we have improved the DU in reference to
(He et al., 2016).
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Figure 2: Deduction Unit in CKY-based Attention
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Figure 3: An Example of Max-pooling with CKY-
CNN

Figure 3 shows an example of convolutions in the
CKY-CNN, highlighting the process of generating
the state of the yellow cell. In this process, three
DUs generate vectors based on the states of the
two blue cells, those of the two red cells, and those
of the two green cells, respectively. The vector
with the highest sum of vector elements is then set
to the state of the yellow cell. Through the CKY-
CNN, the states of the cells in a CKY table (h(cky))
are obtained.

NMT with the CKY-based convolutional atten-
tion decodes a target sentence by referring to the
states of the hidden layers of the CKY-CNN in ad-
dition to the states of the hidden layer of the LSTM
encoder. The alignment scores are calculated as
follows:

α
′
(i, j)

=
exp(hi·s(2)

j )∑T

k=1
exp(hk·s(2)

j )+
∑T

k=1

∑T−k+1

l=1
exp(h

(cky)
k,l

·s(2)
j )

,

(13)
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α
′′
(i1, i2, j)

=
exp(h

(cky)
i1,i2

·s(2)
j )∑T

k=1
exp(hk·s(2)

j )+
∑T

k=1

∑T−k+1

l=1
exp(h

(cky)
k,l

·s(2)
j )

.

(14)

Note that s
(2)
j is the hidden layer’s state of the

second-layer LSTM encoder (see Section 2). The
context vector c

′
j for CKY-CNN is calculated by

c
′
j =

T∑
k=1

α
′
(k, j)hk+

T∑
k=1

T−k+1∑
l=1

α
′′
(k, l, j)h(cky)

k,l .

(15)
ŝj is calculated on the basis of the context vector
of the LSTM encoder (cj), which is defined in Sec-
tion 2, and that of the CKY-CNN (c

′
j) as follows:

ŝj = tanh(Ŵ [s(2)
j ; cj ; c

′
j ]), (16)

where Ŵ ∈ Rd×3d is a weight matrix. By apply-
ing the softmax function to the ŝj in the same way
as in the conventional ANMT (see Section 2), the
encoder predicts the j-th target word.

4 Experiments

4.1 Settings

We used Asian Scientific Paper Excerpt Corpus
(ASPEC)’s English-Japanese corpus5 in this ex-
periment. We used the Moses decoder for word
segmentation of the English corpus and Kytea
(Neubig et al., 2011) for the Japanese corpus. For
each corpus, all characters are lowercased. We
used the first 100,000 sentences (< 50 words)
for training, 1,790 sentences for parameter tuning,
and 1,812 sentences for testing. The words that
appeared less than twice in the training data were
replaced with the special symbol UNK.

The number of dimensions of word vectors and
hidden layers was 256. Adam (Kingsma and Ba,
2014) was used for learning each parameter, and
the initial values of the parameters were set to
α = 0.01, β1 = 0.9, and β2 = 0.99. The learning
rate was halved after 9 and 12 epochs. A gradient
clipping technique was used with a clipping value
of 3.0, following (Eriguchi et al., 2016a). We used
dropout (Srivastava et al., 2014) and weight de-
cay to prevent over-fitting. The dropout ratio for
LSTMs was 0.2, that for the CNN was 0.3, and
the weight decay coefficient was 10−6.

Table 1: Evaluation Results

BLEU (%)
Baseline Model 26.09
Proposed Model 26.75

4.2 Results

We compared the NMT with the CKY-based con-
volutional attention (see Section 3) with the NMT
with the conventional attention (see Section 2) to
confirm the effectiveness of the proposed CKY-
based attention. The only difference between the
baseline and the proposed model is their attention
mechanisms. Table 1 shows the translation perfor-
mance by BLEU (Papineni et al., 2002). For ref-
erence, we obtained a 18.69% BLEU score using
the Moses phrase-based statistical machine trans-
lation system (Koehn et al., 2007) with the default
settings.

Table 1 shows that the proposed model outper-
forms the baseline model, which indicates that the
proposed attention is useful for NMT.

Figure 4 shows the attention scores of an in-
stance in the test data. The deeper color of a
cell represents a higher attention score. The ver-
tical axis represents a source sentence. In Fig-
ure 4, the test sentence is "finally, this paper de-
scribes the recent trend and problems in this field
.". The horizontal axis indicates the depth of the
CKY-CNN. Note that an attention score of the first
layer of the CKY-CNN corresponds to an atten-
tion score of the hidden layer of the LSTM. Figure
4 shows that for the words whose alignments are
clearly defined such as content words (e.g., "最後
(finally)", "分野 (field)", "述べ (describe)"), high
alignment scores are located in the first layer. On
the other hand, for the words whose alignments are
not clearly defined such as function words (e.g., "
に", "け", "る"), high alignment scores are located
at a deeper layer. The Japanese word "に" shows
a case structure, and "け" and "る" are parts of the
Japanese preposition "おける (in)". This indicates
that while the conventional attention finds word-
level alignments, the proposed attention captures
structural alignments.

5http://orchid.kuee.kyoto-u.ac.jp
/WAT/WAT2015/index.html
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Figure 4: Examples of Attention Scores

5 Conclusions

This paper proposed an attention mechanism for
NMT based on CNNs, which imitates the CKY al-
gorithm. The evaluations on the ASPEC English-
Japanese translation task showed that the proposed
attention gained 0.66 points in BLEU and cap-
tured structural alignments, which could not be
captured by a conventional attention mechanism.
The proposed model consumes excessive amounts
of memory because the proposed model keeps hid-
den states of all cells in a CKY table. In future,
we would like to improve the proposed attention
in terms of memory consumption, and then ver-
ify the effectiveness of the proposed attention for
larger datasets.
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Abstract

The sequence-to-sequence (Seq2Seq)
model has been successfully applied to
machine translation (MT). Recently, MT
performances were improved by incorpo-
rating supervised attention into the model.
In this paper, we introduce supervised
attention to constituency parsing that can
be regarded as another translation task.
Evaluation results on the PTB corpus
showed that the bracketing F-measure was
improved by supervised attention.

1 Introduction

The sequence-to-sequence (Seq2Seq) model has
been successfully used in natural language genera-
tion tasks such as machine translation (MT) (Bah-
danau et al., 2014) and text summarization (Rush
et al., 2015). In the Seq2Seq model, attention,
which encodes an input sentence by generating an
alignment between output and input words, plays
an important role. Without the attention mecha-
nism, the performance of the Seq2Seq model de-
grades significantly (Bahdanau et al., 2014). To
improve the alignment quality, Mi et al. (2016),
Liu et al. (2016), and Chen et al. (2016) proposed
a method that learns attention with the given align-
ments in a supervised manner, which is called su-
pervised attention. By utilizing supervised atten-
tion, the translation quality of MT is improved.

The Seq2Seq model can also be applied to other
NLP tasks. We can regard parsing as a transla-
tion task from a sentence to an S-expression, and
Vinyals et al. (2015) proposed a constituent pars-
ing method based on the Seq2Seq model. Their
method achieved the state-of-the-art performance.

<s> </s>

(S )S

(VP )VP

(NP )NP

XX

soup

XX

the

XX

cooks

(NP )NP

XX

chef

XX

the

Figure 1: S-expression format for Vinyals et al.
(2015)’s Seq2seq constituency parser. The
Seq2seq model employs “<s> (S (NP XX XX )NP
(VP XX (NP XX XX )NP )VP )S </s>” as output
tokens. <s> and </s> are start and end of sen-
tence symbols, respectively.

In their method, based on the alignment be-
tween a nonterminal and input words, the attention
mechanism has also an important role. However,
since the attention is learned in an unsupervised
manner, the alignment quality might not be opti-
mal. If we can raise the quality of the alignments,
the parsing performance will be improved. Un-
like MT, however, the definition of a gold standard
alignment is not clear for the parsing tasks.

In this paper, we define several linguistically-
motivated annotations between surface words and
nonterminals as “gold standard alignments” to en-
hance the attention mechanism of the constituency
parser (Vinyals et al., 2015) by supervised atten-
tion. The PTB corpus results showed that our
method outperformed Vinyals et al. (2015) by over
1 point in the bracketing F-measure.
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←−
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←−
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←−
h 3

←−
h 2

←−
h 1

−→s 1
−→s 2

−→s 3
−→s 4

−→
h 5

−→
h 4

−→
h 3

−→
h 2

−→
h 1

∑

d1 d2 d3 d4

(SBARQ (WHADVP XX )WHADVP

Figure 2: Network structure of our sequence-to-sequence model.

2 Sequence-to-Sequence based
Constituency Parser on Supervised
Attention Framework

The Seq2Seq constituency parser (Vinyals
et al., 2015) predicts nonterminal la-
bels y = (y1, ..., ym), for input words
x = (x1, ..., xn), where m and n are respectively
the lengths of the word and the label sequences.
As shown in Fig. 1, we use normalized labels
(Vinyals et al., 2015) in our Seq2Seq model,
which consists of encoder and decoder parts. Its
overall structure is shown in Fig. 2.

The encoder part employs a 3-layer stacked bi-
directional Long Short-Term Memory (LSTM) to
encode input sentence x into a sequence of hidden
states h = (h1, ..., hn). Each hi is a concatenation
of forward hidden layer

−→
h i and backward hidden

layer
←−
h i.

←−
h 1 is inherited by the decoder as an

initial state.
The decoder part employs a 3-layer stacked for-

ward LSTM to encode previously predicted label
yt−1 into hidden state st.

For each time t, with a 2-layer feed-forward
neural network r, encoder and decoder hidden lay-
ers h and −→s t are used to calculate the attention
weight:

αi
t =

exp(r(hi,
−→s t))∑n

i′=1 exp(r(hi′ ,
−→s t))

.

Using attention weight αi
t and 1-layer feed-

forward neural network u, label probabilities are
calculated as follows:

P (yt | yt−1, ..., y1) =
exp(u(dt)v=yt)∑V
v=1 exp(u(dt)v)

,

dt = [
n∑

i=1

αt
i · hi,

−→s t],

where V is the label size. Note that dt and the
embedding of label yt are concatenated and fed to
the decoder at time t + 1.

In a supervised attention framework, attentions
are learned from the given alignments. We denote
a link on an alignment between yt and xi as ai

t = 1
(ai

t = 0 denotes that yt and xi are not linked.).
Following a previous work (Liu et al., 2016), we
adopt a soft constraint to the objective function:

−
n∑

t=1

logP (yt | yt−1, ..., y0,x)

−λ×
n∑

i=1

m∑
t=1

ai
t × logαi

t,

to jointly learn the attention and output distribu-
tions. All our alignments are represented by one-
to-many links between input words x and nonter-
minals y.

3 Design of our Alignments

In the traditional parsing framework (Hall et al.,
2014; Durrett and Klein, 2015), lexical features
have been proven to be useful in improving pars-
ing performance. Inspired by previous work,
we enhance the attention mechanism utilizing the
linguistically-motivated annotations between sur-
face words and nonterminals by supervised atten-
tion.

In this paper, we define four types of alignments
for supervised attention. The first three methods
use the monolexical properties of heads without
incurring any inferential costs of lexicalized an-
notations. Although the last needs manually con-
structed annotation schemes, it can capture bilexi-
cal relationships along dependency arcs. The fol-
lowings are the details:
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<s>[<s>] </s>[</s>]

(S[the] )S[the]

(VP[cooks] )VP[cooks]

(NP[the] )NP[the]

XX[soup]

soup

XX[the]

the

XX[cooks]

cooks

(NP[the] )NP[the]

XX[chef]

chef

XX[the]

the

(a) Left Word.

<s>[<s>] </s>[</s>]

(S[soup] )S[soup]

(VP[soup] )VP[soup]

(NP[soup] )NP[soup]

XX[soup]

soup

XX[the]

the

XX[cooks]

cooks

(NP[chef] )NP[chef]

XX[chef]

chef

XX[the]

the

(b) Right Word.

<s>[<s>] </s>[</s>]

(S[the] )S[soup]

(VP[cooks] )VP[soup]

(NP[the] )NP[soup]

XX[soup]

soup

XX[the]

the

XX[cooks]

cooks

(NP[the] )NP[chef]

XX[chef]

chef

XX[the]

the

(c) Span Word.

<s>[<s>] </s>[</s>]

(S[cooks] )S[cooks]

(VP[cooks] )VP[cooks]

(NP[soup] )NP[soup]

XX[soup]

soup

XX[the]

the

XX[cooks]

cooks

(NP[chef] )NP[chef]

XX[chef]

chef

XX[the]

the

(d) Lexical Head.

Figure 3: Example of our alignments. The word in [ ] is linked to each output token.

• Left word: In English, the syntactic head of
a verb phrase is typically at the beginning of
the span. Based on this notion, this method
uses the identity of the starting word of a non-
terminal span. Figure 3a shows an alignment
example where an output token is linked to
its leftmost word of the span.

• Right word: On the contrary, the syntactic
head of a simple English noun phrase is of-
ten at the end of the span. The alignment ex-
ample in Fig. 3b is produced by this method,
where an output token is linked to the right-
most word of the span.

• Span word: Here, we unify the above two
methods. All output tokens are linked to their
leftmost word, except the ending bracket to-
kens, which are linked to their rightmost
word. Figure 3c shows an alignment exam-
ple produced by this method.

• Lexical head: Lexicalization (Eisner, 1996;
Collins, 1997), which annotates grammar
nonterminals with their head words, is use-
ful for resolving the syntactic ambiguities in-
volved by such linguistic phenomena as co-

ordination and PP attachment. As shown in
Fig. 3d, this method produces alignments by
linking an output token and its head word1.

4 Experimental Evaluation

4.1 Evaluation Settings
We experimentally evaluated our methods on the
English Penn Treebank corpus (PTB), and split
the data into three parts: The Wall Street Journal
(WSJ) sections 02-21 for training, section 22 for
development and section 23 for testing.

In our models, the dimensions of the input word
embeddings, the fed label embeddings, the hidden
layers, and an attention vector were respectively
set to 150, 30, 200, and 200. The LSTM depth
was set to 3. Label set Lcon had a size of 61. The
input vocabulary size of PTB was set to 42393.
Supervised attention rate λ was set to 1.0. To use
entire words as a vocabulary, we integrated word
dropout (Iyyer et al., 2015) into our models with
smoothing rate 0.8375 (Cross and Huang, 2016).
We used dropout layers (Srivastava et al., 2014) to

1For head annotations, we used ptbconv 3.0 tool (Yamada
and Matsumoto, 2003), which is available from http://
www.jaist.ac.jp/h-yamada/.
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WSJ Section 22 WSJ Section 23
Setting P R F1 AER P R F1 AER

Seq2Seq 88.1 88.0 88.1 – 88.3 87.6 88.0 –
Seq2Seq+random 67.1 66.3 66.7 96.3 66.5 65.5 66.0 96.3
Seq2Seq+first 70.3 69.7 70.0 0.0 69.6 68.7 69.2 0.0
Seq2Seq+last 66.7 66.1 66.4 0.0 66.1 64.8 65.4 0.0

Seq2Seq+head 89.2 88.9 89.1 6.9 89.2 88.1 88.6 6.9
Seq2Seq+left 89.6 89.4 89.5 1.8 89.4 88.7 89.0 1.7
Seq2Seq+right 89.2 88.9 89.0 4.7 89.5 88.6 89.1 4.7
Seq2Seq+span 89.3 89.1 89.2 1.6 89.2 88.4 88.8 1.6

Vinyals et al. (2015) w att† – – 88.7 – – – 88.3 –
Vinyals et al. (2015) w/o att† – – < 70 – – – < 70 –
Seq2Seq+beam 89.0 88.7 88.8 – 89.1 88.3 88.7 –
Seq2Seq+beam+random 71.0 69.9 70.4 96.3 69.4 68.1 68.7 96.3
Seq2Seq+beam+first 73.9 73.0 73.5 0.0 73.2 71.8 72.5 0.0
Seq2Seq+beam+last 70.5 69.6 70.0 0.0 69.7 68.1 68.9 0.0

Seq2Seq+beam+head 89.6 89.2 89.4 6.9 89.6 88.4 89.0 6.9
Seq2Seq+beam+left 89.9 89.6 89.8 1.8 89.8 89.0 89.4 1.7
Seq2Seq+beam+right 89.6 89.2 89.4 4.7 89.7 88.9 89.3 4.7
Seq2Seq+beam+span 89.6 89.4 89.5 1.6 90.0 89.0 89.5 1.6

Seq2Seq+ens(base) 90.5 90.1 90.3 – 90.6 89.6 90.1 –

Seq2Seq+ens(feat) 91.3 90.7 91.0 – 91.5 90.5 91.0 –

Vinyals et al. (2015) w att+ens† – – 90.7 – – – 90.5 –
Seq2Seq+beam+ens(base) 91.4 90.9 91.1 – 91.5 90.5 91.0 –

Seq2Seq+beam+ens(feat) 91.9 91.4 91.7 – 92.1 91.0 91.5 –

Table 1: Results of parsing evaluation: Seq2Seq indicates the Seq2Seq model on a single model with
greedy decoding. +beam shows the beam decoding results. +lex, +left, +right and +span respectively
show the results on our proposed lexical head, left word, right word, and span word alignments. +random,
+first, and +last respectively show the results on the alignment of baselines random, first word, and last
word. +ens(base) shows the ensemble results of five Seq2Seq models without the given alignments.
+ens(feat) shows the ensemble results of a Seq2Seq model without a given alignment and Seq2Seq
models with lexical head, left word, right word and span word alignments. † denotes the scores reported
in the paper.

each LSTM input layer (Vinyals et al., 2015) with
a dropout rate of 0.3.

The stochastic gradient descent (SGD) was used
to train models on 100 epochs. SGD’s learning
rate was set to 1.0 in the first 50 epochs. After the
first 50 epochs, the learning rate was halved after
every 5th epoch. All gradients were averaged in
each mini-batch. The maximum mini-batch size
was set to 16. The mini-batch order was shuffled
at the end of every epoch. The clipping threshold
of the gradient was set to 1.0.

We used greedy and beam searches for the de-
coding. The beam size was set to ten. The de-
coding was performed on both a single model and
five-model ensembles. We used the products of
the output probabilities for the ensemble.

All models were written in C++ on Dynet (Neu-
big et al., 2017).

We compared Seq2Seq models with and with-

out our alignments. To investigate the influence
of the supervised attention method itself, we also
compared our alignments to the following align-
ments:

• Random: Based on uniform distribution,
each output token was randomly linked to at
most one input token.

• First word: All output tokens were linked to
the start of the sentence tokens in the input
sentence.

• Last word: All output tokens were linked to
the end of the sentence tokens in the input
sentence.

We evaluated the compared methods using
bracketing Precision, Recall and F-measure. We
used evalb2 as a parsing evaluation. We also eval-

2http://nlp.cs.nyu.edu/evalb/
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uated the learned attention using alignment error
rate (AER) (Och and Ney, 2003) on their align-
ments. Following a previous work (Luong et al.,
2015), attention evaluation was conducted on gold
output.

4.2 Results

Table 1 shows the results. All our lexical head,
left word, right word and span word alignments
improved bracket F-measure of baseline on ev-
ery setting. From the +random, +first, and +last
results, only supervised attention itself did not
improve the parsing performances. Furthermore,
each AER indicates that the alignments were cor-
rectly learned. These results support our expecta-
tion that our alignments improve the parsing per-
formance with Seq2Seq models.

5 Discussion

All of the baseline alignments random, first word
and last word, largely degraded the parsing per-
formances. random prevented the learning of at-
tention distributions, and first word and last word
fixed the attention distributions. These resemble
disable the attention mechanism. Vinyals et al.
(2015) reported that the bracket F-measure of
Seq2Seq without an attention mechanism is less
than 70. Our evaluation results, which are con-
sistent with their score, and it supports our expec-
tation that the attention mechanism is critical for
Seq2Seq constituency parsing.

Comparing the results of our proposed align-
ments in Table 1, even though the bracket F-
measure of the lexical head is lower than that of
the left word, right word and span word, the lex-
ical head is the most intuitive alignment. Except
for random, the AER of lexical head is the highest
in all the alignments. This means that lexical head
is difficult to learn on attention distribution. The
prediction difficulty may degrade the parsing per-
formances. Our analysis indicates that an align-
ment which can be easily predicted is suitable for
the supervised attention of Seq2Seq constituency
parsing.

6 Conclusion

We proposed methods that use traditional pars-
ing features as alignments for the sequence-to-
sequence based constituency parser in the super-
vised attention framework. In our evaluation, the
proposed methods improved the bracketing scores

on the English Penn Treebank against the baseline
methods. These results emphasize, the effective-
ness of our alignments in parsing performances.
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Abstract

Our paper addresses the problem of anno-
tation projection for semantic role label-
ing for resource-poor languages using su-
pervised annotations from a resource-rich
language through parallel data. We pro-
pose a transfer method that employs in-
formation from source and target syntactic
dependencies as well as word alignment
density to improve the quality of an iter-
ative bootstrapping method. Our experi-
ments yield a 3.5 absolute labeled F-score
improvement over a standard annotation
projection method.

1 Introduction

Semantic role labeling (SRL) is the task of auto-
matically labeling predicates and arguments of a
sentence with shallow semantic labels character-
izing “Who did What to Whom, How, When and
Where?” (Palmer et al., 2010). These rich se-
mantic representations are useful in many applica-
tions such as question answering (Shen and Lap-
ata, 2007) and information extraction (Christensen
et al., 2011), hence gaining a lot of attention in re-
cent years (Zhou and Xu, 2015; Täckström et al.,
2015; Roth and Lapata, 2016; Marcheggiani et al.,
2017). Since the process of creating annotated re-
sources needs significant manual effort, SRL re-
sources are available for a relative small num-
ber of languages such as English (Palmer et al.,
2005), German (Erk et al., 2003), Arabic (Za-
ghouani et al., 2010) and Hindi (Vaidya et al.,
2011). However, most languages still lack SRL
systems. There have been some efforts to use
information from a resource-rich language to de-
velop SRL systems for resource-poor languages.
Transfer methods address this problem by trans-
ferring information from a resource-rich language

(e.g. English) to a resource-poor language.
Annotation projection is a popular transfer

method that transfers supervised annotations from
a source language to a target language through
parallel data. Unfortunately this technique is not
as straightforward as it seems, e.g. translation
shifts lead to erroneous projections and accord-
ingly affecting the performance of the SRL system
trained on these projections. Translation shifts are
typically a result of the differences in word order
and the semantic divergences between the source
and target languages. In addition to translation
shifts, there are errors that occur in translations,
automatic word alignments as well as automatic
semantic roles, hence we observe a cascade of er-
ror effect.

In this paper, we introduce a new approach for
a dependency-based SRL system based on anno-
tation projection without any semantically anno-
tated data for a target language. We primarily fo-
cus on improving the quality of annotation projec-
tion by using translation cues automatically dis-
covered from word alignments. We show that ex-
clusively relying on partially projected data does
not yield good performance. We improve over
the baseline by filtering irrelevant projections, it-
erative bootstrapping with relabeling, and weight-
ing each projection instance differently with data-
dependent cost-sensitive training.

In short, contributions of this paper can be sum-
marized as follows; We introduce a weighting al-
gorithm to improve annotation projection based
on cues obtained from syntactic and translation
information. In other words, instead of utilizing
manually-defined rules to filter projections, we de-
fine and use a customized cost function to train
over noisy projected instances. This newly de-
fined cost function helps the system weight some
projections over other instances. We then utilize
this algorithm in a bootstrapping framework. Un-
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like traditional bootstrapping, ours relabels every
training instance (including labeled data) in every
self-training round. Our final model on transfer-
ring from English to German yields a 3.5 absolute
improvement labeled F-score over a standard an-
notation projection method.

2 Our Approach

We aim to develop a dependency-based SRL sys-
tem which makes use of training instances pro-
jected from a source language (SLang) onto a tar-
get language (TLang) through parallel data. Our
SRL system is formed as a pipeline of classifiers
consisting of a predicate identification and dis-
ambiguation module, an argument identification
module, and an argument classification module.
In particular, we use our re-implementation of the
greedy (local) model of Björkelund et al. (2009)
except that we use an averaged perceptron algo-
rithm (Freund and Schapire, 1999) as the learning
algorithm.

2.1 Baseline Model

As our baseline, we apply automatic word align-
ment on parallel data and preserve the intersected
alignments from the source-to-target and target-
to-source directions. As our next step, we de-
fine a projection density criteria to filter some of
the projected sentences. Given a target sentence
from TLang with w words where f words have
alignments (f ≤ w), if the source sentence from
SLang has p predicates for which p′ of them are
projected (p′ ≤ p), we define projection den-
sity as (p′ × f)/(p × w) and prune out sentences
with a density value less than a certain threshold.
The threshold value is empirically determined dur-
ing tuning experiments performed on the develop-
ment data. In this criteria, the denominator shows
the maximum number of training instances that
could be obtained by projection and the nomina-
tor shows the actual number of relevant instances
that are used in our model. In addition to speed-
ing up the training process, filtering sparse align-
ments helps remove sentence pairs with a signif-
icant translation shifts. Thereafter, a supervised
model is trained directly on the projected data.

2.2 Model Improvements

As already mentioned, the quality of projected
roles is highly dependent on different factors in-
cluding translation shifts, errors in automatic word

alignments and the SLang supervised SRL sys-
tem. In order to address these problems, we apply
the following techniques to improve learning from
partial and noisy projections, thereby enhancing
the performance of our model:

• Bootstrapping to make use of unlabeled data;

• Determining the quality of a particular pro-
jected semantic dependency based on two
factors: 1) source-target syntactic correspon-
dence; and, 2) projection completeness de-
gree. We utilize the above constraints in the
form of a data-dependent cost-sensitive train-
ing objective. This way the classifier would
be able to learn translation shifts and erro-
neous instances in the projected data, hence
enhancing the overall performance of the sys-
tem.

Bootstrapping Bootstrapping (or self-training)
is a simple but very useful technique that makes
use of unlabeled data. A traditional self-training
method (McClosky et al., 2006) labels unlabeled
data (in our case, fill in missing SRL decisions)
and adds that data to the labeled data for further
training. We report results for this setting in §3.1
as fill–in. Although fill–in method is shown to be
very useful in previous work (Akbik et al., 2015),
empirically, we find that it is better to relabel all
training instances (including the already labeled
data) instead of only labeling unlabeled raw data.
Therefore, the classifier is empowered to discover
outliers (resulting from erroneous projections) and
change their labels during the training process.
Figure 1 illustrates our algorithm. It starts with
training on the labeled data and uses the trained
model to label the unlabeled data and relabel the
already labeled data. This process repeats for a
certain number of epochs until the model con-
verges, i.e., reaches its maximum performance.

Data-dependent cost-sensitive training In our
baseline approach, we use the standard perceptron
training. In other words, whenever the algorithm
sees a training instance xi with its corresponding
label yi, it updates the weight vector θ for itera-
tion t based on the difference between the feature
vector φ(xi, yi) of the gold label and the feature
vector φ(xi, y

∗
i ) of the predicted label y∗i (Eq. 1).

θt = θt−1 + φ(xi, yi)− φ(xi, y
∗
i ) (1)

In Eq. 1, the algorithm assumes that every data
point xi in the training data {x1, · · · , xn} has the
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Inputs: 1) Projected dataD = DL∪DU whereDL andDU
indicate labeled and unlabeled instances in the projected
data; 2) Number of self-training iterations m.

Algorithm:
Train model θ0 on DL
for i = 1 to m do
DU ← Label data DU with model θi−1.
DL ← Relabel data DL with model θi−1.
Train model θi on DL ∪ DU

Output: The model parameters θm.

Figure 1: The iterative bootstrapping algorithm for
training SRL on partially projected data.

same importance and the cost of wrongly predict-
ing the best label for each training instance is uni-
form. We believe this uniform update is problem-
atic especially for the transfer task in which dif-
ferent projected instances have different qualities.
To mitigate this issue, we propose a simple mod-
ification, we introduce a cost λi ∈ [0, 1] for each
training instance xi. Therefore, Eq. 1 is modified
as follows in Eq. 2.

θt = θt−1 + λi (φ(xi, yi)− φ(xi, y
∗
i )) (2)

In other words, the penalty of making a mis-
take by the classifier for each training instance de-
pends on the importance of that instance defined
by a certain cost. The main challenge is to de-
fine an effective cost function, especially in our
framework where we don’t have supervision. Ac-
cordingly, we experiment with the following cost
definitions:

- Projection completeness: Our observation
shows that the density of projection is a very
important indicator of projection quality. We
view it as a rough indicator of translation
shifts: the more alignments from source to
target, the less we have a chance of having
translation shifts. As an example, consider
the sentence pair extracted from English–
German Europarl corpus: “I sit here be-
tween a rock and a hard place” and its Ger-
man translation “Zwei Herzen wohnen ach
in meiner Brust” which literally reads as
“Two hearts dwell in my chest”. The only
words that are aligned (based on the output of
Giza++) are the English word “between” and
the German word “in”. In fact, the German
sentence is an idiomatic translation of the
English sentence. Consequently predicate–
argument structure of these sentences vary

tremendously; The word “sit” is predicate of
the English sentence while “wohnen (dwell)”
is the predicate of the German sentence.

We use the definition of completeness from
Akbik et al. (2015) to define the sparsity cost
(λcomp): this definition deals with the propor-
tion of a verb or direct dependents of verbs in
a sentence that are labeled.

- Source-target syntactic dependency
match: We observe that when the depen-
dency label of a target word is different from
its aligned source word, there is a higher
chance of a projection mistake. However,
given the high frequency of source-target de-
pendency mismatches, it is harmful to prune
those projections that have dependency
mismatch; instead, we define a different
cost if we see a training instance with a
dependency mismatch. For an argument xi

that is projected from source argument sxi ,
we define the cost λdep

i according to the
dependency of the source and target words
dep(xi) and dep(sxi) as Eq. 3.

λdep
i =

{
1 if dep(xi) = dep(sxi)
0.5 otherwise

(3)

As an example, consider Fig. 2 that demon-
strates an English-German sentence pair from
EuroParl “I would urge you to endorse this”
with its German translation that literally
reads as “I ask for your approval”. As we can
see, there is a shift in translation of English
clausal complement “to endorse this” into
German equivalent “um Zustimmung (your
approaval)” which leads the difference in the
syntactic structure of source and target sen-
tences. Therefore, neither the predicate label
of English verb “endorse” nor the argument
“A2” should not be projected to the German
noun “Zustimmung”. Dashed edges between
sentences show intersected word alignments.
Here, projecting semantic role of ”endorse“
(A2) to to the word ”Zustimmmung“ through
alignment will lead to the wrong semantic
role for this word.

- Completeness + syntactic match: We em-
ploy the average of λdep and λcomp values as
defined above. This way, we simultaneously
encode both the completeness and syntactic
similarity information.
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I would urge you to endorse this
A0 urge.01 A1 A2

A0 endorse.01 A1

Ich bitte Sie um Zustimmung

nsubj

aux

nsubj

aux

xcomp

dobj

nsubj dobj

adpmod

adpobj

Figure 2: Example of English-German sentences
from Europarl with dependency structure. Dif-
ferent dependencies are shown with dashed arcs.
Predicate–argument structure of the English sen-
tence is shown bellow each word.

3 Experiments

Data and Setting We use English as the source
and German as the target language. In our setting,
we assume to have supervised part-of-speech tag-
ging and dependency parsing models for both the
source (SLang) and target (TLang) languages. We
use the Universal part-of-speech tagset of Petrov
et al. (2011) and the Google Universal Treebank
(McDonald et al., 2013). We ignore the projection
of the AM roles to German since this particular
role does not appear in the German dataset.

We use the standard data splits in the CoNLL
shared task on SRL (Hajič et al., 2009) for eval-
uation. We replace the POS and dependency
information with the predictions from the Yara
parser (Rasooli and Tetreault, 2015) trained on the
Google Universal Treebank.1 We use the parallel
Europarl corpus (Koehn, 2005) and Giza++ (Och
and Ney, 2003) for extracting word alignments.
Since predicate senses are projected from English
to German, comparing projected senses with the
gold German predicate sense is impossible. To ad-
dress this, all evaluations are conducted using the
Gold predicate sense.

After filtering projections with density criteria
of §2.1, 29417 of the sentences are preserved.
The number of preserved sentences after filtering
sparse alignments is roughly one percent of the

1Our ideal setting is to transfer to more languages but
because of the semantic label inconsistency across CoNLL
datasets, we find it impossible to evaluate our model on more
languages. Future work should work on defining a reli-
able conversion scheme to unify the annotations in different
datasets.

Model Cost Lab. F1
Baseline × 60.3
Bootstrap–fill-in × 61.6
Bootstrap–relabel × 62.4
Bootstrap–relabel comp. 63.0(+1.0)

Bootstrap–relabel dep. 63.4(+1.8)

Bootstrap–relabel comp.+dep. 63.8(+1.3)

Supervised – 79.5

Table 1: Labeled F-score for different models
in SRL transfer from English to German using
gold predicates. Cost columns shows the use of
cost-sensitive training using projection complete-
ness (“comp.”), source-target dependency match
(“dep.”) and both (“comp.+dep.”). The numbers in
parenthesis show the absolute improvement over
the Bootstrap-fill-in method.

original parallel data (29K sentences out of 2.2M
sentences). Density threshold is set to 0.4 deter-
mined based on our tuning experiments on devel-
opment data.

3.1 Results and Discussion
Table 1 shows the results of different models
on the German evaluation data. As we can see
in the table, bootstrapping outperforms the base-
line. Interestingly, relabelling all training in-
stances (Bootstrap–relabel) gives us 0.8 absolute
improvement in F-score compared to when we
just predict over instances without a projected la-
bel (Bootstrap–fill-in). Here, the fill-in approach
would label only the German word ”um“ in Fig. 2
that does not have any projected label from the En-
glish side. While the relabeling method will over-
write all projected labels with less noisy predicted
labels.

We additionally observe that the combination
of the two cost functions improves the quality
further. Overall, the best model yields 3.5 ab-
solute improvement F-score over the baseline.
As expected, none of the approaches improves
over supervised performance. We further ana-
lyzed the effects of relabeling approach on iden-
tification and classification of non–root seman-
tic dependencies. Figure 3 shows precision, re-
call and F–score of the two most frequent seman-
tic dependencies (predicate pos + argument la-
bel): VERB+A0, VERB+A1 throughout relabel-
ing iterations. As demonstrated in the graph, both
precision and recall improve by cost-sensitive re-
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Figure 3: Precision, recall and F–score of
VERB+A0 and VERB+A1 during relabeling iter-
ations on the German development data. Horizon-
tal axis shows the number of iterations and vertical
axis shows values of precision, recall and F–score.

labeling for VERB+A0. In fact, cost-sensitive
training helps the system refine irrelevant projec-
tions at each iteration and assigns more weight on
less noisy projections, hence enhancing precision.
Our analysis on VERB+A0 instances shows that
source–target dependency match percentage also
increases during iterations leading to increase the
recall. In other words, weighting projection in-
stances based on dependency match helps classi-
fier label some of the instances which were dis-
missed during projection, thereby will increase the
recall. While similar improvement in precision
is observed for VERB+A1, Figure 3 shows that
the recall is almost descending by relabeling. Our
analysis shows that unlike VERB+A0, percentage
of source–target dependency match remains al-
most steady for VERB+A1. This means that cost-
sensitive relabeling for this particular semantic de-
pendency has not been very successful in labeling
unlabeled data.

4 Related Work

There have been several studies on transferring
SRL systems (Padó and Lapata, 2005, 2009;
Mukund et al., 2010; van der Plas et al., 2011,
2014; Kozhevnikov and Titov, 2013; Akbik et al.,
2015). Padó and Lapata (2005), as one of the earli-
est studies on annotation projection for SRL using
parallel resources, apply different heuristics and
techniques to improve the quality of their model
by focusing on having better word and constituent
alignments. van der Plas et al. (2011) improve an
annotation projection model by jointly training a
transfer system for parsing and SRL. They solely
focus on fully projected annotations and train only
on verbs. In this work, we train on all predicates

as well as exploit partial annotation. Kozhevnikov
and Titov (2013) define shared feature representa-
tions between the source and target languages in
annotation projection. The benefit of using shared
representations is complementary to our work en-
couraging us to use it in future work.

Akbik et al. (2015) introduce an iterative self-
training approach using different types of linguis-
tic heuristics and alignment filters to improve the
quality of projected roles. Unlike our work that
does not use any external resources, Akbik et al.
(2015) make use of bilingual dictionaries. Our
work also leverages self-training but with a differ-
ent approach: first of all, ours does not apply any
heuristics to filter out projections. Second, it trains
and relabels all projected instances, either labeled
or unlabeled, at every epoch and does not grad-
ually introduce new unlabeled data. Instead, we
find it more useful to let the target language SRL
system rule out noisy projections via relabeling.

5 Conclusion

We described a method to improve the perfor-
mance of annotation projection in the dependency-
based SRL task utilizing a data-dependent cost-
sensitive training. Unlinke previous studies that
use manually-defined rules to filter projections, we
benefit from information obtained from projection
sparsity and syntactic similarity to weigh projec-
tions. We utilize a bootstrapping algorithm to train
a SRL system over projections. We showed that
we can get better results if we relabel the entire
train data in each iteration as opposed to only la-
beling instances without projections.

For the future work, we consider experiment-
ing with newly published Universal Proposition
Bank (Wang et al., 2017) that provides a uni-
fied labeling scheme for all languages. Given the
recent success in SRL systems with neural net-
works (Marcheggiani et al., 2017; Marcheggiani
and Titov, 2017), we plan to use them for further
improvement. We expect a similar trend by apply-
ing the same ideas in a neural SRL system.
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Manfred Pinkal. 2003. Towards a resource for lexi-
cal semantics: A large german corpus with extensive
semantic annotation. In Proceedings of the 41st An-
nual Meeting of the Association for Computational
Linguistics, pages 537–544, Sapporo, Japan. Asso-
ciation for Computational Linguistics.

Yoav Freund and Robert E. Schapire. 1999. Large
margin classification using the perceptron algorithm.
Machine Learning, 37(3):277–296.
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Abstract

Domain adaptation is a major challenge
for neural machine translation (NMT).
Given unknown words or new domains,
NMT systems tend to generate fluent
translations at the expense of adequacy.
We present a stack-based lattice search al-
gorithm for NMT and show that constrain-
ing its search space with lattices gener-
ated by phrase-based machine translation
(PBMT) improves robustness. We report
consistent BLEU score gains across four
diverse domain adaptation tasks involving
medical, IT, Koran, or subtitles texts.

1 Introduction

Domain adaptation is a major challenge for neural
machine translation (NMT). Although impressive
improvements have been achieved in recent years
(c.f. Bojar et al. (2016)), NMT systems require
a large amount of training data and thus perform
poorly relative to phrase-based machine transla-
tion (PBMT) systems in low resource and domain
adaptation scenarios (Koehn and Knowles, 2017).
In such situations, neural systems often produce
fluent output that unfortunately contains words not
licensed by the unfamiliar source sentence (Arthur
et al., 2016; Tu et al., 2016). Phrase-based sys-
tems, in contrast, explicitly model the translation
of all source words via coverage vectors, and tend
to produce translations that are adequate but less
fluent. This situation is depicted in Table 1, which
contains examples of PBMT and NMT systems
trained on WMT training sets which are then
applied to IT texts.

We present an approach that combines the best
of both worlds by using the lattice output of PBMT
to constrain the search space available to an NMT
decoder, thereby bringing together the adequacy

src Versionsinformationen ausgeben und beenden
ref output version information and exit
PBMT Spend version information and end
NMT Spend and end versionary information
NMTl Print version information and exit

Table 1: Translations of sentence #925 from the IT
corpus with systems trained on WMT data. The
NMTl line was produced by a WMT-trained NMT
search over a WMT-trained PBMT lattice.

and the fluency properties of PBMT and NMT
systems. The final line of Table 1 demonstrates the
improvement this can bring. Our contributions are
(1) a simple stack-based lattice search algorithm
for NMT,1 and (2) a set of domain adaptation ex-
periments showing that PBMT lattice constraints
are effective in achieving robust results compared
to NMT decoding with standard beam search.

PBMTSource 
sentence

NMT Lattice 
Search

Target 
translation 

Search Graph

Figure 1: NMT lattice search over a PBMT-
generated lattice.

2 Stack-based Neural Lattice Search

Figure 1 demonstrates our system; given an input
sentence, the PBMT system generates a lattice,
which is then used as input to the neural lattice
search algorithm. We would like to score every
path in the lattice with the NMT system and then
search. However, this is generally prohibitively
expensive because the RNN architectures in NMT

1github.com/khayrallah/
nematus-lattice-search

20



do not permit recombination of hypotheses on
the lattice, since NMT states encode the entire
sentence history. This explodes the search lattice
into an exponentially sized tree. To address this
problem, we use a stack decoding algorithm that
groups hypotheses by the number of target words,
extending items from each stack in order of score,
and adding them to later stacks.2 This strategy
allows us to group together roughly equivalent
intermediate nodes, allowing for pruning.

Algorithm 1: Stack decoding over a lattice

Data: lattice root N , NMT init state I , beam
size b

Result: output string s
1 goalStack = []; stacks = []
2 heappush(stacks[0], (0.0, N , I , null, 0))
3 for i = 0; i <len(stacks); i++ do
4 for bi in 1 . . . b do
5 score, node, state, , len =

heappop(stacks[i])
6 for arc in node.arcs() do
7 newState, cost = scorer(state, arc)
8 newScore = score + cost
9 newLen = len + arc.len

10 if isFinalState(node) then
11 stack = goalStack
12 else
13 stack = stack[newLen]
14 heappush(stack, (newScore,

arc.head, newState, arc,
newLen))

15 return extractBest(heappop(goalStack))

The pseudocode is in Algorithm 1, and a
graphical depiction in Figure 2. In the lattice
(Figure 2(a)), arcs are annotated with phrases of
one or more words indicating the target sides of
phrases that were applied during PBMT decoding.
Nodes represent recombined states in the PBMT
search space (i.e., states that have identical source
coverage vectors and language model states). The
search nodes contain the cumulative score, the
current lattice node, the current neural state, the
incoming arc, and the target length along this
path. After initialization, the outer loop (line
3) proceeds over stacks, starting at stack 1, and

2This is similar to PBMT stack decoding. However, in
PBMT stack decoding, stacks are grouped by the number of
translated source words, which is not possible in NMT, since
the translation of individual source words is not tracked.

continuing through the longest path through the
lattice (subject to pruning). Upon visiting each
stack, it considers the top b items (line 4). It
pops each of them in turn and retrieves its node
in the underlying lattice and the associated neural
state (line 5). It then considers all of the node’s
outgoing arcs (line 6). The neural scorer is used to
score each of them (line 7), returning a new neural
state that is stored with a new item (line 14) on the
appropriate stack.

Figure 2 depicts this process, but without prun-
ing or sorting. A beam of size 2 would prune
off one item from stack 2, along with all of its
descendants, thus culling the exponentially sized
tree.
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Figure 2: (a) A PBMT search lattice and (b)
stack-based decoding over that lattice. Each letter
represents a word.
In (b), the exponential expansion of the lattice in
(a) is apparent, since states that had recombined
in (a) due to identical n-gram history do not
recombine in (b). This figure does not demonstrate
pruning, descendants of items that fall off the
beam would not be explored.
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Corpus Words Sentences W/S
Medical 14,301,472 1,104,752 13
IT 3,041,677 337,817 9
Koran 9,848,539 480,421 21
Subtitles 114,371,754 13,873,398 8
WMT 113,165,079 4,562,102 25

Table 2: Size of the training data for each domain

3 Experiment Setup

Our German-to-English evaluation consists of
a large out-of-domain bitext (WMT2016 (Bojar
et al., 2016), news/parliamentary text) and four
distinct in-domain bitexts from OPUS (Tiede-
mann, 2009, 2012): Medical (EMEA), IT
(GNOME, KDE, PHP, Ubuntu, and OpenOffice),
Koran (Tanzil), and Subtitles (OpenSubtitles3).

The in-domain corpora use the same
train/tune/test splits as Koehn and Knowles
(2017), and for each in-domain training set we
build PBMT and NMT models, termed PBMTin

and NMTin. We also build PBMT and NMT
models on the out-of-domain WMT bitext, termed
PBMTout and NMTout. For each in-domain test
set, we consider four configurations:

1. PBMTout × NMTout: the unsupervised do-
main adaptation setting where no training
data is available for the domain of interest.

2. PBMTin × NMTin: the matched domain
setting where the training data matches the
test data in terms of domain, but the training
data is not large (relative to WMT).

3. PBMTin × NMTout: PBMT is trained on
small in-domain data while NMT is trained
on larger out-of-domain data.

4. PBMTout × NMTin: NMT is trained on
small in-domain data while PBMT is trained
on larger out-of-domain data.

For each training configuration, we are inter-
ested in seeing how our proposed NMT lattice
search compares to standard NMT beam search.
Additionally, we compare the results of PBMT 1-
best decoding and PBMT N -best lists rescoring
(N=500) using the same NMT model.

The PBMT models are trained with Moses
(Koehn et al., 2007). The PBMTout models

3opensubtitles.org

include German specific processing and Neural
Network Joint Models (Devlin et al., 2014), repli-
cating Ding et al. (2016). The PBMTin models are
Moses models with standard settings, replicating
Koehn and Knowles (2017). The NMT models are
trained with Nematus (Sennrich et al., 2017). The
NMTout models replicate Sennrich et al. (2016);4

the NMTin models replicate Koehn and Knowles
(2017). We use Marian (Junczys-Dowmunt et al.,
2016a) to rescore N -best lists.

The search graphs are pre-processed by convert-
ing them to the OpenFST format (Allauzen et al.,
2007) and applying operations to remove epsilon
arcs, determinize, minimize and topsort. Since the
search graphs may be prohibitively large in size,
we prune them with a threshold.5 We perform 5-
fold cross-validation over pruning thresholds (.1,
.25, .5) and lattice search beamsizes (1, 10, 100).

Very aggressive pruning with a small beam
limits the search to be very similar to the PBMT
output. In contrast, a very deep lattice with a large
beam begins to approach the unconstrained search
space of standard decoding in NMT.

4 Results

Table 3 summarizes the BLEU results on each
test domain. Note that PBMT 1-best results are
equivalent for PBMTin × NMTin and PBMTin

× NMTout since the same PBMT model is used
and NMT is not relevant. For both PBMT 1-
best and NMT Standard Search, there are two
sets of equivalent results among the four training
configurations.

We want to highlight the fact that the PBMT
1-best in-domain models outperform the out of
domain ones, despite being much simpler models.
Additionally, the BLEU scores for NMT standard
search are higher for the in-domain models, de-
spite the smaller amount of training data. This
emphasizes the importance of the domain of the
training corpora.

In cross-validation for our domains, smaller
beams and aggressive pruning tend to perform
well. This follows from the fact that PBMT 1-best
outperforms NMT standard search. We want to
strongly limit the search space given to NMT in
such a scenario. However, these parameters need
to be tuned to a specific domain and language.

4github.com/rsennrich/wmt16-scripts
5Pruning removes arcs that do not appear on a lattice path

whose score is within than t ⊗ w, where w is the weight of
the FST’s shortest path, and t is the pruning threshold.
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Test Training Configuration PBMT NMT N -best NMT
Domain 1-best Standard Search Rescoring Lattice Search
IT PBMTout × NMTout 25.1 (-0.3) 22.5 (-2.9) 22.2 (-3.2) 25.4

PBMTin × NMTin 47.4 (-4.2) 34.2 (-17.4) 47.6 (-4.0) 51.6
PBMTin × NMTout 47.4 (-5.2) 22.5 (-30.1) 47.6 (-5.0) 52.6*
PBMTout × NMTin 25.1 (-2.2) 34.2 (6.9) 22.4 (-4.9) 27.3

Medical PBMTout × NMTout 33.3 (-0.9) 32.9 (-1.3) 30.8 (-3.4) 34.2
PBMTin × NMTin 47.4 (-0.7) 37.8 (-10.3) 40.2 (-7.9) 48.1*
PBMTin × NMTout 47.4 (-0.4) 32.9 (-14.9) 39.7 (-8.1) 47.8
PBMTout × NMTin 33.3 (-2.7) 37.8 (1.8) 31.2 (-4.8) 36.0

Koran PBMTout × NMTout 14.7 (-0.2) 10.8 (-4.1) 13.9 (-1.0) 14.9
PBMTin × NMTin 20.6 (-0.1) 15.9 (-4.8) 19.3 (-1.4) 20.7
PBMTin × NMTout 20.6 (-0.2) 10.8 (-10.0) 19.4 (-1.4) 20.8*
PBMTout × NMTin 14.7 (-1.4) 15.9 (-0.2) 13.9 (-2.2) 16.1

Subtitle PBMTout × NMTout 26.6 (-0.9) 25.3 (-2.2) 19.7 (-7.8) 27.5
PBMTin × NMTin 26.8 (-1.1) 24.9 (-3.0) 17.8 (-10.1) 27.9
PBMTin × NMTout 26.8 (-1.6) 25.3 (-3.1) 17.1 (-11.3) 28.4*
PBMTout × NMTin 26.6 (-1.0) 24.9 (-2.7) 19.8 (-7.8) 27.6

Table 3: Results across test domains and training configurations. For each system, we show the BLEU
score and its difference with NMT Lattice Search under the same training configuration (same row) in
parentheses. E.g. in the last row, NMT Lattice Search achieves 27.6 BLEU and is better than PBMT
1-best by 1.0 BLEU, and better than NMT Standard Search by 2.7 BLEU. For each test domain we mark
the best score among all systems and training configurations with an asterisk, and bold any score with
less than a 0.5 BLEU difference.

Our research questions are as follows:
Does lattice search perform best across train-

ing configurations? As observed across each row
in Table 3, lattice search typically outperforms the
three other systems. Importantly, the BLEU gains
against standard beam search in NMT and N -
best rescoring of PBMT with NMT are noticeable
regardless of training configuration. E.g., in the
Subtitles task the gains range from 2.2 to 3.1
BLEU. There are also consistent gains compared
to PBMT 1-best (e.g. 0.9-1.6 BLEU gain), which
forms the basis of the search space; this implies
that PBMT and NMT can serve as effective hybrid
systems, where the former provides the potential
translation candidates and the latter scores them.

Given the choice, which training configu-
ration is best for domain adaptation? While
the answer depends on the amount of in-domain
and out-of-domain data, we find that PBMTin

× NMTin and PBMTin × NMTout perform the
best. This supports previous findings (Koehn
and Knowles, 2017) that PBMTin is robust when
training data is insufficient. In conclusion, we rec-
ommend using lattice search with search graphs
from PBMTin, and NMT models can be trained
on either in-domain or out-of-domain corpora.

5 Related Work

Previous work on domain adaptation in NMT fo-
cuses on training methods such as transfer learning
or fine-tuning (Luong and Manning, 2015; Freitag
and Al-Onaizan, 2016; Chu et al., 2017). This
strategy begins with a strong model trained on a
large out-of-domain corpus and then continuesx
training on an in-domain corpus. Our approach
is orthogonal in that we focus on search. Con-
ceivably, advances in training methods might be
incorporated to improve our individual NMTin

models.
Our lattice search algorithm is related to previ-

ous work in hybrid NMT/PBMT systems, which
can be visualized on a spectrum depending on
how tightly integrated the two systems are. On
one end, NMT can easily be used to rerank N -
best lists output by PBMT; on the other, NMT can
be incorporated as features in PBMT (Junczys-
Dowmunt et al., 2016b). In the middle of the
spectrum is NMT search (or re-scoring) based on
constraints from PBMT.

Our algorithm is conceptually very similar to
Stahlberg et al. (2016), who rescore a WFSA
reformulation of the Hiero formalism. Their
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algorithm is a breadth-first search over all the
nodes of the lattice, capped by a beam. Other
hybrid methods include: constraining the output
vocabulary of NMT on a per-sentence basis, using
bilingual information provided by PBMT (Mi
et al., 2016), Minimum Bayes Risk decoding with
PBMT n-gram posteriors (Stahlberg et al., 2017),
and incorporating PBMT hypotheses as additional
input in a modified NMT architecture (Wang et al.,
2017).

Related works in lattice search/re-scoring with
RNNs (without NMT encoder-decoders) (Ladhak
et al., 2016; Deoras et al., 2011; Hori et al.,
2014) may serve as other interesting comparisons.
Specifically, Auli et al. (2013) and Liu et al. (2016)
provide alternatives to our approach to the prob-
lem of recombination. The former work allows the
splitting of previously recombined decoder states
(thresholded) while the latter clusters RNN states
based on their n-gram context.

6 Conclusion

We present a stack-based lattice search algorithm
for NMT, and show that constraining decoding to
candidate translations in a PBMT search graph
leads to robust improvements for domain adap-
tation. Our method can be viewed as as sim-
ple yet effective way to combine the adequacy
advantages of PBMT, which stems from explicit
models of coverage, with the fluency advantages of
NMT. When presented with a domain adaptation
problem we recommend using lattice search with
search graphs from PBMTin, with NMT mod-
els either trained on either in-domain or out-of-
domain corpora.

Future work includes interpolation of the NMT
and PBMT scores in the lattice search, which
requires additional tuning but may further improve
results.

Acknowledgments

This material is based upon work supported in
part by the Defense Advanced Research Projects
Agency (DARPA) under Contract No. HR0011-
15-C-0113. Any opinions, findings and conclu-
sions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily
reflect the views of DARPA.

References
Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-

jciech Skut, and Mehryar Mohri. 2007. Open-
Fst: A General and Efficient Weighted Finite-
State Transducer Library. In Proceedings of the
Ninth International Conference on Implementation
and Application of Automata, (CIAA 2007), vol-
ume 4783 of Lecture Notes in Computer Science.
Springer. http://www.openfst.org.

Philip Arthur, Graham Neubig, and Satoshi Nakamura.
2016. Incorporating Discrete Translation Lexicons
into Neural Machine Translation. In Proceedings
of the 2016 Conference on Empirical Methods in
Natural Language Processing, Austin, Texas. Asso-
ciation for Computational Linguistics.

Michael Auli, Michel Galley, Chris Quirk, and Geof-
frey Zweig. 2013. Joint Language and Translation
Modeling with Recurrent Neural Networks. In
Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing, Seattle,
Washington, USA. Association for Computational
Linguistics.
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Abstract

This paper tackles a problem of analyz-
ing the well-formedness of syllables in
Japanese Sign Language (JSL). We for-
mulate the problem as a classification
problem that classifies syllables into well-
formed or ill-formed. We build a data
set that contains hand-coded syllables and
their well-formedness. We define a fine-
grained feature set based on the hand-
coded syllables and train a logistic re-
gression classifier on labeled syllables, ex-
pecting to find the discriminative features
from the trained classifier. We also per-
form pseudo active learning to investigate
the applicability of active learning in an-
alyzing syllables. In the experiments, the
best classifier with our combinatorial fea-
tures achieved the accuracy of 87.0%. The
pseudo active learning is also shown to
be effective showing that it could reduce
about 84% of training instances to achieve
the accuracy of 82.0% when compared to
the model without active learning.

1 Introduction

Japanese Sign Language (JSL) is a widely-used
natural language different from Japanese. JSL
vocabulary needs to be expanded because JSL
vocabulary seems much smaller than Japanese
one (Tokuda and Okumura, 1998) and JSL words
for new concepts are always required (Japanese
Federation of the Deaf, 2011). Many JSL words
and syllables, which are basic units that com-
pose words, are newly coined to meet these
requirements, e.g., (Japanese Federation of the
Deaf, 2011). However, some of the syllables
are ill-formed, or unnatural for JSL natives, since

∗Currently at NSK Ltd.

Figure 1: Examples of well-formed (left) and ill-
formed (right) JSL syllables. They are also mono-
syllable words: the left syllable means “basis” and
the right syllable means “avocado” (Yonekawa,
1997; Japanese Federation of the Deaf, 2011).

these new syllables are often coined by non-
natives (Hara, 2016a). This ill-formedness is
problematic since this can cause miscommuni-
cation and also erroneous learning for JSL non-
natives. Figure 1 illustrates the examples of well-
formed and ill-formed JSL syllables (monosylla-
ble words): “basis”1 and “avocado”2.

The phonology and phonotactics of JSL have
not been well studied and the causes for this
ill-formedness have not been revealed. Natives
can distinguish such syllables, but they cannot
clearly explain the causes since the ill-formedness
stems from their intuition. It is thus difficult to
distinguish ill-formed syllables from well-formed
ones without the help of natives. A practical ap-
proach is required to analyze and understand the
ill-formedness of syllables objectively to exclude

1Stand up the left elbow, touch the closed right hand and
open it downwards.

2Put the right little finger to the back of the left hand
standing up and move the right hand to cut it towards the
palm of the left hand
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the ill-formed syllables and avoid producing them
with little burden on native signers.

In this paper, we describe an approach to model
the well-formedness of syllables in JSL as a clas-
sification problem and analyze the cause of the
well-formedness. We build a data set that con-
tains 2,891 hand-coded syllables with their well-
formedness. Based on the data set, we train an
L1-regularized logistic regression classifier using
a fine-grained feature set to investigate the appli-
cability of machine learning (ML) approaches and
to find the differences between well-formed and
ill-formed syllables. We also apply pseudo active
learning (Settles, 2009) to the data to investigate
the possibility in reducing the annotation costs.

As far as we know, this is the first approach
that tackles the well-formedness of JSL syllables
with ML. We got the following insights from our
experiments. First, the syllables can be classified
into well-formed or not in the accuracy of 87.0%
with the simple classifier on sparse fine-grained
features. Second, we disclosed features that are
useful for the classification. Third, we show that
active learning can reduce the annotation costs.
We will make the annotated data available upon
request3.

2 Method

This section explains how we define and tackle
the classification problem to analyze the well-
formedness of JSL syllables. We first define the
representation of syllables. We then explain the
classification and pseudo active learning methods.

2.1 Syllable representation

JSL is a visual language, and the syllables are ex-
pressed visually. To avoid the difficulty in dealing
with the visual language4, we decide to hand-code
syllables. JSL syllables are usually composed of
three elements: handshapes, movements, and lo-
cations (Kimira et al., 2011).

We hand-code JSL syllables with the encod-
ing scheme by Hara (2016b), which is ex-
tended from Hara (2003). Each syllable is rep-
resented with seven components in this cod-
ing: types, handshapes, locations,
movements, contacts, directions of
palms, and directions of wrists. We

3Please contact the last author for data related inquiry.
4We left the automatic coding of visually-expressed syl-

lables as future work.

here briefly explain these components: Types
denote the number of hands used and, if two
hands are involved, the information about whether
both hands have the identical or different hand-
shapes, and whether both hands move together
or not. Handshapes represent the handshape
types. Locations correspond to 28 locations
of hands on or around the body such as the eye,
the shoulder, neutral space, i.e., space in front
of the signer, and so on. Movements are the
movement types of hands such as path move-
ment, orientation change movement, and handsape
change movement, and their relationships such
as synchronous movement and alternating move-
ment. Contacts indicate whether and when
both hands have contact in the syllable execu-
tion. Directions of palms show which
direction the palm faces. Directions of
wrists denote directions to which the tip of the
metacarpal bones point.

Syllables have little overlap in this coding
and it is impossible to find the discriminative
characteristics between well-formed syllables and
ill-formed ones, so we decompose the compo-
nents in the coding into a set of fine-grained bi-
nary features, aiming that the features are shared
among syllables without losing the original in-
formation. Types are represented with nine bi-
nary features, e.g., whether both hands are used,
whether both hand movements are symmetric, etc.
Handshapes are decomposed into 208 binary
features to represent whether each finger in hands
is used and whether each finger joint in hands
is stretched, loosely bent, or bent. Similarly,
we define 98 binary features for locations,
398 for movements, 171 for contacts, and
62 for directions of palms, and 62 for
directions of wrists. With this decom-
position, we define 1,017 binary features in total.

2.2 Well-formedness classification

We employ an L1-regularized logistic regression
classifier to classify well-formed and ill-formed
syllables. Training instances are not so many and
it is unknown how ML approaches work on this
problem, so we decide to employ this simple clas-
sifier as the first step toward this problem. We
use the L1 penalty to encourage the model to be
sparse, expecting that we can make the finding of
discriminative features easier. We also consider
adding the combinatorial features of two binary
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Accuracy F1
most frequent 0.826 –
binary features 0.837 0.533
+ combinatorial features 0.870 0.613

Table 1: Classification results

features so that we can get more descriptive fea-
tures.

2.3 Pseudo active learning

There are plenty of JSL syllables in practice, and
it is infeasible to manually annotate these sylla-
bles5. We apply pseudo active learning to the data
set and investigate the possibility of reducing the
annotation cost. We employ two strategies: an un-
certainty sampling strategy that chooses the least
confident instances (Lewis and Catlett, 1994) and
a certainty-based strategy that chooses most neg-
ative (ill-formed) instances, which was shown to
be effective for imbalanced data sets (Fu and Lee,
2013; Miwa et al., 2014).

3 Evaluation

3.1 Experimental settings

Data sets: We employed 25 JSL natives to
hand-code 2,891 syllables and annotate their
well-formedness. The syllables are taken from
Yonekawa (1997) and the book series of “Our
Sign Language”, e.g., (Japanese Federation of the
Deaf, 2011). We split the syllables into training
and test data sets. The training data set contained
2,053 well-formed (positive) syllables and 538 ill-
formed (negative) syllables. The test data set con-
tained 238 positive and 52 negative syllables.
Well-formedness classification: We employed
the L1-regularized logistic regression classifier in
scikit-learn6. We evaluated the classification per-
formance by using both the classification accuracy
and F1 score on negative, ill-formed syllables as
the evaluation metrics. We also compared two
models to check whether the combinatorial fea-
tures help: one uses binary features and the other
uses combinatorial features of two binary features.
We tuned the regularization parameter by a 20-fold
cross validation (CV) on the training data.
Pseudo active learning: Using the classification
accuracy as the evaluation metric, we compared

5We need an established way to automatically code JSL
syllables beforehand, e.g., by extending Sako et al. (2016).

6http://scikit-learn.org

three models: random baseline with binary fea-
tures (random), active learning with binary fea-
tures (active), and active learning with binary and
combinatorial features (active(combi)). We also
compared the two active learning strategies using
binary and combinatorial features. We built the
initial classifier by training the classifier on 20 in-
stances consisting of 10 well-formed and 10 ill-
formed syllables. We added labeled instances one
by one in active learning. We tuned the regulariza-
tion parameter using the 20-fold CV each time 50
instances are added by active learning.

3.2 Results

We first examined the number of features that ap-
peared in the data set. For binary features, 849
out of 1,017 features appeared in the data set.
This shows there are some features that rarely or
never appear in JSL syllables. Similarly, not all
combinatorial features appeared in the data set,
and 174,986 out of 359,976 (i.e.

(849
2

)
=849×848/2)

features appeared. This is mainly because some
binary features are disjunctive and their combina-
tions are physically impossible.

Next, we evaluated the classification perfor-
mance on the test data set (Table 1). Our classi-
fiers produced better accuracy than did the most
frequent baseline that always predicted syllables
as well-formed. These high accuracies show that
our classifiers can detect relatively few ill-formed
syllables. The F1 scores are still low, which indi-
cates that we need to investigate how to alleviate
the data imbalance problem. This table also shows
that the combinatorial features are useful for im-
proving the performance.

Table 2 lists up some contributing features in
the model. Among the top 20 features, 9 and
11 features were related to dominant and non-
dominant features respectively for binary features,
whereas 7, 2, and 11 features were related to dom-
inant, non-dominant, and both hands respectively
for combinatorial features. These differences and
the performance difference between the features
indicate that the relation of both hands are impor-
tant to decide the ill-formedness.

Figure 2 shows the learning curves of three
models (random baseline, active learning, active
learning with combinatorial features) explained in
Section 3.1 during active learning. Each curve
in this figure shows the average of 10 runs. This
shows active learning work well compared to
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Dominant hand
Second joints of middle and ring fingers are bent
The base of ring finger is bent and the palm direction is diagonally forward
The hand moves according to an orbital movement and the palm direction is backward.
Both hands
Movements are not symmetric and there is no contact at the end of a syllable
Different handshapes and the direction of the metacarpal bone of the dominant hand is upward
Symmetric handshapes and no contact at the beginning of a syllable

Table 2: Examples of contributing combinatorial features

the random baseline. From this figure, random
baseline required 1,284 instances while the active
learning 184 to achieve 82% in accuracy, so the
active learning need about 14.3% of the training
data compared to the random baseline. The use
of combinatorial features produces slightly worse
results, but the final performance is higher than
one without combinatorial features which indi-
cates that the combinatorial features work well
only with enough training instances.

Lastly, we compare the two active learning
strategies in Figure 3. Certainty-based method
worked slightly worse than uncertainty-based
method did, but the difference is small and, as a
whole, both strategies work almost similarly. This
result is interesting since the certainty-based strat-
egy focuses only on ill-formed syllables.

4 Related work

Although automatic sign language analysis has
been widely studied since 1990s (Starner et al.,
1998; Ong et al., 2005), there are relatively few
studies on computational approaches to JSL.

Kimira et al. (2011) proposed a JSL dictionary
consisting of over 2,000 JSL sign7. Each sign is
defined with handshapes, motions, and locations,
and a movie is attached to the sign. They did not
deal with the well-formedness of JSL syllables.

Studies on automatic recognition of JSL are also
relatively few, and most of them aim at a small
number of syllables or signs. Sako et al. (2016)
recently proposed automatic JSL recognition us-
ing Kinect v2. They used contour-based hand-
shape recognition, and they recognized hand lo-
cation and motion by Hidden Markov Models and
Gaussian Mixture Models. They evaluated their
system on 223 JSL signs. The combination of our
method with these automatic recognition methods
is one of the interesting research directions.

7A sign consists of one or more syllables
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Figure 2: Learning curve with pseudo active learn-
ing
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Figure 3: Comparison of pseudo active learning
strategies

5 Conclusion

This paper tackled a problem of analyzing the
well-formedness of JSL syllables. We created the
data set consisting of 2,891 hand-coded syllables
with their well-formedness. We then built and
evaluated classifiers using the fine-grained binary
features on the classification of syllables into well-
formed or not. We also investigated the possibil-
ity of active learning on the analysis of the well-
formedness. The results show that our classifier
achieves 87.0% in accuracy and that the active
learning can reduce the number of annotations.
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As future work, we would like to incorporate
more sophisticated ML approaches such as kernels
and deep neural networks to consider more com-
binations of features. We also would like to de-
velop a system that can code visual syllables into
our features to make our method practical to sup-
port defining new syllables.

Acknowledgments

This work was supported by JSPS KAKENHI
Grant Numbers JP16H03813 and JP15K02536
and DAIKO FOUNDATION.

References
JuiHsi Fu and SingLing Lee. 2013. Certainty-based

active learning for sampling imbalanced datasets.
Neurocomputing, 119:350–358.

Daisuke Hara. 2003. A Complexity-Based Approach
to the Syllable Formation in Sign Language. Ph.D.
thesis, The University of Chicago, Chicago, IL.

Daisuke Hara. 2016a. An information-based approach
to the syllable formation of Japanese Sign Language.
In Masahiko Minami, editor, Handbook of Japanese
Applied Linguistics, chapter 18, pages 452–482.
Gruyter Mouton, Boston, MA.

Daisuke Hara. 2016b. New Coding Manual for
Japanese Sign language. (In Japanese).

Japanese Federation of the Deaf, editor. 2011. Our sign
language 2011: new sign language. Japanese Fed-
eration of the Deaf, Tokyo, Japan. (In Japanese).

Tsutomu Kimira, Daisuke Hara, Kazuyuki Kanda, and
Kazunari Morimoto. 2011. Expansion of the system
of jsl-japanese electronic dictionary: An evaluation
for the compound research system. In Proceedings
of the 2nd International Conference on Human Cen-
tered Design, HCD’11, pages 407–416, Berlin, Hei-
delberg. Springer-Verlag.

David D. Lewis and Jason Catlett. 1994. Heteroge-
neous uncertainty sampling for supervised learning.
In Proceedings of the Eleventh International Confer-
ence on Machine Learning, pages 148–156. Morgan
Kaufmann.

Makoto Miwa, James Thomas, Alison OMara-Eves,
and Sophia Ananiadou. 2014. Reducing systematic
review workload through certainty-based screening.
Journal of biomedical informatics, 51:242–253.

Sylvie CW Ong, Surendra Ranganath, et al. 2005.
Automatic sign language analysis: A survey and
the future beyond lexical meaning. IEEE transac-
tions on pattern analysis and machine intelligence,
27(6):873–891.

Shinji Sako, Mika Hatano, and Tadashi Kitamura.
2016. Real-Time Japanese Sign Language Recogni-
tion Based on Three Phonological Elements of Sign.
Springer International Publishing, Cham.

Burr Settles. 2009. Active learning literature survey.
Computer Sciences Technical Report 1648.

Thad Starner, Joshua Weaver, and Alex Pentland. 1998.
Real-time american sign language recognition us-
ing desk and wearable computer based video. IEEE
Transactions on Pattern Analysis and Machine In-
telligence, 20(12):1371–1375.

Masaaki Tokuda and Manabu Okumura. 1998. To-
wards automatic translation from japanese into
japanese sign language. Assistive Technology and
Artificial Intelligence, pages 97–108.

Akihiko Yonekawa. 1997. Japanese – Japanese Sign
Language Dictionary. Japanese Federation of the
Deaf, Tokyo, Japan. (In Japanese).

30



Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 31–36,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

Towards Lower Bounds on Number of Dimensions for Word Embeddings

Kevin Patel, Pushpak Bhattacharyya
Department of Computer Science and Engineering

Indian Institute of Technology Bombay
{kevin.patel,pb}@cse.iitb.ac.in

Abstract

Word embeddings are a relatively new
addition to the modern NLP researcher’s
toolkit. However, unlike other tools, word
embeddings are used in a black box man-
ner. There are very few studies regarding
various hyperparameters. One such hyper-
parameter is the dimension of word em-
beddings. They are rather decided based
on a rule of thumb: in the range 50 to
300. In this paper, we show that the di-
mension should instead be chosen based
on corpus statistics. More specifically, we
show that the number of pairwise equidis-
tant words of the corpus vocabulary (as de-
fined by some distance/similarity metric)
gives a lower bound on the the number of
dimensions , and going below this bound
results in degradation of quality of learned
word embeddings. Through our evalua-
tions on standard word embedding evalu-
ation tasks, we show that for dimensions
higher than or equal to the bound, we get
better results as compared to the ones be-
low it.

1 Introduction

Word embeddings are a crucial component of
modern NLP. They are learned in an unsupervised
manner from large amounts of raw corpora. Ben-
gio et al. (2003) were the first to propose neural
word embeddings. Many word embedding mod-
els have been proposed since then (Collobert and
Weston, 2008; Huang et al., 2012; Mikolov et al.,
2013a; Levy and Goldberg, 2014).

Word vector space models can only capture dif-
ferences in meaning (Sahlgren, 2006). That is, one
can infer the meaning of a word by looking at its
neighbors. An isolated word on its own does not

mean anything in the word vector space. Thus, one
needs to think of embedding algorithm’s capabil-
ity to capture these differences effectively, which
is governed by its hyperparameters. The hyperpa-
rameters affect the information to be represented
and the available degree of freedom to express it.

Most word embeddings share different design
choices and hyperparameters such as context type,
window size, number of dimensions of the embed-
dings, etc. However, a large portion of the research
community uses word embeddings without their
in-depth analysis; many proceed with default set-
tings that come with off-the-shelf word embedding
toolkits. While other hyperparameters have been
studied to varying extents (see section 2), there
are no rigorous studies on the number of dimen-
sions that should be used while training word em-
beddings. They are usually decided via a rule of
thumb (established as a side effect of other evalu-
ations): use between 50 to 300, or by trial and er-
ror. This is a common thread across many NLP ap-
plications: Part of Speech Tagging (Collobert and
Weston, 2008), Named Entity Recognition Sen-
tence Classification (Kim, 2014), Sentiment Anal-
ysis (Liu et al., 2015), Sarcasm Detection (Joshi
et al., 2016).

Depending on the corpus, its vocabulary, and
the context through which the differences are
elicited during training of word embedding, we
are bound to obtain a certain number of words,
say n, that are pairwise equidistant. Such words
impose an equality constraint that the embedding
algorithm has to uphold. Thus, we raise the fol-
lowing question:

Does n (the number of pairwise equidistant
words) enforce a lower bound on the number of
dimensions that should be chosen for training

word embeddings on the corpus?

In this paper, we show that this seems to be true
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for skip gram embeddings. We show how to obtain
the number of pairwise equidistant points from
corpus. This number determines the lower bound.
Then we show how the training algorithm of skip-
gram embeddings fails to uphold the equality con-
straint when the number of dimensions is less than
the lower bound. We show this both via analysis
on toy examples as well as intrinsic evaluation on
real data.

2 Background and Related Work

As mentioned earlier, the number of dimensions is
often decided via the rule of thumb, or by trial and
error. This holds true not only for word embedding
usage but also for their evaluations.

Baroni et al. (2014) claimed that neural word
embeddings are better than traditional methods
such as LSA, HAL, RI (Landauer and Dumais,
1997; Lund and Burgess, 1996; Sahlgren, 2005).
They experimented with different settings for the
number of dimensions, but their experiments were
intended to evaluate the practicality of dimensions
of neural embeddings as compared to their tradi-
tional methods. However, their claim was chal-
lenged by Levy et al. (2015), who showed that
superiority of neural word embeddings is not
due to the embedding algorithm, but due to cer-
tain design choices and hyperparameters opti-
mizations. While they investigate different hyper-
parameters, they keep a consistent dimension of
500 for all different embedding models that they
evaluated. Many other evaluations set the number
of dimensions without any justifications (Schnabel
et al., 2015; Zhai et al., 2016; Ghannay et al.,
2016).

Melamud et al. (2016) evaluates skip-gram
word embeddings on a wide range of intrinsic and
extrinsic NLP tasks. An interesting observation
made by them is that while the performance for
intrinsic tasks such as word pair similarity, etc.
peaks at around 300 dimensions, the performance
of extrinsic tasks peaked at around 50, and some-
times showed degradation for higher dimensions.
This justifies the need for study of bounds for di-
mensions.

As is evident from the above discussion, the
analysis of the number of dimensions have not re-
ceived enough attention. This paper is a contribu-
tion towards that direction.

3 Motivation

Let us consider the following toy corpus of four
sentences (<>is sentence separator):

<>I like cats <>I love dogs <>I hate rats <>I
rate bats <>

Table 1 shows the rows of the co-occurrence
matrix corresponding to the four words {like, love,
hate, rate}.

word <> I like love hate rate rats cats dogs bats
like 0 1 0 0 0 0 0 1 0 0
love 0 1 0 0 0 0 0 0 1 0
hate 0 1 0 0 0 0 1 0 0 0
rate 0 1 0 0 0 0 0 0 0 1

Table 1: Four rows corresponding to {like, love,
hate, rate} of co-occurrence matrix for toy corpus

The euclidean distance between any two words
from the set {like, love, hate, rate} is

√
2. In other

words, they form a regular tetrahedron with side
length =

√
2. The words {cats, dogs, rats, bats}

form another such set. Intuitively, we know that
the space which can embed a regular tetrahedron
needs at least 3 dimensions. If a word embedding
learning algorithm wishes to model this informa-
tion correctly, it has to strive to uphold this equal-
ity constraint. However, its success will depend on
the degree of freedom which it receives in terms of
the number of dimensions. If it tries to embed it in
a space of dimension lower than 3, then it ends
up breaking the equality constraint. We end up
having (0.94, 0.94), (1.77, 0.80), and (2.63, 0.10)
as the average (mean, standard deviation) for the
pairwise distances for dimensions 1, 2 and 3 re-
spectively for 5 random initializations. Figure 1
shows the results of attempting to embed the reg-
ular tetrahedron created by the four words in a 1,
2, and 3-dimensional space. One can see how the
algorithm fails for dimensions 1, and 2 (very high
standard deviations), but succeeds in case of 3 di-
mensions (low standard deviation).

To further verify the distortions due to a lower
than needed dimension, we make the following
hypothesis: if the learning algorithm of word em-
beddings does not get enough dimensions, then it
will fail to uphold the equality constraint. There-
fore, the standard deviation of the mean of all pair-
wise distances will be higher. As we increase the
dimension, the algorithm will get more degrees of
freedom to model the equality constraint in a bet-
ter way. Thus, there will be statistically significant
changes in the standard deviation. Once the lower
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Figure 1: Trying to embed {like, love, hate, rate}
in a 1,2 and 3-dimensional space. Here, (Before)
and (After) indicates positions before and after
training respectively. The 3 dimensional vectors
in (c) and (f) are reduced to 2 dimensions using
PCA for visualization purposes

bound of dimensions is reached, the algorithm gets
enough degrees of freedom. Thus, from this point
onwards, even if we increase dimensions, there
will not be any statistically significant difference
in the standard deviation.

To test this, we train word embeddings for dif-
ferent dimensions for an artificially created cor-
pus with 15 pairwise equidistant words. The cor-
pus contained sentences of the form I verbi nouni

where 1 ≤ i ≤ 15. Table 2 shows the results for
the same. Note how there are statistically signif-
icant reductions (p-value < 0.05) in standard de-
viations up until 14 (15 − 1). However, once the
number of dimensions is higher than 14, the differ-
ences are no longer significant (p-value > 0.05).
We used Welch’s Unpaired t-test for testing statis-
tical significance.

Dim σ P-value Dim σ P-value
7 0.358 12 0.154 0.0058
8 0.293 0.0020 13 0.111 0.0001
9 0.273 0.0248 14 0.044 0.0001

10 0.238 0.0313 15 0.047 0.3096
11 0.189 0.0013 16 0.054 0.1659

Table 2: Avg standard deviation (σ) for 15 pair-
wise equidistant words (along with two tail p-
values of Welch’s unpaired t-test for statistical sig-
nificance)

4 Approach

We used euclidean distance in the motivation sec-
tion for ease of discussion. In practice, the met-

ric used in conjunction with word vectors is co-
sine similarity. While the closed-form solution
is available for the case of euclidean distance
(Lower Bound = #Pairwise Equidistant points -
1) (Swanepoel, 2004), the same is not true for
the case of cosine similarity. Instead, the rela-
tion between the number of dimensions and the
maximum number of pairwise equiangular lines
that can be embedded is an active area of research
(Lemmens and Seidel, 1973; de Caen, 2000; God-
sil and Roy, 2009; Barg and Yu, 2014). Table 3
gives the maximum number of pairwise equian-
gular lines E that can be embedded in a space of
dimension λ (taken from (Barg and Yu, 2014)).

λ E λ E
3 6 18 61
4 6 19 76
5 10 20 96
6 16 21 126

7<=n<=13 28 22 176
14 30 23 276
15 36 24<=n<=41 276
16 42 42 288
17 51 43 344

Table 3: Number of dimensions λ and the corre-
sponding maximum number of equiangular lines E
(for larger values of λ, refer (Barg and Yu, 2014))

To find the lower bound, one should follow the
following approach:

1. Compute the word × word co-occurrence
matrix from the corpus

2. Create the word×word cosine similarity ma-
trix by treating the rows of co-occurrence ma-
trix as word vectors

3. For each similarity value sk:

a) Create a graph, where the words are
nodes. Create an edge between node i
and node j if sim( i, j) = sk

b) Find maximum clique on this graph.
The number of nodes in this clique is the
maximum number of pairwise equidis-
tant points Ek

c) Reverse lookup Ek in table 3 to deter-
mine the corresponding number of di-
mension λk

4. The maximum λ among all λks is the lower
bound
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Figure 2: Performance for different tasks with respect to number of dimensions

When we applied this procedure on Brown cor-
pus, we obtained a maximum of 62 words in step
3b), which lead to lower bound of 19 dimensions.

A theoretical shortcoming of this approach is
that finding maximum clique is NP-complete. For
the Brown corpus, we obtained the maximum
cliques using Parallel Maximum Clique library
(PMC)(Rossi et al., 2013).

5 Experimental Setup

5.1 Word Embedding training

We train skip-gram embeddings on the Brown cor-
pus provided with NLTK toolkit. For tokeniza-
tion, we use the default tokenizer. We do not re-
move any stopwords. In order to control effects of
randomization, we avoided it wherever possible.
To this effect, we do not use negative sampling.
We use hierarchical softmax to hasten the softmax
computation. One word to the left and right of the
input word is considered as context.

5.2 Tasks

We use the following intrinsic tasks for evaluation.

a) Word Pair Similarity tasks are commonly
used for intrinsic evaluation of word em-
beddings, which involve predicting similar-
ity between a given pair of words a and b.
The evaluation involves finding cosine sim-
ilarity between the embeddings of a and b,
and finding the spearman correlation with hu-
man annotation. We used the WS353, MEN,
RW, RG65, MTurk, and SimLex999 datasets
(Faruqui and Dyer, 2014)

b) Word Analogy tasks are yet another com-
monly used tasks for intrinsic evaluation of
word embeddings, which involve evaluating
the accuracy of finding a missing word d in
the relation: a is to b as c is to d, where (a, b)

and (c, d) have the same relation. We used
the Google, MSR, and SemEval 2012 Task 2
datasets (Mikolov et al., 2013b).

c) Categorization tasks are yet another com-
monly used tasks for intrinsic evaluation of
word embeddings, which involve evaluating
the purity of clusters formed by word embed-
dings. We used the AP, BLESS, ESSLI 1a,
ESSLI 2b, and ESSLI 2c datasets (Schnabel
et al., 2015).

6 Results and Analysis

Figure 2 shows the effects of increasing dimen-
sions from 1 to 35 on different tasks. One ob-
serves that each series ascends till the number of
dimensions reach 19, after which it stabilizes. This
is because once the lower bound is reached, the
errors introduced due to the violation of equality
constraint are removed. Thus, the optimal perfor-
mance possible with the selected configurations is
reached, and the performance stabilizes thereafter.

Note that, in some cases, the performance stabi-
lizes before 19. This is because, for that particular
dataset and task, the equality constraints that are
broken at lower than 19 dimensions did not mat-
ter. But, for a realistic use case, one would be bet-
ter off if they stick to the lower bound.

7 Conclusion and Future Work

We discussed the importance of deciding the num-
ber of dimensions for word embedding training by
looking at the corpus. We motivated the idea us-
ing abstract examples and gave an algorithm for
finding the lower bound. Our experiments showed
that performance of word embeddings is poor, un-
til the lower bound is reached. Thereafter, it sta-
bilizes. Therefore, such bounds should be used to
decide the number of dimensions, instead of trial
and error.

34



We aim to continue the work, addressing the
limitations of complexity, the validity of hypothe-
sis in extrinsic tasks, etc.. We will also investigate
whether the same holds for different word embed-
ding models.
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Abstract

This paper presents an approach to the
task of predicting an event description
from a preceding sentence in a text. Our
approach explores sequence-to-sequence
learning using a bidirectional multi-layer
recurrent neural network. Our approach
substantially outperforms previous work
in terms of the BLEU score on two
datasets derived from WIKIHOW and DE-
SCRIPT respectively. Since the BLEU
score is not easy to interpret as a mea-
sure of event prediction, we complement
our study with a second evaluation that ex-
ploits the rich linguistic annotation of gold
paraphrase sets of events.

1 Introduction

We consider a task of event prediction which aims
to generate sentences describing a predicted event
from the preceding sentence in a text. The follow-
ing example presents an instruction in terms of a
sequence of contiguous event descriptions for the
activity of baking a cake:

Gather ingredients. Turn on oven. Combine
ingredients into a bowl. Pour batter in pan.
Put pan in oven. Bake for specified time.

The task is to predict event description “Put pan in
oven” from sentence “Pour batter in pan”, or how
to generate the continuation of the story, i.e., the
event following “Bake for specified time”, which
might be “Remove pan from oven”. Event predic-
tion models an important facet of semantic expec-
tation, and thus will contribute to text understand-
ing as well as text generation. We propose to em-

ploy sequence-to-sequence learning (SEQ2SEQ)
for this task.

SEQ2SEQ have received significant research at-
tention, especially in machine translation (Cho
et al., 2014; Sutskever et al., 2014; Bahdanau et al.,
2015; Luong et al., 2015), and in other NLP tasks
such as parsing (Vinyals et al., 2015; Dong and La-
pata, 2016), text summarization (Nallapati et al.,
2016) and multi-task learning (Luong et al., 2016).
In general, SEQ2SEQ uses an encoder which typ-
ically is a recurrent neural network (RNN) (El-
man, 1990) to encode a source sequence, and then
uses another RNN which we call decoder to de-
code a target sequence. The goal of SEQ2SEQ

is to estimate the conditional probability of gen-
erating the target sequence given the encoding
of the source sequence. These characteristics of
SEQ2SEQ allow us to approach the event predic-
tion task. SEQ2SEQ has been applied to text pre-
diction by Kiros et al. (2015) and Pichotta and
Mooney (2016). We also use SEQ2SEQ for pre-
diction of what comes next in a text. However,
there are several key differences.

• We collect a new dataset based on the largest
available resource of instructional texts, i.e.,
WIKIHOW1, consisting of pairs of adjacent
sentences, which typically describe contigu-
ous members of an event chain characterizing
a complex activity. We also present another
dataset based on the DESCRIPT corpus—a
crowdsourced corpus of event sequence de-
scriptions (Wanzare et al., 2016). While the
WIKIHOW-based dataset helps to evaluate
the models in an open-domain setting, the
DESCRIPT-based dataset is used to evaluate
the models in a closed-domain setting.

1www.wikihow.com
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• Pichotta and Mooney (2016) use the BLEU
score (Papineni et al., 2002) for evaluation
(i.e., the standard evaluation metric used in
machine translation), which measures sur-
face similarity between predicted and actual
sentences. We complement this evaluation
by measuring prediction accuracy on the se-
mantic level. To this purpose, we use the
gold paraphrase sets of event descriptions in
the DESCRIPT corpus, e.g., “Remove cake”,
“Remove from oven” and “Take the cake out
of oven” belong to the same gold paraphrase
set of taking out oven. The gold paraphrase
sets allow us to access the correctness of the
prediction which could not be attained by us-
ing the BLEU measure.

• We explore multi-layer RNNs which have
currently shown the advantage over sin-
gle/shallow RNNs (Sutskever et al., 2014;
Vinyals et al., 2015; Luong et al., 2015). We
use a bidirectional RNN architecture for the
encoder and examine the RNN decoder with
or without attention mechanism. We achieve
better results than previous work in terms of
BLEU score.

2 Sequence to Sequence Learning

Given a source sequence x1, x2, ..., xm and a tar-
get sequence y1, y2, ..., yn, sequence to sequence
learning (SEQ2SEQ) is to estimate the conditional
probability Pr(y1, y2, ..., yn | x1, x2, ..., xm)
(Sutskever et al., 2014; Cho et al., 2014; Bah-
danau et al., 2015; Vinyals et al., 2015; Luong
et al., 2016). Typically, SEQ2SEQ consists of a
RNN encoder and a RNN decoder. The RNN
encoder maps the source sequence into a vector
representation c which is then fed as input to the
decoder for generating the target sequence.

We use a bidirectional RNN (BiRNN) architec-
ture (Schuster and Paliwal, 1997) for mapping the
source sequence x1, x2, ..., xm into the list of en-
coder states se

1, s
e
2, ..., s

e
m.

The RNN decoder is able to work with or with-
out attention mechanism. When not using atten-
tion mechanism (Sutskever et al., 2014; Cho et al.,
2014), the vector representation c is the last state
se

m of the encoder, which is used to initialize the
decoder. Then, at the timestep i (1 ≤ i ≤ n), the
RNN decoder takes into account the hidden state
sd

i−1 and the previous input yi−1 to output the hid-
den state sd

i and generate the target yi.

Attention mechanism allows the decoder to at-
tend to different parts of the source sequence at
one position of a timestep of generating the tar-
get sequence (Bahdanau et al., 2015; Luong et al.,
2015; Vinyals et al., 2015). We adapt the attention
mechanism proposed by Vinyals et al. (2015) to
employ a concatenation of the hidden state sd

i and
the vector representation c to make predictions at
the timestep i.

We use two advanced variants of RNNs that re-
place the cells of RNNs with the Long Sort Term
Memory (LSTM) cells (Hochreiter and Schmid-
huber, 1997) and the Gated Recurrent Unit (GRU)
cells (Cho et al., 2014). We also use a deeper ar-
chitecture of multi-layers, to model complex inter-
actions in the context. This is different from Kiros
et al. (2015) and Pichotta and Mooney (2016)
where they only use a single layer. So we in fact
experiment with Bidirectional-LSTM multi-layer
RNN (BiLSTM) and Bidirectional-GRU multi-
layer RNN (BiGRU).

3 Experiments

3.1 Datasets

Figure 1: An WIKIHOW activity example.

WIKIHOW-based dataset: WIKIHOW is the
largest collection of “how-to” tasks, created by
an online community, where each task is repre-
sented by sub-tasks with detailed descriptions and
pictorial illustrations, e.g., as shown in Figure 1.
We collected 168K articles (e.g., “Bake-a-Cake”)
consisting of 238K tasks (e.g., “Making Vanilla
Pound Cake”) and approximately 1.59 millions
sub-tasks (e.g., “Gather your ingredients”, “Pre-
heat the oven to 325 degrees”), representing a
wide variety of activities and events. Then we cre-
ated a corpus of approximately 1.34 million pairs
of subsequent sub-tasks (i.e., source and target
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sentences for the SEQ2SEQ model), for which we
have the training set of approximately 1.28 million
pairs, the development and test sets of 26,800 pairs
in each. This dataset aims to evaluate the models
in an open-domain setting where the predictions
can go into many kinds of directions.

DESCRIPT-based dataset: The DESCRIPT cor-
pus (Wanzare et al., 2016) is a crowdsourced cor-
pus of event sequence descriptions on 40 different
scenarios with approximately 100 event sequence
descriptions per scenario. In addition, the corpus
includes the gold paraphrase sets of event descrip-
tions. From the DESCRIPT corpus, we create a
new corpus of 29,150 sentence pairs of an event
and its next contiguous event. Then, for each 10
sentence pairs, the 5th and 10th pairs are used for
the development and test sets respectively, and 8
remaining pairs are used for the training set. Thus,
each of the development and test sets has 2,915
pairs, and the training set has 23,320 pairs. This
dataset helps to assess the models in a closed-
domain setting where the goal is trying to achieve
a reasonable accuracy.

3.2 Implementation details

The models are implemented in TensorFlow
(Abadi et al., 2016) and trained with/without at-
tention mechanism using the training sets. Then,
given a source sentence describing an event as
input, the trained models are used to generate
a sentence describing a predicted event. We
use the BLEU metric (Papineni et al., 2002) to
evaluate the generated sentences against the tar-
get sentences corresponding to the source sen-
tences. A SEQ2SEQ architecture using a single
layer adapted by Pichotta and Mooney (2016) is
treated as the BASELINE model.

We found vocabulary sizes of 30,000 and
5,000 most frequent words as optimal for the
WIKIHOW and DESCRIPT-based datasets, re-
spectively. Words not occurring in the vocabu-
lary are mapped to a special token UNK. Word
embeddings are initialized using the pre-trained
300-dimensional word embeddings provided by
Word2Vec (Mikolov et al., 2013) and then up-
dated during training. We use two settings
of a single BiLSTM/BiGRU layer (1-LAYER-
BISEQ2SEQ) and two BiLSTM/BiGRU layers (2-
LAYER-BISEQ2SEQ). We use 300 hidden units
for both encoder and decoder. Dropout (Srivas-
tava et al., 2014) is applied with probability of 0.5.

The training objective is to minimize the cross-
entropy loss using the Adam optimizer (Kingma
and Ba, 2015) and a mini-batch size of 64. The
initial learning rate for Adam is selected from
{0.0001, 0.0005, 0.001, 0.005, 0.01}. We run up
to 100 training epochs, and we monitor the BLEU
score after each training epoch and select the best
model which produces highest BLEU score on the
development set.

3.3 Evaluation using BLEU score

Table 1 presents our BLEU scores with models
trained on WIKIHOW and DESCRIPT-based data
on the respective test sets. There are significant
differences in attending to the WIKIHOW sen-
tences and the DESCRIPT sentences. The BLEU
scores between the two datasets cannot be com-
pared because of the much larger degree of varia-
tion in WIKIHOW. The scores reported in Pichotta
and Mooney (2016) on WIKIPEDIA are not com-
parable to our scores for the same reason.

Model WIKIHOW DESCRIPT
GRU LSTM GRU LSTM

BASELINENON-ATT 1.67 1.68 4.31 4.69
1-LAYER-BISEQ2SEQNON-ATT 2.21 2.01 4.85 5.15
2-LAYER-BISEQ2SEQNON-ATT 2.53 2.69 4.98 5.42
BASELINEATT 1.86 2.03 4.03 4.01
1-LAYER-BISEQ2SEQATT 2.53 2.58 4.38 4.47
2-LAYER-BISEQ2SEQATT 2.86 2.81 4.76 5.29

Table 1: The BLEU scores on the DESCRIPT and
WIKIHOW-based test sets. We use subscripts ATT

and NON-ATT to denote models with and without
using attention mechanism, respectively.

Table 1 shows that 1-LAYER-BISEQ2SEQ ob-
tains better results than the strong BASELINE.
Specifically, 1-LAYER-BISEQ2SEQ improves the
baselines with 0.3+ BLEU in both cases of ATT

and NON-ATT, indicating the usefulness of using
bidirectional architecture. Furthermore, the two-
layer architecture produces better scores than the
single layer architecture. Using more layers can
help to capture prominent linguistic features, that
is probably the reason why deeper layers empiri-
cally work better.

As shown in Table 1, the GRU-based models
obtains similar results to the LSTM-based mod-
els on the WIKIHOW-based dataset, but achieves
lower scores on the DESCRIPT-based dataset.
This could show that LSTM cells with memory
gate may help to better remember linguistic fea-
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Figure 2: The BLEU scores of two-layer BiLSTM
BISEQ2SEQ with/without attention on the DE-
SCRIPT-based test set with respect to the source
sentence lengths.

tures than GRU cells without memory gate for the
closed-domain setting.

The ATT model outperforms the NON-ATT

model on the WIKIHOW-based dataset, but not on
the DESCRIPT-based dataset. This is probably be-
cause neighboring WIKIHOW sentences (i.e., sub-
task headers) are more parallel in structure (see
“Pour batter in pan” and “Put pan in oven” from
the initial example), which could be related to the
fact that they are in general shorter. Figure 2 shows
that the ATT model actually works well for DE-
SCRIPT pairs with a short source sentence, while
its performance decreases with longer sentences.

3.4 Evaluation based on paraphrase sets

BLEU scores are difficult to interpret for the task:
BLEU is a surface-based measure as mentioned in
(Qin and Specia, 2015), while event prediction is
essentially a semantic task. Table 2 shows output
examples of the two-layer BILSTM SEQ2SEQ

NON-ATT on the DESCRIPT-based dataset. Al-
though the target and predicted sentences have
different surface forms, they are perfect para-
phrases of the same type of event.

To assess the semantic success of the predic-
tion model, we use the gold paraphrase sets of
event descriptions provided by the DESCRIPT cor-
pus for 10 of its scenarios. We consider a subset of
682 pairs, for which gold paraphrase information
is available, and check, whether a target event and
its corresponding predicted event are paraphrases,

Source: combine and mix all the ingredients as the
recipe delegates

Target: pour ingredients into a cake pan
Predicted: put batter into baking pan
Source: put cake into oven
Target: wait for cake to bake
Predicted: bake for specified time
Source: make an appointment with your hair stylist
Target: go to salon for appointment
Predicted: drive to the barber shop

Table 2: Prediction examples.

Model Accuracy (%)
BASELINENON-ATT 23.9
1-LAYER-BISEQ2SEQNON-ATT 27.3
2-LAYER-BISEQ2SEQNON-ATT 24.0
BASELINEATT 23.6
1-LAYER-BISEQ2SEQATT 23.0
2-LAYER-BISEQ2SEQATT 25.5

Table 3: The accuracy results of the LSTM-based
models on the subset of 682 pairs.

i.e., belong to the same gold paraphrase set.
The accuracy results are given in Table 3 for

the same LSTM-based models taken from Section
3.3. Accuracy is measured as the percentage of
predicted sentences that occur token-identical in
the paraphrase set of the corresponding target sen-
tences. Our best model outperforms Pichotta and
Mooney (2016)’s BASELINE by 3.4%.

Since the DeScript gold sets do not contain
all possible paraphrases, an expert (computational
linguist) checked cases of near misses between
Target and Predicted (i.e. similar to the cases
shown in Table 2) in a restrictive manner, not
counting borderline cases. So we achieve a final
average accuracy of about 31%, which is the sum
of an average accuracy over 6 models in Table 3
(24%) and an average accuracy (7%) of checking
cases of near misses (i.e, Target and Predicted are
clearly event paraphrases).

The result does not look really high, but the task
is difficult: on average, one out of 26 paraphrase
sets (i.e., event types) per scenario has to be pre-
dicted, the random baseline is about 4% only. Also
we should be aware that the task is prediction of
an unseen event, not classification of a given event
description. Continuations of a story are under-
determined to some degree, which implies that the
upper bound for human guessing cannot be 100 %,
but must be substantially lower.
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4 Conclusions

In this paper, we explore the task of event pre-
diction, where we aim to predict a next event
addressed in a text based on the description
of the preceding event. We created the new
open-domain and closed-domain datasets based on
WIKIHOW and DESCRIPT which are available to
the public at: https://github.com/daiquocnguyen/
EventPrediction. We demonstrated that more ad-
vanced SEQ2SEQ models with a bidirectional and
multi-layer RNN architecture substantially outper-
form the previous work. We also introduced an
alternative evaluation method for event prediction
based on gold paraphrase sets, which focuses on
semantic agreement between the target and pre-
dicted sentences.
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Abstract

This paper proposes a reinforcing method
that refines the output layers of existing Re-
current Neural Network (RNN) language
models. We refer to our proposed method
as Input-to-Output Gate (IOG)1. IOG has
an extremely simple structure, and thus,
can be easily combined with any RNN lan-
guage models. Our experiments on the
Penn Treebank and WikiText-2 datasets
demonstrate that IOG consistently boosts
the performance of several different types
of current topline RNN language models.

1 Introduction

A neural language model is a central technol-
ogy of recently developed neural architectures in
the natural language processing (NLP) field. For
example, neural encoder-decoder models, which
were successfully applied to various natural lan-
guage generation tasks including machine transla-
tion (Sutskever et al., 2014), summarization (Rush
et al., 2015), and dialogue (Wen et al., 2015), can
be interpreted as conditional neural language mod-
els. Moreover, word embedding methods, such as
Skip-gram (Mikolov et al., 2013) and vLBL (Mnih
and Kavukcuoglu, 2013), are also originated from
neural language models that aim to handle much
larger vocabulary and data sizes. Thus, language
modeling is a good benchmark task for investigat-
ing the general frameworks of neural methods in
the NLP field.

In this paper, we address improving the perfor-
mance on the language modeling task. In particular,
we focus on boosting the quality of existing Recur-
rent Neural Network (RNN) language models. We
propose the Input-to-Output Gate (IOG) method,

1Our implementation is publicly available at
https://github.com/nttcslab-nlp/iog.

which incorporates an additional gate function in
the output layer of the selected RNN language
model to refine the output. One notable charac-
teristic of IOG is that it can be easily incorporated
in any RNN language models since it is designed to
be a simple structure. Our experiments on the Penn
Treebank and WikiText-2 datasets demonstrate that
IOG consistently boosts the performance of several
different types of current topline RNN language
models. In addition, IOG achieves comparable
scores to the state-of-the-art on the Penn Treebank
dataset and outperforms the WikiText-2 dataset.

2 RNN Language Model

This section briefly overviews the RNN language
models. Hereafter, we denote a word sequence
with length T , namely, w1, ..., wT asw1:T for short.
Formally, a typical RNN language model computes
the joint probability of word sequence w1:T by the
product of the conditional probabilities of each
timestep t:

p(w1:T ) = p(w1)
T−1∏
t=1

p(wt+1|w1:t). (1)

p(w1) is generally assumed to be 1 in this litera-
ture, that is, p(w1) = 1, and thus, we can ignore
the calculation of this term (See the implementa-
tion of Zaremba et al. (2014)2, for example). To
estimate the conditional probability p(wt+1|w1:t),
we apply RNNs. Let V be the vocabulary size, and
let Pt ∈ RV be the probability distribution of the
vocabulary at timestep t. Moreover, let Dh and De

respectively be the dimensions of the hidden state
and embedding vectors. Then, the RNN language

2https://github.com/wojzaremba/lstm
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Figure 1: Overview of computing probability dis-
tribution.

models predict Pt+1 by the following equation:

Pt+1 = softmax(st), (2)

st = Wht + b, (3)

ht = f(et, ht−1), (4)

et = Ext, (5)

where W ∈ RV×Dh is a matrix, b ∈ RV is a bias
term, E ∈ RDe×V is a word embedding matrix,
xt ∈ {0, 1}V is a one-hot vector representing the
word at timestep t, and ht−1 is the hidden state at
previous timestep t − 1. ht at timestep t = 0 is
defined as a zero vector, that is, h0 = 0. Let f(·)
represent an abstract function of an RNN, which
might be the Elman network (Elman, 1990), the
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997), the Recurrent Highway
Network (RHN) (Zilly et al., 2017), or any other
RNN variants.

3 Input-to-Output Gate

In this section, we describe our proposed method:
Input-to-Output Gate (IOG). As illustrated in Fig-
ure 1, IOG adjusts the output of an RNN language
model by the gate mechanism before computing
the probability of the next word. We expect that
IOG will boost the probability of the word that may
occur. For example, a word followed by a prepo-
sition such as ‘of’ is probably a noun. Therefore,
if the word at timestep t is a preposition, IOG re-
fines the output of a language model to raise the
probabilities of nouns.

Hyper-parameter Selected value
Embedding dimension Dg 300
Dropout rate 50%
Optimization method Adam
Initial learning rate 0.001
Learning rate decay 1/

√
Epoch

Max epoch 5

Table 1: Hyper-parameters in training IOG.

Formally, let xt be a one-hot vector representing
wt, IOG calculates the gate gt by the following
equations:

gt = σ(Wge
′
t + bg), (6)

e′t = Egxt. (7)

Here, Wg ∈ RV×Dg is a matrix, bg ∈ RV is a
bias term, and Eg ∈ RDg×V is a word embedding
matrix3. Then, we compute the probability distri-
bution of the RNN language model by applying the
above gate to the Equation (2) as follows:

Pt+1 = softmax(gt � st), (8)

where� represents the element-wise multiplication
of two vectors.

4 Experiments

4.1 Dataset
We conducted word-level prediction experiments
on the Penn Treebank (PTB) (Marcus et al., 1993)
and WikiText-2 (Merity et al., 2017b) datasets.
The PTB dataset consists of 929k training words,
73k validation words, and 82k test words. The
WikiText-2 dataset consists of 2,088k training
words, 217k validation words, and 245k test words.
Mikolov et al. (2010) and Merity et al. (2017b)
respectively published pre-processed PTB4 and
WikiText-25 datasets. We used these pre-processed
datasets for fair comparisons with previous studies.

4.2 Training Procedure
For the PTB dataset, we prepared a total of 5 RNN
language models as our baseline models. First, we
replicated LSTM with dropout and LSTM with
variational inference based dropout, which we re-
fer to as “LSTM” and “Variational LSTM”, respec-
tively. Following Zaremba et al. (2014) and Gal

3We prepared different embeddings from those used in an
RNN language model.

4http://www.fit.vutbr.cz/ imikolov/rnnlm/
5https://einstein.ai/research/the-wikitext-long-term-

dependency-language-modeling-dataset
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Model Parameters Validation Test
LSTM (medium) (Zaremba et al., 2014) † 20M 86.2 82.7
LSTM (medium, replication of Zaremba et al. (2014)) 20M 87.1 84.0
+ IOG (proposed) 26M 84.1 81.1
LSTM (large) (Zaremba et al., 2014) † 66M 82.2 78.4
LSTM (large, replication of Zaremba et al. (2014)) 66M 82.7 78.6
+ IOG (proposed) 72M 78.5 75.5
Variational LSTM (medium) (Gal and Ghahramani, 2016) † 20M 81.9 ± 0.2 79.7 ± 0.1
Variational LSTM (medium, replication of Gal and Ghahramani (2016)) 20M 82.8 79.1
+ IOG (proposed) 26M 81.2 78.1
Variational LSTM (large) (Gal and Ghahramani, 2016) † 66M 77.9 ± 0.3 75.2 ± 0.2
Variational LSTM (large, replication of Gal and Ghahramani (2016)) 66M 78.1 74.6
+ IOG (proposed) 72M 76.9 74.1
Variational RHN (depth 8) (Zilly et al., 2017) † 32M 71.2 68.5
Variational RHN (depth 8, replication of Zilly et al. (2017)) 32M 72.1 68.9
+ IOG (proposed) 38M 69.2 66.5
Variational RHN (depth 8, replication of Zilly et al. (2017)) + WT 23M 69.2 66.3
+ IOG (proposed) 29M 67.0 64.4
Ensemble of 5 Variational RHNs 160M 66.1 63.1
+ IOG (proposed) 166M 64.7 62.0
Ensemble of 10 Variational RHNs 320M 65.2 62.3
+ IOG (proposed) 326M 64.1 61.4
Neural cache model (Grave et al., 2017) † 21M - 72.1
Pointer Sentinel LSTM (medium) (Merity et al., 2017b) † 21M 72.4 70.9
Variational LSTM (large) + WT + AL (Inan et al., 2016) † 51M 71.1 68.5
Variational RHN (depth 10) + WT (Press and Wolf, 2017) † 24M 68.1 66.0
Neural Architecture Search with base 8 (Zoph and Le, 2017) † 32M - 67.9
Neural Architecture Search with base 8 + WT(Zoph and Le, 2017) † 25M - 64.0
Neural Architecture Search with base 8 + WT (Zoph and Le, 2017) † 54M - 62.4
AWD LSTM + WT (Merity et al., 2017a) † 24M 60.0 57.3
AWD LSTM + WT (result by code of Merity et al. (2017a)6) 24M 58.6 56.7
+ IOG (proposed) 30M 58.5 56.7
AWD LSTM + WT + cache (size = 2000) (Merity et al., 2017a) † 24M 53.9 52.8
AWD LSTM + WT + cache (size = 500) 24M 53.4 53.0
+ IOG (proposed) 30M 53.3 53.0

Table 2: Comparison between baseline models and the proposed method (represented as “+ IOG”) on
the Penn Treebank (PTB) dataset. † denotes results published in previous studies. The method with WT
shared word embeddings (E in the Equation (5)) with the weight matrix of the final layer (W in the
Equation (3)). AL denotes that the method used a previously proposed augmented loss function (Inan
et al., 2016).

Model Parameters Validation Test
LSTM (medium, replication of Zaremba et al. (2014)) 50M 102.2 96.2
+ IOG (proposed) 70M 99.2 93.8
Variational LSTM (medium, replication of Gal and Ghahramani (2016)) 50M 97.2 91.8
+ IOG (proposed) 70M 95.9 91.0
Variational LSTM (medium) + cache (size = 2000) 50M 69.6 66.1
+ IOG (proposed) 70M 69.3 65.9
Pointer Sentinel LSTM (Merity et al., 2017b) † 51M 7 84.8 80.8
Neural cache model (size = 100) (Grave et al., 2017) † 42M - 81.6
Neural cache model (size = 2000) (Grave et al., 2017) † 42M - 68.9
AWD LSTM + WT (Merity et al., 2017a) † 33M 68.6 65.8
AWD LSTM + WT (result by code of Merity et al. (2017a)) 33M 68.6 65.8
+ IOG (proposed) 53M 68.6 65.9
AWD LSTM + WT + cache (size = 3785) (Merity et al., 2017a) † 33M 53.8 52.0
AWD LSTM + WT + cache (size = 3785) 33M 53.5 51.7
+ IOG (proposed) 53M 53.6 51.7

Table 3: Comparison between baseline models and the proposed method (represented as “+ IOG”) on the
WikiText-2 dataset. † denotes results published in previous studies.
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and Ghahramani (2016), we prepared the medium
setting (2-layer LSTM with 650 dimensions for
each layer), and the large setting (2-layer LSTM
with 1500 dimensions for each layer) for each
LSTM. We also replicated “Variational RHN” with
a depth of 8 described in Zilly et al. (2017). For
the WikiText-2 dataset, we prepared the medium
setting standard and variational LSTMs as our base-
lines, which are identical as those used in Merity
et al. (2017b).

After reproducing the baselines, we incorporated
IOG with those models. Table 1 summarizes the
hyper-parameters used for training the IOG. During
training IOG, we fixed the parameters of the RNN
language models to avoid over-fitting.

4.3 Results

We show the perplexities of the baselines and those
combined with IOG for the PTB in Table 2, and
for the WikiText-2 in Table 3. These tables, which
contain both the scores reported in the previous
studies and those obtained by our reproduced mod-
els, indicate that IOG reduced the perplexity. In
other words, IOG boosted the performance of the
baseline models. We emphasize that IOG is not
restricted to a neural architecture of a language
model because it improved the RHN and LSTM
performances.

In addition to the comparison with the base-
lines, Table 2 and Table 3 contain the scores pub-
lished in previous studies. Merity et al. (2017b)
and Grave et al. (2017) proposed similar methods.
Their methods, which are called “cache mecha-
nism” (or ‘pointer’), keep multiple hidden states
at past timesteps to select words from previous se-
quences. Inan et al. (2016) and Press and Wolf
(2017) introduced a technique that shares word em-
beddings with the weight matrix of the final layer
(represented as ‘WT’ in Table 2). Inan et al. (2016)
also proposed using word embeddings to augment
loss function (represented as ‘AL’ in Table 2). Zoph
and Le (2017) adopted RNNs and reinforcement
learning to automatically construct a novel RNN
architecture. We expect that IOG will improve
these models since it can be combined with any
RNN language models. In fact, Table 2 and Table 3

6In contrast to other comparisons, we used
the following implementation by the authors:
https://github.com/salesforce/awd-lstm-lm

7The number of parameters is different from the one de-
scribed in Merity et al. (2017b). We guess that they do not
consider the increase of the vocabulary size.

demonstrate that IOG enhanced the performance
even when the RNN language model was combined
with ‘WT’ or the cache mechanism.

Table 2 also shows the scores in the ensemble set-
tings. Model ensemble techniques are widely used
for further improving the performance of neural
networks. In this experiment, we employed a sim-
ple ensemble technique: using the average of the
output probability distributions from each model as
output. We computed the probability distribution
Pt+1 on the ensemble of the M models as follows:

Pt+1 =
1
M

M∑
m=1

mPt+1, (9)

where mPt+1 represents the probability distribu-
tion predicted by the m-th model. In the ensemble
setting, we applied only one IOG to the multiple
models. In other words, we used the same IOG
for computing the probability distributions of each
language model, namely, computing the Equation
(8). Table 2 describes that 5 and 10 model ensem-
ble of Variational RHNs outperformed the single
model by more than 5 in perplexity. Table 2 shows
that IOG reduced the perplexity of the ensemble
models. Remarkably, even though the 10 Varia-
tional RHN ensemble achieved the state-of-the-art
performance on the PTB dataset, IOG improved
the performance by about 1 in perplexity8.

In addition, as additional experiments, we incor-
porated IOG with the latest method, which was
proposed after the submission deadline of IJCNLP
2017. Merity et al. (2017a) introduced various
regularization and optimization techniques such
as DropConnect (Wan et al., 2013) and averaged
stochastic gradient descent (Polyak and Juditsky,
1992) to the LSTM language model. They called
their approach AWD LSTM, which is an abbrevia-
tion of averaged stochastic gradient descent weight-
dropped LSTM. Table 2 and Table 3 indicate the
results on the PTB and the WikiText-2 respectively.
These tables show that IOG was not effective to
AWD LSTM. Perhaps, the reason is that the per-
plexity of AWD LSTM is close to the best per-
formance of the simple LSTM architecture. We
also note that IOG did not have any harmful effect
on the language models because it maintained the
performances of AWD LSTM with ‘WT’ and the

8This result was the state-of-the-art score at the submission
deadline of IJCNLP 2017, i.e., July 7, 2017, but Merity et al.
(2017a) surpassed it on Aug 7, 2017. We mention the effect
of IOG on their method in the following paragraph.
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Model Diff Test
Variational RHN (replicate) - 68.9
Variational RHN + IOG (proposed) - 66.5
Variational RHN + IOG with hidden +0.8M 75.6
Variational RHN + LSTM gate +0.7M 68.1

Table 4: Comparison among architectures for com-
puting the output gate on the PTB dataset. The
column ‘Diff’ shows increase of parameters from
IOG (proposed).

cache mechanism. Moreover, incorporating IOG is
much easier than exploring the best regularization
and optimization methods for each RNN language
model. Therefore, to improve the performance, we
recommend combining IOG before searching for
the best practice.

4.4 Discussion

Although IOG consists only of word embeddings
and one weight matrix, the experimental results
were surprisingly good. One might think that more
sophisticated architectures can provide further im-
provements. To investigate this question, we exam-
ined two additional architectures to compute the
output gate gt in the Equation (6).

The first one substituted the calculation of the
gate function gt by the following g′t:

g′t = σ(W ′g[ht, e
′
t] + bg), (10)

where W ′g ∈ RV×(Dh+Dg), and [ht, e
′
t] represents

the concatenation of the hidden state ht of RHN
and embeddings e′t used in IOG. We refer to this
architecture as “+ IOG with hidden”.

The second one similarly substituted gt by the
following g′′t :

g′′t = σ(Wgh
′
t + bg), (11)

h′t = f ′(e′t, h
′
t−1), (12)

where f ′(·) is the 1-layer LSTM in our experiments.
We set the dimension of the LSTM hidden state
to 300, that is, Dg = 300, and the other hyper-
parameters remained as described in Section 4.2.
We refer to the second one as “+ LSTM gate”.

Table 4 shows the results of the above two archi-
tectures on the PTB dataset. IOG clearly outper-
formed the other more sophisticated architectures.
This fact suggests that (1) incorporating additional
architectures does not always improve the perfor-
mance, and (2) not always become better even if it
is a sophisticated architecture. We need to carefully

Input word Top 5 weighted words
of security, columbia, steel, irs, thrift
in columbia, ford, order, labor, east
go after, through, back, on, ahead
attention was, than, 〈eos〉, from, to
whether to, she, estimates, i, ual

Table 5: Top 5 weighted words for each input word
on the PTB experiment.

design an architecture that can provide complemen-
tary (or orthogonal) information to the baseline
RNNs.

In addition, to investigate the mechanism of IOG,
we selected particular words, and listed the top 5
weighted words given each selected word as in-
put in Table 59. IOG gave high weights to nouns
when the input word was a preposition: ‘of’ and
‘in’. Moreover, IOG encouraged outputting phrasal
verbs such as “go after”. These observations gener-
ally match human intuition.

5 Conclusion

We proposed Input-to-Output Gate (IOG), which
refines the output of an RNN language model by the
gate mechanism. IOG can be incorporated in any
RNN language models due to its simple structure.
In fact, our experimental results demonstrated that
IOG improved the performance of several different
settings of RNN language models. Furthermore,
the experimental results indicate that IOG can be
used with other techniques such as ensemble.
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Hao Su, David Vandyke, and Steve Young. 2015. Se-
mantically Conditioned LSTM-based Natural Lan-
guage Generation for Spoken Dialogue Systems. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2015). pages 1711–1721.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent Neural Network Regularization. In
Proceedings of the 2nd International Conference on
Learning Representations (ICLR 2014).

Julian Georg Zilly, Rupesh Kumar Srivastava, Jan
Koutnı́k, and Jürgen Schmidhuber. 2017. Recurrent
Highway Networks. Proceedings of the 34th Inter-
national Conference on Machine Learning (ICML
2017) pages 4189–4198.

Barret Zoph and Quoc V. Le. 2017. Neural Archi-
tecture Search with Reinforcement Learning. In
Proceedings of the 5th International Conference on
Learning Representations (ICLR 2017).

48



Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 49–54,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

Counterfactual Language Model Adaptation for Suggesting Phrases

Kenneth C. Arnold
Harvard CS

Cambridge, MA

Kai-Wei Chang
University of California

Los Angeles, CA

Adam T. Kalai
Microsoft Research

Cambridge, MA

Abstract

Mobile devices use language models to sug-
gest words and phrases for use in text en-
try. Traditional language models are based
on contextual word frequency in a static
corpus of text. However, certain types of
phrases, when offered to writers as sugges-
tions, may be systematically chosen more
often than their frequency would predict.
In this paper, we propose the task of gen-
erating suggestions that writers accept, a
related but distinct task to making accurate
predictions. Although this task is funda-
mentally interactive, we propose a counter-
factual setting that permits offline training
and evaluation. We find that even a simple
language model can capture text character-
istics that improve acceptability.

1 Introduction

Intelligent systems help us write by proactively
suggesting words or phrases while we type. These
systems often build on a language model that picks
most likely phrases based on previous words in con-
text, in an attempt to increase entry speed and ac-
curacy. However, recent work (Arnold et al., 2016)
has shown that writers appreciate suggestions that
have creative wording, and can find phrases sug-
gested based on frequency alone to be boring. For
example, at the beginning of a restaurant review,
“I love this place” is a reasonable prediction, but a
review writer might prefer a suggestion of a much
less likely phrase such as “This was truly a wonder-
ful experience”—they may simply not have thought
of this more enthusiastic phrase. Figure 1 shows
another example.

We propose a new task for NLP research: gener-
ate suggestions for writers. Doing well at this task
requires innovation in language generation but also

Figure 1: We adapt a language model to offer sug-
gestions during text composition. In above exam-
ple, even though the middle suggestion is predicted
to be about 1,000 times more likely than the one
on the right, a user prefers the right one.

interaction with people: suggestions must be eval-
uated by presenting them to actual writers. Since
writing is a highly contextual creative process, tra-
ditional batch methods for training and evaluat-
ing human-facing systems are insufficient: ask-
ing someone whether they think something would
make a good suggestion in a given context is very
different from presenting them with a suggestion
in a natural writing context and observing their re-
sponse. But if evaluating every proposed parameter
adjustment required interactive feedback from writ-
ers, research progress would be slow and limited
to those with resources to run large-scale writing
experiments.

In this paper we propose a hybrid approach: we
maintain a natural human-centered objective, but
introduce a proxy task that provides an unbiased
estimate of expected performance on human evalua-
tions. Our approach involves developing a stochas-
tic baseline system (which we call the reference
policy), logging data from how writers interact
with it, then estimating the performance of candi-
date policies by comparing how they would behave
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with how the reference policy did behave in the
contexts logged. As long as the behavior of the
candidate policy is not too different from that of
the reference policy (in a sense that we formalize),
this approach replaces complex human-in-the-loop
evaluation with a simple convex optimization prob-
lem.

This paper demonstrates our approach: we col-
lected data of how humans use suggestions made by
a reference policy while writing reviews of a well-
known restaurant. We then used logged interaction
data to optimize a simple discriminative language
model, and find that even this simple model gen-
erates better suggestions than a baseline trained
without interaction data. We also ran simulations
to validate the estimation approach under a known
model of human behavior.

Our contributions are summarized below:
• We present a new NLP task of phrase sugges-

tion for writing.1

• We show how to use counterfactual learning
for goal-directed training of language models
from interaction data.

• We show that a simple discriminative lan-
guage model can be trained with offline in-
teraction data to generate better suggestions
in unseen contexts.

2 Related Work

Language models have a long history and play an
important role in many NLP applications (Sordoni
et al., 2015; Rambow et al., 2001; Mani, 2001;
Johnson et al., 2016). However, these models do
not model human preferences from interactions.
Existing deployed keyboards use n-gram language
models (Quinn and Zhai, 2016; Kneser and Ney,
1995), or sometimes neural language models (Kim
et al., 2016), trained to predict the next word given
recent context. Recent advances in language model-
ing have increased the accuracy of these predictions
by using additional context (Mikolov and Zweig,
2012). But as argued in Arnold et al. (2016), these
increases in accuracy do not necessarily translate
into better suggestions.

The difference between suggestion and predic-
tion is more pronounced when showing phrases
rather than just words. Prior work has extended
predictive language modeling to phrase prediction
(Nandi and Jagadish, 2007) and sentence comple-

1Code and data are available at https://github.
com/kcarnold/counterfactual-lm.

tion (Bickel et al., 2005), but do not directly model
human preferences. Google’s “Smart Reply” email
response suggestion system (Kannan et al., 2016)
avoids showing a likely predicted response if it
is too similar to one of the options already pre-
sented, but the approach is heuristic, based on a
priori similarity. Search engine query completion
also generates phrases that can function as sugges-
tions, but is typically trained to predict what query
is made (e.g., Jiang et al. (2014)).

3 Counterfactual Learning for
Generating Suggestions

We consider the task of generating good words
and phrases to present to writers. We choose a
pragmatic quality measure: a suggestion system is
good if it generates suggestions that writers accept.
Let h denote a suggestion system, characterized
by h(y|x), the probability that h will suggest the
word or phrase y when in context x (e.g., words
typed so far).2 We consider deploying h in an inter-
active interface such as Figure 1, which suggests
phrases using a familiar predictive typing interface.
Let � denote a reward that a system receives from
that interaction; in our case, the number of words
accepted.3 We define the overall quality of a sug-
gestion system by its expected reward E[�] over all
contexts.

Counterfactual learning allows us to evaluate
and ultimately learn models that differ from those
that were deployed to collect the data, so we can
deploy a single model and improve it based on the
data collected (Swaminathan and Joachims, 2015).
Intuitively, if we deploy a model h0 and observe
what actions it takes and what feedback it gets, we
could improve the model by making it more likely
to suggest the phrases that got good feedback.

Suppose we deploy a reference model4 h0 and
log a dataset

D = {(x1, y1, �1, p1), . . . , (xn, yn, �n, pn)}

of contexts (words typed so far), actions (phrases
suggested), rewards, and propensities respectively,
where pi ⌘ h0(yi|xi). Now consider deploying an
alternative model h✓ (we will show an example as

2Our notation follows Swaminathan and Joachims (2015)
but uses “reward” rather than “loss.” Since h(y|x) has the
form of a contextual language model, we will refer to it as a
“model.”

3Our setting admits alternative rewards, such as the speed
that a sentence was written, or an annotator’s rating of quality.

4Some other literature calls h0 a logging policy.
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Eq. (1) below). We can obtain an unbiased estimate
of the reward that h✓ would incur using importance
sampling:

R̂(h✓) =
1
n

nX
i=1

�ih✓(yi|xi)/pi.

However, the variance of this estimate can
be unbounded because the importance weights
h✓(yi|xi)/pi can be arbitrarily large for small
pi. Like Ionides (2008), we clip the importance
weights to a maximum M :

R̂M (h) =
1
n

Xn

i=1
�i min {M, h⇥(yi|xi)/pi} .

The improved model can be learned by optimizing

ĥ✓ = argmaxh R̂M (h).

This optimization problem is convex and differen-
tiable; we solve it with BFGS. 5

4 Demonstration Using Discriminative
Language Modeling

We now demonstrate how counterfactual learning
can be used to evaluate and optimize the acceptabil-
ity of suggestions made by a language model. We
start with a traditional predictive language model
h0 of any form, trained by maximum likelihood
on a given corpus.6 This model can be used for
generation: sampling from the model yields words
or phrases that match the frequency statistics of
the corpus. However, rather than offering repre-
sentative samples from h0, most deployed systems
instead sample from p(wi) / h0(wi)1/⌧ , where ⌧
is a “temperature” parameter; ⌧ = 1 corresponds
to sampling based on p0 (soft-max), while ⌧ ! 0
corresponds to greedy maximum likelihood gener-
ation (hard-max), which many deployed keyboards
use (Quinn and Zhai, 2016). The effect is to skew
the sampling distribution towards more probable
words. This choice is based on a heuristic assump-
tion that writers desire more probable suggestions;
what if writers instead find common phrases to be
overly cliché and favor more descriptive phrases?
To capture these potential effects, we add features
that can emphasize various characteristics of the

5We use the BFGS implementation in SciPy.
6The model may take any form, but n-gram (Heafield et al.,

2013) and neural language models (e.g., (Kim et al., 2016))
are common, and it may be unconditional or conditioned on
some source features such as application, document, or topic
context.

LM weight = 1, all other weights zero:
i didn’t see a sign for; i am a huge sucker for
LM weight = 1, long-word bonus = 1.0:
another restaurant especially during sporting events

LM weight = 1, POS adjective bonus = 3.0:

great local bar and traditional southern

Table 1: Example phrases generated by the log-
linear language model under various parameters.
The context is the beginning-of-review token; all
text is lowercased. Some phrases are not fully gram-
matical, but writers can accept a prefix.

generated text, then use counterfactual learning to
assign weights to those features that result in sug-
gestions that writers prefer.

We consider locally-normalized log-linear lan-
guage models of the form

h✓(y|x) =
|y|Y
i=1

exp ✓ · f(wi|c, w[:i�1])P
w0 exp ✓ · f(w0|c, w[:i�1])

, (1)

where y is a phrase and f(wi|x, w[:i�1]) is a fea-
ture vector for a candidate word wi given its context
x. (w[:i�1] is a shorthand for {w1, w2, . . . wi�1}.)
Models of this form are commonly used in se-
quence labeling tasks, where they are called Max-
Entropy Markov Models (McCallum et al., 2000).
Our approach generalizes to other models such as
conditional random fields (Lafferty et al., 2001).

The feature vector can include a variety of fea-
tures. By changing feature weights, we obtain lan-
guage models with different characteristics. To il-
lustrate, we describe a model with three features be-
low. The first feature (LM) is the log likelihood un-
der a base 5-gram language model p0(wi|c, w[:i�1])
trained on the Yelp Dataset7 with Kneser-Ney
smoothing (Heafield et al., 2013). The second and
third features “bonus” two characteristics of wi:
long-word is a binary indicator of long word
length (we arbitrarily choose � 6 letters), and POS
is a one-hot encoding of its most common POS tag.
Table 1 shows examples of phrases generated with
different feature weights.

Note that if we set the weight vector to zero ex-
cept for a weight of 1/⌧ on LM, the model reduces
to sampling from the base language model with
“temperature” ⌧ . The fitted model weights of the
log-linear model in our experiments is shown in
supplementary material.

7https://www.yelp.com/dataset_
challenge; we used only restaurant reviews
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Reference model h0. In counterfactual estima-
tion, we deploy one reference model h0 to learn
another ĥ—but weight truncation will prevent ĥ
from deviating too far from h0. So h0 must of-
fer a broad range of types of suggestions, but they
must be of sufficiently quality that some are ulti-
mately chosen. To balance these concerns, we use
temperature sampling with a temperature ⌧ = 0.5):

p0(wi|c, w[:i�1])1/⌧P
w p0(w|c, w[:i�1])1/⌧

.

We use our reference model h0 to generate 6-word
suggestions one word at a time, so pi is the product
of the conditional probabilities of each word.

4.1 Simulation Experiment

We present an illustrative model of suggestion ac-
ceptance behavior, and simulate acceptance behav-
ior under that model to validate our methodology.
Our method successfully learns a suggestion model
fitting writer preference.

Desirability Model. We model the behavior of
a writer using the interface in Fig. 1, which dis-
plays 3 suggestions at a time. At each timestep i
they can choose to accept one of the 3 suggestions
{si

j}3
j=1, or reject the suggestions by tapping a key.

Let {pi
j}3

j=1 denote the likelihood of suggestion si
j

under a predictive model, and let pi
; = 1�P3

j=1 pi
j

denote the probability of any other word. Let ai
j de-

note the writer’s probability of choosing the corre-
sponding suggestion, and ai

j denote the probability
of rejecting the suggestions offered. If the writer
decided exactly what to write before interacting
with the system and used suggestions for optimal
efficiency, then ai

j would equal pi
j . But suppose the

writer finds certain suggestions desirable. Let Di
j

give the desirability of a suggestion, e.g., Di
j could

be the number of long words in suggestion si
j . We

model their behavior by adding the desirabilities to
the log probabilities of each suggestion:

a
(i)
j = p

(i)
j exp(D(i)

j )/Z(i), a
(i)
; = p

(i)
; /Z(i)

where Z(i) = 1�Pj p
(i)
j (1�exp(D(i)

j )). The net
effect is to move probability mass from the “reject”
action ai

; to suggestions that are close enough to
what the writer wanted to say but desirable.

Experiment Settings and Results. We sample
10% of the reviews in the Yelp Dataset, hold them

out from training h0, and split them into an equal-
sized training set and test set. We randomly sample
suggestion locations from the training set. We cut
off that phrase and pretend to retype it. We gen-
erate three phrases from the reference model h0,
then allow the simulated author to pick one phrase,
subject to their preference as modeled by the de-
sirability model. We learn a customized language
model and then evaluate it on an additional 500
sentences from the test set.

For an illustrative example, we set the desirabil-
ity D to the number of long words (� 6 characters)
in the suggestion, multiplied by 10. Figure 3 shows
that counterfactual learning quickly finds model pa-
rameters that make suggestions that are more likely
to be accepted, and the counterfactual estimates
are not only useful for learning but also correlate
well with the actual improvement. In fact, since
weight truncation (controlled by M ) acts as regu-
larization, the counterfactual estimate consistently
underestimates the actual reward.

4.2 Experiments with Human Writers

We recruited 74 workers through MTurk to write re-
views of Chipotle Mexican Grill using the interface
in Fig 1 from Arnold et al. (2016). For the sake of
simplicity, we assumed that all human writers have
the same preference. Based on pilot experiments,
Chipotle was chosen as a restaurant that many
crowd workers had dined at. User feedback was
largely positive, and users generally understood
the suggestions’ intent. The users’ engagement
with the suggestions varied greatly—some loved
the suggestions and their entire review consisted of
nearly only words entered with suggestions while
others used very few suggestions. Several users
reported that the suggestions helped them select
words to write down an idea or also gave them ideas
of what to write. We did not systematically enforce
quality, but informally we find that most reviews
written were grammatical and sensible, which indi-
cates that participants evaluated suggestions before
taking them. The dataset contains 74 restaurant
reviews typed with phrase suggestions. The mean
word count is 69.3, std=25.70. In total, this data
comprises 5125 words, along with almost 30k sug-
gestions made (including mid-word).

Estimated Generation Performance. We learn
an improved suggestion model by the estimated ex-
pected reward (R̂M ). We fix M = 10 and evaluate
the performance of the learned parameters on held-
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Figure 2: Example reviews. A colored background indicates that the word was inserted by accepting a
suggestion. Consecutive words with the same color were inserted as part of a phrase.

Figure 3: We simulated learning a model based
on the behavior of a writer who prefers long words,
then presented suggestions from that learned model
to the simulated writer. The model learned to make
desirable predictions by optimizing the counterfac-
tual estimated reward. Regularization causes that
estimate to be conservative; the reward actually
achieved by the model exceeded the estimate.

out data using 5-fold cross-validation. Figure 4
shows that while the estimated performance of the
new model does vary with the M used when esti-
mating the expected reward, the relationships are
consistent: the fitted model consistently receives
the highest expected reward, followed by an ab-
lated model that can only adjust the temperature
parameter ⌧ , and both outperform the reference
model (with ⌧ = 1). The fitted model weights sug-
gest that the workers seemed to prefer long words
and pronouns, and eschewed punctuation.

5 Discussion

Our model assumed all writers have the same pref-
erences. Modeling variations between writers, such
as in style or vocabulary, could improve perfor-
mance, as has been done in other domains (e.g.,
Lee et al. (2017)). Each review in our dataset was
written by a different writer, so our dataset could be

Figure 4: The customized model consistently im-
proves expected reward over baselines (reference
LM, and the best “temperature” reweighting LM) in
held-out data. Although the result is an estimated
using weight truncation at M , the improvement
holds for all reasonable M .

used to evaluate online personalization approaches.
Our task of crowdsourced reviews of a single

restaurant may not be representative of other tasks
or populations of users. However, the predictive
language model is a replaceable component, and a
stronger model that incorporates more context (e.g.,
Sordoni et al. (2015)) could improve our baselines
and extend our approach to other domains.

Future work can improve on the simple discrimi-
native language model presented here to increase
grammaticality and relevance, and thus acceptabil-
ity, of the suggestions that the customized language
models generate.
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Abstract

Multi-task learning (MTL) has recently
contributed to learning better representa-
tions in service of various NLP tasks.
MTL aims at improving the performance
of a primary task, by jointly training on a
secondary task. This paper introduces au-
tomated tasks, which exploit the sequen-
tial nature of the input data, as secondary
tasks in an MTL model. We explore next
word prediction, next character prediction,
and missing word completion as potential
automated tasks. Our results show that
training on a primary task in parallel with
a secondary automated task improves both
the convergence speed and accuracy for
the primary task. We suggest two meth-
ods for augmenting an existing network
with automated tasks and establish bet-
ter performance in topic prediction, senti-
ment analysis, and hashtag recommenda-
tion. Finally, we show that the MTL mod-
els can perform well on datasets that are
small and colloquial by nature.

1 Introduction

Recurrent neural networks have demonstrated
formidable performance in NLP tasks ranging
from speech recognition (Hinton et al., 2012) to
neural machine translation (Bahdanau et al., 2014;
Wu et al., 2016). In NLP, multi-task learning has
been found to be beneficial for seq2seq learning
(Luong et al., 2015; Cheng et al., 2016), text rec-
ommendation (Bansal et al., 2016), and catego-
rization (Liu et al., 2015).

Despite the popularity of multi-task learning,
there has been little work done in generalizing the
application of MTL to all sequential tasks. To ac-
complish this goal, we use the concept of auto-

mated tasks. Similar work in multi-task learning
frameworks proposed in (Liu et al., 2016) and (Lu-
ong et al., 2015) are both trained on multiple la-
beled datasets. Though we have seen evidence of
research using external unlabeled datasets in pre-
training (Dai and Le, 2015) and semi-supervised
multi-task frameworks (Ando and Zhang, 2005),
to our knowledge there is no work dedicated to
using tasks derived from the original dataset in
multi-task learning with deep recurrent networks.
With automated tasks, we are able to use MTL for
almost any sequential task.

We present two ways of using automated multi-
task learning: (1) the MRNN, a multi-tasking
RNN where the tasks share an LSTM layer, and
(2) the CRNN, a cascaded RNN where the net-
work is augmented with a concatenative layer su-
pervised by the automated task. Examples of ei-
ther network are shown in Figure 1.

In summary, our main contributions are:

• We introduce the concept of automated tasks
for multi-task learning with deep recurrent
networks.
• We show that using the CRNN and the

MRNN trained in parallel on a secondary au-
tomated task allows the network to achieve
better results in sentiment analysis, topic pre-
diction, and hashtag recommendation.

2 Automated Multi-task Learning

We generalize multi-task learning by incorporat-
ing automated tasks with our two MTL models:
the CRNN and the MRNN. In the following sub-
sections, we describe the automated tasks, the
models, and their respective training methods.

2.1 Automated Tasks

The set of automated tasks we suggest include (1)
next word prediction, (2) next character predic-
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(a)

(b)

Figure 1: MRNN (a) and CRNN (b) model

tion, and (3) missing word completion.
For word and character generation, we trained a

language model to predict the next word or charac-
ter given the words or characters from the previous
K steps. For the missing word completion task,
we removed a random non-stop-word from each
document and replaced it with a UNK placeholder.
The removed word is fed into a word2vec model
trained on Google News (Le and Mikolov, 2014)
and the resulting vector is the target. We per-
formed regression to minimize the mean squared
error of predicting the missing word vector given
the text. We generated predictions by finding the
target word vector with the highest cosine similar-
ity to the output vector.

2.2 MRNN

The multi-tasking RNN, MRNN, is an MTL
model that we use to train our primary and auto-
mated tasks in parallel. The MRNN’s initial layers
are shared, and the later layers branch out to sepa-
rate tasks. A basic example of an MRNN is shown

in Figure 1.
The MRNN is constructed such that the primary

task and automated task(s) share a body of units.
This body is supervised by both the primary and
automated task(s) and learns internal representa-
tions for both tasks.

2.3 CRNN

(Søgaard and Goldberg, 2016) showed that a
higher-level task can benefit from making use of
a shared representation learned by training on a
lower-level task. Similarly, the CRNN assumes
that the primary task has a hierarchical relation-
ship with the automated task. A basic example of
a CRNN is shown in Figure 1.

Specifically, we designed the CRNN to use the
representations learned from an automated task as
a concatenative input (Ghosh et al., 2016; Lipton
et al., 2015) for the primary task. Furthermore,
such a model can be supervised on an identical
task at different network layers.

3 Experiments

We evaluate the performance of our models on
binary sentiment analysis of the Rotten Tomato
Movie Review dataset, topic prediction on the AG
News dataset, and hashtag recommendation on a
Twitter dataset. For each of these datasets, we
compared the results from the MRNN and CRNN
to a corresponding LSTM model. We separately
tuned the hyper-parameters for each model with
the validation sets and took the average results
across the multiple runs. Note that the baseline
LSTM models are 2-layered. Our MTL models
and the LSTM baseline have the exact same num-
ber of parameters along the primary task stream.

In the following experiments, we use 512
LSTM cells for all models trained on the Rotten
Tomato dataset and 128 LSTM cells for the AG
News and Twitter datasets. Before each output
layer, we have a single fully connected layer con-
sisting of 512 hidden units for the Rotten Tomato
dataset and 128 hidden units for the AG News and
Twitter datasets. We use a batch size of 128 and
apply gradient clipping with the norm set to 1.0 on
all the parameters for all experiments.

We found that missing word completion is espe-
cially detrimental to our MTL models. We believe
that removing a word from each document, which
consists almost exclusively of short sequences,
discards a large portion of the useful information.
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Dataset Doc. Count Categories Avg. WC
RTMR 10662 2 20
AGNews 127600 4 34
Twitter 5964 71 70*

Table 1: Dataset statistics. (*character count)

Thus, the quantitative results of the missing word
completion experiments have been omitted from
this paper. We hypothesize that missing word
completion is more useful for datasets with longer
documents where discarding individual words will
not have a major effect on each document.

3.1 Data

The Rotten Tomato Movie Review (RTMR)1

(Pang and Lee, 2005) dataset consists of 5331 pos-
itive and 5331 negative review snippets. The task
is to predict review sentiment. The dataset is ran-
domly split into 90% for the training and valida-
tion sets and 10% for test set (Dai and Le, 2015).

The AG News2 (Zhang et al., 2015) dataset con-
sists of 120,000 training and 7,600 testing docu-
ments. The task is to classify the documents into
one of four topics. Following (Wang and Tian,
2016), we took 18,275 documents from the train-
ing set as validation data.

The Twitter dataset consists of 5,964 tweets.
The task is to predict one of the 71 hashtag labels.
We collected 300,000 tweets using the Twitter
API. We removed all retweets, URLs, uncommon
symbols, and emojis. We lowercased all the char-
acters in the tweets. We kept the tweets with the 71
most popular English hashtags, and removed the
hashtags from the tweets. We used an 80/10/10
split of the remaining data. Although Twitter’s
Developer Policy prevents us from releasing the
dataset, the entire data collection pipeline will be
made available upon publication.

4 Rotten Tomatoes

4.1 Training Details

The primary task for the Rotten Tomatoes dataset
is sentiment analysis. We used word genera-
tion as the automated task. The input is a 300-
dimensional word2vec vector for each word. The
primary task output consists of two softmax units,
representing a positive or negative review. The au-
tomated task output is next word prediction of the
word2vec representation, and hence is a 300 unit
tanh layer. For LSTM we use a learning rate of

1
cs.cornell.edu/people/pabo/movie-review-data/

2
di.unipi.it/gulli/AG corpus of news articles.html

0.0001. For the MTL models, we need to tune
the learning rate hyper-parameter of the automated
task. Instead of tuning the primary and automated
task hyper-parameters separately, we found an al-
ternative method for tuning the learning rates us-
ing the following equation where lractual is the only
learning rate hyper-parameter. lractual is optimized
on the validation set.

lrprim(epoch) = epoch ∗ (
lractual

total Epochs
)

lrauto(epoch) = lractual − lrprim(epoch)
(1)

We apply this type of learning rate modulation in
order to simulate network pre-training on the au-
tomated task in the earlier epochs, learn shared
representations in the intermediate epochs through
multi-task learning, and train more exclusively on
the primary task during the later epochs. We used
an lractual of 0.01.

The MTL and LSTM models both use word-
level word2vec representations trained on Google
News (Le and Mikolov, 2014). The primary sen-
timent analysis task is trained using Adam opti-
mizer (Kingma and Ba, 2014) on cross-entropy
loss while the automated word generation task is
trained using mean-squared error. We continue to
use Adam optimizer in the rest of our experiments.

4.2 Results
We compare our experimental results with (1) SA-
LSTM (Dai and Le, 2015), an LSTM initialized
with a sequence auto-encoder, and (2) the adver-
sarial model (Miyato et al., 2016), an LSTM-based
text classification model with perturbed embed-
dings. We choose these two models because they
are both LSTM-based and are thus comparable to
our models. Non-LSTM models, such as convolu-
tional neural networks, have been able to achieve
higher accuracy on sentiment analysis with the
Rotten Tomatoes dataset (Kim, 2014). All of our
networks beat the variant of the SA-LSTM that
does not use outside data for pre-training. How-
ever, the adversarial (Miyato et al., 2016) and SA-
LSTM (Dai and Le, 2015) models, using external
unlabeled datasets, outperform our MTL models.
With the MRNN, we achieve a 1.5% gain in ac-
curacy over SA-LSTM, and 1% over the vanilla
LSTM network. With the CRNN, we achieve sim-
ilar results compared to the vanilla LSTM net-
work. We hypothesize that the reason the CRNN
under-performs the MRNN is due to the lack of
a clear hierarchy between sentiment analysis and
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Dataset Model Accuracy
RTMR SA-LSTM (2015) 79.7%
RTMR SA-LSTM (2015)* 83.3%
RTMR Adversarial (2016)* 83.4%
RTMR LSTM 80.2%
RTMR CRNN 80.1%
RTMR MRNN 81.2%
AGNews SC-LSTM-I (2016) 92.05%
AGNews LSTM 91.59%
AGNews CRNN 92.19%
AGNews MRNN 91.93%
Twitter LSTM 57.8%
Twitter CRNN 61.4%
Twitter MRNN 62.0%

Table 2: Experimental results. (*trained on exter-
nal unlabeled dataset)

word generation. We suspect that sentiment anal-
ysis is primarily keyword based and cannot fully
take advantage of the automated language model
task. Additionally, we found that the MTL mod-
els can be trained with much higher learning rates
than a standard LSTM, allowing for convergence
in many fewer epochs. The MRNN model con-
verged within the first 10 epochs, whereas the
LSTM model required approximately 30 epochs
to converge.

5 AG News

5.1 Training Details

For the AG News experiment, the primary task
is topic prediction and the automated task is
word generation. The input to the model is the
300-dimensional word2vec representations of the
words from the documents. The primary task out-
put uses a softmax layer with 4 units. The auto-
mated task output is represented by a tanh layer
with 300 units. The learning rate for the LSTM is
0.001. For the MRNN, the learning rates undergo
the same linear function as in the Rotten Tomatoes
experiment where lractual is 0.01.

5.2 Results

For AG News dataset, we compare our experiment
result with skip-connected LSTM (Wang and Tian,
2016), the previous state-of-the-art model on this
dataset. The CRNN outperforms state-of-the-art
by 0.14% and MRNN by 0.26%. We believe the
CRNN beats the MRNN due to a hierarchical rela-
tionship between topic prediction and word gener-
ation. We suspect that topic prediction, which re-
lies on a holistic understanding of a document, can
effectively take advantage of the language model.

6 Twitter

We ran an experiment showing that our models can
perform well in challenging environments with lit-
tle data. We used a small dataset of 5,964 tweets.
We performed regression on the word2vec repre-
sentation of the hashtag given the tweet. We chose
regression over classification of one-hot targets
because our chosen hashtags are inherently non-
orthogonal and can benefit from semantic repre-
sentations in vector space. We trained three mod-
els: an LSTM model, the MRNN, and the CRNN.

6.1 Training Details
For the Twitter experiment, the primary task is
hashtag recommendation and the automated task
is character prediction. We use character predic-
tion as the automated task due to the large amount
of misspellings and colloquialisms in tweets.

The input to the model is the 66-dimensional
one-hot encoding of the characters corresponding
to the ASCII characters that we kept during pre-
processing. The primary task output is a tanh layer
with 300 units. The automated task output uses a
softmax layer with 66 units. For all the models we
chose a fixed learning rate of 0.001 based on our
observation that different learning rates have little
effect on the relative trend between the models on
this particular task. A constant, equal learning rate
allows us to compare the accuracy curves of each
network against epochs run.

Since several of the hashtags are very similar
to each other (i.e. #Capricorn and #Scorpio), we
marked a prediction as correct if the predicted se-
mantic vector’s top 5% (top 4) closest cosine dis-
tance words contained the target hashtag.

6.2 Results
With the MRNN, we achieve a 4.2% gain in accu-
racy over the LSTM in the Twitter dataset. With
the CRNN, we achieve a 3.6% gain in accuracy.
Additionally, we have shown in Figure 2 that both
the MRNN and CRNN models converge faster
than the LSTM model; both MTL models take ap-
proximately half of the number of epochs to reach
50% accuracy using the same constant learning
rate.

7 Conclusion

In this paper, we showed that automated multi-
task learning models can consistently outperform
the LSTM in sentiment analysis, topic prediction,
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Figure 2: Hashtag prediction in Twitter.

and hashtag recommendation. Note that the con-
cept of automated tasks can be extended to non-
NLP sequence tasks such as image categorization
with next row prediction as the automated task.
Because automated MTL can be integrated into
an existing network by adding a new branch to a
pre-existing graph, we can substitute bidirectional
LSTMs (Schuster and Paliwal, 1997), GRUs (Gul-
cehre et al., 2014), and vanilla RNNs for LSTMs
in our MTL models. We will experiment on these
variations in the future.
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Abstract

In Multilabel Learning (MLL) each train-
ing instance is associated with a set of
labels and the task is to learn a func-
tion that maps an unseen instance to its
corresponding label set. In this paper,
we present a suite of—MLL algorithm
independent—post-processing techniques
that utilize the conditional and directional
label-dependences in order to make the
predictions from any MLL approach more
coherent and precise. We solve a con-
straint optimization problem over the out-
put produced by any MLL approach and
the result is a refined version of the input
predicted label set. Using proposed tech-
niques, we show absolute improvement of
3% on English News and 10% on Chinese
E-commerce datasets for P@K metric.

1 Introduction

The Multiclass Classification problem deals with
learning a function that maps an instance to its one
(and only one) label from a set of possible labels
while in MLL each training instance is associated
with a set of labels and the task is to learn a func-
tion that maps an (unseen) instance to its corre-
sponding label set. Recently, MLL has received
a lot of attention because of modern applications
where it is natural that instances are associated
with more than one class simultaneously. For in-
stance, MLL can be used to map news items to
their corresponding topics in Yahoo News, blog
posts to user generated tags in Tumblr, images to
category tags in Flickr, movies to genres in Net-
flix, and in many other web-scale problems. Since
all of the above mentioned applications are user-
facing, a fast and precise mechanism for automati-
cally labeling the instances with their multiple rel-

evant tags is critical. This has resulted in the de-
velopment of many large-scale MLL algorithms.

The most straightforward approach for MLL is
Binary Relevance that treats each label as an in-
dependent binary classification task. This quickly
becomes infeasible if either the feature dimension
is large or the number of labels is huge or both.
Modern approaches either reduce the label dimen-
sion, e.g., PLST, CPLST (Chen and Lin, 2012),
Bayesian CS (Kapoor et al., 2012), LEML (Yu
et al., 2014), RIPML (Soni and Mehdad, 2017),
SLEEC (Bhatia et al., 2015), or feature dimension
or both (such as WSABIE and DocTag2Vec (Chen
et al., 2017)). The inference stage for all of these
approaches produce a score for each potential la-
bel and then a set of top-scored labels is given as
the prediction.

A potential problem with the above mentioned
algorithms is that they lack the knowledge of cor-
relation or dependency between the labels. Let us
look at a toy example: our training data is such that
whenever the label mountain is active then the la-
bel tree is also active. Therefore MLL algorithm
should take advantage of this correlation embed-
ded in the training data to always infer the label
tree when mountain is one of the label. On the
other hand, if tree is an active label then mountain
may not be a label. Exploiting this directional and
conditional dependency between the labels should
allow us to predict a more coherent set of labels.
It would—to some extend—also save the MLL al-
gorithm from making wrong predictions since if
some wrong labels (say we predict a wrong la-
bel politics) are predicted along with correct la-
bels (when true labels are tree and mountain) then
the overall set of predicted labels would not be co-
herent. Inclusion of this external knowledge about
labels shows significant improvements when there
is a lack of training data for some labels.

There have been many attempts (Dembszynski
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et al., 2010) of using label-hierarchies or label-
correlation information as part of the MLL train-
ing process. For instance, the label-correlation in
training data is used in (Tsoumakas et al., 2009);
(Guo and Gu, 2011) uses conditional dependen-
cies among labels via graphical models. Some of
the other relevant works that use this information
as part of the training are (Huang and Zhou, 2012;
Kong et al., 2013; Younes et al., 2008) and refer-
ences therein. Since these approaches use label de-
pendency information as part of the training stage,
we foresee following issues:

• Using pre-trained model: In some cases we
want to use a pre-trained MLL model that
did not use the label-dependency information
during training and retraining a new model is
not an option. The use of pre-trained models
has become very common since not everyone
has the hardware capability to train complex
models using large amounts of data.

• Label-dependency information not available
during training or else one may want to use
updated or new label-dependency informa-
tion after the model is trained.

• Expensive training and inference: Almost all
algorithms that utilize the label-dependence
as side-information are either expensive dur-
ing training, or inference, or both.

In this paper, we present a suite of post-
processing techniques that utilize the conditional
and directional label-dependences in order to
make the predictions from any MLL approach
more coherent and precise. It is to be noted that
the proposed techniques are algorithm indepen-
dent and can even be applied over the predictions
produced by approaches that use this or any other
label-dependency information as part of the train-
ing. Our techniques involve solving simple con-
straint optimization problems over the outputs pro-
duced by any MLL approach and the result is a re-
fined version of the input prediction by removing
spurious labels and reordering the labels by utiliz-
ing the additional label-dependency side informa-
tion. We show benefits of our approach on Chinese
e-commerce and English news datasets.

2 Problem Description and Approaches

MLL is the problem of learning a function
f : I → 2L that maps an instance in I to one of

the sets in the power set 2L where L is the set of
all possible labels. For a specific instance, MLL
predicts a subset S ⊂ L. Our goal is to learn a
subset L ⊂ S such that L is a refined version of S.

Given a set of constraints on input labels, one
can define an objective function that would poten-
tially minimize inconsistencies between the final
set of labels. Intuitively, labels may be interde-
pendent, thus certain subsets are more coherent
than the others. Label dependency can manifest
either through human-curated label taxonomy or
conditional probabilities. We propose two post-
processing techniques in this paper to improve
predicted outputs of any MLL algorithm. In the
following subsections, we present details of each
technique.

2.1 Steiner Tree Approximation

We formulate label coherence problem as a Steiner
Tree Approximation problem (Gilbert and Pollak,
1968). Consider the following: input is a set of
predicted labels S = R ∪ O, where R is a set
of coherent (required) labels and O is a set of in-
coherent (optional) labels. Labels are connected
by directed weighted edges, thus form a graph G.
The goal is to find a tree T = (L,E,W ) where L
is a set of labels R ⊂ L ⊂ S that includes all of
the coherent labels and may include some of the
optional labels O, E is the set of directed edges
connecting nodes in L and W is set of weights as-
signed to the edges. For faster and approximate so-
lutions, one can reduce Steiner tree problem to di-
rected minimum spanning tree (MST) (Mehlhorn,
1988) and can be solved using Edmond’s algo-
rithm (Edmonds, 1967). MST has been applied in
several previous works on document summariza-
tion (Varadarajan and Hristidis, 2006), text detec-
tion in natural images (Pan et al., 2011), and de-
pendency parsing (McDonald et al., 2005). In this
work, we first construct a directed graph of labels
and then apply MST to obtain a tree of coherent
labels. On applying MST, we choose vertices with
top-K edge weights. Our goal is to find a tree that
minimizes the following objective function:

costd(T ) :=
∑

(u,v)∈E

d(u, v),

where u and v are nodes, d(u, v) = 1 −W (u, v).
The edge weights W are determined by the con-
ditional probabilities of co-occurrence of labels.
Directionality of the edges are determined by the
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following criterion:{
Li → Lj , Pr(Li|Lj) ≤ Pr(Li|Lj)
Li ← Lj , otherwise,

where Pr(Li|Lj) is the probability that label Li is
active given label Lj is active.

Once the directed graph is constructed based on
above criterion, Edmond’s algorithm recursively
eliminates edges between a root node and one of
the other nodes with minimum edge weights. In
case of cycles, the edges are eliminated randomly.
In essence, this algorithm selects highest-value
connected-component in the directed graph. Thus,
we are left with coherent labels.

2.2 0-1 Knapsack
Assigning labels to an instance with a budget can
be considered as a resource allocation problem.
0-1 Knapsack is a popular resource allocation
problem where capacity of the knapsack is limited
and it can be filled with only a few valuable items.
Items are added to the knapsack by maximizing
the overall value of the knapsack subject to the
combined weight of the items under budget. Many
previous works in NLP have used Knapsack for-
mulation, particularly in summarization (Lin and
Bilmes, 2010; Ji et al., 2013; Hirao et al., 2013;
McDonald, 2007). We formulate label assignment
problem as a resource allocation problem, where
we maximize total value of assigned labels. We
determine individual value of a label based on the
log likelihood of the label and its dependent labels.
Intuitively, a label is included in the knapsack only
when its dependent labels increase the overall log-
likelihood.

maximize
∑
k∈S

∑
i∈Dk

log(Pr(Lk|Li))

s.t.
∑
k∈S

|Dk| ≤ C,

where Dk ⊂ S − Lk is a subset of input labels
S that are conditionally dependent on label Lk i.e.
Pr(Lk|Li) > 0 for i ∈ Dk. To include a label Lk

in the knapsack (i.e., in L), we optimize the total
sum of the log conditional probabilities of labels
Lk under the constraint that the total number of
dependent labels are within the budget C—total
number of permissible labels. The problem can
be understood as a maximization of values of as-
signed labels. This problem is solved using a dy-
namic programming algorithm that runs in poly-
nomial time (Andonov et al., 2000).

3 Experiments

The goal of this section is to emphasize on
the fact that our post-processing techniques are
MLL algorithm independent. For that we apply
our approaches over the predictions from mul-
tiple MLL algorithms for two datasets: Yahoo
News dataset in English and Chinese E-commerce
dataset. Since MLL is generally used in applica-
tions where precision of predictions are important,
we use Precision@K for K = 1, 2 and 3 as our
metric.

3.1 Datasets

• Yahoo News MLL Dataset (English)1: This
is one of the few publicly available large
scale datasets for MLL. It contains 38968 Ya-
hoo News articles in English for training and
10000 for testing. These are manually la-
beled with their corresponding category la-
bels; overall, there are 413 possible labels.

• Chinese E-commerce MLL dataset: This
is a propriety dataset that contains product
descriptions of 230364 e-commerce products
in Chinese for training and 49689 for testing.
Each product is tagged with labels about the
product categories; overall there are 240 tags.

3.2 MLL Approaches

Since our post-processing techniques are MLL al-
gorithm independent, we picked three MLL ap-
proaches to apply our post-processing techniques:
Naive Bayes, CNN, and DocTag2Vec. From
our perspective, we can treat these approaches as
black-box that for a given instance generate the set
of predicted labels S ⊂ L.

• Naive Bayes (NB) MLL: Given a sequence
of words, the probability of a tag is evaluated
by multiplying the prior probability of the tag
and the probabilities of observing the words
given the tag, pre-computed from the training
data.

• CNN MLL (Kim, 2014): Originally de-
signed for text classification tasks, the model
views sequence of word embeddings as a ma-
trix and applies two sequential operations:
convolution and max-pooling. First, features

1available publicly via Webscope:
https://webscope.sandbox.yahoo.com/catalog.php?
datatype=l&did=84
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Dataset MLL Approach P@K Default
Highest Priors

Baseline-1
Greedy

Baseline-2 MST Knapsack

Yahoo News DocTag2Vec
1 0.6821 0.6277 0.5927 0.6942 0.6976 (+1.5%)
2 0.6461 0.6132 0.5836 0.6689 (+2.2%) 0.6568
3 0.6218 0.6052 0.5750 0.6485 (+2.6%) 0.6203

Chinese Ecom DocTag2Vec
1 0.5309 0.5718 (+4.0%) 0.5563 0.5510 0.5331
2 0.5454 0.5748 (+2.9%) 0.5664 0.5716 0.5442
3 0.4813 0.4928 0.5802 0.5820 (+10%) 0.4884

Chinese Ecom CNN
1 0.8554 0.7658 0.6898 0.8483 0.8479
2 0.7387 0.7164 0.6545 0.7814 (+4.2%) 0.7450
3 0.6095 0.5921 0.6646 0.7249 (+11.5%) 0.6287

Chinese Ecom NB
1 0.8752 0.8526 0.7545 0.8982 0.9057 (+3.0%)
2 0.8481 0.8167 0.6738 0.8456 0.8538 (+0.5%)
3 0.7913 0.7519 0.7129 0.8101 (+1.8%) 0.7385

Table 1: P@K for various values of K for the two datasets considered and for different MLL algorithms.
Here default means not using a coherence stage. In brackets are shown the improvements in precision
over default by the best performing coherence approach.

are extracted by a convolution layer with sev-
eral filters of different window size. Then
the model applies a max-over-time pooling
operation over the extracted features. The
features are then passed through a fully con-
nected layer with dropout and sigmoid acti-
vations where each output node indicates the
probability of a tag.

ail

• DocTag2Vec (Chen et al., 2017): Re-
cently proposed DocTag2Vec embeds in-
stances (documents in this case), tags, and
words simultaneously into a low-dimensional
space such that the documents and the tags
associated with them are embedded close to
each other. Inference is done via a SGD step
to embed a new document, followed by k-
nearest neighbors to find the closed tags in
the space.

3.3 Post-Processing Techniques
• Highest Priors (Baseline-1): Given the train-

ing data, compute the prior probabilities of
each label and re-rank labels in S according
to the decreasing order of these prior proba-
bilities to produce the new set L.

• Greedy (Baseline-2): Given the pairwise
conditional probabilities among the output la-
bels, select most probable pairs above certain
threshold τ ; we experimented with values in
range [0.01, 0.1] and used τ = 0.06 in
the final experiments.

• MST: Steiner Tree Approximation via MST.
The edge weights are computed via the con-
ditional co-occurrence of the labels in the
training data and the directionality is en-
forced via the criterion described in Section
2.1.

• 0-1 Knapsack: We set C = 15 and solve
the optimization problem described in Sec-
tion 2.2.

3.4 Results

The P@K values are shown in Table 1 for the two
datasets and for various coherency algorithms ap-
plied over multiple MLL approaches. The two
baselines—highest priors and greedy—work rea-
sonably well but the best performing approaches
are MST and Knapsack. For most of the cases
MST works well and even in the scenarios where
Knapsack beats MST, they both are close in per-
formance. By using a post-processing step for co-
herency we generally see a lift of around 2 − 4%
in most of the cases and sometimes a lift of more
than 10% is observed. We note that one can de-
sign the problem with more deeper conditions i.e.,
P (L1|L2, L3 . . . Lk) but only single label depen-
dency has been used in our experiments. With
deeper dependencies, more training data is re-
quired to reliably learn prior probabilities. Also
as the number of labels increase, the number of
conditionals increases, thus the inference becomes
computationally expensive.
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Table 2: Example tags for various Yahoo News articles. Tags highlighted in red did not appear in
true labels. Superscripts on the tags denote following D: Output from DocTag2Vec system (Default in
Table 1), Knap: Output from Knapsack, MST: Output from Steiner Tree Approximation. Tags without
superscript were not predicted at inference.

Doc 1
telecommunicationD,MST,company-legal-&-law-mattersD,Knap,MST, mergers,-acquisitions-&-takeovers

laws-and-regulations,entertainmentD, handheld-&-connected-devicesD,MST

Doc 2
fashionD,MST,clothes-&-apparel,hollywoodD,MST

celebrityD,MST,Knap,entertainmentD,MST,Knap,musicD,MST,contests-&-giveawaysD

Doc 3
handheld-&-connected-devicesD,MST,Knap,telecommunicationD,MST,Knap,money

investment-&-company-information,investment,sectors-&-industriesD,internet-&-networking-technologyD

Doc 4 autosD,MST,Knap,strikes,financial-technical-analysis,company-earningsD,Knap

Doc 5
public-transportationD,MST,Knap,travel-and-transportationD,MST,Knap

celebrity,musicD,MST,Knap,transport-accidentD,MST,Knap,entertainmentD

Doc 6 family-healthD,MST,Knap,mental-healthD,MST,biology,pregnancyD,parentingD,MST,Knap,tests-&-proceduresD

Doc 7
laws-and-regulationsD,MST,Knap,company-legal-&-law-mattersD,MST,Knap,

money,investment-&-company-information,investment,lighting-&-accessoriesD

4 Discussion and Conclusion

Table 2 illustrates MLL output of sample docu-
ments from Yahoo News corpus. We observed
Knapsack algorithm is more conservative at sub-
set selection compared to MST. Tags predicted by
Default system include tags that are related to true
tags but do not appear in the true tag subset e.g., in
Doc 1 handheld-&-connected-devices is related
to telecommunications, similarly Doc 2 and Doc
5 has one related tag and one spurious tag — in
both cases MST and KNAPSACK prune the spu-
rious tags. In Doc 2 music is related/coherent
and contest-&-giveaways is spurious/incoherent.
In Doc 5 transport-accident is related/coherent
and entertainment is a spurious tag.

In this paper we presented two post-processing
techniques to improve precision of any MLL algo-
rithm. In addition to experiments discussed in the
paper, we conducted experiments with other com-
binatorial optimization algorithms as used in pre-
vious works viz., facility location (p-median) (Al-
guliev et al., 2011; Ma and Wan, 2010; Cheung
et al., 2009; Andrews and Ramakrishnan, 2008)
and other graph-based centrality methods (Wolf
and Gibson, 2004; Li et al., 2006; Guinaudeau and
Strube, 2013). However, we did not observe sig-
nificant improvement over default (unprocessed)
output. While many approaches exist that utilize
the label-correlation and dependency information
during training, to the best of our knowledge, this
is the first work that uses this knowledge as part of
a post-processing step that is independent of MLL
algorithms.
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Abstract

Non-contiguous word sequences are
widely known to be important in mod-
elling natural language. However they are
not explicitly encoded in common text
representations. In this work we propose
a model for text processing using string
kernels, capable of flexibly representing
non-contiguous sequences. Specifically,
we derive a vectorised version of the
string kernel algorithm and their gradi-
ents, allowing efficient hyperparameter
optimisation as part of a Gaussian Process
framework. Experiments on synthetic data
and text regression for emotion analysis
show the promise of this technique.

1 Introduction

Text representations are a key component in any
Natural Language Processing (NLP) task. A com-
mon approach for this is to average word vectors
over a piece of text. For instance, a bag-of-words
(BOW) model uses one-hot encoding as vectors
and it is still a strong baseline for many tasks.
More recently, approaches based on dense word
representations (Turian et al., 2010; Mikolov et al.,
2013) also showed to perform well.

However, averaging vectors discards any word
order information from the original text, which
can be fundamental for more involved NLP prob-
lems. Convolutional and recurrent neural net-
works (CNNs/RNNs) can keep word order but still
treat a text fragment as a contiguous sequence of
words, encoding a bias towards short- over long-
distance relations between words. Some RNN
models like the celebrated LSTMs (Hochreiter

∗This work was partially done while the first author was
at The University of Sheffield, United Kingdom.

and Schmidhuber, 1997) perform better in cap-
turing these phenomena but still have limitations.
Recent work (Tai et al., 2015; Eriguchi et al.,
2016) showed evidence that LSTM-based mod-
els can be enhanced by adding syntactic infor-
mation, which can encode relations between non-
contiguous words. This line of work requires the
employment of accurate syntactic parsers, restrict-
ing their applicability to specific languages and/or
text domains.

In this work we propose to revisit an approach
which goes beyond contiguous word representa-
tions: string kernels (SKs). Their main power
comes from the ability to represent arbitrary non-
contiguous word sequences through dynamic pro-
gramming algorithms. Our main contribution is a
model that combines SKs with Gaussian Processes
(GPs) (Rasmussen and Williams, 2006), allowing
us to leverage efficient gradient-based methods to
learn kernel hyperparameters. The reasoning be-
hind our approach is that by optimising hyperpa-
rameters in a fine-grained way we can guide the
kernel to learn better task-specific text representa-
tions automatically.

To enable the learning procedure we redefine
the SK algorithm in a vectorised form and derive
its gradients. We perform experiments using syn-
thetic data, giving evidence that the model can
capture non-trivial representations. Finally, we
also show how the approach fares in a real dataset
and explain how the learned hyperparameters can
be interpreted as text representations.

2 String Kernels

Here we give a brief intuition1 on string kernels,
based on the formulation proposed by Cancedda

1We give a thorough explanation of the original SK equa-
tions in the Supplementary Material, as well as a detailed
derivation of our vectorised version with its hyperparameter
gradients.
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et al. (2003). Let |s| be the length of a string s,
sj the j−th symbol in s and s:−1 the prefix con-
taining the full string s except for the last symbol.
Define sim(a, b) as a similarity measure between
individual symbols a and b. Given two strings s
and t and a maximum n-gram length n, the string
kernel k(s, t) can be obtained using the recursion

k′0(s, t) = 1, for all s, t,

for all i = 1, . . . , n− 1 :
k′i(sa, t) = λgk

′
i(s, t) + k′′i (sa, t),

k′′i (sa, tb) = λgk
′′
i (sa, t) + λ2

msim(a, b)k′i−1(s, t),
kn(sa, t) = kn(s, t)+

λ2
m

|t|∑
j

sim(a, tj)k′n−1(s, t:−1),

k(s, t) =
n∑

i=1

µiki(s, t),

where λg and λm are decay hyperparameters for
symbol gaps and matches, respectively, and µi is
the weight for the kernel of n-gram order i. The
decay hyperparameters smooth the kernel values
when sequences are very similar to each other
while the n-gram weights help to tune the signal
coming from different subsequence lengths.

Our goal is optimise the kernel hyperparame-
ters in a fine-grained way using gradient-based
methods. For this, we first redefine the kernel in
a vectorised form. This not only eases gradient
derivations but also allow our implementation to
capitalise on recent advances in parallel process-
ing and linear algebra libraries for better perfor-
mance.2 Given two strings s and t, the equations
for our vectorised version are defined as

S = EsET
t ,

K′0 = 1,

K′i = D|s|K′′i D|t|,

K′′i = λ2
m(S�K′i−1),

ki = λ2
m

∑
j,k

(S�K′i)j,k,

k(s, t) = µTk,

where Es and Et are matrices of symbol embed-
dings for each string, � is the Hadamard product

2Our open-source implementation is based on TensorFlow
(Abadi et al., 2015).

and D` ∈ R` × R` is the matrix

D` =


0 λ0

g λ1
g . . . λ

|`|−2
g

0 0 λ0
g . . . λ

|`|−3
g

...
...

...
. . .

...
0 0 0 . . . λ0

g

0 0 0 . . . 0


with ` ∈ {|s|, |t|} being the corresponding string
length for s or t. The purpose of D is to unroll
the recursion from the original kernel equations.
For the matrices E, we focus on dense word em-
beddings but they could also be one-hot vectors,
simulating hard matching between symbols.

Given this formulation, the hyperparameter gra-
dients can be easily derived. From the vectorised
definition, we can see that gradients with respect
to µ are simply k, the intermediate n-gram spe-
cific kernel values. For λg and λm the gradients
simply follow the kernel equations in an analo-
gous manner. Note that the gradient calculations
do not affect the time or space complexity of the
main kernel, and in practice they can be obtained
together using a single algorithm since they share
many common terms.

Finally, we incorporate the kernel into a Gaus-
sian Process regression model (henceforth, GP-
SK). We assume the label y for an input string s
is sampled from a function f(s) ∼ GP(0, k(s, t)),
with t iterating over all other strings in a dataset.
With this, we can define the marginal likelihood as

log p(y|s,θ) = log
∫

f
p(y|s,θ, f)p(f),

=− yTG−1y
2

− log |G|
2

− n log 2π
2

,

where G is the Gram matrix with respect to the
training set s and θ is the set of kernel hyperpa-
rameters. By taking its derivative and plugging in
the kernel gradients, we can optimise its hyperpa-
rameters using gradient-based methods.3

2.1 Complexity and Runtime Analysis
The original string kernel algorithm has complex-
ity O(n|s||s′|), i.e., quadratic in the size of the
largest string. Our vectorised version is cubic,
O(n`3), where ` = max(|s|, |s′|), due to two ma-
trix multiplications in the equations for K′i. An-
other way of reaching this result is to realise that

3We refer the reader to Rasmussen and Williams (2006,
Chap.5) for an in-depth explanation of this procedure.
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K′′i is actually not needed anymore: all calcula-
tions can be made by updating K′i only. In fact,
Lodhi et al. (2002) introduced the term k′′ as a
way to reduce the complexity fromO(n|s||s′|2) to
O(n|s||s′|). The complexity for the gradient cal-
culations is also O(n`3).

However, even though our vectorised version
has higher complexity, in practice we see large
gains in runtime. We assess this empirically
running the following experiment with synthetic
strings:

• We employ characters as symbols with a one-
hot encoding as the embedding, using all En-
glish ASCII letters, including uppercase (52
symbols in total);

• The maximum subsequence length is set to 5;

• 100 instances are generated randomly by uni-
formly sampling a character until reaching
the desired string length.

We test our kernels with lengths ranging from 10
to 100.

Figure 1 shows wall-clock time measurements
as the string lengths increase.4 It is clear that the
vectorised version is vastly faster than the original
one, with up to two orders of magnitude. Com-
paring the CPU and GPU vectorised implemen-
tations, we see that we can reap benefits using
a GPU when dealing with long sentences. GPU
processing can be further enhanced by allowing
portions of the Gram matrix to be calculated in
batches instead of one instance at a time.

These results are intriguing because we do not
expect a quadratic complexity algorithm to be out-
performed by a cubic one. It is important to note
that while we made efforts to optimise the code,
there is no guarantee that either of our implemen-
tations is making the most of the underlying hard-
ware. We plan to investigate these matters in more
detail in the future.

3 Experiments

We assess our approach empirically with two sets
of experiments using natural language sentences
as inputs in a regression setting.5 The first one

4Experiments were done in a machine with an Intel Xeon
E5-2687W 3.10GHz as CPU and a GTX TITAN X as GPU.

5Code to replicate the experiments in this section
is available at https://github.com/beckdaniel/
ijcnlp17_sk. This also include the performance exper-
iments in Section 2.1.

Figure 1: Wall-clock time measurements for the
SK versions using different string lengths. Time is
measured in seconds and correspond to the calcu-
lation of a 100 × 100 Gram matrix with random
strings of a specific length.

uses synthetically generated response variables,
providing a controlled environment to check the
modelling capacities of our method. The second
set uses labels from an emotion analysis dataset
and serve as a proof of concept for our approach.

3.1 Synthetic Labels
Consider an ideal scenario where the data is dis-
tributed according to a GP-SK. Here we aim at an-
swering two questions: 1) whether we can retrieve
the original distribution through optimisation and
2) whether a simpler model can capture the same
distribution. The first gives us evidence on how
feasible is to learn such a model while the second
justify the choice of a SK compared to simpler al-
ternatives.

To answer these questions we employ the fol-
lowing protocol. First we define a GP-SK with the
following hyperparameter values:

λg = 0.5 λm = 0.2 σ2 = 0.1

µ1 = 1.0 µ2 = 0.5 µ3 = 0.25

where σ2 is the label GP noise. This choice of hy-
perparameter values is arbitrary: our goal is sim-
ply to check if we can retrieve these values through
optimisation. The same procedure could be ap-
plied for different values.

After defining the GP-SK model we calculate
the its corresponding Gram matrix using a set of
sentences and their respective word embeddings.
This matrix contains the covariances of a multi-
variate Gaussian distribution with mean vector 0
and we can sample from this Gaussian to create
synthetic labels. As inputs we use a random sam-
ple of sentences from the Penn Treebank (Marcus
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et al., 1993) and represent each word as a 100d
GloVe embedding (Pennington et al., 2014).6

The data sampled from the procedure above
is used to train another GP-SK with randomly
initialised hyperparameters, which are then opti-
mised. We run this procedure 20 times, using the
same inputs but sampling new labels every time.

Hyperparameter stability Figure 2 shows the
hyperparameter values retrieved after optimisa-
tion, for increasing training set sizes. The decay
hyperparameters are the most stable ones, being
retrieved with high confidence independent of the
dataset size. The original noise value is also ob-
tained but it needs more instances (1000) for that.

The n-gram coefficients are less stable com-
pared to the other hyperparameters, although
the uncertainty seems to diminish with larger
datasets. A possible explanation is the presence
of some level of overspecification, meaning that
very different coefficient values may reach similar
marginal likelihoods, which in turn corresponds to
multiple plausible explanations of the data. Solu-
tions for this include imposing bounds to the coef-
ficients or fixing them, while freely optimising the
more stable hyperparameters.

Predictive performance To evaluate if the GP-
SK models can be subsumed by simpler ones, we
assess the predictive performance on a disjoint test
set containing 200 sentences. Test labels were
sampled from the same GP-SK distribution used
to generate the training labels, simulating a setting
where all the data follows the same distribution.

Figure 3 shows results across different training
set sizes, in Pearson’s r correlation. We compare
with GP baselines trained on averaged embed-
dings, using either a linear or a Squared Exponen-
tial (SE)7 kernel. The SK model outperforms the
baselines, showing that even a non-linear model
can not capture the GP-SK distribution.

To investigate the influence of hyperparameter
optimisation, we also show results in Figure 3 for a
SK model with randomly initialised hyperparame-
ter values. Clearly, optimisation helps to improve
the model, even in the low data scenarios.

3.2 Emotion Analysis
As a first step towards working with real world
data, we employ the proposed approach in an emo-

6nlp.stanford.edu/projects/glove. We use
the version trained on Wikipedia and Gigaword.

7Also known as RBF kernel.

Figure 2: String kernel hyperparameter optimisa-
tion results. Original hyperparameter values are
shown as black lines while each box corresponds
to a specific dataset size. Red lines show the me-
dian values, while box limits correspond to the
[0.25, 0.75] quantiles.

Figure 3: Prediction results, averaged over 20
runs. “SK (rdm)” corresponds to string kernel with
random hyperparameter values and “SK (opt)”,
with optimised hyperparameters.

tion analysis setting, where the goal is to model la-
tent emotions in text. We use the “Affective Text”
dataset from the SemEval2007 shared task (Strap-
parava and Mihalcea, 2007), composed of 1,250
News headlines annotated with 6 scores, one per
emotion. Scores are in the [0−100] range and were
provided by human judges. The models, baselines
and embeddings are the same used in Section 3.1.
Instead of using a fixed split, we perform 10-fold
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NLPD ↓ MAE ↓ r ↑
SK 4.06 10.53 0.586

Linear 4.09 11.03 0.539
SE 4.03 10.09 0.611

Table 1: Emotion analysis results, averaged over
all emotions and cross-validation folds.

λg 7.36 × 10-7 λm 0.0918

µ1 12.37 µ2 33.73 µ3 154.51
µ4 2.58 µ5 8.54

Table 2: SK hyperparameter values for a single
model predicting the emotion surprise.

cross validation and average the results.
Table 1 compares the performance of GP-SK

with the baselines trained on averaged embed-
dings. Besides Pearson’s r correlation, we also
compare the models in terms of Mean Absolute
Error (MAE) and Negative Log Predictive Density
(NLPD), a metric that takes into account the full
predictive distribution into account (Quiñonero-
Candela et al., 2006). The main figure is that GP-
SK outperforms the linear baseline but lags behind
the SE one. This shows that non-linearities present
in the data can not be captured by the GP-SK
model. Since the string kernel is essentially a dot
product over exponentially-sized vectors, it is not
surprising that it is unable to capture non-linear
behaviour. This gives us evidence that developing
non-linear extensions of string kernels could be a
promising avenue for future work.

Inspecting hyperparameters Probing the hy-
perparameters can give us insights about what
kind of representation the kernel is learning. On
Table 2 we show the values for one of the models
that predict the emotion surprise. We can see that
λg has a very low value, while the µ values show
a preference for subsequences up to 3 words. This
lets us conclude that the kernel learned a text rep-
resentation close to contiguous trigrams.

4 Related Work

String kernels were originally proposed for text
classification (Lodhi et al., 2002; Cancedda et al.,
2003) while recent work apply them for native lan-
guage identification (Ionescu et al., 2014) and sen-
timent analysis (Giménez-Pérez et al., 2017), with
promising results. Hyperparameter optimisation
in these works is done via grid search and could

potentially benefit from our proposed approach.
Gaussian Processes have been recently em-

ployed in a number of NLP tasks such as emo-
tion analysis (Beck et al., 2014), detection of tem-
poral patterns in microblogs (Preoiuc-Pietro and
Cohn, 2013), rumour propagation in social media
(Lukasik et al., 2015) and translation quality esti-
mation (Cohn and Specia, 2013; Shah et al., 2013;
Beck et al., 2016). These previous works encode
text inputs as fixed-size vectors instead of working
directly on the text inputs.

Among other recent work that aim at learning
general structured kernels, the most similar to ours
is Beck et al. (2015), who use GPs to learn tree
kernels. Lei et al. (2017) unroll string kernel com-
putations and derive equivalent neural network ar-
chitectures. In contrast, our work put the learning
procedure inside a GP model, inheriting the ad-
vantages of Bayesian model selection procedures.
Nevertheless, many of their kernel ideas could be
applied to a GP setting, which we leave for future
work.

5 Conclusion

In this paper we provided the first steps in combin-
ing string kernels and Gaussian Processes for NLP
tasks, allowing us to learn the text representations
used by the kernels by optimising its hyperparam-
eters in a fine-grained way. Experiments showed
promising results in capturing text patterns that are
not modelled by simpler baselines.

For future work, we plan to extend the model
to account for non-linear representations, using
approaches such as Arc-cosine kernels (Cho and
Saul, 2009) and also applying the ideas from Lei
et al. (2017). Another important avenue to pursue
is to scale the model to larger datasets using recent
advances in Sparse GPs (Titsias, 2009; Hensman
et al., 2013). These in turn can enable richer ker-
nel parameterisations not only for strings but other
structures as well.
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James Hensman, Nicolò Fusi, and Neil D. Lawrence.
2013. Gaussian Processes for Big Data. In Pro-
ceedings of UAI, pages 282–290.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-term Memory. Neural Computation,
9(8):1735–80.

Radu Tudor Ionescu, Marius Popescu, and Aoife
Cahill. 2014. Can characters reveal your native lan-
guage? A language-independent approach to native
language identification. In Proceedings of EMNLP,
pages 1363–1373.

Tao Lei, Wengong Jin, Regina Barzilay, and Tommi
Jaakkola. 2017. Deriving Neural Architectures from
Sequence and Graph Kernels. In Proceedings of
ICML.

Huma Lodhi, Craig Saunders, John Shawe-Taylor,
Nello Cristianini, and Chris Watkins. 2002. Text
Classification using String Kernels. The Journal of
Machine Learning Research, 2:419–444.

Michal Lukasik, Trevor Cohn, and Kalina Bontcheva.
2015. Point Process Modelling of Rumour Dynam-
ics in Social Media. In Proceedings of ACL, pages
518–523.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed Repre-
sentations of Words and Phrases and their Composi-
tionality. In Proceedings of NIPS, pages 1–9.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global Vectors for
Word Representation. In Proceedings of EMNLP,
pages 1532–1543.

Daniel Preoiuc-Pietro and Trevor Cohn. 2013. A tem-
poral model of text periodicities using Gaussian Pro-
cesses. In Proceedings of EMNLP, pages 977–988.
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Abstract

Word segmentation is crucial in natu-
ral language processing tasks for unseg-
mented languages. In Japanese, many out-
of-vocabulary words appear in the pho-
netic syllabary katakana, making segmen-
tation more difficult due to the lack of
clues found in mixed script settings. In this
paper, we propose a straightforward ap-
proach based on a variant of tf-idf and ap-
ply it to the problem of word segmentation
in Japanese. Even though our method uses
only an unlabeled corpus, experimental re-
sults show that it achieves performance
comparable to existing methods that use
manually labeled corpora. Furthermore,
it improves performance of simple word
segmentation models trained on a manu-
ally labeled corpus.

1 Introduction

In languages without explicit segmentation, word
segmentation is a crucial step of natural lan-
guage processing tasks. In Japanese, this prob-
lem is less severe than in Chinese because of
the existence of three different scripts: hiragana,
katakana, and kanji, which are Chinese charac-
ters.1 However, katakana words are known to
degrade word segmentation performance because
of out-of-vocabulary (OOV) words which do not
appear manually segmented corpora (Nakazawa
et al., 2005; Kaji and Kitsuregawa, 2011). Cre-
ation of new words is common in Japanese; around

∗Part of the work was done while the first author was at
Amazon Japan.

1Hiragana and katakana are the two distinct character sets
representing the same Japanese sounds. These two character
sets are used for different purposes, with katakana typically
used for transliterations of loanwords. Kanji are typically
used for nouns.

20% of the katakana words in newspaper articles
are OOV words (Breen, 2009). For example, some
katakana compound loanwords are not transliter-
ated but rather “Japanized” (e.g., ガソリンスタ
ンド gasorinsutando “gasoline stand”, meaning
“gas station” in English) or abbreviated (e.g., ス
マートフォンケース sumātofonkēsu (“smart-
phone case”), which is abbreviated asスマホケー
ス sumahokēsu). Abbreviations may also undergo
phonetic and corresponding orthographic changes,
as in the case of スマートフォン sumātofon
(“smartphone”), which, in the abbreviated term,
shortens the long vowel ā to a, and replacesフォ
fo with ホ ho. This change is then propagated to
compound words, such as スマホケース suma-
hokēsu (“smartphone case”). Word segmentation
of compound words is important for improving
results in downstream tasks, such as information
retrieval (Braschler and Ripplinger, 2004; Alfon-
seca et al., 2008), machine translation (Koehn and
Knight, 2003), and information extraction from
microblogs (Bansal et al., 2015).

Hagiwara and Sekine (2013) incorporated an
English corpus by projecting Japanese transliter-
ations to words from an English corpus; how-
ever, loanwords that are not transliterated (such as
sumaho for “smartphone”) cannot be segmented
by the use of an English corpus alone. We inves-
tigate a more efficient use of a Japanese corpus
by incorporating a variant of the well-known tf-
idf weighting scheme (Salton and Buckley, 1988),
which we refer to as term frequency-inverse sub-
string frequency or tf-issf. The core idea of our ap-
proach2 is to assign scores based on the likelihood
that a given katakana substring is a word token,
using only statistics from an unlabeled corpus.

2Our code is available at https://www.github.com/
akkikiki/katakana segmentation.
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Our contributions are as follows:

1. We show that a word segmentation model
using tf-issf alone outperforms a previously
proposed frequency-based method and that
it produces comparable results to various
Japanese tokenizers.

2. We show that tf-issf improves the F1-score of
word segmentation models trained on manu-
ally labeled data by more than 5%.

2 Proposed Method

In this section, we describe the katakana word seg-
mentation problem and our approach to it.

2.1 Term Frequency-Inverse Substring
Frequency

Let S be a sequence of katakana characters, Y be
the set of all possible segmentations, y ∈ Y be
a possible segmentation, and yi be a substring of
y. Then, for instance, y = y1y2...yn is a possible
word segmentation of S with n segments.

We now propose a method to segment katakana
OOV words. Our approach, term frequency-
inverse substring frequency (tf-issf), is a variant
of the tf-idf weighting method, which computes a
score for each candidate segmentation. We calcu-
late the score of a katakana string yi with

tf-issf(yi) =
tf(yi)
sf(yi)

, (1)

where tf(yi) is the number of occurrences of yi

as a katakana term in a corpus and sf(yi) is the
number of unique katakana terms that have yi as
a substring. We regard consecutive katakana char-
acters as a single katakana term when computing
tf-issf.

We compute the product of tf-issf scores over a
string to score the segmentation

Score(y) =
∏
yi∈y

tf-issf(yi), (2)

and choose the optimal segmentation y∗ with

y∗ = arg max
y∈Y

Score(y|S). (3)

Intuitively, if a string appears frequently as
a word substring, we treat it as a meaning-
less sequence.3 While substrings of consecutive

3A typical example is a single character substring. How-
ever, it is possible for single-character substrings could be
word tokens.

ID Notation Feature
1 yi unigram
2 yi−1, yi bigram
3 length(yi) num. of characters in yi

Table 1: Features used for the structured percep-
tron.

katakana can, in principle, be a meaningful char-
acter n-gram, this rarely occurs, and tf-issf suc-
cessfully penalizes the score of such sequences of
characters.

Figure 1 shows an example of a word lattice
for the loan compound word “smartphone case”
with the desired segmentation path in bold. When
building a lattice, we only create a node for a sub-
string that appears as a term in the unlabeled cor-
pus and does not start with a small katakana letter4

or a prolonged sound mark “ー”, as such charac-
ters are rarely the first character in a word. Includ-
ing terms or consecutive katakana characters from
an unlabeled corpus reduces the number of OOV
words.

2.2 Structured Perceptron with tf-issf

To incorporate manually labeled data and to com-
pare with other supervised Japanese tokenizers,
we use the structured perceptron (Collins, 2002).
This model represents the score as

Score(y) = w · φ(y), (4)

where φ(y) is a feature function and w is a weight
vector. Features used in the structured perceptron
are shown in Table 1. We use the surface-level
features used by Kaji and Kitsuregawa (2011) and
decode with the Viterbi algorithm. We incorpo-
rate tf-issf into the structured perceptron as the ini-
tial feature weight for unigrams instead of initial-
izing the weight vector to 0.5 Specifically, we use
log(tf-issf(yi) + 1) for the initial weights to avoid
overemphasizing the tf-issf value (Kaji and Kit-
suregawa, 2011). In this way, we can directly ad-
just tf-issf values using a manually labeled corpus.
Unlike the approach of Xiao et al. (2002), which
uses tf-idf to resolve segmentation ambiguities in
Chinese, we regard each katakana term as one doc-
ument to compute its inverse document (substring)
frequency.

4Such letters areァ a,ィ i,ゥ u,ェ e,ォ o,ヵ ka,ヶ ke,
ッ tsu,ャ ya,ュ yu,ョ yo, andヮ wa.

5We also attempt to incorporate tf-issf as an individual
feature, but this does not improve the segmentation results.
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BOS
ス
su

スマホ
sumaho

スマホケース
sumahokēsu

マホ
maho

ケー
kē

ケース
kēsu

ス
su

EOS

Figure 1: An example lattice for a katakana word segmentation. We use the Viterbi algorithm to find the
optimal segmentation from the beginning of the string (BOS) to the end (EOS), shown by the bold edges
and nodes. Only those katakana substrings which exist in the training corpus as words are considered.
This example produces the correct segmentation,スマホ /ケース sumaho / kēsu (“smartphone case”).

3 Experiments

We now describe our experiments. We run our
proposed method under two different settings: 1)
using only an unlabeled corpus (UNLABEL), and
2) using both an unlabeled corpus and a labeled
corpus (BOTH). For the first experiment, we estab-
lish a baseline result using an approach proposed
by Nakazawa et al. (2005) and compare this with
using tf-issf alone. We conduct an experiment in
the second setting to compare with other super-
vised approaches, including Japanese tokenizers.

3.1 Dataset

We compute the tf-issf value for each katakana
substring using all of 2015 Japanese Wikipedia
as an unlabeled training corpus. This consists of
1, 937, 006 unique katakana terms.

Following Hagiwara and Sekine (2013), we
test on both the general domain and on a do-
main with more OOV words. We use the Bal-
anced Corpus of Contemporary Written Japanese
(BCCWJ) (Maekawa et al., 2014) core data with
40, 827 katakana entries as the general domain
test data. We use 3-fold cross-validation to
train a structured perceptron classifier. To test
on a more challenging domain with more OOV
words (Saito et al., 2014) and even fewer space
boundaries (Bansal et al., 2015), we also ask an
annotator to label Twitter hashtags that only use
katakana. We gather 273, 711 tweets with at least
one hashtag from September 25, 2015 to October
28, 2015 using the Twitter Streaming API.6 This
provides a total of 4, 863 unique katakana hash-
tags, of which 1, 251 are observed in BCCWJ core

6https://dev.twitter.com/streaming/overview

data. We filter out duplicate hashtags because the
Twitter Streaming API collects a set of sample
tweets that are biased compared with the overall
tweet stream (Morstatter et al., 2013). We follow
the BCCWJ annotation guidelines (Ogura et al.,
2011) to conduct the annotation.7

3.2 Baselines
We follow previous work and use a frequency-
based method as the baseline (Nakazawa et al.,
2005; Kaji and Kitsuregawa, 2011):

y∗ = arg max
y∈Y

(
∏n

i=1 tf(yi))
1
n

C
N l + α

(5)

where l is the average length of all segmented sub-
strings. Following Nakazawa et al. (2005) and
Kaji and Kitsuregawa (2011), we set the hyper-
parameters to C = 2500, N = 4, and α = 0.7.
In addition, we filter out segmentations that have
a segment starting with a small katakana letter or
a prolonged sound mark “ー ”. The key difference
between the baseline and tf-issf is that the length
of a segmented substring is considered in the base-
line method. An advantage of tf-issf over the base-
line is that hyperparameters are not required.

Unsupervised segmentation (Goldwater et al.,
2006; Mochihashi et al., 2009) can also be applied
to katakana word segmentation; however, doing so
this on a large corpus is still challenging (Chen,
2013). Our work focuses on fast and scalable
frequency-based methods.

We compare the performance of the word seg-
mentation model trained with the structured per-

7In addition, we stipulate that we always split transliter-
ated compound words according to their spaces when they
are back-transliterated to their original language.
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BCCWJ Twitter Hashtags
Method WER P R F1 WER P R F1

Frequency Baseline .174 .865 .890 .878 .576 .578 .716 .640
(UNLABEL) tf-issf .119 .913 .907 .910 .312 .758 .784 .771
Structured unigram .023 .979 .984 .982 .330 .721 .767 .743
Perceptron +bigram .023 .979 .984 .981 .316 .733 .772 .752
(BOTH) tf-issf .016 .987 .989 .988 .274 .778 .820 .798

+bigram .014 .989 .990 .989 .256 .793 .827 .810
Tokenizer MeCab+IPADic .155 .902 .865 .883 .424 .718 .624 .667

MeCab+UniDic .004* .998* .996* .997* .377 .704 .767 .734
JUMAN .105 .934 .908 .921 .282 .818 .751 .783
Kytea .010* .992* .993* .993* .254 .798 .823 .811
RakutenMA .077* .936* .953* .944* .383 .700 .752 .725

Table 2: Segmentation results for katakana words in BCCWJ and katakana Twitter hashtags. Follow-
ing Hagiwara and Sekine (2013), Kytea, MeCab with UniDic (MeCab+UniDic), and RakutenMA results
on BCCWJ are reported here for reference since these tokenizers use BCCWJ as a training corpus.

ceptron and tf-issf against that of state-of-the-
art Japanese tokenizers JUMAN 7.01 (Kurohashi
et al., 1994); MeCab 0.996 (Kudo et al., 2004)
with two different dictionaries, IPADic (Asahara
and Matsumoto, 2003) and UniDic (Den et al.,
2007); Kytea 0.4.7 (Neubig et al., 2011); and
RakutenMA (Hagiwara and Sekine, 2014).

3.3 Results

We use precision (P), recall (R), F1-score (F1),
and word error rate (WER) to evaluate the perfor-
mance of each method. The evaluation results are
shown in Table 2.8

The use of tf-issf in the UNLABEL setting
outperforms the other frequency-based method
with statistical significance under McNemar’s Test
with p < 0.01 and yields comparable perfor-
mance against supervised methods on BCCWJ.
In Table 2, we show that tf-issf outperforms the
frequency-based method proposed by Nakazawa
et al. (2005). Although tf-issf only uses the statis-
tics from Wikipedia, it achieves superior perfor-
mance to MeCab with IPADic (MeCab+IPADic)
and comparable performance to JUMAN.

The main limitation of using tf-issf alone is
that it cannot completely avoid the frequency
bias of the corpus. For instance, the most fre-
quent katakana sequence occurring in Japanese
Wikipedia isリンク linku (“link”), which is both
ambiguous—potentially referring to either “rink”
or “link”—and frequent, because it is the abbrevi-
ation for “hyperlinks”. As a result, the tf-issf score
of this string is much higher than average, which
causes the wordエナジードリンク enajīdolinku
(“energy drink”) to be segmented as エナジー /

8Because the length feature only degrades the segmenta-
tion performance, we exclude the results from the tables.

ド /リンク enajī / do / linku (“energy / d / rink”).
This problem can be ameliorated by incorporating
BCCWJ to readjust the tf-issf values.

Table 2 also shows the segmentation result for
Twitter hashtags. Here, the tf-issf values are
readjusted using the structured perceptron and the
whole of the BCCWJ core data to make a fair
comparison with other tokenizers. Incorporating
tf-issf into the structured perceptron improves the
F1-score, from .743 to .798, when combined with
unigrams. Although Kytea performs slightly bet-
ter in terms of F1-score, tf-issf combined with bi-
grams achieves slightly higher recall because of
fewer OOV words.

Table 3 shows the examples of segmentations
produced for the OOV words that are not present
in the BCCWJ training data. Tokenizers trained
on BCCWJ except for RakutenMA fail to seg-
ment スマホケース “smartphone case” because
the wordスマホ “smartphone” does not appear in
BCCWJ. Using tf-issf alone is also not sufficient
to produce correct segmentations for all examples,
and only tf-issf combined with structure percep-
tron successfully segments all examples.

4 Related Work

We now review relevant work on Japanese seg-
mentation and describe the key ways in which our
approach differs from previous ones.

Japanese word segmentation has an extensive
history, and many Japanese tokenizers have been
developed, from the rule-based tokenizer JUMAN
(Kurohashi et al., 1994) to statistical tokenizers,
MeCab (Kudo et al., 2004), Kytea (Neubig et al.,
2011), and RakutenMA (Hagiwara and Sekine,
2014). However, these Japanese tokenizers require
either manual tuning or a manually labeled corpus.
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Method “Smartphone Apps” “Ueno Daiki” “My Number”
Gold data スマホ /アプリ sumaho / apuri ウエノ /ダイキ ueno / daiki マイ /ナンバー mai / nanbā
Baseline スマホ /アプリ sumaho / apuri ウ/エ/ノ/ダ/イ/キ u/e/no/da/i/ki マイ /ナンバー mai / nanbā
tf-issf (UNLABEL) スマホ /アプリ sumaho / apuri ウエノ /ダイキ ueno / daiki マイナンバー mainanbā
tf-issf (BOTH) スマホ /アプリ sumaho / apuri ウエノ /ダイキ ueno / daiki マイ /ナンバー mai / nanbā
MeCab+IPADic スマホアプリ sumahoapuri ウエノ /ダイキ ueno / daiki マイ /ナンバー mai / nanbā
MeCab+UniDic スマホアプリ sumahoapuri ウエノ /ダイキ ueno / daiki マイ /ナンバー mai / nanbā
JUMAN スマホ /アプリ sumaho / apuri ウエノダイキ uenodaiki マイ /ナンバー mai / nanbā
Kytea スマホアプリ sumahoapuri ウエノ /ダイキ ueno / daiki マイ /ナンバー mai / nanbā
RakutenMA スマホ /アプリ sumaho / apuri ウエノ /ダイキ ueno / daiki マイナンバー mainanbā

Table 3: Examples of segmentation results for katakana words in Twitter hashtags using different seg-
mentation methods. The correct segmentations are produced by tf-issf (BOTH) on these examples, while
all others fail to achieve this.

4.1 Approaches Using Unlabeled Corpora
Closer to our own work, Koehn and Knight (2003)
and Nakazawa et al. (2005) investigate segment-
ing compound words using an unlabeled corpus.
These approaches do not achieve high precision
on katakana words (Kaji and Kitsuregawa, 2011),
however. To improve the segmentation accuracy,
Kaji and Kitsuregawa (2011) incorporate a rule-
based paraphrase feature (e.g., a middle dot “・”)
to use an unlabeled corpus as training data with-
out manual annotation. This method still requires
manual selection of the characters used as word
boundaries. Other studies use transliterations
to segment katakana words using explicit word
boundaries from the original English words (Kaji
and Kitsuregawa, 2011; Hagiwara and Sekine,
2013). However, as not all katakana words are
transliterations, it is advantageous to use a mono-
lingual corpus.

4.2 TF-IDF-based Segmentation
Some similar work has been done on Chinese.
Xiao et al. (2002) used tf-idf of context words
to resolve segmentation ambiguities of Chinese
words, but this approach assumes only two seg-
mentation forms: combined and separated. This
is adequate for two-character words in Chi-
nese, which comprise the majority of Chinese
words (Suen, 1986), but not for potentially very
long katakana words in Japanese. In contrast to
their approach, we regard each katakana term as
one document and compute the inverse document
frequency. The tf-issf approach also does not re-
quire context words since we compute the term
frequency of each katakana term in question in-
stead of the frequency of its context words. Thus,
we need not assume that the training corpus has
been automatically segmented by an existing to-

kenizer, which might include segmentation errors
involving context words.

In contrast to these approaches, we use a new
frequency-based method, inspired by tf-idf that
uses an unlabeled corpus to tackle word segmenta-
tion of character sequences of unbounded length.

5 Conclusion

In this paper, we introduce tf-issf, a simple and
powerful word segmentation method for Japanese
katakana words. We show that using tf-issf alone
outperforms the baseline frequency-based method.
Furthermore, when tf-issf is incorporated into the
structured perceptron together with simple fea-
tures on a manually labeled corpus, it achieves
comparable performance to other state-of-the-art
Japanese tokenizers, outperforming all in recall.

5.1 Future Work

While our work focuses on the peculiarities of
Japanese katakana words, tf-issf may be appli-
cable to other languages. We leave this for fu-
ture work. Further research is also necessary
to determine the extent to which tf-issf is de-
pendent on the domain of the corpora, and how
transferable these gains are across various do-
mains. Investigating the phonetic and correspond-
ing orthographic changes that occur with short-
ened Japanese katakana words and their transfer-
ence to new compounds may also lead to further
improvements in segmentation results.
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Abstract

Part-of-speech (POS) tagging and named
entity recognition (NER) are crucial steps
in natural language processing. In ad-
dition, the difficulty of word segmenta-
tion places extra burden on those who
deal with languages such as Chinese, and
pipelined systems often suffer from error
propagation. This work proposes an end-
to-end model using character-based recur-
rent neural network (RNN) to jointly ac-
complish segmentation, POS tagging and
NER of a Chinese sentence. Experi-
ments on previous word segmentation and
NER competition datasets show that a sin-
gle joint model using the proposed ar-
chitecture is comparable to those trained
specifically for each task, and outperforms
freely-available softwares. Moreover, we
provide a web-based interface for the pub-
lic to easily access this resource.

1 Introduction

Natural language processing (NLP) tasks often
rely on accurate part-of-speech (POS) labels and
named entity recognition (NER). Moreover, for
languages that do not have an obvious word
boundary such as Chinese and Japanese, segmen-
tation is another major issue. Approaches that at-
tempt to jointly resolve two of these tasks have re-
ceived much attention in recent years. For exam-
ple, Ferraro et al. (2013) proposed that joint solu-
tions usually lead to the improvement in accuracy
over pipelined systems by exploiting POS infor-
mation to assist word segmentation and avoiding
error propagation. Recent researches (Sun, 2011;
Qian and Liu, 2012; Zheng et al., 2013; Zeng et al.,
2013; Qian et al., 2015) also focus on the develop-
ment of a joint model to perform Chinese word

segmentation, POS tagging, and/or informal word
detection.

However, to the best of our knowledge, no exist-
ing system can perform word segmentation, POS
tagging, and NER simultaneously. In addition,
even though there are methods that achieved high
performances in previous competitions hosted by
the Special Interest Group on Chinese Language
Processing (SIGHAN)1, there is no off-the-shelf
NLP tools for Traditional Chinese NER but only
two systems for word segmentation and POS tag-
ging, which poses a significant obstacle for pro-
cessing text in Traditional Chinese. These prob-
lems motivate us to devise a unified model that
serves as a steppingstone for future Chinese NLP
research.

In light of the recent success in applying neu-
ral networks to NLP tasks (Sutskever et al., 2014;
Lample et al., 2016), we propose an end-to-end
model that utilizes bidirectional RNNs to jointly
perform segmentation, POS tagging, and NER in
Chinese. This work makes the following major
contributions. First, the proposed model conducts
multi-objective annotation that not only handles
word segmentation and POS tagging, but also can
recognize named entities in a sentence simultane-
ously. We also show that these tasks can be effec-
tively performed by the proposed model, achiev-
ing competitive performances to state-of-the-art
methods on word segmentation and NE recogni-
tion of previous SIGHAN shared tasks. More-
over, our system not only outperforms off-the-
shelf NLP tools, but also provides accurate NER
results. Lastly, we provide an accessible online
API2 that has been utilized by several research
groups.

1http://sighan.cs.uchicago.edu/
2Please visit http://monpa.iis.sinica.edu.

tw:9000/chunk
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Figure 1: Overview of the encoder-decoder model with attention mechanism. Character embeddings C1

to Cn of the input sentence is sequentially fed into the bidirectional LSTM, and the concatenated output
is multiplied by attention weights and sent to the decoder for predicting the tag sequence T1 to Tn. For
simplicity, multiple layers of encoder and decoder as well as dropout layers between them are omitted.

2 Methods

Figure 1 illustrates the overview of our model,
which in essence is an encoder-decoder (Sutskever
et al., 2014) with attention mechanism (Luong
et al., 2015). The input is a sequence of Chi-
nese characters that may contain named entities,
and the output is a sequence of POS tags and pos-
sibly NEs in the form of BIES tags. Our model
mainly consists of: embedding layer, recurrent en-
coder layers, attention layer, and decoder layers.
Detailed description of these layers are as follows.

Embedding Layer converts characters into em-
beddings (Mikolov et al., 2013), which are dense,
low-dimensional, and real-valued vectors. They
capture syntactic and semantic information pro-
vided by its neighboring characters. In this
work, we utilize pre-trained embeddings using
word2vec and over 1 million online news ar-
ticles. Recurrent Encoder Layers use LSTM,
or Long Short-Term Memory (Hochreiter and
Schmidhuber, 1997), cells which have been shown
to capture long-term dependencies (Greff et al.,
2017). An LSTM cell contains a “memory” cell
ct and three “gates”, i.e., input, forget, and out-
put. The input gate modulates the current input
and previous output. The forget gate tunes the
content from previous memory to the current. Fi-
nally, the output gate regulates the output from the
memory. Specifically, let xt be the input at time t,
and it, ft,ot correspond to input, forget, and out-
put gates, respectively. ct denotes the memory cell
and ht is the output. The learnable parameters in-

clude Wi,f,o,c and Ui,f,o,c. They are defined as:

it = σ(Wixt + Uiht−1)
ft = σ(Wfxt + Ufht−1)
ot = σ(Woxt + Uoht−1)
c̃t = tanh(Wcxt + Ucht−1)
ct = ft ◦ ct−1 + it ◦ c̃t

ht = ot ◦ tanh(ct)

where “◦” denotes the element-wise product of
vectors and σ represents the sigmoid function. We
employ a straightforward extension named Bidi-
rectional RNN (Graves et al., 2005), which en-
codes sequential information in both directions
(forward and backward) and concatenate the fi-
nal outputs. In this way, the output of one time
step will contain information from its left and right
neighbors. For tasks such as POS and NER where
the label of one character can be determined by
its context, bidirectional learning can be benefi-
cial. Attention Layer is proposed by Luong et al.
(2015) in an attempt to tackle the problem of find-
ing corresponding words in the source and target
languages when conducting machine translation.
It computes a weighted average of all the output
from the encoder based on the current decoded
symbol, which is why it is also named “Global At-
tention.” We consider it to be useful for the cur-
rent tasks based on the same reasoning as using
bidirectional encoding. Finally, Recurrent De-
coder Layers take the sequence of output from
the attention layer and project them onto a V -
dimensional vector where V equals the number of
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possible POS and NE tags. The loss of the model
is defined as the averaged cross-entropy between a
output sequence and true label sequence.

3 Experiments

Test corpora from five previous SIGHAN shared
tasks, which have been widely adopted for Tradi-
tional Chinese word segmentation and NER, were
used to evaluate the proposed system. Besides the
participating systems in the above shared tasks,
we also compare with existing word segmenta-
tion toolkits Jieba and CKIP (Hsieh et al., 2012).
The word segmentation datasets were taken from
SIGHAN shared tasks of years 2003–2008, and
NER dataset is from 2006. We follow the standard
train/test split of the provided data, where 10,000
sentences of the training set are used as the vali-
dation set. Details of the word segmentation and
NER datasets are shown in Table 1 and 2, respec-
tively. Three metrics are used for evaluation: pre-
cision (P), recall (R) and F1-score (F), defined by

F =
2× P ×R
P +R

For word segmentation, a token is considered to be
correct if both the left and right boundaries match
those of a word in the gold standard. For the NER
task, both the boundaries and the NE type must be
correctly identified.

Table 1: Statistics of the word segmentation
datasets (Number of words).

Year AS CityU

#Train #Test #Train #Test

2003 5.8M 12K 240K 35K
2005 5.45M 122K 1.46M 41K
2006 5.5M 91K 1.6M 220K
2008 1.5M 91K - -

Table 2: Statistics of the 2006 NER dataset (Num-
ber of words).

#Train/Test Words

Person Location Organization

36K / 8K 48K / 7K 28K / 4K

3.1 Experimental Setup

In order to obtain multi-objective labels of the
training data, we first merge datasets from the
2006 SIGHAN word segmentation and NER
shared tasks. Since rich context information is
able to benefit deep learning-based approach, we
augment the training set by collecting online news
articles3. There are three steps for annotating the
newly-created dataset. We first collect a list of
NEs from Wikipedia and use it to search for NEs
in the corpus, where longer NEs have higher pri-
orities. Then, an NER tool (Wu et al., 2006)
is utilized to label NEs. Finally, CKIP is uti-
lized to segment and label the remaining words
with POS tags. Three variants of the proposed
model are tested, labeled as RNNCU06, RNNYA,
and RNNCU06+YA. RNNCU06 is trained using
only word segmentation and NER datasets from
the 2006 City University (CU) corpus; RNNYA

is trained using only online news corpus, and
RNNCU06+YA is trained on a combination of the
above corpora.

We implemented the RNN model using
pytorch4. The maximum sentence length is set
to 80, where longer sentences were truncated and
shorter sentences were padded with zeros. The
forward and backward RNN each has a dimen-
sion of 300, identical to that of word embeddings.
There are three layers for both encoder and de-
coder. Dropout layers exist between each of the
recurrent layers. The training lasts for at most 100
epochs or when the accuracy of the validation set
starts to drop.

4 Results and Discussion

Note that since we combined external resources,
performances of the compared methods are from
the open track of the shared tasks. Table 3a
lists the results of the RNN-based models and
top-performing systems for the word segmenta-
tion subtask on the Academia Sinica (AS) dataset.
First of all, RNNs exhibit consistent capabilities in
handling data from different years and is compa-
rable to the best systems in the competition. In ad-
dition, it is not surprising that the RNNYA model
perform better than RNNCU. Nevertheless, our
method can be further improved by integrating the
CU06 corpus, demonstrated by the results from

3News articles are collected from the Yahoo News website
and contains about 3M words.

4https://github.com/pytorch/pytorch
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Table 3: Results for word segmentation on the Academia Sinica (AS) and City University (CU) datasets
from different years of SIGHAN shared tasks. Bold numbers indicate the best performance in that
column.

(a) AS dataset, open track

System F-score

2003 2005 2006 2008

Gao et al. (2005) 95.8
Yang et al. (2003) 90.4
Low et al. (2005) 95.6
Chen et al. (2005) 94.8
Zhao et al. (2006) 95.9

Jacobs and Wong (2006) 95.7
Wang et al. (2006) 95.3

Chan and Chong (2008) 95.6
Mao et al. (2008) 93.6

Jieba 83.0 80.9 81.3 81.8
CKIP 96.6 94.2 94.6 94.9

RNNCU06 88.4 86.8 87.1 87.4
RNNYA 94.4 92.8 93.0 93.3

RNNCU06+YA 94.6 93.2 93.6 93.8

(b) CU dataset, open track

System F-score

2003 2005 2006

Ma and Chen (2003) 95.6
Gao et al. (2005) 95.4
Peng et al. (2004) 94.6
Yang et al. (2003) 87.9
Low et al. (2005) 96.2
Chen et al. (2005) 94.5
Zhao et al. (2006) 97.7
Wang et al. (2006) 97.7

Jacobs and Wong (2006) 97.4

Jieba 80.3 81.2 82.4
CKIP 89.7 89.0 89.8

RNNCU06 87.6 85.8 87.8
RNNYA 88.0 87.2 88.5

RNNCU06+YA 91.5 90.1 91.7

the RNNCU06+YA model. This indicates that RNN
can easily adapt to different domains with data
augmentation, which is an outstanding feature of
end-to-end models. As for the CU dataset listed in
Table 3b, all of the RNN models show consider-
able decrease in F-score. We postulate that it may
be due to the training data, which is processed us-
ing an external tool focused on texts from a differ-
ent linguistic context. It is also reported by (Wu
et al., 2006) that segmentation criteria in AS and
CU datasets are not very consistent. However, by
fusing two corpora, the RNNCU06+YA can even
surpass the performances of CKIP. Finally, com-
parison with Jieba validates that the RNN model
can serve as a very effective toolkit for NLP re-
searchers as well as the general public.

Table 4 lists the performances of proposed mod-
els and the only system that participated in the
open track of the 2006 SIGHAN NER shared task.
We can see that RNNCU06 outperforms the model
from Yu et al. (2006), confirming RNN’s capabil-
ity on jointly learning to segment and recognize
NEs. Interestingly, RNNYA obtains a much lower
F-score for all NE types. And RNNCU06+YA

can only obtain a slightly better F-score for per-
son recognition but not the overall performance of
RNNCU06, even with the combined corpus. We

believe that boundary mismatch may be a major
contributing factor here. We also observe that
there are a large number of one-character NEs
such as abbreviated country names, which can not
be easily identified using solely character features.

Table 4: Results from the 2006 SIGHAN NER
shared task (open track). Bold numbers indicate
the best performance in that column.

System F-score

PER LOC ORG Overall

Yu et al. (2006) 80.98 86.04 68.01 80.51
RNNCU06 81.13 86.92 68.77 80.68
RNNYA 70.54 67.80 31.35 52.62

RNNCU06+YA 83.01 82.46 54.57 75.28

5 Conclusions

We propose an end-to-end model to jointly con-
duct segmentation, POS and NE labeling in Chi-
nese. Experimental results on past word segmen-
tation and NER datasets show that the proposed
model is comparable to those trained specifically
for each task, and outperforms freely-available
toolkits. Additionally, we implement a web inter-
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face for easy access. In the future, we will inte-
grate existing knowledge bases, in order to provide
a more advanced tool for the NLP community.
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Abstract

We extensively analyse the correlations
and drawbacks of conventionally em-
ployed evaluation metrics for word seg-
mentation. Unlike in standard information
retrieval, precision favours under-splitting
systems and therefore can be misleading
in word segmentation. Overall, based on
both theoretical and experimental analysis,
we propose that precision should be ex-
cluded from the standard evaluation met-
rics and that the evaluation score obtained
by using only recall is sufficient and better
correlated with the performance of word
segmentation systems.

1 Introduction

Word segmentation (WS) or tokenisation can be
viewed as correctly identifying valid boundaries
between characters (Goldwater et al., 2007). It
is the initial step for most higher level natural
language processing tasks, such as part-of-speech
tagging, syntactic analysis, information retrieval
and machine translation. Thus, correct segmen-
tation is crucial as segmentation errors propagate
to higher level tasks.

Because only correctly segmented words are
meaningful to higher level tasks, word level pre-
cision, recall and their evenly-weighted average
F1-score that are customised from information re-
trieval (IR) (Kent et al., 1955) are conventionally
used as the standard evaluation metrics for WS
(Sproat and Emerson, 2003; Qiu et al., 2015).

In this paper, we thoroughly investigate preci-
sion and recall in addition to true negative rate in
the scope of WS, with a special focus on the draw-
backs of precision. Precision and F1-score can
be misleading as an under-splitting system may
obtain higher precision despite having fewer cor-

rectly segmented words. Additionally, we conduct
word segmentation experiments to investigate the
connections between precision and recall as well
as their correlations with actual performance of
segmenters. Overall, we propose that precision
should be excluded and that using recall as the sole
evaluation metric is more adequate.

2 Evaluation Metrics for WS

2.1 Precision and Recall

By employing word-level precision and recall, the
adequacy of a word segmenter is measured via
comparing to the annotated reference. The cor-
rectly segmented words are regarded as true pos-
itives (TP). To obtain precision, TP is normalised
by the prediction positives (PP), which is equal to
total number of words returned by the system. For
recall, we divide TP by the real positives (RP), the
total number of words in the reference. The com-
plement of RP is referred to as real negatives (RN).

In the evaluation setup for standard IR tasks,
there is no entanglement between RP and RN. For
any instances ip and in in RP and RN, they can be
in the same output set I of an IR system as:

∀ip ∈ RP ,∀in ∈ RN ,∃I, {ip, in} ⊂ I

Precision and recall are thus not directly corre-
lated. For IR, system performance is well mea-
sured only if both precision and recall are used as
it is trivial to optimise with respect to either preci-
sion or recall, but difficult to improve both. This
is not the case for WS. In contrast to the situation
in IR, the characters as basic elements are fixed in
WS. We only predict the boundaries whereas the
characters can be neither added nor deleted, which
makes positives and negatives correlated.

In Table 1, the source Chinese sentence and its
English translation in the form of character strings
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Source sentences: 约翰喜欢玛丽 John likes Mary
Reference Segmentations: 约翰 /喜欢 /玛丽 John / likes / Mary

Segmenters T1 T2 S1 S2 S3
Output 约 /翰 /喜 /欢 /玛 /丽 约翰喜欢玛丽 约翰 /喜欢玛丽 约翰 /喜 /欢 /玛 /丽 约翰 /喜欢 /玛 /丽

TP 0 0 1 1 2
P 0 0 1/2 = 0.5 1/5 = 0.2 2/4 = 0.5
R 0 0 1/3 = 0.33 1/3 = 0.33 2/3 = 0.67
F 0 0 0.40 0.25 0.57

TNR 1-6/18 = 0.67 1-1/18 = 0.94 1-1/18 = 0.94 1-4/18 = 0.77 1-2/18 = 0.89
Output J/o/h/n/l/i/k/e/s/M/a/r/y John likes Mary John / likes Mary John /l/i/k/e/s/M/a/r/y John /likes /M/a/r/y

TP 0 0 1 1 2
P 0 0 1/2 = 0.5 1/10 = 0.1 2/6 = 0.33
R 0 0 1/3 = 0.33 1/3 = 0.33 2/3 = 0.67
F 0 0 0.40 0.15 0.44

TNR 1-13/88 = 0.85 1-1/88 = 0.99 1-1/88 = 0.99 1-9/88 = 0.90 1-4/88 = 0.95

Table 1: Sample sentences along with the output of two trivial segmenters (T1, T2) and three other
segmenters (S1, S2, S3). True Positives (TP), Precision (P), recall (R), F1-score (F) and true negative
rate (TNR) are calculated respectively.

are presented along with the outputs of five hand-
crafted segmenters. In WS, a TP simultaneously
rejects the associated true negatives (TN). For the
English sentence in Table 1, the positive segment
John never appears simultaneously with its asso-
ciated negatives Joh, Jo or ohn in the output. This
positively correlates precision and recall, because
if we modify a boundary that optimises recall, the
precision will also improve. In WS, 100% recall
guarantees 100% precision and it is non-trivial to
optimise one without the other.

In the most trivial case, a segmenter either pre-
dicts and returns all the possible word bound-
aries (T1, extremely over-splitting) or fails to iden-
tify any boundaries at all (T2, extremely under-
splitting). In the example, both strategies yield
zero scores for both precision and recall as both
fail to return any TP.

Despite not being completely trivial, S1 is heav-
ily under-splitting while S2 is the opposite. Both
return one correctly segmented word for the sen-
tences in both languages. Their corresponding
recalls are therefore equal as TP is normalised
by RP, which is hard-constrained by the refer-
ences. However, adopting precision as the met-
ric, S1 yields substantially higher scores as it re-
turns much fewer PP. Referring to the trivial ex-
amples as well as the fact that only TP are mean-
ingful to higher-level applications, S1 and S2 per-
form equally poorly, which is consistent with re-
call but not precision. Furthermore, a segmenter
with less TP may achieve higher precision if it is
drastically under-segmenting, as demonstrated by
the comparison between S1 and S3.

2.2 True Negative Rate
Neither recall nor precision measure how well the
system rejects the negatives. True negative rate
(TNR) is therefore proposed by Powers (2011) as
the complement. Jiang et al. (2011) show that seg-
menters measured by TNR are better correlated
than precision and recall with their actual per-
formances within IR systems. For WS, it is not
straightforward to compute TNR by directly nor-
malising the true negatives (TN) by the real nega-
tives (RN). However, it can be indirectly computed
via TP, PP, RP and the total number of possible
output TW given a sentence. Regarding the input
characters as a string, TW is equal to the number
of substrings as (1+N)N

2 , where N is the number of
the characters. RN can then be computed by sub-
tracting RP, the number of words in reference. The
false negatives (FN) generated by the segmenter
can be obtained by subtracting TP from PP, total
number of words return by the segmenter. To put
everything together:

TNR =
TN
RN

= 1− FN
RN

= 1− PP −TP
TW − RP

(1)

When PP equals TP, we will have a TNR of 1,
indicating that a WS system correctly rejects all
TN if and only if all the PP are TP. Since TW
is bounded by the input sentence length and RP
is bounded by the reference, TNR is negatively
correlated to PP as longer segmented word elim-
inates more TN and generates less FN in gen-
eral. As shown in Table 1, TNR heavily favours
under-splitting systems. T2 obtains the highest
TNR in the table despite being trivial. S1 also ob-
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tains higher scores than S3, despite having lower
TP. Overall, TNR is very insensitive and not al-
ways well-correlated to actual performances of
segmenters.

2.3 Boundary-Based Evaluation

Instead of directly evaluating the performance in
terms of TP at word-level, an alternative is to use
boundary-based evaluation (Palmer and Burger,
1997). The drawback is that incorrectly seg-
mented words that are not interesting to higher-
level applications still contribute to the scores as
long as one of the two associated boundaries is
correctly detected.

3 Experiments

To further investigate the correlations and draw-
backs of the metrics discussed in the previous
section experimentally, we employ a neural-based
word segmenter to see how they measure the seg-
mentation performance in a real scenario. The seg-
menter is a simplified version of the joint segmen-
tation and POS tagger introduced in Shao et al.
(2017). It is fully character-based. The vector
representations of input characters are passed to
the prevalent bidirectional recurrent neural net-
work equipped with gated recurrent unit (GRU)
(Cho et al., 2014) as the basic cell. A time-wise
softmax layer is added as the inference for the
recurrent layers to obtain probability distribution
of binary tags that indicate the boundaries of the
words. Cross-entropy with respect to time step
is applied as the loss function. We train the seg-
menter for 30 epochs and pick the weights of the
best epoch that minimises the loss on the develop-
ment set.

The Chinese and English sections of Universal
Dependencies v2.0 are employed as the experi-
mental data sets. We follow the conventional splits
of the data sets. For Chinese, the concatenated tri-
gram model in Shao et al. (2017) is applied. Table
2 shows the experimental results on the test sets
in terms of different metrics using the standard
argmax function to obtain the final output. The
segmenter is relatively under-splitting for Chinese
as it yields higher recall than precision, which is
opposite to English. The segmenter nonetheless
achieves state-of-the-art performance on both lan-
guages.1

1http://universaldependencies.org/conll17/results-
words.html

P R F TNR
Chinese 92.85 93.46 93.16 99.81
English 99.33 99.09 99.21 99.99

Table 2: Evaluation scores on the test sets in preci-
sion (P), recall (R), F1-score (F) and true negative
rate (TNR).
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Figure 1: Evaluation scores on Chinese (zh) and
English (en) in precision (P), recall (P), F1-score
(F) and true negative rate (TNR) with different ra-
tios of most probable boundaries λ.

To get a more fine-grained picture, instead of
using argmax when decoding, we manually set a
threshold to determine the word boundaries with
respect to the scores returned by the inference
layer of the neural network. All the possible out-
put tags are ranked according to their scores of
being a word boundary. For each test experi-
ment, we accept the λ ∗ 100 percent most prob-
able word boundaries and regard the rest as non-
word boundaries. The segmenter therefore tends
towards under-splitting when λ is closer to 0 and
over-splitting when λ is closer to 1. The segmenter
becomes trivial when λ is equal to 0 or 1, corre-
sponding to the extreme under-splitting and over-
splitting segmenters T1 and T2 introduced in Ta-
ble 1 respectively.

Figure 1 presents the evaluation scores accord-
ing to the metrics under consideration with respect
to different λ in the interval of 0.05. With the op-
timal λ∗

F , the segmenter achieves comparable F1-
scores to those reported in Table 2. For Chinese,
λ∗

F is around 0.6, indicating there are roughly 60%
true boundaries out of all the possible segmenta-

88



tion points between consecutive characters. For
English, λ∗

F is 0.2 as the fact that English words
are relatively more coarse-grained and composed
of more characters on average. In general, preci-
sion and recall are positively correlated. When λ
is close to its the optimal, the values of both pre-
cision and recall increase. However, when λ is far
away from both the optima and 0, precision and re-
call vary very substantially, clearly indicating that
precision heavily favours under-splitting systems.

When λ equals 0, we obtain near-zero scores
with trivial under-splitting. In contrast, the over-
splitting segmenter with λ is equal to 1 yields a no-
table amount of true positives, due to the fact that
there is a considerable amount of single-character
words, especially in Chinese. This implies that ac-
tually trivial over-splitting is relatively better than
under-splitting in practise, even though it is not
favoured by precision.

For Chinese, the optimal λ∗
P for precision is 0.6,

whereas λ∗
R for recall is 0.65. They would be dif-

ferent for English as well if a smaller interval of
λ were adopted. λ∗

R corresponds to the system
with most correctly segmented words, whereas λ∗

P

is slightly biased towards under-splitting systems.
The difference between λ∗

P and λ∗
R is marginal

only when the segmenter performs very well as in
the case of English.

Next, we investigate how the metrics behave in
a learning curve experiment with ordinary argmax
decoding. Instead of using the complete training
set, for each test experiment, a controlled num-
ber of sentences are used for training the seg-
menter. The results are shown in Figure 2, in
which the training set is extended gradually by 200
sentences. As expected, the segmenter is better
trained and more accurate with a larger training
set, which is in accordance with recall as it al-
ways increases when the training set is expanded.
However, despite being closely correlated with re-
call in general, precision notably drops for Chi-
nese when enlarging the train set from 800 to
1,000 as well as from 1,800 to 2,000, implying the
segmenter becomes relatively over-splitting and
obtains lower precision despite having more cor-
rectly segmented words. Similarly for English,
the precision decreases when the training set is en-
larged from 1,200 to 1,400.

The experimental results of TNR is also consis-
tent with our analysis in the previous section. In
WS, the values of both RN in the reference as well
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Figure 2: Evaluation scores on Chinese (zh) and
English (en) in precision (P), recall (P), F1-score
(F) and true negative rate (TNR) with different
numbers of training instances N.

as PN by the system are drastically greater than
the corresponding values of the positives. Thus,
TN is high regardless of how the segmenter per-
forms, which makes TNR very insensitive and in-
appropriate as an evaluation metric for WS.

4 Conclusion

We discuss and analyse precision, recall in addi-
tion to true negative rate (TNR) as the evaluation
metrics for WS both theoretically and experimen-
tally in this paper. Unlike standard evaluation for
IR, all the metrics are positively correlated in gen-
eral. It is non-trivial to optimise the segmenter
towards either precision or recall. The difference
between precision and recall is notable only if the
segmenter is strongly over- or under-splitting. In
either case, precision as the evaluation is mislead-
ing as it heavily favours under-splitting systems.
Additionally, TNR is very insensitive and not suit-
able to evaluate WS either.

Under the circumstances, we propose that pre-
cision should be excluded from the conventional
evaluation metrics. As opposed to precision, re-
call is hard-constrained by the reference and there-
fore not biased towards neither under-splitting nor
over-splitting systems. It explicitly measures the
correctly segmented words that are meaningful
to higher level tasks. Employing recall solely is
therefore sufficient and more adequate as the eval-
uation metric for WS.
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Abstract

Low-resource named entity recognition is
still an open problem in NLP. Most state-
of-the-art systems require tens of thou-
sands of annotated sentences in order to
obtain high performance. However, for
most of the world’s languages it is unfea-
sible to obtain such annotation. In this pa-
per, we present a transfer learning scheme,
whereby we train character-level neural
CRFs to predict named entities for both
high-resource languages and low-resource
languages jointly. Learning character rep-
resentations for multiple related languages
allows transfer among the languages, im-
proving F1 by up to 9.8 points over a log-
linear CRF baseline.

1 Introduction

Named entity recognition (NER) presents a chal-
lenge for modern machine learning, wherein a
learner must deduce which word tokens refer to
people, locations and organizations (along with
other possible entity types). The task demands that
the learner generalize from limited training data
and to novel entities, often in new domains. Tradi-
tionally, state-of-the-art NER models have relied
on hand-crafted features that pick up on distribu-
tional cues as well as portions of the word forms
themselves. In the past few years, however, neu-
ral approaches that jointly learn their own features
have surpassed the feature-based approaches in per-
formance. Despite their empirical success, neural
networks have remarkably high sample complexity
and still only outperform hand-engineered feature
approaches when enough supervised training data
is available, leaving effective training of neural net-
works in the low-resource case a challenge.

For most of the world’s languages, there is a very

Sandra works for Google in Manhattan, New York.
B-PER B-ORG B-LOC I-LOC I-LOCOO O

Figure 1: Example of an English sentence annotated with its
typed named entities.

limited amount of training data for NER; CoNLL—
the standard dataset in the field—only provides an-
notations for 4 languages (Tjong Kim Sang, 2002;
Tjong Kim Sang and De Meulder, 2003). Cre-
ating similarly sized datasets for other languages
has a prohibitive annotation cost, making the low-
resource case an important scenario. To get around
this barrier, we develop a cross-lingual solution:
given a low-resource target language, we addition-
ally offer large amounts of annotated data in a lan-
guage that is genetically related to the target lan-
guage. We show empirically that this improves the
quality of the resulting model.

In terms of neural modeling, we introduce a
novel neural conditional random field (CRF) for
cross-lingual NER that allows for cross-lingual
transfer by extracting character-level features using
recurrent neural networks, shared among multiple
languages and; this tying of parameters enables
cross-lingual abstraction. With experiments on 15
languages, we confirm that feature-based CRFs out-
perform the neural methods consistently in the low-
resource training scenario. However, with the ad-
dition of cross-lingual information, the tables turn
and the neural methods are again on top, demon-
strating that cross-lingual supervision is a viable
method to reduce the training data state-of-the-art
neural approaches require.

2 Neural Conditional Random Fields

Named entity recognition is typically framed as
a sequence labeling task using the BIO scheme
(Ramshaw and Marcus, 1995; Baldwin, 2009), i.e.,
given an input sentence, the goal is to assign a label
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to each token: B if the token is the beginning of an
entity, or I if the token is inside an entity, or O if
the token is outside an entity (see Fig. 1). Follow-
ing convention, we focus on person (per), location
(loc), organization (org), and miscellaneous (misc)
entity types, resulting in 9 tags: {B-ORG, I-ORG,
B-PER, I-PER, B-LOC, I-LOC, B-MISC, I-MISC}.

Conditional Random Fields (CRFs), first intro-
duced in Lafferty et al. (2001), generalize the classi-
cal maximum entropy models (Berger et al., 1996)
to distributions over structured objects, and are an
effective tool for sequence labeling tasks like NER.
We briefly overview the formalism here and then
discuss its neural parameterization.

2.1 CRFs: A Cursory Overview
We start with two discrete alphabets Σ and ∆. In
the case of sentence-level sequence tagging, Σ is a
set of words (potentially infinite) and ∆ is a set of
tags (generally finite; in our case |∆| = 9). Given
t = t1 · · · tn ∈ ∆n and w = w1 · · ·wn ∈ Σn,
where n is the sentence length. A CRF is a globally
normalized conditional probability distribution,

pθ(t | w) =
1

Zθ(w)

n∏
i=1

ψ (ti−1, ti,w;θ) , (1)

where ψ (ti−1, ti,w;θ) ≥ 0 is an arbitrary non-
negative potential function1 that we take to be a
parametric function of the parameters θ and the
partition function Zθ(w) is the sum over all tag-
gings of length n.

So how do we choose ψ (ti−1, ti,w;θ)? We
discuss two alternatives, which we will compare
experimentally in §5.

2.2 Log-Linear Parameterization
Traditionally, computational linguists have stuck to
a simple log-linear parameterization, i.e.,

ψ (ti−1, ti,w;θ) = exp
(
η>f (ti−1, ti,w)

)
,

(2)
where η ∈ Rd and the user defines a feature func-
tion f : Σ× Σ×∆n → Rd that extracts relevant
information from the adjacent tags ti−1 and ti and
the sentence w. In this case, the model’s parame-
ters are θ = {η}. Common binary features include
word form features, e.g., does the word at the ith po-
sition end in -ation?, and contextual features, e.g.,
is the word next to (i−1)th word the? These binary

1We slightly abuse notation and use t0 as a distinguished
beginning-of-sentence symbol.

features are conjoined with other indicator features,
e.g., is the ith tag I-LOC? We refer the reader to
Sha and Pereira (2003) for standard CRF feature
functions employed in NER, which we use in this
work. The log-linear parameterization yields a con-
vex objective and is extremely efficient to compute
as it only involves a sparse dot product, but the
representational power of model depends fully on
the quality of the features the user selects.

2.3 (Recurrent) Neural Parameterization

Modern CRFs, however, try to obviate the hand-
selection of features through deep, non-linear pa-
rameterizations of ψ (ti−1, ti,w;θ). This idea is
far from novel and there have been numerous at-
tempts in the literature over the past decade to find
effective non-linear parameterizations (Peng et al.,
2009; Do and Artières, 2010; Collobert et al., 2011;
Vinel et al., 2011; Fujii et al., 2012). Until re-
cently, however, it was not clear that these non-
linear parameterizations of CRFs were worth the
non-convexity and the extra computational cost. In-
deed, on neural CRFs, Wang and Manning (2013)
find that “a nonlinear architecture offers no benefits
in a high-dimensional discrete feature space.”

However, recently with the application of
long short-term memory (LSTM) (Hochreiter and
Schmidhuber, 1997) recurrent neural networks
(RNNs) (Elman, 1990) to CRFs, it has become
clear that neural feature extractors are superior to
the hand-crafted approaches (Huang et al., 2015;
Lample et al., 2016; Ma and Hovy, 2016). As our
starting point, we build upon the architecture of
Lample et al. (2016), which is currently competi-
tive with the state of the art for NER.

ψ ( ti−1, ti,w; θ) = (3)

exp
(
a(ti−1, ti)+o(ti)>W s(w)i

)
,

where a(ti−1, ti) is the weight of transitioning from
t−1 to t and o(ti), s(w)i ∈ Rr are the output tag
and word embedding for the ith word, respectively.
We define sentence’s embeddings as the concate-
nation of an LSTM run forward and backward2

s(w) =
[−−−−→
LSTMθ(ω);

←−−−−
LSTMθ(ω)

]
. (4)

Note that the embedding for the ith word in
this sentence is s(w)i. The input vector ω =

2We take r = 100 and use a two-layer LSTM with 200
hidden units, each.
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[ω1, . . . , ω|w|] to this BiLSTM is a vector of em-
beddings: we define

ωi =
[
LSTMθ

(
c1 · · · c|wi|

)
; e(wi)

]
, (5)

where c1 · · · c|wi| are the characters in word wi. In
other words, we run an LSTM over the character
stream and concatenate it with a word embedding
for each type. Now, the parameters θ are the set of
all the LSTM parameters and other embeddings.

3 Cross-Lingual Extensions

One of the most striking features of neural net-
works is their ability to abstract general represen-
tations across many words. Our question is: can
neural feature-extractors abstract the notion of a
named entity across similar languages? For exam-
ple, if we train a character-level neural CRF on
several of the highly related Romance languages,
can our network learn a general representation enti-
ties in these languages?

3.1 Cross-Lingual Architecture
We now describe our novel cross-lingual architec-
ture. Given a language label `, we want to create a
language-specific CRF pθ(t | w, `) with potential:

ψ ( ti−1, ti,w, `;θ ) = exp (a(ti−1, ti)+ (6)

u>tanh(W [ s(w)i; l(`) ] + b)) ,

where l(`) ∈ Rr is an embedding of the lan-
guage ID, itself. Importantly, we share some
parameters across languages: the transitions be-
tween tags a() and the character-level neural net-
works that discover what a form looks like. Re-
call s(w) is defined in Eq. 4 and Eq. 5. The
part LSTMθ

(
c1 · · · c|wi|

)
is shared cross-lingually

while e(wi) is language-specific.
Now, given a low-resource target language τ and

a source language σ (potentially, a set of m high-
resource source languages {σi}mi=1). We consider
the following training objective

L (θ) =
∑

(t,w)∈Dτ
log pθ (t | w, τ) + (7)

µ ·
∑

(t,w)∈Dσ
log pθ (t | w, σ) ,

where µ is a trade-off parameter, Dτ is the set of
training examples for the target language and Dσ
is the set of training data for the source language σ.
In the case of multiple source languages, we add
a summand to the set of source languages used, in
which case set have multiple training sets Dσi .

Language Code Family Branch

Galician gl Indo-European Romance
Catalan cl Indo-European Romance
French fr Indo-European Romance
Italian it Indo-European Romance
Romanian ro Indo-European Romance
Spanish es Indo-European Romance

West Frisian fy Indo-European Germanic
Dutch nl Indo-European Germanic

Tagalog tl Austronesian Philippine
Cebuano ceb Austronesian Philippine

Ukranian uk Indo-European Slavic
Russian ru Indo-European Slavic

Marathi mr Indo-European Indo-Aryan
Hindi hi Indo-European Indo-Aryan
Urdu ur Indo-European Indo-Aryan

Table 1: List of the languages used in our experiments with
their ISO 639-1 codes, family and the branch in that family.

In the case of the log-linear parameterization,
we simply add a language-specific atomic fea-
ture for the language-id, drawing inspiration from
Daumé III (2007)’s approach for domain adaption.
We then conjoin this new atomic feature with the
existing feature templates, doubling the number of
feature templates: the original and the new feature
template conjoined with the language ID.

4 Related Work

We divide the discussion of related work topically.

Character-Level Neural Networks. In recent
years, many authors have incorporated character-
level information into taggers using neural net-
works, e.g., dos Santos and Zadrozny (2014) em-
ployed a convolutional network for part-of-speech
tagging in morphologically rich languages and
Ling et al. (2015) a LSTM for a myriad of dif-
ferent tasks. Relatedly, Chiu and Nichols (2016)
approached NER with character-level LSTMs, but
without using a CRF. Our work firmly builds upon
on this in that we, too, compactly summarize the
word form with a recurrent neural component.

Neural Transfer Schemes. Previous work has
also performed transfer learning using neural net-
works. The novelty of our work lies in the cross-
lingual transfer. For example, Peng and Dredze
(2017) and Yang et al. (2017), similarly oriented
concurrent papers, focus on domain adaptation
within the same language. While this is a related
problem, cross-lingual transfer is much more in-
volved since the morphology, syntax and semantics
change more radically between two languages than
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languages low-resource (|Dτ | = 100) high-resource (|Dτ | = 10000)

τ σi log-linear neural ∆ log-linear neural ∆

gl — 57.64 49.19 −8.45 87.23 89.42 +2.19
gl es 71.46 76.40 +4.94 87.50 89.46 +1.96
gl ca 67.32 75.40 +8.08 87.40 89.32 +1.92
gl it 63.81 70.93 +7.12 87.34 89.50 +2.16
gl fr 58.22 68.02 +9.80 87.92 89.38 +1.46
gl ro 59.23 67.76 +8.44 87.24 89.19 +1.95

fy — 62.71 58.43 −4.28 90.42 91.03 +0.61
fy nl 68.15 72.12 +3.97 90.94 91.01 +0.07

tl — 58.15 56.98 −1.17 74.24 79.03 +4.79
tl ceb 75.29 81.79 +6.50 74.02 79.51 +5.48

uk — 61.40 60.65 −0.75 85.63 87.39 +1.75
uk ru 70.94 76.74 +5.80 86.01 87.42 +1.41

mr — 42.76 39.02 −3.73 70.98 74.95 +4.86
mr hi 54.25 60.92 +6.67 70.45 74.49 +4.04
mr ur 49.32 58.92 +9.60 70.75 74.81 +4.07

Table 2: Results comparing the log-linear and neural CRFs in various settings. We compare the log-linear linear and the neural
CRF in the low-resource transfer setting. The difference (∆) is blue when positive and red when negative.

between domains.

Projection-based Transfer Schemes. Projec-
tion is a common approach to tag low-resource
languages. The strategy involves annotating one
side of bitext with a tagger for a high-resource
language and then project the annotation the over
the bilingual alignments obtained through unsu-
pervised learning (Och and Ney, 2003). Using
these projected annotations as weak supervision,
one then trains a tagger in the target language.
This line of research has a rich history, starting
with Yarowsky and Ngai (2001). For a recent
take, see Wang and Manning (2014) for project-
ing NER from English to Chinese. We emphasize
that projection-based approaches are incomparable
to our proposed method as they make an additional
bitext assumption, which is generally not present
in the case of low-resource languages.

5 Experiments

Fundamentally, we want to show that character-
level neural CRFs are capable of generalizing the
notion of an entity across related languages. To
get at this, we compare a linear CRF (see §2.2)
with standard feature templates for the task and a
neural CRF (see §2.3). We further compare three
training set-ups: low-resource, high-resource and

low-resource with additional cross-lingual data for
transfer. Given past results in the literature, we
expect linear CRF to dominate in the low-resource
settings, the neural CRF to dominate in the high-
resource setting. The novelty of our paper lies in
the consideration of the low-resource with transfer
case: we show that neural CRFs are better at trans-
ferring entity-level abstractions cross-linguistically.

5.1 Data

We experiment on 15 languages from the cross-
lingual named entity dataset described in Pan et al.
(2017). We focus on 5 typologically diverse3 tar-
get languages: Galician, West Frisian, Ukranian,
Marathi and Tagalog. As related source languages,
we consider Spanish, Catalan, Italian, French, Ro-
manian, Dutch, Russian, Cebuano, Hindi and Urdu.
For the language code abbreviations and linguistic
families, see Tab. 1. For each of the target lan-
guages, we emulate a truly low-resource condition,
creating a 100 sentence split for training. We then
create a 10000 sentence superset to be able to com-
pare to a high-resource condition in those same

3While most of these languages are from the Indo-
European family, they still run the gauntlet along a number of
typological axes, e.g., Dutch and West Frisian have far less
inflection compared to Russian and Ukrainian and the Indo-
Aryan languages employ postpositions (attached to the word)
rather than prepositions (space separated).

94



languages. For the source languages, we only cre-
ated a 10000 sentence split. We also create disjoint
validation and test splits, of 1000 sentences each.

5.2 Results

The linear CRF is trained using L-BFGS until con-
vergence using the CRF suite toolkit.4 We train
our neural CRF for 100 epochs using ADADELTA

(Zeiler, 2012) with a learning rate of 1.0. The re-
sults are reported in Tab. 2. To understand the
table, take the target language (τ ) Galician. In
terms of F1, while the neural CRF outperforms the
log-linear CRF the high-resource setting (89.42 vs.
87.23), it performs poorly in the low-resource set-
ting (49.19 vs. 56.64); when we add in a source lan-
guage (σi) such as Spanish, F1 increases to 76.40
for the neural CRF and 71.46 for the log-linear
CRF. The trend is similar for other source lan-
guages, such as Catalan (75.40) and Italian (70.93).

Overall, we observe three general trends. i)
In the monolingual high-resource case, the neu-
ral CRF outperforms the log-linear CRF. ii) In the
low-resource case, the log-linear CRF outperforms
the neural CRF. iii) In the transfer case, the neural
CRF wins, however, indicating that our character-
level neural approach is truly better at generalizing
cross-linguistically in the low-resource case (when
we have little target language data), as we hoped. In
the high-resource case (when we have a lot of target
language data), the transfer learning has little to no
effect. We conclude that our cross-lingual neural
CRF is a viable method for the transfer of NER.
However, there is a still a sizable gap between the
neural CRF trained on 10000 target sentences and
the transfer case (100 target and 10000 source),
indicating there is still room for improvement.

6 Conclusion

We have investigated the task of cross-lingual trans-
fer in low-resource named entity recognition using
neural CRFs with experiments on 15 typologically
diverse languages. Overall, we show that direct
cross-lingual transfer is an option for reducing sam-
ple complexity for state-of-the-art architectures. In
the future, we plan to investigate how exactly the
networks manage to induce a cross-lingual entity
abstraction.

4
http://www.chokkan.org/software/crfsuite/
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Abstract

We present Segment-level Neural CRF,
which combines neural networks with a
linear chain CRF for segment-level se-
quence modeling tasks such as named
entity recognition (NER) and syntactic
chunking. Our segment-level CRF can
consider higher-order label dependencies
compared with conventional word-level
CRF. Since it is difficult to consider all
possible variable length segments, our
method uses segment lattice constructed
from the word-level tagging model to re-
duce the search space. Performing exper-
iments on NER and chunking, we demon-
strate that our method outperforms con-
ventional word-level CRF with neural net-
works.

1 Introduction

Named entity recognition (NER) and syntactic
chunking are segment-level sequence modeling
tasks, which require to recognize a segment from
a sequence of words. A segment means a se-
quence of words that may compose an expres-
sion as shown in Figure 1. Current high per-
formance NER systems use the word-level lin-
ear chain Conditional Random Fields (CRF) (Laf-
ferty et al., 2001) with neural networks. Espe-
cially, it has been shown that the combination
of LSTMs (Hochreiter and Schmidhuber, 1997;
Gers et al., 2000), convolutional neural networks
(CNNs) (LeCun et al., 1989), and word-level CRF
achieves the state-of-the-art performance (Ma and
Hovy, 2016). Figure 1 shows an overview of the
word-level CRF for NER.

However, the word-level neural CRF has two
main limitations: (1) it captures only first-order
word label dependencies thus it cannot capture
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Figure 1: The difference between word-level CRF
and segment-level CRF. The segment-level CRF
can consider higher-order label dependencies.

segment-level information; (2) it is not easy to in-
corporate dictionary features directly into a word-
level model since named entities and syntactic
chunks consist of multiple words rather than a sin-
gle word. To overcome the limitation of first-order
label dependencies, previous work propose the
higher-order CRF, which outperforms first-order
CRF on NER task (Sarawagi and Cohen, 2005)
and morphological tagging task (Mueller et al.,
2013).

In this paper, we extend a neural CRF from
word-level to segment-level and propose Segment-
level Neural CRF. Our method has two main
advantages: (1) segment-level linear chain CRF
can consider higher-order word label dependen-
cies (e.g., the relations between named entities and
the other words); (2) it is easy to incorporate dic-
tionary features into the model directly since a dic-
tionary entry and a segment (e.g., a named entity)
are in one-to-one correspondence.

Our experiments on chunking and NER demon-
strate that our method outperforms conventional
word-level neural CRF.
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2 Word-level Neural CRF

As a baseline method, we use word-level neu-
ral CRF proposed by (Ma and Hovy, 2016) since
their method achieves state-of-the-art performance
on NER. Specifically, they propose Bi-directional
LSTM-CNN CRF (BLSTM-CNN-CRF) for se-
quential tagging. Here, we briefly review their
BLSTM-CNN-CRF model.

Let wt be the t-th word in an input sentence
and Ct = c

(1)
t , . . . , c

(k)
t be the character sequence

of wt. BLSTM-CNN-CRF uses both word-level
embedding wt ∈ Rdword and character-level em-
bedding ct ∈ Rdchar . Given a word sequence
X = w1, . . . , wn, the model outputs a score vector
ot as follows.

ct = CNNchar(Ct),
xt = wt ⊕ ct,

ht = Bi-LSTM(xt,ht−1,ht+1) (1)

= LSTMf (xt,ht−1)⊕ LSTMb(xt,ht+1),
ot = softmax(WTGht + bTG),

where CNNchar is the character-level CNN func-
tion, ⊕ is the concatenation of two vectors,
LSTMf is the forward LSTM function, LSTMb

is the backward LSTM function, Bi-LSTM is the
Bi-LSTM function, respectively. Then, WTG ∈
R|T |×dhidden is the weight matrix to learn, bTG ∈
R|T | is the bias vector to learn, |T | is the size of
tag set T , dhidden is the size of hidden layer of Bi-
LSTM, and ot ∈ R|T | is the score vector in which
each element is the probability of a possible tag.

In BLSTM-CNN-CRF, CRF is applied to the
output layer. The conditional probability of CRF
is defined as follows:

ϕ(yi−1, yi, o
(yi)
i ) = exp(o(yi)

i + Ayi−1,yi),

p(y|o;A) =

n∏
i=1

ϕ(yi−1, yi, o
(yi)
i )

∑
y′∈Y

n∏
i=1

ϕ(y′i−1, y
′
i, o

(y′i)
i )

,

where ϕ(yi−1, yi, o
(yi)
i ) is the potential function1,

yi ∈ {0, . . . , |T |−1} is the index of tag, o(j)
i is the

j-th element of the vector oi. Then, A ∈ R|T |×|T |

is a transition score matrix, Ayi−1,yi is a transition
1While (Ma and Hovy, 2016) define ϕ(yi−1, yi, oi) =

exp(Wyi−1,yioi + Ayi−1,yi) as the potential function where
W is the weight vector corresponding to label pair (yi−1, yi),
we use the simple potential function here.

score for jumping from tag yi−1 to yi, and Y indi-
cates all possible paths.

At test time, the predicted sequence is obtained
by finding the highest score in a all possible paths
using Viterbi algorithm as follows:

ỹ = argmax
y∈Y

p(y|oi;A).

3 Segment-level Neural CRF

In this section, we describe our proposed method.
Our segment-level neural CRF consists of the fol-
lowing two steps:

(i) A segment lattice is constructed from a se-
quence of words by pruning unlikely BIO
tags to reduce a search space. This is because
it is difficult to consider all possible variable
length segments in practice.

(ii) We use a linear chain CRF to find the highest
score path on the segment lattice.

3.1 Constructing Segment Lattice
A segment lattice is a graph structure where each
path corresponds to a candidate segmentation path
as shown in the lower part of Figure 1. The
segment lattice is a kind of semi-Markov model
(Sarawagi and Cohen, 2005). To construct the
segment lattice, we firstly give an input sentence
to the word-level tagging model, then obtain the
score vector ot for each word that gives the prob-
abilities of possible BIO tags. Then, we generate
the candidate BIO tags whose scores are greater
than the threshold T . After that, we construct the
segment lattice by generating admissible segments
from the candidate BIO tags. For example, we
generate the PERSON segment from the candidate
BIO tags {B-PER, I-PER, E-PER}.

The threshold T is a hyper-parameter for our
model. We describe how to choose the threshold
T in Section 4.3. While it has been shown that
the CRF layer is required to achieve the state-of-
the-art performance in Ma and Hovy (2016), we
observe that the CRF has no significant effect on
the final performance for the lattice construction.
Therefore, we use BLSTM-CNN (without CRF)
as the word-level tagging model in this paper.

3.2 Segment-level Vector Representation
To find the highest score path in the segment
lattice, we use a standard linear chain CRF at
segment-level. Since each segment has vari-
able length, we need to obtain fixed-dimensional

98



Segment-level 
CRFs�

Figure 2: Details of the Segment-level Neural
CRF model.

segment-level vector representation for neural net-
works.

Figure 2 shows the details of the segment-level
neural CRF model. Let ui = wb, wb+1, . . . , we be
the i-th segment in a segment lattice, b is the start-
ing word index, and e is the ending word index. To
obtain the fixed-dimensional vector ui ∈ Rdnode

for the segment ui, we apply a CNN to the hidden
vector sequence hb:e = hb,hb+1, . . . ,he by Eq.
(1), and compute the score vector zi as follows:

ri = CNNnode(hb:e),
zi = softmax(WLSri + bLS),

where CNNnode is the CNN function for the seg-
ment vector, WLS ∈ R|N |×dnode is the weight
matrix to learn, bLS ∈ Rdnode is the bias vector
to learn, |N | is the size of named entity type set
N , dnode is the size of the segment vector, and
zi ∈ R|N | is the score vector in which each ele-
ment is the probability of a possible NE type.

Finally, we apply a linear chain CRF to find the
highest score path in the segment lattice as we de-
scribe in Section 2.

3.3 Dictionary Features for NER
In this subsection, we describe the use of two addi-
tional dictionary features for NER. Since an entry
of named entity dictionary and the segment in our
model are in one-to-one correspondence, it is easy
to directly incorporate the dictionary features into
our model. We use following two dictionary fea-
tures on NER task.

Binary feature The binary feature ei ∈ Rddict

indicates whether the i-th segment (e.g., a named
entity) exists in the dictionary or not. We use the
embedding matrix Wdict ∈ R2×ddict , where ddict

is the size of the feature embedding. e ∈ {0, 1} is
the binary index which indicates whether the seg-
ment exists in the dictionary or not. Using the in-
dex e, we extract the column vector ei ∈ Rddict

from Wdict and concatenate the segment vector
ri and ei. The concatenated segment vector r′i
is defined as r′i = ri ⊕ ei. Wdict is a ran-
domly initialized matrix and updated in the train-
ing time. To incorporate the popularity of the
Wikipedia entity into our method, we also con-
catenate one-dimensional vector constructed from
the page view count for one month period into ei.
The page view count is normalized by the number
of candidate segments in the segment lattice. The
Wikipedia dictionary is constructed by extracting
the titles of all Wikipedia pages and the titles of all
redirect pages from the Wikipedia Dump Data2.

Wikipedia embedding feature Another addi-
tional feature is the Wikipedia embeddings pro-
posed by Yamada et al. (2016). Their method
maps words and entities (i.e., Wikipedia entities)
into the same continuous vector space using the
skip-gram model (Mikolov et al., 2013). We use
only the 300 dimensional entity embeddings in
this paper. Please refer to Yamada et al. (2016)
for more detail.

4 Experiments

4.1 Datasets

We evaluate our method on two segment-level se-
quence tagging tasks: NER and text chunking3.

For NER, we use CoNLL 2003 English NER
shared task (Tjong Kim Sang and De Meulder,
2003). Following previous work (Ma and Hovy,
2016), we use BIOES tagging scheme in the word-
level tagging model.

For text chunking, we use the CoNLL 2000 En-
glish text chunking shared task (Tjong Kim Sang
and Buchholz, 2000). Following previous work
(Søgaard and Goldberg, 2016), the section 19 of
WSJ corpus is used as the development set. We
use BIOES tagging scheme in the word-level tag-
ging model and measure performance using F1
score in all experiments.

4.2 Model Settings

To generate a segment lattice, we train word-level
BLSTM-CNN with the same hyper-parameters
used in Ma and Hovy (2016): one layer 200 di-
mentional Bi-directional LSTMs for each direc-
tion, 30 filters with window size 3 in character-

2The dump data of Wikipedia is available in Wikimedia
http://dumps.wikimedia.org/. We use the dump
data at 2016-09-20.

3Our code will be available from http://xxxx
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Oracle
Threshold Train Dev Test
T=0.05 99.93 99.71 99.27
T=0.0005 99.99 99.96 99.71
T=0.00005 100.0 99.98 99.83

Table 1: Threshold T and Oracle score on NER.

Test
Prec. Recall F1

BLSTM-CNN 89.04 90.40 89.72
BLSTM-CNN-CRF3 90.82 91.11 90.96
Our method 91.07 91.50 91.28
+ Binary Dict 91.05 91.69 91.37
+ WikiEmb Dict 91.29 91.58 91.44
+ Binary + WikiEmb 91.47 91.62 91.55
Ma and Hovy (2016) 91.35 91.06 91.21
Table 2: Result of CoNLL 2003 English NER.

level CNN, and 100 dimentional pre-trained word
embedding of GloVe (Pennington et al., 2014). At
input layer and output layer, we apply dropout
(Srivastava et al., 2014) with rate at 0.5. In our
model, we set 400 filters with window size 3 in
CNN for segment vector. To optimize our model,
we use AdaDelta (Zeiler, 2012) with batch size 10
and gradient clipping 5. We use early stopping
(Caruana et al., 2001) based on performance on
development sets.

4.3 How to choose threshold

The threshold T is a hyper-parameter for our
model. We choose the threshold T based on how
a segment lattice maintains the gold segments in
the training and development sets. The threshold
T and the oracle score are shown in Table 1. In
our experiment, the T = 0.00005 is used in NER
task and T = 0.0005 is used in chunking task.

4.4 Results and Discussions

The results of CoNLL 2003 NER is shown in Ta-
ble 2. By adding a CRF layer to BLSTM-CNN,
it improves the F1 score from 89.72 to 90.96.
This result is consistent with the result of (Ma and
Hovy, 2016). By using segment-level CRF, it fur-
ther improves the F1 score from 90.96 to 91.28.
Furthermore, by using the binary dictionary fea-
ture, it improves the F1 score from 91.28 to 91.37
and by using the Wikipedia embedding feature, it

3This is same method in (Ma and Hovy, 2016) and this
F-1 score is the result of our implementation.

Test
Prec. Recall F1

BLSTM-CNN 90.85 91.92 91.38
BLSTM-CNN-CRF 94.67 94.43 94.55
Our method 94.55 95.12 94.84

Table 3: Result of CoNLL 2000 Chunking.

improves the F1 score from 91.28 to 91.44. Even-
tually, we achieve the F1 score 91.55 with two dic-
tionary features.

The results of CoNLL 2000 Chunking is shown
in Table 3. Similar to NER task, by adding a
CRF layer to BLSTM-CNN, it improves the F1
score from 91.38 to 94.55. Furthermore, by using
segment-level CRF, it improves the F1 score from
94.55 to 94.84.

In both experiments, it improves the F1 score
by using segment-level CRF. On the NER experi-
ment, the additional dictionary features help to ob-
tain further improvement.

5 Related Work

Several different neural network methods have
been proven to be effective for NER (Collobert
et al., 2011; Chiu and Nichols, 2016; Lample
et al., 2016; Ma and Hovy, 2016). Ma and Hovy
(2016) demonstrate that combining LSTM, CNN
and CRF achieves the state-of-the-art performance
on NER and chunking tasks.

Mueller et al. (2013) show that higher-order
CRF outperforms first-order CRF. Our work dif-
fers from their work in that it can handle segments
of variable lengths and thus it is easy to incorpo-
rate dictionary features directly.

Zhuo et al. (2016) propose Gated Recursive
Semi-CRF, which models a sequence of segments
and automatically learns features. They combine
Semi-CRF (Sarawagi and Cohen, 2005) and neu-
ral networks. However they report the F1 score
89.44% on NER and 94.734 on Chunking which
are lower than the scores of our method.

Kong et al. (2016) propose segmental recurrent
neural networks (SRNNs). SRNNs are based on
Bi-LSTM feature extractor and uses dynamic pro-
gramming algorithm to reduce search space.

6 Conclusion

In this paper, we propose the segment-level se-
quential modeling method based on a segment lat-

4This is under the setting without external resource. They
add Brown clusters features and report the F1 score 95.01.
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tice structure. Our experimental results show that
our method outperforms conventional word-level
neural CRF. Furthermore, two additional dictio-
nary features help to obtain further improvement
on NER task.
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Abstract

We present and take advantage of the in-
herent visualizability properties of words
in visual corpora (the textual components
of vision-language datasets) to compute
concreteness scores for words. Our simple
method does not require hand-annotated
concreteness score lists for training, and
yields state-of-the-art results when evalu-
ated against concreteness scores lists and
previously derived scores, as well as when
used for metaphor detection.

1 Introduction

One of the most pervasive problems in cognitive
science, linguistics, and AI has been establishing
the semantic relationship between language and
vision (Miller and Johnson-Laird, 1976; Wino-
grad, 1972; Jackendoff, 1983; Waltz, 1993). In re-
cent years, new datasets have emerged that enable
researchers to approach this question from a new
angle: that of determining both how linguistic ex-
pressions are grounded in visual images, and how
features of visual images are expressible in lan-
guage. To this end, large vision and language (VL)
datasets have become increasingly popular, mostly
used in combined VL tasks, such as visual caption-
ing and question answering, image retrieval and
more. However, visual corpora, the language cor-
pora created in the service of image annotation,
have properties that have yet to be exploited. Nat-
urally, they tend to prefer concrete object labels
and tangible event descriptions over abstract con-
cepts and private or mental states (Dodge et al.,
2012).

In this work, we provide further evidence that
visual corpora are indeed less abstract than gen-
eral corpora, and characterize this as a property of
what we term a word’s visibility score. We then

show how this notion can be used to measure the
concreteness of words, and demonstrate the use-
fulness of our calculated scores in solving the re-
lated problem of metaphor detection.

2 Related Work and Background

Figure 1: Visual Genome (top) with multiple cap-
tions, and SBU with a user-generated caption per
image.

2.1 Abstractness and concreteness

A common notion for the concreteness of a word
is to what extent the word represents things that
can be perceived directly through the five senses
(Brysbaert et al., 2014; Turney et al., 2011), such
as tiger and wet. Accordingly, an abstract word
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represents a concept that is far from immediate
perception, or alternatively, could be explained
only by other words (as opposed to be demon-
strated through image, taste, etc.), like fun and
truth.

Concreteness scores are currently applied in
tasks like concept visualization and image descrip-
tion generation, event detection in text and more.
Previous methods for measuring words’ concrete-
ness used annotated datasets for training. The list
by Turney et al. (2011) contains 114k pairs of
words and concreteness scores, automatically gen-
erated by an algorithm trained on the MRC dataset
(Coltheart, 1981). Köper and im Walde (2017)
generated a huge concreteness scores list for 3M
words, using 32K pairs from the list by Brysbaert
et al. (2014) to train a neural network model with
high correlation scores with the existed lists.

2.2 Vision and Language Datasets

VL datasets come in different formats, but they all
match together visual and textual pieces of infor-
mation. The visual pieces can be photos, clip-arts,
paintings, etc., and the textual ones range from full
texts and sentences to single words (see Figure 1).
There are surprisingly few works that analyze vi-
sual corpora in terms of their linguistic properties.
Dodge et al. (2012) found that Flickr captions have
more references to physical objects. Ferraro et al.
(2015) compared visual corpora using a set of lin-
guistic criteria, including an abstract-to-concrete
ratio to estimate the concreteness level of a cor-
pus. We further discuss this task in Section 3.

3 The Concreteness Level of a Corpus

We demonstrate the differences in the concrete-
ness level of several corpora using two concrete-
ness ratings (or “concreteness scores”) lists, each
contains pairs of a word and a score, in some scale,
and potentially additional meta-data regarding the
annotation agreement. See Table 1 for examples.

The list of 40K concreteness ratings by Brys-
baert et al. (2014) contains ratings from 1.0 (ab-
stract) to 5.0 (concrete) for almost 40K terms, 37K
of them are unigrams1, along with metadata like
the standard deviation over the scores assigned to
a term by the 30 annotators. The authors aimed
to represent all English lemmas, for each they in-
cluded several forms, each was scored separately
(according to the definition in Section 2.1).

1The rest are bigrams, we worked with unigrams only.

40K (1.04-5.0) MRC (158-670)
turtle 5.0 (sd=0.0) 644
boat 4.93 (sd=0.37) 637
milk 4.92 (sd=0.39) 670
side 3.68 (sd=1.33) 394
symbol 3.11 (sd=1.37) 402
clean 3.07 (sd=1.41) 392
impossible 1.66 (sd=1.06) 198
immortality 1.52 (sd=0.87) 209
justification 1.52 (sd=0.83) 219

Table 1: Examples for words in the concreteness
lists annotated as mostly concrete, in the middle,
and mostly abstract.

The MRC psycholinguistic database (Colt-
heart, 1981) contains 4,295 words and concrete-
ness scores (range from 158 to 670), given by hu-
man subjects through psychological experiments.

3.1 Descriptions of Corpora Studied

Brown corpus (Francis and Kucera, 1964). Fol-
lowing Ferraro et al. (2015), a representative of a
non-visual “general”/“balanced” corpus.

Visual Genome (Krishna et al., 2016). The
largest VL dataset to date, containing 5.4M region
descriptions for more than 108K images, visual
question answers and more, all created through
crowd-sourcing. We used the set of all region de-
scriptions (see Figure 1) as corpus.

SBU Captioned Photo Dataset (Ordonez et al.,
2011). Another large scale dataset, containing user
generated image descriptions for 1M images, cre-
ated by quering Flickr. As a result, the captions
are not necessarily full or accurate (see Figure 1).

Flickr 30K (Young et al., 2014). 5 captions per
image for more than 31K real-world images from
Flickr, created through crowd-sourcing.

Microsoft COCO (Lin et al., 2014). Includes
object segmentation and 5 captions per image for
more than 300K images from Flickr.

ImageNet (Deng et al., 2009). A dataset
matching images and the corresponding WordNet
synsets (Miller et al., 1990). We gathered all avail-
able annotated synsets as the ImageNet corpus.

We also created a set of non-visual Brown cor-
pora by subtracting each of the corpora from the
Brown corpus, to each we refer as BrownNV −
V C in relation to some visual corpus V C.

3.2 Setup and Comparison Results

Given a corpus, we divided the words in each
concreteness scores list into two non-overlapping
sets (words contained in the corpus and words not
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Corpus C-list Words-in Words-out Ave-in Ave-out Diff/Range% Abs-ratio

Brown
40K 18191 18742 3.02 2.91 2.74%

15.24%
MRC 3639 553 442.17 443.62 -0.28%

Visual Genome
40K 14968 21965 3.5 2.61 22.49%

—
MRC 3263 929 465.62 360.66 20.5%

MSCOCO
40K 11786 25147 3.52 2.71 20.52%

12.96%
MRC 2919 1273 469.21 380.79 17.26%

Flickr 30k
40K 9874 27059 3.57 2.75 20.76%

14.98%
MRC 2669 1523 471.45 391.38 15.63%

ImageNet
40K 8397 28536 3.96 2.68 32.52%

—
MRC 2365 1827 505.31 360.87 28.21%

SBU
40K 20746 16187 3.3 2.55 18.85%

3.74%
MRC 3789 403 452.67 345.41 20.94%

Table 2: Corpus concreteness measuring using different concreteness score lists.

Corpus D/R% 40K D/R% MRC
BrownNV − V G -14.47% -20.35%
BrownNV −MSCOCO -11.37% -17.13%
BrownNV − Flickr30k -10.30% -15.76%
BrownNV − ImageNet -12.15% -26.21%
BrownNV − SBU -15.13% -22.28%

Table 3: The Diff/Range% of the non-visual
Brown corpora.

contained in the corpus), and calculated the aver-
age concreteness score of each set, as well as the
difference of the two averages normalized by the
score range of the list (‘Diff/Range%’) (see Table
2). We can see the clear differences between the
concreteness level of the Brown corpus (negligi-
ble Diff/Range%) and the rest of the visual corpora
(15.0% - 32%), which show nicely that the Brown
corpus is indeed “balanced” in terms of concrete-
ness. The ‘Abs-ratio’ column refers to previous
results by Ferraro et al. (2015), who calculated an
abstract-to-concrete ratio (Abs-ratio) with a fixed
common-abstract-terms list, where corpus words
in the list were considered as “abstract” and the
rest as “concrete”. The results were highly depen-
dent on corpus size (with more words outside the
fixed list (“concrete”) as vocabulary grows). Ac-
cordingly, the Abs-ratios of the Brown corpus and
most of the visual corpora were very similar, and
large corpora such as the SBU got significantly
lower ratios.

Table 3 shows the same calculations on the non-
visual Brown corpora. The large negative ratios
((-26)% - (-10)%) show that these corpora are less
concrete than the original Brown corpus, and are
much more abstract than all the visual corpora.

4 Predicting Concreteness Scores

The leading principal here is that words contained
in visual corpora tend to have significantly higher
concreteness scores, and words in non-visual cor-
pora tend to have significantly lower scores. We
do not use concreteness scores lists for training,
but only a visual corpus and a generic corpus to
build visibility scores for each word, from which a
concreteness score is estimated.

4.1 Visibility Scores
The concreteness score of a wordw consists of the
concrete visibility score and the abstract visibility
score, both are normalized sums computed in the
same manner (with only the reference corpus dif-
ferent, a visual for the concrete case and a non-
visual for the abstract case). Each term nei(w) in
the set of n-best nearest neighbors of w (extracted
from a model of 300-dimensional vectors for 3M
terms from the Google News dataset 2) contained
in the reference corpus contributes its cosine sim-
ilarity to w (in(w) = 1.0 if w is in the reference
corpus, o/w 0.0), then the sum is normalized by
the sum of all similarities:

ConV isEmbScore(w) =

in(w) +
∑

nei(w)∈V isCor Sim(w, nei)

in(w) +
∑

nei(w) Sim(w, nei)
, (1)

AbsV isEmbScore(w) =

in(w) +
∑

nei(w)∈Brown−V isCor Sim(w, nei)

in(w) +
∑

nei(w) Sim(w, nei)
, (2)

2available at https://code.google.com/archive/p/word2vec
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max-sd num-neigh Spearman Pearson MSE

max(sd)
=1.89

Turney 0.74 0.74 0.58
100 0.72 0.72 0.61
50 0.71 0.70 0.72
10 0.63 0.62 1.11

med(sd)
=1.22

Turney 0.79 0.81 0.89
100 0.78 0.81 0.69
50 0.77 0.79 0.78
10 0.71 0.73 1.13

mean(sd)
=1.16

Turney 0.80 0.82 0.99
100 0.79 0.82 0.69
50 0.78 0.81 0.78
10 0.72 0.75 1.12

Table 4: Predicting concreteness scores.

The overall concreteness score for w is then:

ConcretenessScore(w) =

ConV isEmbScore(w)−AbsV isEmbScore(w) (3)

(2) and (1) range from 0.0 (non of the neighbors
is in the reference corpus) to 1.0 (all of them are).
Hence, (3) ranges between −1.0 and 1.0, where a
higher score means more concrete word.

Notice that no corpus-frequencies were taken
into account in the above sums. This is because
VL datasets are often human-focused with unreal-
istic high-weight for terms describing people. In
addition, words in the corpora were only lower-
caesd but not stemmed since we noticed it cut off
too much information, leading to poorer results
(due to the loss of potential discriminating con-
creteness features that are characteristic of many
derivational suffixes). For example, 40K’s scores
for several unstemmed forms of the stem woman:
woman (4.46), womanhood (2.55), womanishness
(1.79), womanize (2.82), womanlike (3.14).

4.2 Results and Discussion
To best demonstrate the strength of our method,
we present the results gathered by using a uni-
fied visual corpus that is both large enough to
be used as a reference corpus, and has higher
Diff/Range ratios. This unified corpus, which we
call the Big Visual Corpus (BVC) consists of the
Visual Genome, MSCOCO, Flickr30K, and Ima-
geNet, and contains over 98K lowercaesd (but oth-
erwise non-normalized) terms. Its Diff/Range%,
according to the 40K and MRC lists are 25.5% and
24.53%, respectively. The generic corpus used is
the Brown corpus, and respectively, the non-visual
reference corpus is BrownNV −BV C.

We follow the simple practice from Köper and
im Walde (2017) and map all scores into the same

interval using the following continuous function:

f(w) =
(b− a)(x−min)

max−min + a, (4)

where [min,max] is the original interval and [a, b]
the new interval. In our case, a = 1.04 (the min-
imum unigram score in the 40K list) and b =
5.0. We then compute the correlation between
our scores and the 40K list’s scores and compare
them to the correlations of the previously calcu-
lated scores by Turney et al. (2011) (see Table 4).
We parameterize over both the number of neigh-
bors (up to 100) taken into account in (1) and
(2) and the maximal standard deviation (sd) of
words in the 40K list we consider in computing
the correlations. Using the mean sd as a threshold
shows better correlations with the subset consid-
ered. Also, considering more neighbors improves
all evaluation metrics.

5 Metaphor Detection

We utilize our concreteness scores to solve the
task of Metaphor Detection, where a set of literal
and non-literal samples is given, and the goal is
to classify each into the correct class. We follow
Black’s (1979) observation that a metaphor is es-
sentially an interaction between two terms, creat-
ing an implication-complex to resolve two incom-
patible meanings. Operationally, we follow Tur-
ney et al. and their adoption of Lakoff and John-
son’s (1980) notion that metaphor is a way to move
knowledge from a concrete domain to an abstract
one. Hence, there should be a correlation between
the “degree of abstractness in a word’s context [...]
with the likelihood that the word is used metaphor-
ically.” (Turney et al., 2011). We show our results
on two annotated datasets:

5.1 The TSV Dataset

This dataset by Tsvetkov et al. (2014) in-
cludes several sets with instances annotated as
“metaphorical” or “literal” by 5 annotators, from
which we experimented with two sets. The
first set, which we call TSV-AN, contains 200
adjective-noun (AN) pairs, 100 instances per class.
For example, “clean conscience” is annotated as
metaphorical, and “clean air” as literal. The
second set, which we call TSV-SVO, contains
subject-verb-object (SVO) triples or pairs (when
missing ‘S’/‘O’), 111 for each class.

We build a logistic regression model using 10-
fold cross-validation for each of the TSV-AN and

106



Dataset Features Precision Recall F1

TSV-AN

Linguistic 0.73 0.80 0.76
Visual 0.60 0.91 0.73
Multimodal 0.67 0.96 0.79
Vis-Emb. 0.84 0.72 0.77

TSV-SVO Vis-Emb. 0.83 0.80 0.81

Table 5: Results of our method (Vis-Emb.) on the
dataset by Tsvetkov et al. compared to previous
results by Shutova et al.

TSV-SVO sets. The feature vector for each phrase
in the sets is simple, consists of our assigned con-
creteness score for each word in the phrase. For
the second set, we divide each triple into two
pairs to get 150 “literal” ‘SV’/‘VO’ pairs and 165
“metaphorical” ones. We flipped the feature vec-
tor of the ‘VO’ pairs to represent scores in the
form of ‘OV’, so that the nouns and verb would
appear at consistent places in the vector. As a ref-
erence to our results, we bring previous results by
Shutova et al. (2016), who used linguistic embed-
ding model, visual embedding model, and a mul-
timodal model that mixed the two (see Table 5).

5.2 The TroFi dataset
The dataset by Birke and Sarkar (2006) con-
tains annotated “literal” and “non-literal” sen-
tences from the Wall Street Journal for 50 verbs.
We follow the exact same algorithm used in Tur-
ney et al. (2011) on a subset of 25 verbs, while
replacing their concreteness scores with ours.

We build a 5-dimensional feature vector for
each sentence, composed of the average concrete-
ness score of words with each of the following
part-of-speech tags: noun, proper noun, verb, ad-
jective, adverb. When there are no words with
a specific POS tag in the sentence, the value 0.0
is assigned to the corresponding place in the vec-
tor. The feature vectors are then used in a logistic
regression classifier to build a separate model for
each verb using 10-fold cross-validation. Table 6
shows our results along with the previous results
by Turney et al. (and their probability-matching
case).

6 Conclusion and Future Work

Even without the matching images, the captions
in vision and language datasets contain useful in-
formation regarding the visibility of words appear-
ing in them. In addition, the connection between
the visibility of a word and its concreteness level
is well known from psychological experiments.

Features Accuracy F1-score
Vis-Emb. 0.713 0.657
Turney et al. 0.734 0.639
Probability Matching 0.605 0.500

Table 6: Classifying the sentences related to 25
verbs in the TroFi dataset. Accuracy and F1-score
are macro-averaged.

We exploited these properties in crafting visibility
scores, based only on the occurrences of a word’s
neighbors (in the semantic space) in the visual cor-
pora, and calculated a concreteness score out of
them for the word. We then experimented within
the related task of metaphor detection, and showed
comparable results to previous works. Our method
and algorithm, though relatively simple and intu-
itive, give surprisingly good (comparable) results,
while not requiring any multimodal processing at
all.
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der C. Berg, and Tamara L. Berg. 2012. De-
tecting visual text. In Proceedings of the 2012
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies. Association
for Computational Linguistics, Stroudsburg,
PA, USA, NAACL HLT ’12, pages 762–772.
http://dl.acm.org/citation.cfm?id=2382029.2382153.

Francis Ferraro, Nasrin Mostafazadeh, Ting-Hao (Ken-
neth) Huang, Lucy Vanderwende, Jacob Devlin,
Michel Galley, and Margaret Mitchell. 2015. A
survey of current datasets for vision and lan-
guage research. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2015, Lisbon, Por-
tugal, September 17-21, 2015. pages 207–213.
http://aclweb.org/anthology/D/D15/D15-1021.pdf.

W Nelson Francis and Henry Kucera. 1964.
Brown corpus. Department of Linguistics,
Brown University, Providence, Rhode Island 1.
http://icame.uib.no/brown/bcm.html.

Ray Jackendoff. 1983. Semantics and cognition. MIT
Press.
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Abstract

This paper examines the usefulness of se-
mantic features based on word alignments
for estimating the quality of text simpli-
fication. Specifically, we introduce seven
types of alignment-based features com-
puted on the basis of word embeddings
and paraphrase lexicons. Through an em-
pirical experiment using the QATS dataset
(Štajner et al., 2016b), we confirm that
we can achieve the state-of-the-art perfor-
mance only with these features.

1 Introduction

Text simplification is the task of rewriting com-
plex text into a simpler form while preserving its
meaning. Systems that automatically pursue this
task can potentially be used for assisting reading
comprehension of less language-competent peo-
ple, such as learners (Petersen and Ostendorf,
2007) and children (Belder and Moens, 2010).
Such systems would also improve the performance
of other natural language processing tasks, such as
information extraction (Evans, 2011) and machine
translation (MT) (Štajner and Popović, 2016).

Similarly to other text-to-text generation tasks,
such as MT and summarization, the outputs of text
simplification systems have been evaluated sub-
jectively by humans (Wubben et al., 2012; Štajner
et al., 2014) or automatically by comparing with
handcrafted reference texts (Specia, 2010; Coster
and Kauchak, 2011; Xu et al., 2016). However, the
former is costly and not replicable, and the latter
has achieved only a low correlation with human
evaluation.

On the basis of this backdrop, Quality Estima-
tion (QE) (Specia et al., 2010), i.e., automatic eval-
uation without reference, has been drawing much
attention in the research community. In the shared

Metrics rlength rlabel

BLEU -0.765 0.245
METEOR -0.617 0.257
TER 0.741 -0.233
WER 0.757 -0.230

Table 1: The QATS training data shows that typ-
ical MT metrics are strongly biased by the length
difference between original and simple sentences
(rlength ), while they are less correlated with the
manually-labeled quality (rlabel ).

task on quality assessment for text simplification
(QATS),1 two tasks have been addressed (Štajner
et al., 2016b). One is to estimate a real-value qual-
ity score for given sentence pair, while the other
is to classify given sentence pair into one of the
three classes (good, ok, and bad). In the classifica-
tion task of the QATS workshop, systems based
on deep neural networks (Paetzold and Specia,
2016a) and MT metrics (Štajner et al., 2016a) have
achieved the best performance. However, deep
neural networks are rather unstable because of the
difficulty of training on a limited amount of data;
for instance, the QATS dataset offers only 505 sen-
tence pairs for training. MT metrics are incapable
of properly capturing deletions that are prevalent
in text simplification (Coster and Kauchak, 2011),
as they are originally designed to gauge seman-
tic equivalence. In fact, as shown in Table 1,
well-known MT metrics are strongly biased by the
length difference between original and simple sen-
tences, even though it is rather unrelated with the
quality of text simplification assessed by humans.

In order to properly account for the surface-
level inequivalency occurring in text simplifica-
tion, we examine semantic similarity features
based on word embeddings and paraphrase lexi-
cons. Unlike end-to-end training with deep neural
networks, we quantify word-level semantic corre-

1http://qats2016.github.io/shared.html
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spondences using two pre-compiled external re-
sources: (a) word embeddings learned from large-
scale monolingual data and (b) a large-scale para-
phrase lexicon. Using the QATS dataset, we em-
pirically demonstrate that a supervised classifier
trained upon such features achieves good perfor-
mance in the classification task.

2 Semantic Features Based on Word
Alignments

We bring a total of seven types of features
that are proven useful for the similar task, i.e.,
finding corresponding sentence pairs within En-
glish Wikipedia and Simple English Wikipedia
(Hwang et al., 2015; Kajiwara and Komachi,
2016). Specifically, we assume that some of these
features are useful to capture inequivalency be-
tween original sentence and its simplified version
introduced during simplification, such as lexical
paraphrases and deletion of words and phrases.

Throughout this section, original sentence and
its simplified version are referred to as x and y,
respectively.

2.1 AES: Additive Embeddings Similarity

Given two sentences, x and y, AES between them
is computed as follows.

AES(x, y) = cos

 |x|∑
i=1

x⃗i,

|y|∑
j=1

y⃗j

 (1)

where each sentence is vectorized with the sum
of the word embeddings of its component words,
x⃗i and y⃗j , assuming the additive compositionality
(Mikolov et al., 2013).

2.2 AAS: Average Alignment Similarity

AAS (Song and Roth, 2015) averages the co-
sine similarities between all pairs of words within
given two sentences, x and y, calculated over their
embeddings.

AAS(x, y) =
1

|x||y|
|x|∑
i=1

|y|∑
j=1

cos(x⃗i, y⃗j) (2)

2.3 MAS: Maximum Alignment Similarity

AAS inevitably involves noise, as many word
pairs are semantically irrelevant to each other.
MAS (Song and Roth, 2015) reduces this kind of

noise by considering only the best word alignment
for each word in one sentence as follows.

MAS(x, y) =
1
|x|

|x|∑
i=1

max
j

cos(x⃗i, y⃗j) (3)

As MAS is asymmetric, we calculate it for each
direction, i.e., MAS(x, y) and MAS(y, x), unlike
Kajiwara and Komachi (2016) who has averaged
these two values.

2.4 HAS: Hungarian Alignment Similarity

AAS and MAS deal with many-to-many and one-
to-many word alignments, respectively. On the
other hand, HAS (Song and Roth, 2015) is based
on one-to-one word alignments.

The task of identifying the best one-to-one word
alignments H is regarded as a problem of bipartite
graph matching, where the two sets of vertices re-
spectively comprise words within each sentence x
and y, and the weight of a edge between xi and yj

is given by the cosine similarity calculated over
their word embeddings. Given H identified us-
ing the Hungarian algorithm (Kuhn, 1955), HAS
is computed by averaging the similarities between
embeddings of the aligned pairs of words.

HAS(x, y) =
1
|H|

∑
(i,j)∈H

cos(x⃗i, y⃗j) (4)

where |H| = min(|x|, |y|), as H contains only
one-to-one word alignments.

2.5 WMD: Word Mover’s Distance

WMD (Kusner et al., 2015) is a special case of
the Earth Mover’s Distance (Rubner et al., 1998),
which solves the transportation problem of words
between two sentences represented by a bipartite
graph.2 Let n be the vocabulary size of the lan-
guage, WMD is computed as follows.

WMD(x, y) = min
n∑

u=1

n∑
v=1

Auveud(x⃗u, y⃗v)

(5)

subject to :
n∑

v=1

Auv =
1
|x| freq(xu, x)

n∑
u=1

Auv =
1
|y| freq(yv, y)

2Note that the vertices in the graph represent the word
types, unlike the token-based graph for HAS.
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where Auv is a nonnegative weight matrix repre-
senting the flow from a word xu in x to a word yv

in y, eud(·, ·) the Euclidean distance between two
word embeddings, and freq(·, ·) the frequency of a
word in a sentence.

2.6 DWE: Difference of Word Embeddings
We also introduce the difference between sentence
embeddings so as to gauge their differences in
terms of meaning and simplicity. As the represen-
tation of a sentence, we used the averaged word
embeddings (Adi et al., 2017).

DWE(x, y) =
1
|x|

|x|∑
i=1

x⃗i − 1
|y|

|y|∑
j=1

y⃗j (6)

2.7 PAS: Paraphrase Alignment Similarity
PAS (Sultan et al., 2014, 2015) is computed based
on lexical paraphrases. This feature has been
proven useful in the semantic textual similarity
task of SemEval-2015 (Agirre et al., 2015).

PAS(x, y) =
PA(x, y) + PA(y, x)

|x|+ |y| (7)

PA(x, y) =
|x|∑
i=1

{
1 ∃j : xi ⇔ yj ∈ y

0 otherwise

where xi ⇔ yj holds if and only if the word pair
(xi, yj) is included in a given paraphrase lexicon.

3 Experiment

The usefulness of the above features was evaluated
through an empirical experiment using the QATS
dataset (Štajner et al., 2016b).

3.1 Data
The QATS dataset consists of 505 and 126 sen-
tence pairs for training and test, respectively,
where each pair is evaluated from four different
aspects: Grammaticality, Meaning preservation,
Simplicity, and Overall quality. Evaluations are
given by one of the three classes: good, ok, and
bad.

We used two pre-compiled external resources to
compute our features. One is the pre-trained 300-
dimensional CBOW model3 to compute the fea-
tures based on word embeddings, while the other
is PPDB 2.0 (Pavlick et al., 2015)4 for PAS.

3https://code.google.com/archive/p/
word2vec/

4http://paraphrase.org/

3.2 Evaluation Metrics

Each system is evaluated by the three metrics as
in the QATS classification task (Štajner et al.,
2016b): Accuracy (A), Mean Absolute Error (E)
and Weighted F-score (F). To compute Mean Ab-
solute Error, class labels were converted into three
equally distant numeric scores retaining their rela-
tion, i.e., good = 1, ok = 0.5, and bad = 0.

3.3 Baseline Systems

As the baseline, we employed four types of sys-
tems from the QATS workshop (Štajner et al.,
2016b): two typical baselines and two top-ranked
systems. “Majority-class” labels all the sentence
pairs with the most frequent class in the training
data. “MT-baseline” combines BLEU (Papineni
et al., 2002), METEOR (Lavie and Denkowski,
2009), TER (Snover et al., 2006), and WER (Lev-
enshtein, 1966), using a support vector machine
(SVM) classifier.

SimpleNets (Paetzold and Specia, 2016a) has
two different forms of deep neural network ar-
chitectures: multi-layer perceptron (SimpleNets-
MLP) and recurrent neural network (SimpleNets-
RNN). SimpleNets-MLP uses seven features of
each sentence: the number of characters, tokens,
and word types, 5-gram language model probabil-
ities estimated on the basis of either SUBTLEX
(Brysbaert and New, 2009), SubIMDB (Paet-
zold and Specia, 2016b), Wikipedia, and Simple
Wikipedia (Kauchak, 2013). SimpleNets-RNN,
which does not require such feature engineering,
uses embeddings of word N -grams.

SMH (Štajner et al., 2016a) has two types of
classifiers: logistic classifier (SMH-IBk/Logistic)
and random forest classifier (SMH-RandForest,
SMH-RandForest-b). Both are trained relying on
the automatic evaluation metrics for MT, such as
BLEU, METEOR, and TER, in combination with
the QE features for MT (Specia et al., 2013).

Instead of reimplementing the above baseline
systems, we excerpted their performance scores
from (Štajner et al., 2016b).

3.4 Systems with Proposed Features

We evaluated our proposed features in the su-
pervised classification fashion as previous work.
Specifically, we compared three types of super-
vised classifiers that had been also used in the
above baseline systems: SVM, MLP, and Rand-
Forest. Hyper-parameters of each system were de-
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System Grammaticality Meaning Simplicity Overall
A ↑ E ↓ F ↑ A ↑ E ↓ F ↑ A ↑ E ↓ F ↑ A ↑ E ↓ F ↑

Majority-class 76.2 18.3 65.9 57.9 29.0 42.5 55.6 29.4 39.7 43.7 28.2 26.5
MT-baseline 76.2 18.3 65.9 66.7 20.2 62.7 50.8 26.2 48.3 38.1 41.7 37.5
SimpleNets-MLP 74.6 17.1 68.8 65.9 21.0 63.5 53.2 27.0 49.8 38.1 32.5 33.7
SimpleNets-RNN (N = 2) 75.4 18.7 65.5 57.9 27.4 51.3 50.0 27.0 47.5 52.4 25.8 46.1
SimpleNets-RNN (N = 3) 74.6 19.1 65.1 51.6 28.2 46.6 52.4 25.0 50.0 47.6 27.8 40.8
SMH-IBk/Logistic 70.6 19.4 71.6 69.1 20.2 68.1 50.0 28.2 51.1 47.6 28.2 47.5
SMH-RandForest 75.4 17.5 71.8 65.9 20.6 64.4 52.4 27.8 53.0 44.4 31.8 44.5
SMH-RandForest-b 75.4 18.3 70.0 61.9 23.8 59.7 57.1 25.4 56.4 48.4 29.0 48.6
Best score among the above 76.2 17.1 71.8 69.1 20.2 68.1 57.1 25.0 56.4 52.4 25.8 48.6
Our SVM 76.2 18.3 65.9 65.1 22.2 58.3 57.1 27.8 43.9 57.9 23.4 57.7
Our MLP 68.3 24.6 66.9 59.5 25.4 56.4 59.5 23.4 58.2 52.4 25.8 51.9
Our RandForest 76.2 18.3 65.9 66.7 23.0 63.2 63.5 21.8 59.8 51.6 26.6 48.3
Our SVM w/ MT-baseline 76.2 18.3 65.9 66.7 21.0 63.7 57.1 27.0 46.9 47.6 29.0 46.8
Our MLP w/ MT-baseline 63.5 26.6 63.8 64.3 21.4 62.7 52.4 26.2 53.2 46.0 31.8 45.5
Our RandForest w/ MT-baseline 76.2 18.3 65.9 61.9 24.6 57.6 62.7 22.6 56.1 46.0 29.0 43.6

Table 2: Results on QATS classification task. The best scores of each metric are highlighted in bold.
Scores other than ours are excerpted from Štajner et al. (2016b).

Feature set C γ Grammaticality Meaning Simplicity Overall
ALL 1.0 0.1 76.2 65.1 57.1 57.9

-AES 1.0 0.1 76.2 65.1 57.1 57.1
-MAS(original, simple) 0.1 0.1 76.2 57.9 55.6 56.4
-MAS(simple, original) 1.0 0.1 76.2 64.3 57.1 54.8
-PAS 0.1 0.1 76.2 57.9 55.6 53.2
-DWE 0.01 1.0 76.2 57.9 55.6 51.6
-WMD 0.01 0.1 76.2 57.9 55.6 46.8
-AAS 0.1 0.1 76.2 57.9 55.6 45.2
-HAS 0.01 0.01 76.2 57.9 55.6 35.7

Table 3: Ablation analysis on accuracy. Features are in descending order of overall accuracy.

termined through 5-fold cross validation using the
training data, regarding accuracy in terms of over-
all quality as the objective.

For the SVM classifier, we used the RBF kernel.
The trinary classification was realized by means
of the one-versus-the-rest strategy. For a given set
of features, we examined all the combinations of
hyper-parameters among C ∈ {0.01, 0.1, 1.0} and
γ ∈ {0.01, 0.1, 1.0}; for the full set of features,
C = 1.0 and γ = 0.1 were chosen.

As for the MLP classifier, among 1 to 3 lay-
ers with all the combinations of dimensionality
among {100, 200, 300, 400, 500} and “ReLu” for
the activation function among {Logistic, tanh,
ReLu}, the 2-layer one with 200 × 200 dimen-
sionality was optimal. We used Adam (Kingma
and Ba, 2015) as the optimizer.

For the RandForest classifier, we examined all
the combinations of the following three hyper-
parameters: {10, 50, 100, 500, 1000} for num-
ber of trees, {5, 10, 15, 20,∞} for the maximum
depth of each tree, and {1, 5, 10, 15, 20} for the
minimum number of samples at leaves. The op-
timal combination for the full set of features was
(500, 15, 1).

3.5 Results

Experimental results are shown in Table 2. The
SVM classifier based on our features greatly out-
performed the state-of-the-art methods in terms of
overall quality. The RandForest classifier some-
how achieved the best simplicity scores ever, even
though we had optimized the system with respect
to the accuracy of overall quality. As we ex-
pected, MLP did not beat the other two classi-
fiers, presumably due to the scarcity of the train-
ing data. The bottom three rows reveal that the
performance in terms of overall quality was de-
teriorated when MT-baseline features were incor-
porated on top of our feature set. This suggests
that word embeddings are superior to surface-level
processing in finding corresponding words within
sentence pairs.

Focusing on the overall quality, we conducted
an ablation analysis of the SVM classifier. The
analysis revealed, as shown in Table 3, that HAS,
AAS, and WMD were the most important fea-
tures. This can be explained by the role of word
alignments during the computation. Since MT
metrics, such as BLEU, rely only on surface-
level matches, they are insensitive to meaning-
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Original
While historians concur that the result it-
self was not manipulated, the voting pro-
cess was neither free nor secret.

Simple
Most historians agree that the result was
not fixed, but the voting process was nei-
ther free nor secret.

Hungarian
Alignment

(while, but), (concur, agree),
(itself, most), (manipulated, fixed),
and identical word pairs.

Table 4: An example of word alignment. Differ-
ences between the original and simplified versions
are presented in bold. This is a sentence pair from
good class on overall quality. HAS using word-
level similarity reaches 0.85, while BLEU is 0.54.

Feature rlength rlabel

AES -0.661 0.185
AAS -0.335 0.318
MAS(original, simple) -0.817 0.226
MAS(simple, original) 0.092 -0.090
HAS 0.061 -0.050
WMD 0.788 -0.215
PAS -0.120 -0.039

Table 5: Correlation between each feature and the
difference of sentence length and the manually-
labeled quality. Note that DWE cannot be in-
cluded, as it is not a scalar value but the differential
vector between original and simplified sentences.

preserving rewritings from original sentence to
simple one. On the other hand, as exemplified
in Table 4, HAS and some other features can de-
tect the linkages between complex words and their
simpler counterparts. As a result of properly cap-
turing the alignments between such lexical para-
phrases, our system successfully classified this
sentence into good in terms of overall quality.

We expected that AAS could yield noise, as it
involves irrelevant pairs of words, but in fact, it
contributed to the QATS task. We speculate that it
helps to evaluate the appropriateness of substitut-
ing a word to other one considering the semantic
matching with the given context, as in lexical sim-
plification (Biran et al., 2011) and lexical substitu-
tion (Melamud et al., 2015; Roller and Erk, 2016;
Apidianaki, 2016).

The contribution of WMD was expected as it
was proven effective in the sentence alignment
task of English Wikipedia and Simple English
Wikipedia (Kajiwara and Komachi, 2016).

Table 5 shows that some of our semantic sim-
ilarity features are also strongly biased by the
length difference between original and simple sen-
tences, as MT metrics (cf. Table 1). Nonetheless,

HAS was not biased by the length difference al-
most at all, and AAS and WMD highly correlated
with the manually-labeled quality.

4 Conclusions

We presented seven types of semantic similarity
features based on word alignments for quality esti-
mation of text simplification. Unlike existing MT
metrics, our features can flexibly deal with word
alignments, taking deletions and paraphrases into
account. Our SVM classifier based on these fea-
tures achieved the best performance on the QATS
dataset.
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Abstract

Word embeddings learned from text cor-
pus can be improved by injecting knowl-
edge from external resources, while at
the same time also specializing them for
similarity or relatedness. These knowl-
edge resources (like WordNet, Paraphrase
Database) may not exist for all languages.
In this work we introduce a method to in-
ject word embeddings of a language with
knowledge resource of another language
by leveraging bilingual embeddings. First
we improve word embeddings of Ger-
man, Italian, French and Spanish using re-
sources of English and test them on variety
of word similarity tasks. Then we demon-
strate the utility of our method by creating
improved embeddings for Urdu and Tel-
ugu languages using Hindi WordNet, beat-
ing the previously established baseline for
Urdu.

1 Introduction

Recently fast and scalable methods to generate
dense vector space models have become very pop-
ular following the works of (Collobert and We-
ston, 2008; Mikolov et al., 2013; Pennington et al.,
2014). These methods take large amounts of text
corpus to generate real valued vector representa-
tion for words (word embeddings) which carry
many semantic properties.

Mikolov et al. (2013b) extended this model
to two languages by introducing bilingual embed-
dings where word embeddings for two languages
are simultaneously represented in the same vec-
tor space. The model is trained such that word
embeddings capture not only semantic informa-
tion of monolingual words, but also semantic re-
lationships across different languages. A number

of different methods have since been proposed to
construct bilingual embeddings (Zou et al., 2013;
Vulic and Moens, 2015; Coulmance et al., 2016).

A disadvantage of learning word embeddings
only from text corpus is that valuable knowl-
edge contained in knowledge resources like Word-
Net (Miller, 1995) is not used. Numerous meth-
ods have been proposed to incorporate knowledge
from external resources into word embeddings for
their refinement (Xu et al., 2014; Bian et al., 2014;
Mrksic et al., 2016). (Faruqui et al., 2015) intro-
duced retrofitting as a light graph based technique
that improves learned word embeddings.

In this work we introduce a method to im-
prove word embeddings of one language (tar-
get language) using knowledge resources from
some other similar language (source language).
To accomplish this, we represent both languages
in the same vector space (bilingual embeddings)
and obtain translations of source language’s re-
sources. Then we use these translations to im-
prove the embeddings of the target language by
using retrofitting, leveraging the information con-
tained in bilingual space to adjust retrofitting pro-
cess and handle noise. We also show why a dic-
tionary based translation would be ineffective for
this problem and how to handle situations where
vocabulary of target embeddings is too big or too
small compared to size of resource.

(Kiela et al., 2015) demonstrated the advantage
of specializing word embeddings for either sim-
ilarity or relatedness, which we also incorporate.
Our method is also independent of the way bilin-
gual embeddings were obtained. An added advan-
tage of using bilingual embeddings is that they are
better than monolingual counterparts due to incor-
porating multilingual evidence (Faruqui and Dyer,
2014; Mrkšić et al., 2017).
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2 Background

2.1 Bilingual Embeddings
Various methods have been proposed to generate
bilingual embeddings. One class of methods learn
mappings to transform words from one monolin-
gual model to another, using some form of dic-
tionary (Mikolov et al., 2013b; Faruqui and Dyer,
2014). Another class of methods jointly optimize
monolingual and cross-lingual objectives using
word aligned parallel corpus (Klementiev et al.,
2012; Zou et al., 2013) or sentence aligned par-
allel corpus (Chandar A P et al., 2014; Hermann
and Blunsom, 2014). Also there are other meth-
ods which use monolingual data and a smaller set
of sentence aligned parallel corpus (Coulmance
et al., 2016) and those which use non-parallel doc-
ument aligned data (Vulic and Moens, 2015).

We experiment with translation invariant bilin-
gual embeddings by (Gardner et al., 2015). We
also experiment with method proposed by (Artetxe
et al., 2016) where they learn a linear transform
between two monolingual embeddings with mono-
lingual invariance preserved. They use a small
bilingual dictionary to accomplish this task. These
methods are useful in our situation because they
preserve the quality of original monolingual em-
beddings and do not require parallel text (benefi-
cial in case of Indian languages).

2.2 Retrofitting
Retrofitting was introduced by (Faruqui et al.,
2015) as a light graph based procedure for enrich-
ing word embeddings with semantic lexicons. The
method operates post processing i.e it can be ap-
plied to word embeddings obtained from any stan-
dard technique such as Word2vec, Glove etc. The
method encourages improved vectors to be simi-
lar to the vectors of similar words as well as sim-
ilar to the original vectors. This similarity rela-
tion among words (such as synonymy, hypernymy,
paraphrase) is derived from a knowledge resource
such as PPDB, WordNet etc. Retrofitting works as
follows:

Let matrix Q contain the word embeddings to
be improved. Let V = {w1, w2...wn} be the vocab-
ulary which is equal to number of rows in Q and
d be the dimension of word vectors which is equal
to number of columns. Also let Ω be the ontol-
ogy that contains the intra word relations that must
be injected into the embeddings. The objective of
retrofitting is to find a matrix Q̂ such that the new

word vectors are close to their original vectors as
well as vectors of related words. The function to
be minimized to accomplish this objective is:

Φ(Q) =
n∑
i=1

[
αi‖qi − q̂i‖2 +

∑
(i,j)∈E

βij‖qi − qj‖2
]

The iterative update equation is:

qi =
∑
j:(i,j)∈E βijqj + αiq̂i∑
j:(i,j)∈E βij + αi

α and β are the parameters used to control the
process. We discuss in Section 3.2 how we set
them to adapt the process to bilingual settings.

2.3 Dictionary based approach

Before discussing our method, we would like to
point that using a dictionary for translating the lex-
ical resource and then retrofitting with this trans-
lated resource is not feasible. Firstly obtaining
good quality dictionaries is a difficult and costly
process1. Secondly it is not necessary that one
would obtain translations that are within the vo-
cabulary of the embeddings to be improved. To
demonstrate this, we obtain translations for em-
beddings of 3 languages2 and show the results in
Table 1. In all cases the number of translations that
are also present in the embedding’s vocabulary are
too small.

Language Vocab Matches
German 43,527 9,950
Italian 73,427 24,716
Spanish 41,779 16,547

Table 1: Using a dictionary based approach

3 Approach

Let S, T and R be the vocabularies of source, tar-
get and resource respectively. Size of R is always
fixed while size of S and T depends on embed-
dings. The relation between S, T and R is shown
in Figure 1. Sets S and R have one to one map-
ping which in not necessarily onto, while T and
S have many to one mapping. Consider the ideal
case where every word in R is also in S and every
word in S has the exact translation from T as its
nearest neighbour in the bilingual space. Then the

1eg. Google and Bing Translate APIs have become paid.
2using Yandex Translate API, it took around 3 days
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figlio

ragazzo
boy

T S R

Figure 1: Relationships between Source, Target
and Resource Vocabularies.

simple approach for translation would be assign-
ing every si ∈ S its nearest neighbour ti ∈ T as
the translation.

First problem is that in practical settings these
conditions are almost never satisfied. Secondly the
sizes of S, T andR can be very different. Suppose
the size of S, T is large compared to R or the size
of T is large but size of S is comparatively smaller.
In both cases size of translated resource will be too
small to make impact. Thirdly words common to
both R and S will be lesser than the total words in
R. So the size of R accessible to T using S will
be even lesser. A mechanism is therefore required
to control the size of translated resource and fil-
ter incorrect translations. We accomplish this as
follows:

3.1 Translating knowledge resource
For translation we adapt a dual approach that al-
lows control over the size of the translated list. We
iterate through T (not S) looking for translations
in S. A translation is accepted or rejected based
on whether the cosine similarity between words is
above the threshold η. This method stems from
the fact that mapping between T and S is many to
one. So the Italian word ragazzo is translated to
boy, but we can also translate (and subsequently
retrofit) figlio to boy (Figure 1) in order to get a
larger translated resource list with some loss in
quality of list. Thus η gives us direct control over
the size of translated resource list. Then to trans-
late the list of related words, we translate normally
(i.e from S to T ). Algorithm 1 summarizes this
process.

3.2 Retrofitting to translated resource
We modify the retrofitting procedure to accommo-
date noisy translations as follows:

As discussed earlier, retrofitting process con-
trols the relative shift of vectors by two parameters
α and β, where α controls the movement towards

original vector and β controls movement towards
vectors to be fitted with. (Faruqui et al., 2015) set
α as 1 and β as 1

γ where γ is the number of vectors
to be fitted with. Thus they give equal weights to
each vector.

Cosine similarity between a word and its trans-
lation is a good measure of the confidence in its
translation. We use it to set β such that differ-
ent vectors get different weights. A word for
which we have higher confidence in translation
(i.e higher cosine similarity) is given more weight
when retrofitting. Therefore wi being the weights,
α, β are set as :

α =
γ∑
i=1

wi, βi = wi

Further reduction in weights of noisy words can
be done by taking powers of cosine similarity. An
example in Table 2 shows weights of similar words
for Italian word professore derived by taking pow-
ers of cosine similarity (we refer to this power as
filter parameter).

Words Similarity Weights
educatore 0.955 0.796
harvard 0.853 0.452
insegnando 0.980 0.903
insegnata 0.990 0.951

Table 2: Taking power of weights reduces weights
of noisy words (here harvard). Here filter = 5.

Algorithm 1 Translating Knowledge Resource
Input : Source (S), Target (T ), Resource (R), η
Output : Translated Knowledge Resource
R∗

R∗ = []
for t in T do
ts ← NearestNeighbour(S)
if similarity(t, ts) > η then
lexicons← S[ts]
for l in lexicons do
lt ← NearestNeighbour(T )
weight← similarity(l, lt)
R∗[t].add(lt, weight)

end for
else
continue

end if
end for
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Language Vocab TRL Tasks Original Half En-
riched

Full En-
riched

German 43,527
18,802
37,408

MC30
RG65
WS353 (sim)
Simlex999

0.631
0.503
0.600
0.333

0.643
0.531
0.631
0.356

0.662
0.600
0.635
0.373

Italian 73,427
22,022
44,309

WS353 (sim)
Simlex999

0.595
0.247

0.640
0.283

0.652
0.313

Spanish 41,779
17,434
35,034

MC30
RG65

0.312
0.608

0.286
0.615

0.412
0.634

French 40,523
16,203
32,602

RG65 0.547 0.582 0.673

Table 3: Retrofitting Translation Invariant Bilingual Embeddings for German, Italian, Spanish and
French using English Paraphrase Database. (TRL stands for Translated Resource Length)

4 Datasets and Benchmarks

For English as source language, we use the Para-
phrase Database (Ganitkevitch et al., 2013) to spe-
cialize embeddings for similarity as it gives the
best results (compared to other sources like Word-
Net). To specialize embeddings for relatedness,
we use University of South Florida Free Asso-
ciation Norms (Nelson et al., 2004) as indicated
by (Kiela et al., 2015). For Hindi as source
language, we use Hindi WordNet (Bhattacharyya
et al., 2010). Whenever the size of resource is big
enough, we first inject word embeddings with half
of the dataset (random selection) followed by full
length dataset to demonstrate the sequential gain
in performance.
Multilingual WS353 and SimLex999 datasets are
by (Leviant and Reichart, 2015). We also use
German RG65 (Gurevych, 2005), French RG65
(Joubarne and Inkpen, 2011) and Spanish MC30,
RG65 (Hassan and Mihalcea, 2009; Camacho-
Collados et al., 2015). For Indian languages we
use datasets provided by (Akhtar et al., 2017).

5 Results

In this section we present the experimental results
of our method.3 Before discussing the results we
explain how different parameters are chosen. We
do 10 iterations of retrofitting process for all our
experiments because 10 iterations are enough for
convergence (Faruqui et al., 2015) and also using
the same value for all experiments avoids over-
fitting. The value of filter parameter is set as 2

3The implementation of our method is available at
https://github.com/prakhar987/InjectingBilingual

because we believe the embeddings that we use are
well trained and low in noise. This value can be
increased further if word embeddings being used
are very noisy but in most cases a value of 2 is
enough. η value, as explained in previous sections
is set such that the translated resource obtained is
of sufficient length. If more lexicons in translated
resource are required, relax η and vice-versa.

5.1 European Languages
Table 3 shows the result of retrofitting translation
invariant bilingual embeddings of four European
languages for similarity using English Paraphrase
Database. For each language we set η as 0.70 and
filter as 2. The embeddings are evaluated specif-
ically on datasets measuring similarity. All em-
beddings are 40 dimensional. To show that our
method is effective, the embeddings are first fitted
with only half of the database followed by fitting
with full length database. Table 3 also contains in-
formation about the size of vocabulary and trans-
lated resource. One can compare the size of trans-
lated resource that we get using our method to the
dictionary based approach.

Table 4 shows the results of specializing word
embeddings for relatedness using the USF Asso-
ciation Norms and evaluation on WS353 related-
ness task. We test only with German and Italian as
only these languages had datasets to test for relat-
edness.

Language Original Fitted
German 0.461 0.520
Italian 0.460 0.523

Table 4: Specializing for relatedness
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We also experiment with embeddings of large
dimensions (300) and large vocabulary size
(200,000) for English and Italian bilingual embed-
dings obtained by method described by (Artetxe
et al., 2016). Table 5 shows the improvements at-
tained for similarity task for Italian with 64,434
words in the translated resource, η = 0.35 and
filter = 2 (notice η is much smaller since we
want translated resource size to be comparable to
size of vocabulary).

Task Original Fitted
WS353 0.648 0.680
SimLex999 0.371 0.405

Table 5: Improving large embeddings

5.2 Indian Languages

To demonstrate the utility of our method, we ex-
periment with Indian languages, taking Hindi as
the source language (which has Hindi WordNet).
For target language, we take one language (Urdu)
which is very similar to Hindi (belongs to same
family) and one language (Telugu) which is very
different from Hindi (descendants from same fam-
ily). The vocabulary size of Urdu and Telugu were
129,863 and 174,008 respectively. The results are
shown in Table 6. Here again we fit with half
length followed by full length of Hindi WordNet.
As expected, we get much higher gains for Urdu
compared to Telugu.4

Language Original Half
Fitted

Full
Fitted

Telugu 0.427 0.436 0.440
Urdu 0.541 0.589 0.612

Table 6: Retrofitting Indian languages

6 Conclusion

In this work we introduced a method to improve
word embeddings of a language using resources
from another similar language. We accomplished
this by translating the resource using bilingual
embeddings and modifying retrofitting while han-
dling noise. Using our method, we also created
new benchmark on Urdu word similarity dataset.

4enriched embeddings and evaluation scripts can be
downloaded from https://goo.gl/tN6p3w
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Abstract

Speech is a natural channel for human-
computer interaction in robotics and consumer
applications. Natural language understand-
ing pipelines that start with speech can have
trouble recovering from speech recognition er-
rors. Black-box automatic speech recogni-
tion (ASR) systems, built for general purpose
use, are unable to take advantage of in-domain
language models that could otherwise amelio-
rate these errors. In this work, we present
a method for re-ranking black-box ASR hy-
potheses using an in-domain language model
and semantic parser trained for a particular
task. Our re-ranking method significantly im-
proves both transcription accuracy and seman-
tic understanding over a state-of-the-art ASR’s
vanilla output.

1 Introduction

Voice control makes robotic and computer systems
more accessible in consumer domains. Collect-
ing sufficient data to train ASR systems using cur-
rent state of the art methods, such as deep neural
networks (Graves and Jaitly, 2014; Xiong et al.,
2016), is difficult. Thus, it is common to use well-
trained, cloud-based ASR systems. These sys-
tems use general language models not restricted
to individual application domains. However, for
an ASR in a larger pipeline, the expected words
and phrases from users will be biased by the ap-
plication domain. The general language model of
a black-box ASR leads to more errors in transcrip-
tion. These errors can cause cascading problems
in a language understanding pipeline.

In this paper, we demonstrate that an in-
domain language model and semantic parser can
be used to improve black-box ASR transcription
and downstream semantic accuracy. We consider
a robotics domain, where language understand-
ing is key for ensuring effective performance and

positive user experiences (Thomason et al., 2015).
We collect a dataset of spoken robot commands
paired with transcriptions and semantic forms to
evaluate our method.1 Given a list of ASR hy-
potheses, we re-rank the list to choose the hypoth-
esis scoring best between an in-domain trained
semantic parser and language model (Figure 1).
This work is inspired by other re-ranking meth-
ods which have used prosodic models (Anan-
thakrishnan and Narayanan, 2007), phonetic post-
processing (Twiefel et al., 2014), syntactic pars-
ing (Zechner and Waibel, 1998; Basili et al.,
2013), as well as features from search engine re-
sults (Peng et al., 2013).

Other work has similarly employed semantics
to improve ASR performance, for example by as-
signing semantic category labels to entire utter-
ances and re-ranking the ASR n-best list (Morbini
et al., 2012), jointly modeling the word and se-
mantic tag sequence (Deoras et al., 2013), and
learning a semantic grammar for use by both the
ASR system and semantic parser (Gaspers et al.,
2015). Closest to our work is that of Erdogan et
al. (2005), which uses maximum entropy mod-
eling to combine information from the semantic
parser and ASR’s language model for re-ranking.
Although their method could be adapted for use
with a black-box ASR, their parsing framework
employs a treebanked dataset of parses (Davies
et al., 1999; Jelinek et al., 1994). In contrast, the
Combinatory Categorial Grammar (CCG) frame-
work which we use in this work only requires that
the root-level semantic form be given along with
groundings for a small number of words (see sec-
tion 2.2), significantly reducing the cost of data
collection. Further, although they also experiment
with an out-of-the-box language model, they only

1Our dataset will be made available upon request.
Source code can be found in: https://github.com/
thomason-jesse/nlu_pipeline/tree/speech
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Figure 1: Our proposed methodology. The black-box ASR outputs an ordered list of its top hypotheses.
Each hypothesis is given confidence scores by an in-domain semantic parser and language model, which
are then used to re-rank the list. In this example, the parser has learned that “Mr.” and “Ms.” are
functionally equivalent, while the language model has learned that “Mr.” co-occurs with “John” more
than “Ms.” does. Together, they guide us to select the correct transcription.

measure for improvements in transcription accu-
racy, which may not entail improvements in lan-
guage understanding (Wang et al., 2003).

To the best of our knowledge, our method is the
first to improve language understanding by em-
ploying a low-cost semantic parser and language
model post-hoc on a high-cost, black-box ASR
system. This significantly lowers word error rate
(WER) while increasing semantic accuracy.

2 Methodology

Given a user utterance U , the black-box ASR
system generates a list of n-best hypotheses H .
For each hypothesis h ∈ H , we produce an in-
terpolated score2 S(h) from its language model
score Slm(h) and semantic parser score Ssem(h).3

Parser confidence scores vary by orders of mag-
nitude between hypotheses, making it difficult to
find a meaningful interpolation weight α between
the language model and semantic parser. We
therefore normalize over the sum of scores in each
hypothesis list for each model. We then choose the
highest scoring hypothesis h∗:

h∗ = arg max
h∈H

(S(h)) ; (1)

S(h) = (1− α) · Slm(h) + α · Ssem(h). (2)

2In order to avoid underflow errors, all computations are
done in log space.

3We do not assume a black-box ASR system will provide
confidence scores for its n-best list. Google Speech API, for
example, often only shows confidence for the top hypothesis.
Preliminary experiments using proxy scores based on rank
did not improve performance.

2.1 Language Model

We implement an in-domain language model us-
ing the SRI Language Modeling Toolkit (Stolcke
et al., 2002). We use a trigram back-off model with
Witten-Bell discounting (Witten and Bell, 1991)
and an open vocabulary. We use perplexity-based,
length-normalized scores to compare hypotheses
with different numbers of word tokens.

2.2 Semantic Parsing Model

For semantic parsing, we used a CCG (Steedman
and Baldridge, 2011) based probabilistic CKY
parser.

The parser consists of a lexicon whose entries
are words paired with syntactic categories and se-
mantic forms (see Table 1 for example lexical en-
tries). CCG categories may be atomic or func-

Surface Form CCG Category Semantic Form
walk S/PP λx.(walk(x))
to PP/NP λx.(x)
john N john

Table 1: Example lexical entries in our domain.
Given an initial lexicon, additional entries are in-
duced by the parser during training for use at test
time.

tional, with functional categories specifying com-
binatory rules for adjacent categories. These may
be expressed logically by representing semantic
forms using a formalism such as lambda calculus.
For example, consider the combination between
the functional category (NP/N) and the atomic
category N , along with its pertaining lambda cal-
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S : bring(a(λz.(red(z) ∧ card(z))), jane)

NP : a(λz.(red(z) ∧ card(z)))

N : λz.(red(z) ∧ card(z))

N : card

card

N/N : λP .λz.(red(z) ∧ P (z))

red

NP/N : λP.(a(λz.(P (z))))

a

S/NP : λy.(bring(y, jane))

NP : jane

jane

(S/NP)/NP : λx.(λy.(bring(y, x)))

give

Figure 2: A parse tree of the phrase “give jane a red card.” The token give is an imperative, taking two
noun phrases on its right which represent the recipient and the patient of the action (the robot is the im-
plicit agent in the command). jane immediately resolves to a noun phrase. red is an adjectival predicate,
consuming the noun predicate card on its right, the result of which is consumed by the determiner a in
order to form a complete noun phrase.

culus expression:

(NP/N) N =⇒ NP

(λx.(x)) y =⇒ y

The combinatory rules of a CCG implicitly define
a grammar. An example CCG parse tree may be
seen in Figure 2.

Following Zettlemoyer and Collins (2005), gold
labels for parsing contain only root-level sema-
natic forms, and only a small set of bootstrapping
lexical entries are provided. This necessitates that
latent parse trees be inferred and that additional
lexical entries be induced during training.

Given a corpus of training examples T of sen-
tences paired with their semantic forms, we fol-
low the framework proposed by (Liang and Potts,
2015) and train a perceptron model to greedily
search for the maximally scoring parse of each
hypothesis. We bootstrap the parser’s lexicon en-
tries with mappings for words from 20 randomly
selected examples from our validation set, which
were parsed by hand to obtain the latent trees.
Sample templates used to create our dataset are
shown in Table 2.

To normalize likelihoods between hypotheses
of different lengths, we calculate average like-
lihoods for CCG productions and semantic null
nodes, then expand the semantic parse trees to ac-
commodate the maximum token length for utter-
ances when scoring.

Because our application is human-robot inter-
action, we give the parser a budget of 10 seconds

per hypothesis during the re-ranking process.4 If a
valid parse is not found in time, the hypothesis is
given a confidence score of zero. If no hypotheses
from a list are parsed, the re-ranking decision falls
solely to the language model.

3 Experimental Evaluation

We evaluate chosen hypotheses by word error rate
(WER), semantic form accuracy (whether the cho-
sen hypothesis’ semantic parse exactly matched
the gold parse), and semantic form F1 score, the
average harmonic mean of the precision and re-
call of hypotheses’ semantic predicates with their
corresponding gold predicates (see Table 3 for ex-
ample F1 computations). In the robotic command
domain, higher F1 can mean shorter clarification
dialogs with users when there are misunderstand-
ings, since the intended (gold) semantic parse’s
predicates are better represented for parses with
higher F1. We compare the ASR’s top hypothe-
sis to re-ranking (Eq. 2) using only the language
model (α = 0), only the semantic parser (α = 1),
and a weighted combination of the two (α = 0.7).

3.1 Dataset

We collected a corpus of speech utterances from
32 participants, consisting of both male and fe-
male, native and non-native English speakers. Par-
ticipants were asked to read sentences from a com-
puter screen for 25 minutes each, resulting in a to-
tal of 5,161 utterances. The sentences read were

4We found that hypotheses successfully parsed within the
budget were parsed in 1.94 seconds on average, suggesting
that a stricter budget can be used.
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Template Example Sentences Corresponding Semantic Form
roll over to dr bell’s office walk(the(λx.(office(x) ∧ possesses(x, tom))))

(f) (w) to (p)’s office can you please walk to john’s office walk(the(λx.(office(x) ∧ possesses(x, john))))
run over to professor smith’s office walk(the(λx.(office(x) ∧ possesses(x, john))))

go and bring coffee to jane bring(coffee, jane)
(f) (d) (i) to (p) please deliver a red cup to tom bring(a(λx.(red(x) ∧ cup(x))), tom)

would you take the box to jack bring(box, jack)
please look for ms. jones in the lab searchroom(3414b, jane)

(f) (s) (p) in (l) can you find jack in room 3.512 searchroom(3512, jack)
search for the ta in the kitchen searchroom(kitchen, jack)

Table 2: Example templates used to generate our dataset. Our template parameterization includes items
(i), people (p), locations (l), filler words (f), and actions such as walk (w), delivery(d), and search (s).
Parameter instances had multiple referring expressions (e.g. “john” and “professor smith” both refer to
the person john). Eight distinct templates were used across the 3 actions, with 70 items, 69 adjectives,
over 20 referents for people, and a variety of wordings for actions and filler, resulting in over 400 million
possible utterances.

generated using templates for commanding a robot
in an office domain (Table 2). The use of templates
allowed for the automatic generation of ground
truth transcriptions and semantic forms for each
spoken utterance.

3.2 Experimental Setup and Results

To test our methodology, we used the Google
Speech API,5 a state-of-the-art, black-box ASR
system which has been used in recent robotics
tasks (Arumugam et al., 2017; Kollar et al., 2013).
For each utterance, 10 hypotheses were requested
from Google Speech.6 An average of 9.2 hypothe-
ses were returned per utterance (the API some-
times returns fewer than requested). We held out 2
speakers from our dataset as validation for hyper-
parameter tuning, leaving 30 speakers for a 27/3
(90%/10%) training and test set split using 10-fold
cross validation.

We set the language model and semantic parser
hyperparameters using the held-out validation set.
Performance of the ASR’s top hypothesis (ASR)
was tested against re-ranking solely based on
semantic-parser scores (SemP), solely on lan-
guage model scores (LM), and on an interpolation
of these with α = 0.7 which maximized semantic
form accuracy on the validation set (Both).

Table 4 summarizes the results of these models
on the test set. All of our model’s scores are statis-
tically significantly better than the ASR baseline
(p < 0.05 with a Student’s independent paired t-
test). Additionally, SemP and Both perform sig-

5https://cloud.google.com/speech/
6Preliminary experiments showed diminishing returns for

hypothesis lists of size n > 10. Therefore, n was set to 10
for the accuracy vs. runtime tradeoff.

nificantly better than LM in F1 while the Both
condition performs significantly better than LM
in semantic accuracy without a significant loss in
WER or F1 performance against LM and SemP,
respectively.

3.3 Discussion

All re-ranking conditions significantly improve
word error rate, semantic parsing accuracy, and se-
mantic form F1 scores against using the ASR’s top
hypothesis.

When examining the overall parsing accuracy
of our models, we found that 37.5% of the ASR
hypothesis lists generated for test utterances had at
least 1 out of vocabulary (OOV) word per hypoth-
esis. Our semantic parser is closed-vocabulary at
test time, ignoring OOV words, which can contain
valuable semantic information.

Consistent with intuition, using a language
model alone decreases WER most. Semantic ac-
curacy increases when interpolating confidences
from the semantic parser and language model,
meaning there are cases where the hypothesis the
semantic parser most favors has an incorrect se-
mantic form even while another hypothesis in the
list gives the correct one. In this case, a lower
confidence parse from a better-worded transcript
is more likely to be correct, and we need both the
semantic parser and the language model to select
it.

There is no significant difference in semantic
accuracy performance between solely using the
language model or semantic parser, but interpolat-
ing the two gives a significant improvement over
just using a language model. The semantic parser
and interpolation conditions give significantly bet-
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Semantic Form P R F1
bring(cup, jane) 3

3
3
3 1.0

bring(a(λx.(red(x)∧ cup(x))), jane) 3
4

3
3 0.857

bring(jane, jane) 3
3

2
3 0.8

Table 3: Example F1 computations for the phrase “Bring Jane a cup”. Here, the relevant (gold) predicates
are bring, cup, and jane. F1 is the harmonic mean of the precision (P) and recall (R): F1= 2 · P ·R

P+R

Model WER Acc F1
Oracle 13.4± 4.2 27.9± 3.8 39.3± 3.9

ASR 30.8± 4.6 7.38± 1.9 15.9± 3.0
SemP 20.8± 5.3 24.8± 3.9 38.3± 4.1
LM 15.7± 4.7 22.7± 3.3 31.7± 4.1
Both 16.8± 4.6 26.3± 3.7 38.1± 4.1

Table 4: Average performance of re-ranking
with standard deviation using semantic parsing
(SemP), language model (LM), and Both against
the black-box ASR’s top hypothesis. Oracle de-
notes the best possible performance achievable
through re-ranking per metric (i.e. choosing the
hypothesis from the ASR that optimizes for each
metric in turn).

ter F1 performance over a language model alone.
These results show that the integration of semantic
information into the speech recognition pipeline
can significantly improve language understand-
ing.

4 Conclusion and Future Work

We have shown that post-hoc re-ranking of a
black-box ASR’s hypotheses using an in-domain
language model and a semantic parser can signifi-
cantly improve the accuracy of transcription and
semantic understanding. Using both re-ranking
components together improves parsing accuracy
over either alone without sacrificing WER reduc-
tion.

A natural extension to this work would be to test
re-ranking using a neural language model, which
has been shown to encode some semantic informa-
tion in addition to capturing statistical regularities
in word sequences (Bengio et al., 2003).

Our approach should improve language under-
standing in robotics applications. The increase
in F1 should help expedite dialogues because it
would entail fewer predicates needing clarification
from the user. Additionally, due to the large pro-
portion of OOV words that we encountered from
ASR, in the future we will use an open-vocabulary

semantic parser, perhaps through leveraging dis-
tributional semantic representations in order to in-
duce the meaning of novel words. By adapting ex-
isting work on learning semantic parsers for robots
through dialog (Thomason et al., 2015) to incor-
porate ASR, a robot equipped with our pipeline
could iteratively learn the meaning of new words
and expressions it encounters in the wild.
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Abstract

The research trend in Japanese predicate-
argument structure (PAS) analysis is shift-
ing from pointwise prediction models with
local features to global models designed
to search for globally optimal solutions.
However, the existing global models tend
to employ only relatively simple local fea-
tures; therefore, the overall performance
gains are rather limited. The importance
of designing a local model is demonstrated
in this study by showing that the per-
formance of a sophisticated local model
can be considerably improved with recent
feature embedding methods and a feature
combination learning based on a neural
network, outperforming the state-of-the-
art global models in F1 on a common
benchmark dataset.

1 Introduction

A predicate-argument structure (PAS) analysis is
the task of analyzing the structural relations be-
tween a predicate and its arguments in a text
and is considered as a useful sub-process for a
wide range of natural language processing appli-
cations (Shen and Lapata, 2007; Kudo et al., 2014;
Liu et al., 2015).

PAS analysis can be decomposed into a set of
primitive subtasks that seek a filler token for each
argument slot of each predicate. The existing
models for PAS analysis fall into two types: local
models and global models. Local models indepen-
dently solve each primitive subtask in the point-
wise fashion (Seki et al., 2002; Taira et al., 2008;
Imamura et al., 2009; Yoshino et al., 2013). Such
models tend to be easy to implement and faster
compared with global models but cannot handle
dependencies between primitive subtasks. Re-

cently, the research trend is shifting toward global
models that search for a globally optimal solution
for a given set of subtasks by extending those local
models with an additional ranker or classifier that
accounts for dependencies between subtasks (Iida
et al., 2007a; Komachi et al., 2010; Yoshikawa
et al., 2011; Hayashibe et al., 2014; Ouchi et al.,
2015; Iida et al., 2015, 2016; Shibata et al., 2016).

However, even with the latest state-of-the-art
global models (Ouchi et al., 2015, 2017), the best
achieved F1 remains as low as 81.4% on a com-
monly used benchmark dataset (Iida et al., 2007b),
wherein the gain from the global scoring is only
0.3 to 1.0 point. We speculate that one reason
for this slow advance is that recent studies pay too
much attention to global models and thus tend to
employ overly simple feature sets for their base lo-
cal models.

The goal of this study is to argue the impor-
tance of designing a sophisticated local model be-
fore exploring global solution algorithms and to
demonstrate its impact on the overall performance
through an extensive empirical evaluation. In this
evaluation, we show that a local model alone is
able to significantly outperform the state-of-the-art
global models by incorporating a broad range of
local features proposed in the literature and train-
ing a neural network for combining them. Our best
local model achieved 13% error reduction in F1

compared with the state of the art.

2 Task and Dataset

In this study, we adopt the specifications of the
NAIST Text Corpus (NTC) (Iida et al., 2007b), a
commonly used benchmark corpus annotated with
nominative (NOM), accusative (ACC), and dative
(DAT) arguments for predicates. Given an input
text and the predicate positions, the aim of the PAS
analysis is to identify the head of the filler tokens
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for each argument slot of each predicate.
The difficulty of finding an argument tends to

differ depending on the relative position of the
argument filler and the predicate. In particular,
if the argument is omitted and the corresponding
filler appears outside the sentence, the task is much
more difficult because we cannot use the syntactic
relationship between the predicate and the filler in
a naive way. For this reason, a large part of pre-
vious work narrowed the focus to the analysis of
arguments in a target sentence (Yoshikawa et al.,
2011; Ouchi et al., 2015; Iida et al., 2015), and
here, we followed this setting as well.

3 Model

Given a tokenized sentence s and a target predicate
p in s with the gold dependency tree t, the goal of
our task is to select at most one argument token â
for each case slot of the target predicate.

Taking xa = (a, p, s, t) as input, our model es-
timates the probability p(c|xa) of assigning a case
label c ∈ {NOM, ACC, DAT, NONE} for each token
a in the sentence, and then selects a token with
a maximum probability that exceeds the output
threshold θc for c. The probability p(c|xa) is mod-
eled by a neural network (NN) architecture, which
is a fully connected multilayer feedforward net-
work stacked with a softmax layer on the top (Fig-
ure 1).

g = softmax(Wn+1hn + bn+1) (1)

hi = ReLU(BN(Wihi−1 + bi)) (2)

h1 = ReLU(BN(W1m + b1)) (3)

m = [hpath, wp, wa, f(xa)] (4)

The network outputs the probabilities g of as-
signing each case label for an input token a, from
automatically learned combinations of feature rep-
resentations in input m. Here, hi is an i-th hidden
layer and n is the number of hidden layers. We
apply batch normalization (BN) and a ReLU acti-
vation function to each hidden layer.

The input layer m for the feedforward network
is a concatenation of the three types of feature rep-
resentations described below: a path embedding
hpath, word embeddings of the predicate and the
argument candidate wp and wa, and a traditional
binary representation of other features f(xa).

3.1 Lexicalized path embeddings
When an argument is not a direct dependent of a
predicate, the dependency path is considered as

Figure 1: Network structure of our NN model

Figure 2: Path embedding

important information. Moreover, in some con-
structions such as raising, control, and coordina-
tion, lexical information of intermediate nodes is
also beneficial although a sparsity problem occurs
with a conventional binary encoding of lexicalized
paths.

Roth and Lapata (2016) and Shwartz et al.
(2016) recently proposed methods for embedding
a lexicalized version of dependency path on a sin-
gle vector using RNN. Both the methods embed
words, parts-of-speech, and directions and labels
of dependency in the path into a hidden unit of
LSTM and output the final state of the hidden unit.
We adopt these methods for Japanese PAS analy-
sis and compare their performances.

As shown in Figure 2, given a dependency path
from a predicate to an argument candidate, we first
create a sequence of POS, lemma, and dependency
direction for each token in this order by traversing
the path.1 Next, an embedding layer transforms
the elements of this sequence into vector represen-
tations. The resulting vectors are sequentially in-
put to RNN. Then, we use the final hidden state

1 We could not use dependency labels in the path since
traditional parsing framework in Japanese does not have de-
pendency labels. However, particles in Japanese can roughly
be seen as dependency relationship markers, and, therefore,
we think these adaptations approximate the original methods.
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For surface, lemma, POS,
predicate type of conjugated form,
p nominal form of nominal verb,

voice suffixes (-reru, -seru, -dekiru, -tearu)

For surface, lemma, POS, NE tag,
argument whether a is head of bunsetsu,
candidate particles in bunsetsu,
a right neighbor token’s lemma and POS

Between case markers of other dependents of p,
predicate whether a precedes p,
and whether a and p are in the same bunsetsu,
argument token- and dependency-based distances,
candidate naive dependency path sequence

Table 1: Binary features

as the path-embedding vector. We employ GRU
(Cho et al., 2014) for our RNN and use two types
of input vectors: the adaptations of Roth and La-
pata (2016), which we described in Figure 2, and
Shwartz et al. (2016), which concatenates vectors
of POS, lemma and dependency direction for each
token into a single vector.

3.2 Word embedding

The generalization of a word representation is one
of the major issues in SRL. Fitzgerald et al. (2015)
and Shibata et al. (2016) successfully improved
the classification accuracy of SRL tasks by gen-
eralizing words using embedding techniques. We
employ the same approach as Shibata et al. (2016),
which uses the concatenation of the embedding
vectors of a predicate and an argument candidate.

3.3 Binary features

Case markers of the other dependents Our
model independently estimates label scores for
each argument candidate. However, as argued
by Toutanova et al. (2008) and Yoshikawa et al.
(2011), there is a dependency between the argu-
ment labels of a predicate.

In Japanese, case markers (case particles) par-
tially represent a semantic relationship between
words in direct dependency. We thus introduce a
new feature that approximates co-occurrence bias
of argument labels by gathering case particles for
the other direct dependents of a target predicate.

Other binary features The other binary fea-
tures employed in our models have mostly been
discussed in previous work (Imamura et al., 2009;
Hayashibe et al., 2011). The entire list of our bi-
nary features are presented in Table 1.

4 Experiments

4.1 Experimental details

Dataset The experiments were performed on the
NTC corpus v1.5, dividing it into commonly used
training, development, and test divisions (Taira
et al., 2008).

Hyperparameters We chose the hyperparame-
ters of our models to obtain a maximum score in
F1 on the development data. We select 2, 000 for
the dimension of the hidden layers in the feedfor-
ward network from {256, 512, 1000, 2000, 3000},
2 for the number of hidden layers from {1, 2, 3, 4},
192 for the dimension of the hidden unit in GRU
from {32, 64, 128, 192}, 0.2 for the dropout rate
of GRUs from {0.0, 0.1, 0.2, 0.3, 0.5}, and 128 for
the mini-batch size on training from {32, 64, 128}.

We employed a categorical cross-entropy loss
for training, and used Adam with β1 = 0.9, β2 =
0.999, and ϵ = 1e − 08. The learning rate for
each model was set to 0.0005. All the model were
trained with early stopping method with a maxi-
mum epoch number of 100, and training was ter-
minated after five epochs of unimproved loss on
the development data. The output thresholds for
case labels were optimized on the training data.

Initialization All the weight matrices in GRU
were initialized with random orthonormal matri-
ces. The word embedding vectors were initialized
with 256-dimensional Word2Vec2 vectors trained
on the entire Japanese Wikipedia articles dumped
on September 1st, 2016. We extracted the body
texts using WikiExtractor,3 and tokenized them
using the CaboCha dependency parser v0.68 with
JUMAN dictionary. The vectors were trained on
lemmatized texts. Adjacent verbal noun and light
verb were combined in advance. Low-frequent
words appearing less than five times were replaced
by their POS, and we used trained POS vectors
for words that were not contained in a lexicon of
Wikipedia word vectors in the PAS analysis task.

We used another set of word/POS embedding
vectors for lexicalized path embeddings, initial-
ized with 64-dimensional Word2Vec vectors. The
embeddings for dependency directions were ran-
domly initialized. All the pre-trained embedding
vectors were fine-tuned in the PAS analysis task.

The hyperparameters for Word2Vec are “-cbow
2https://code.google.com/archive/p/Word2Vec/
3https://github.com/attardi/wikiextractor
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All F1 in different dependency distance
Model Binary feats. F1 (σ) Prec. Rec. Dep Zero 2 3 4 ≥ 5

B all 82.02 (±0.13) 83.45 80.64 89.11 49.59 57.97 47.2 37 21
B −cases 81.64 (±0.19) 83.88 79.52 88.77 48.04 56.60 45.0 36 21

WB all 82.40 (±0.20) 85.30 79.70 89.26 49.93 58.14 47.4 36 23
WBP-Roth all 82.43 (±0.15) 84.87 80.13 89.46 50.89 58.63 49.4 39 24
WBP-Shwartz all 83.26 (±0.13) 85.51 81.13 89.88 51.86 60.29 49.0 39 22
WBP-Shwartz −word 83.23 (±0.11) 85.77 80.84 89.82 51.76 60.33 49.3 38 21
WBP-Shwartz −{word, path} 83.28 (±0.16) 85.77 80.93 89.89 51.79 60.17 49.4 38 23
WBP-Shwartz (ens) −{word, path} 83.85 85.87 81.93 90.24 53.66 61.94 51.8 40 24

WBP-Roth −{word, path} 82.26 (±0.12) 84.77 79.90 89.28 50.15 57.72 49.1 38 24
BP-Roth −{word, path} 82.03 (±0.19) 84.02 80.14 89.07 49.04 57.56 46.9 34 18
WB −{word, path} 82.05 (±0.19) 85.42 78.95 89.18 47.21 55.42 43.9 34 21
B −{word, path} 78.54 (±0.12) 79.48 77.63 85.59 40.97 49.96 36.8 22 9.1

Table 2: Impact of each feature representation. “− word” indicates the removal of surface and lemma
features. “− cases” and “− path” indicate the removal of the case markers of other dependents and binary
path features, respectively. The task Zero is equivalent to the cases where the dependency distance ≥ 2.

1 -window 10 -negative 10 -hs 0 -sample 1e-5 -
threads 40 -binary 0 -iter 3 -min-count 10”.

Preprocessing We employed a common exper-
imental setting that we had an access to the gold
syntactic information, including morpheme seg-
mentations, parts-of-speech, and dependency re-
lations between bunsetsus. However, instead of
using the gold syntactic information in NTC, we
used the output of CaboCha v0.68 as our input
to produce the same word segmentations as in the
processed Wikipedia articles. Note that the train-
ing data for the parser contain the same document
set as in NTC v1.5, and therefore, the parsing ac-
curacy for NTC was reasonably high.

The binary features appearing less than 10 times
in the training data were discarded. For a path se-
quence, we skipped a middle part of intermediate
tokens and inserted a special symbol in the center
of the sequence if the token length exceeded 15.

4.2 Results
In the experiment, in order to examine the impact
of each feature representation, we prepare arbi-
trary combinations of word embedding, path em-
bedding, and binary features, and we use them as
input to the feedforward network. For each model
name, W, P, and B indicate the use of word em-
bedding, path embedding, and binary features, re-
spectively. In order to compare the performance
of binary features and embedding representations,
we also prepare multiple sets of binary features.
The evaluations are performed by comparing pre-
cision, recall, and F1 on the test set. These values
are the means of five different models trained with

the same training data and hyperparameters.

Impact of feature representations The first
row group in Table 2 shows the impact of the case
markers of the other dependents feature. Com-
pared with the model using all the binary features,
the model without this feature drops by 0.3 point
in F1 for directly dependent arguments (Dep),
and 1.6 points for indirectly dependent arguments
(Zero). The result shows that this information sig-
nificantly improves the prediction in both Dep and
Zero cases, especially on Zero argument detection.

The second row group compares the impact
of lexicalized path embeddings of two different
types. In our setting, WBP-Roth and WB com-
pete in overall F1, whereas WBP-Roth is partic-
ularly effective for Zero. WBP-Shwartz obtains
better result compared with WBP-Roth, with fur-
ther 0.9 point increase in comparison to the WB
model. Moreover, its performance remains with-
out lexical and path binary features. The WBP-
Shwartz (ens)−{word, path} model, which is the
ensemble of the five WBP-Shwartz−{word, path}
models achieves the best F1 score of 83.85%.

To highlight the role of word embedding and
path embedding, we compare B, WB, BP-Roth,
and WBP-Roth models on the third row group,
without using lexical and path binary features.
When we respectively remove W and P-Roth from
WBP-Roth, then the performance decreases by
0.23 and 0.21 in F1. Roth and Lapata (2016)
reported that F1 decreased by 10 points or more
when path embedding was excluded. However, in
our models, such a big decline occurs when we
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Dep Zero
Model ALL ALL NOM ACC DAT ALL NOM ACC DAT

On NTC 1.5

WBP-Shwartz (ens) −{word, path} 83.85 90.24 91.59 95.29 62.61 53.66 56.47 44.7 16
B 82.02 89.11 90.45 94.61 60.91 49.59 52.73 38.3 11
(Ouchi et al., 2015)-local 78.15 85.06 86.50 92.84 30.97 41.65 45.56 21.4 0.8
(Ouchi et al., 2015)-global 79.23 86.07 88.13 92.74 38.39 44.09 48.11 24.4 4.8
(Ouchi et al., 2017)-multi-seq 81.42 88.17 88.75 93.68 64.38 47.12 50.65 32.4 7.5

Subject anaphora resolution on modified NTC, cited from (Iida et al., 2016)

(Ouchi et al., 2015)-global 57.3
(Iida et al., 2015) 41.1
(Iida et al., 2016) 52.5

Table 3: Comparisons to previous work in F1

omit both path and word embeddings. This result
suggests that the word inputs at both ends of the
path embedding overlap with the word embedding
and the additional effect of the path embedding is
rather limited.

Comparison to related work Table 3 shows the
comparison of F1 with existing research. First,
among our models, the B model that uses only
binary features already outperforms the state-of-
the-art global model on NTC 1.5 (Ouchi et al.,
2017) in overall F1 with 0.6 point of improvement.
Moreover, the B model outperforms the global
model of Ouchi et al. (2015) that utilizes the basic
feature set hand-crafted by Imamura et al. (2009)
and Hayashibe et al. (2011) and thus contains al-
most the same binary features as ours. These re-
sults show that fine feature combinations learned
by deep NN contributes significantly to the perfor-
mance. The WBP-Shwartz (ens)−{word, path}
model, which has the highest performance among
our models shows a further 1.8 points improve-
ment in overall F1, which achieves 13% error re-
duction compared with the state-of-the-art grobal
model (81.42% of (Ouchi et al., 2017)-multi-seq).

Iida et al. (2015) and Iida et al. (2016) tackled
the task of Japanese subject anaphora resolution,
which roughly corresponds to the task of detect-
ing Zero NOM arguments in our task. Although
we cannot directly compare the results with their
models due to the different experimental setup, we
can indirectly see our model’s superiority through
the report on Iida et al. (2016), wherein the repli-
cation of Ouchi et al. (2015) showed 57.3% in F1,
whereas Iida et al. (2015) and Iida et al. (2016)
gave 41.1% and 52.5%, respectively.

As a closely related work to ours, Shibata et al.
(2016) adapted a NN framework to the model of

Ouchi et al. (2015) using a feedforward network
for calculating the score of the PAS graph. How-
ever, the model is evaluated on a dataset annotated
with a different semantics; therefore, it is difficult
to directly compare the results with ours.

Unfortunately, in the present situation, a com-
prehensive comparison with a broad range of prior
studies in this field is quite difficult for many his-
torical reasons (e.g., different datasets, annotation
schemata, subtasks, and their own preprocesses or
modifications to the dataset). Creating resources
that would enable a fair and comprehensive com-
parison is one of the important issues in this field.

5 Conclusion

This study has argued the importance of design-
ing a sophisticated local model before exploring
global solution algorithms in Japanese PAS anal-
ysis and empirically demonstrated that a sophisti-
cated local model alone can outperform the state-
of-the-art global model with 13% error reduction
in F1. This should not be viewed as a matter of
local models vs. global models. Instead, global
models are expected to improve the performance
by incorporating such a strong local model.

In addition, the local features that we employed
in this paper is only a part of those proposed in the
literature. For example, selectional preference be-
tween a predicate and arguments is one of the ef-
fective information (Sasano and Kurohashi, 2011;
Shibata et al., 2016), and local models could fur-
ther improve by combining these extra features.
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Abstract

When giving descriptions, speakers often
signify object shape or size with hand ges-
tures. Such so-called ‘iconic’ gestures rep-
resent their meaning through their rele-
vance to referents in the verbal content,
rather than having a conventional form.
The gesture form on its own is often am-
biguous, and the aspect of the referent that
it highlights is constrained by what the lan-
guage makes salient. We show how the
verbal content guides gesture interpreta-
tion through a computational model that
frames the task as a multi-label classifi-
cation task that maps multimodal utter-
ances to semantic categories, using anno-
tated human-human data.

1 Introduction

Besides natural language, human communication
often involves other modalities such as hand ges-
tures. As shown in Figure 1, when describing
two lanterns, one can describe “two lanterns” ver-
bally, while showing the relative position with
two hands facing each other. Interestingly, when
the same gesture is accompanied by the utterance
“a ball”, the same gesture may indicate shape.
These gestures (referred to as ‘iconic gestures’ in
gesture studies (McNeill, 1992)) are characterised
as conveying meanings through similarity to ref-
erents in verbal content, rather than conventional
forms of shape/trajectory. Hence, the interpreta-
tion of iconic gestures largely depends on verbal
content.

Although this theory has been proposed and
confirmed in various gesture studies (Feyereisen
and De Lannoy, 1991; McNeill, 1992; Kita and
Özyürek, 2003; Kita et al., 2007; Özyürek et al.,
2008; Bergmann et al., 2014, 2013b), it has not

Figure 1: Speech / gesture description of a vir-
tual scene: “. . . sind halt zwei Laternen” (“[there]
are two lanterns”). Gestures indicate the amount
(two) and relative placement of the two lanterns,
while speech indicates the entity name and
amount. From (Lücking et al., 2010).

attracted much attention from works on human-
computer interfaces (HCIs), which usually assume
that gestures have predefined meanings either
through conventional agreements (e.g., “thumb
up” for “great”), or defined by the system (e.g.,
“circling” for “circle”) (Stiefelhagen et al., 2004;
Burger et al., 2012; Lucignano et al., 2013;
Rodomagoulakis et al., 2016). Hence, the systems
can only interpret a limited number of gestures by
classifying gestures based on the shape/trajectory
of hands, then combining the information with
language. We propose that, in order to incor-
porate iconic gestures in HCIs, natural language
should be taken as an important resource to inter-
pret iconic gestures.

The relation between speech and iconic gestures
has certainly been investigated in previous work.
Empirical studies such as (Kita and Özyürek,
2003; Kita et al., 2007) analysed speech and ges-
ture semantics with statistical methods and show
that the semantics of speech and gestures coor-
dinate with each other. However, it remains un-
clear how to computationally derive the semantics
of iconic gestures and build corresponding mul-
timodal semantics together with the accompany-
ing verbal content. In this paper, we address this
“how” question and present a computational ap-
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Verbal utterance U “two, lanterns”
Gesture G two hands facing each other

Speech semantics [entity, amount]

Gesture semantics [relative position, amount]

Multi-modal
semantics

[entity, relative position,
amount]

Figure 2: Example of a multimodal utterance, and
semantic categories.

proach that predicts speech and gesture seman-
tic categories using speech and gesture input as
features. Speech and gesture information within
the same semantic category can then be fused
to form a complete multimodal meaning, where
previous methods on representing multimodal se-
mantic (Bergmann and Kopp, 2008; Bergmann
et al., 2013a; Lascarides and Stone, 2009; Gior-
golo, 2010) can be applied. Consequently, this
enables HCIs to construct and represent multi-
modal semantics of natural communications in-
volving iconic gestures.

We investigated whether language informs the
interpretation of iconic gestures with the data from
the SAGA corpus (Lücking et al., 2010). From
the SAGA corpus, we take gesture-speech ensem-
bles as well as semantic category annotations of
speech and gestures according to the information
they convey. Using words and annotations of ges-
tures to represent verbal content and gesture in-
formation, we conducted experiments to map lan-
guage and gesture inputs to semantic categories.
The results show that language is more informa-
tive than gestures in terms of predicting iconic ges-
ture semantics and multimodal semantics.

2 Task formulation

We now describe the task formally. Suppose a ver-
bal utterance U is accompanied by a gesture G
(as shown in Figure 2), we represent the speech-
gesture ensemble as (U,G). The ultimate goal is
to map the input information of (U,G) to a set of
semantic categories according to the information
they convey (as shown in Figure 3), then compose
the multi-modal semantics of the ensemble with
information in the same category across speech
and gestures.

We define a mapping function f that takes a
speech-gesture ensemble (U,G) as input, and out-
puts semantic categories ci, computed by the set
of features of U and G. Additionally, we as-

f(U, G)

entity

amount

relative 
position

lantern

2

obj1:(x1, y1) 
 obj2:(x2, y2)

Figure 3: Mapping a speech-gesture ensemble to
semantic categories in blue rectangles (U and G in-
dicate speech and gesture). Dashed rectangles in-
dicate the value of each semantic category, which
are not included in our current work.

sume each modality has its own meaning function
fu(U) and fg(G). In this paper, we make the as-
sumption that multi-modal meaning outputted by
f(U,G) is in fact the union of fu(U) and fg(G):

fu(U) = {c1, c2}
fg(G) = {c2, c3}

f(U,G) = {c1, c2, c3}
(1)

Figure 3 shows an example of mapping the ver-
bal utterance “two lanterns” to semantic categories
{amount, entity}, while mapping the gesture to
categories: {amount, relative position}. The se-
mantics of the ensemble (U,G) is composed of the
semantic categories and their values (in the dashed
boxes). In this work we focus on predicting the se-
mantic category rather than their value, which we
leave for future work.

We derive input features for the mapping task
from speech and gestures respectively:

a) Language features: The word tokens of each
verbal utterance are taken as a bag-of-words to
represent linguistic information. b) Gesture fea-
tures: Hand movements and forms, including hand
shape, palm direction, path of palm direction,
palm movement direction, wrist distance, wrist
position, path of wrist, wrist movement direction,
back of hand direction and back of hand direc-
tion movement, are derived as gesture features (as
there was no hand motion data, these features were
manually annotated, see below for details).

Modelling the learning task We frame the ver-
bal utterance/gesture multimodal semantic cate-
gory mapping problem as a multi-label classifi-
cation task (Tsoumakas and Katakis, 2006) where
several labels are predicted for an input.

Given an input feature vector X , we predict a
set of semantic category labels {c1, · · · , ci}, of
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which the length is variable. The prediction task
can be further framed as multiple binary classifica-
tion tasks. Technically, we trained a linear support
vector classifier (SVC)1 for each semantic label ci
(6 label classifiers in total). Given an input feature
X , we apply all semantic label classifiers to the
feature vector. If a semantic label classifier gives
positive prediction for input X , we assign the se-
mantic label to the input. For example, given fea-
ture vector of the input utterance “two lanterns”,
only the amount and entiry label classifiers give
positive predictions, thus we assign amount and
entity to the input utterance.

The word/gesture utterances are encoded as
several-hot feature vectors as input of the classi-
fiers, which will be explained now.

3 The SAGA corpus

We conducted the experiments with the SAGA
corpus (Lücking et al., 2010), which provides fine-
grained annotations for speech and gestures.
The data The corpus consists of 25 dialogues
of route and sight descriptions of a virtual town.
In each dialogue, a route giver gave descriptions
(e.g., route directions, shape, size and location of
buildings) of the virtual town to a naive route fol-
lower with speech (in German) and gestures. The
dialogues were recorded with three synchronised
cameras from different perspectives.

In total, 280 minutes of video and audio data
were recorded. The audio was manually tran-
scribed and aligned with videos; the gestures were
manually annotated and segmented according to
video and audio recordings. We selected 939
speech-gesture ensembles out of 973 annotations
(Bergmann et al., 2011), omitting 34 without full
annotations of speech/gesture semantic categories
and gesture features. The semantic categories
were annotated according to the semantic infor-
mation that speech and gestures contained. In our
data set, each item is a tuple of 4 elements: (words,
gesture features, speech semantic categories, ges-
ture semantic categories).

There are 5 gesture semantic category labels:
shape, size, direction, relative position, amount;
the speech semantic labels consist of these and an
extra label of entity (6 labels in total). Since there
was only one gesture labeled as direction, we treat

1penalty: `2, penalty parameter C=1.0, maxi-
mum iteration 1000, using an implementation in
http://scikit-learn.org.
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Figure 4: (a) Histogram of semantic labels per ut-
terance/gesture. (b) Histogram of semantic labels.
(Rel Pos indicates relative position.)

it as a rare instance, and removed it from the eval-
uation experiments. From these the multi-modal
category labels are derived as the union of those
two sets for each ensemble.

Data statistics Bergmann et al. (2011) provides
detailed data statistics regarding the relation of
speech and gestures of the corpus. As we focus on
speech and gesture semantics only here, we report
statistics only for the 939 speech-gesture ensem-
bles. On average, each verbal utterance is com-
posed of 3.15 words. 386 gestures (41%) provide
a semantic category on top of the verbal utterance
(e.g., speech: {amount, shape}, gesture: {relative
position}), 312 (33%) gestures convey the same
amount of semantic information as the verbal ut-
terance (e.g., speech: {amount, shape}, gesture:
{amount, shape}), and 241 (26%) conveys part of
the semantics of the verbal utterance (e.g., speech:
{amount, shape}, gesture: {amount}).

As shown in Table 4 (a), 56% of verbal utter-
ances and 80% of gestures are annotated with only
a single label. On average, each gesture was an-
notated with 1.23 semantic labels and each utter-
ance with 1.51 semantic labels. As shown in Fig-
ure 4 (b), there are many more utterances labeled
with shape, relative position and entity than the
other labels, making the data unbalanced. More-
over, there are considerably more gestures anno-
tated with labels of shape and relative position.

Gesture features Since there is no tracked hand
motion data, we used the manual annotations to
represent gestures. For instance, the gesture in
Figure 1 is annotated as: Left hand: [5 bent,
PAB/PTR, BAB/BUP, C-LW, D-CE]; right hand:
[C small, PTL, BAB/BUP, LINE, MD, SMALL,
C-LW, D-CE] in the order of hand shape, hand
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palm direction, back of hand direction, wrist po-
sition. (See (Lücking et al., 2010) for the details
of the annotation scheme). Other features such as
path of palm direction which are not related to this
static gesture were set as 0.

We treated these annotated tokens as “words”
that describe gestures. Annotations with more
than 1 token were split into a sequence of tokens
(e.g., BAB/BUP to BAB, BUP). Therefore, ges-
ture feature sequences have variable lengths, in the
same sense as utterances have variable amount of
word tokens.

4 Experiments

We randomly selected 70% of the gesture-speech
ensembles as a training set, using the rest as a
test set. We designed 3 experiments to investi-
gate whether and to what degree language and ges-
tures inform mono-modal and multimodal seman-
tics. Each experiment was conducted under 3 dif-
ferent setups, namely, using: a) only gesture fea-
tures; b) only language features; c) gesture fea-
tures and language features, as shown in Table 1.

Metrics We calculated F1-score, precision and
recall for each label, and find their average,
weighted by the number of true instances for each
label, so that imbalanced labels are taken into ac-
count.

4.1 Results
Language semantics As shown in Table 1, the
most informative features of language semantic
categories are words on their own. It achieves
an F1-score of 0.79 for each label, well above
a chance level baseline accuracy 0.17. While
as expected, gesture features are not very infor-
mative for language semantics, the gesture-only
still classifier outperforms the chance level base-
line with 0.38. The combination of features in
the joint classifier results in slightly worse perfor-
mance than language features alone, suggesting
some of the gestural semantics may be comple-
mentary to, rather than identical to, the language
semantics.

Gesture semantics While language features
help predict the semantics of their own modal-
ity, the same is not true of gesture features. The
language-only classifier achieves an F1-score of
0.78 when predicting gesture semantics, while the
gesture features-only setting only achieves 0.61.

Semantics Features Precision Recall F1-
score

Language

L 0.85 0.75 0.79
G 0.47 0.37 0.38
L+G 0.86 0.69 0.75

Gesture

L 0.80 0.78 0.78
G 0.59 0.63 0.61
L+G 0.82 0.77 0.78

Multimodal

L 0.82 0.80 0.81
G 0.62 0.60 0.58
L+G 0.83 0.80 0.80

Table 1: Evaluation results. (L and G indicates
language and gesture.)

Combining language and gesture features does
not improve performance, but results in a slightly
higher precision score (+0.02). This is consistent
with previous observations in gesture studies (Fey-
ereisen and De Lannoy, 1991) that iconic gestures
are difficult to interpret without speech. Even hu-
mans perform poorly on such a task without verbal
content.

In our setup, the abstract gesture features might
be one of the reasons for poor performance. Only
10 manually annotated categories were used to
represent gestures, so these features might not be
optimal for a computational model. It is possible
that with more accurate gesture features (e.g. mo-
tion features), gestures can be better represented
and more informative for interpreting gesture se-
mantics.

Multimodal semantics As gestures can add
meaningful semantic information not present in
concurrent speech, we trained and evaluated clas-
sifiers on multimodal semantic categories. We as-
sume these are the union of the gesture and lan-
guage semantics for a given ensemble (as in func-
tion f in (1) above). As per the data statistics,
there are the same possible 6 atomic categories
as the language semantics (though they can come
from the gesture as well as from the speech). As
shown in Table 1, the language-only classifier per-
forms best on this set with an F1-score of 0.81,
marginally outperforming the combined language
and gesture features system’s 0.80. Both signifi-
cantly outperform the gesture-only classifier. As
with the results on gesture semantics, this sug-
gests that multimodal meaning and meaning of
iconic gesture relies heavily on speech, in accor-

137



0 2 4 6 8
Relative position classifier: language features

0

2

4
Fe

at
ur

e 
we

ig
ht

re
ch

ts

lin
ks

zw
ei

m
itt

e

re
ch

t

wa
ss

er
flä

ch
e

da un
te

r

lin
k

an

0 2 4 6 8
Size classifier: language features

0

2

4

Fe
at

ur
e 

we
ig

ht

kle
in

gr
oß

ku
rz

br
ei

t

rie
se

np
la

tz
zw

ei
ge

sc
ho

ss
ig

ho
ch

m
et

er

dr
ei

ge
sc

ho
ss

ig
ei

ng
es

ch
os

sig

0 2 4 6 8
Relative position classifier: hand features

0

2

4

Fe
at

ur
e 

we
ig

ht

b_
be

nt
_lo

os
e_

sp
re

ad
5_

lo
os

e
o_

lo
os

e_
ta

pe
re

d
s_

1

pa
b

c_
lo

os
e_

la
rg

e
y_

lo
os

e
d_

be
nt

g_
be

nt
lo

os
e

0 2 4 6 8
Size classifier: hand features

0

2

4

Fe
at

ur
e 

we
ig

ht

bt
b

b_
an

gl
ed

pu
p

g_
lo

os
e_

be
nt

b_
lo

os
e

m
l

m
ed

iu
m

m
d

bt
r

ar
c

Figure 5: Featuring ranking according to coefficient values (weights assigned to the features, see
(Lücking et al., 2010) for the details of the annotation scheme).

dance with the finding that the majority of gestures
are inherently underspecified semantically by their
physical form alone (Rieser, 2015).

Regarding individual semantic categories, we
find gesture features are more informative for
shape and relative positions; language is more in-
formative for size, direction and amount in our
dataset. Figure 5 shows the gesture and lan-
guage feature ranking results for classifiers of en-
tity and relative position accordingly. For rel-
ative position label prediction, the most infor-
mative language features are the words “rechts”
(right) and “links” (left), while hand shape, such
as b bent loose spread (an open palm, thumb ap-
plied sideways, but not clearly folded and with a
weak hand tension) and 5 loose (an open palm
with a weak hand tension) are the two most in-
formative gesture features. For size label predic-
tion, the most informative language features are
words that specify size such as “klein” (small) and
“groß” (big); the most informative gesture feature
is back of hand palm direction (btb, back of hand
palm facing towards body).

5 Conclusion

Language and co-verbal gestures are widely ac-
cepted as an integral process of natural commu-
nication. In this paper, we have shown that natural
language is informative for the interpretation of a
particular kind of gesture, iconic gestures. With
the task of mapping speech and gesture informa-
tion to semantic categories, we show that language

is more informative than gesture for interpreting
not only gesture meaning, but also the overall mul-
timodal meaning of speech and gesture. This work
is a step towards HCIs which take language as an
important resource for interpreting iconic gestures
in more natural multimodal communication. In fu-
ture work, we will predict speech/gesture seman-
tics using raw hand motion features and investi-
gate prediction performance in an online, contin-
uous fashion. This forms part of our ongoing in-
vestigation into the interplay of speech and gesture
semantics.
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Abstract

Emotion Analysis is the task of modelling la-
tent emotions present in natural language. La-
belled datasets for this task are scarce so learn-
ing good input text representations is not triv-
ial. Using averaged word embeddings is a sim-
ple way to leverage unlabelled corpora to build
text representations but this approach can be
prone to noise either coming from the embed-
ding themselves or the averaging procedure.
In this paper we propose a model for Emotion
Analysis using Gaussian Processes and kernels
that are better suitable for functions that ex-
hibit noisy behaviour. Empirical evaluations in
a emotion prediction task show that our model
outperforms commonly used baselines for re-
gression.

1 Introduction

The goal of Emotion Analysis is to infer latent emo-
tions from textual data (Strapparava and Mihalcea,
2007). This problem has theoretic roots in psycholin-
guistics studies such as Clore et al. (1987) and Ortony
et al. (1987), which aim to understand connections be-
tween emotions and words. However, Emotion Anal-
ysis also has motivations from an applied perspective,
being closely related to Opinion Mining (Pang and Lee,
2008). The main difference is that the latter is usually
concerned with coarse polarity predictions, while the
former aims at modelling different emotional aspects
in a more fine-grained level. Table 1 shows some ex-
amples taken from the “Affective Text” dataset (Strap-
parava and Mihalcea, 2007), in which human judges
annotate news headlines according to the taxonomy
proposed by Ekman (1993). Each label is a score in
the [0 − 100] range, where 0 means lack of the cor-
responding emotion and 100 corresponds to maximal
emotional load.

Given the nature of the task and the available
datasets, a sensible approach for Emotion Analysis is
through regression models that map texts to emotion

∗ This work was partially done while the author was at
The University of Sheffield, United Kingdom.

scores. This requires the choice of a suitable text repre-
sentation so it can be incorporated into a model. Bag-
of-words (BOW) are a common approach that works
well in the presence of large amounts of data but it
is unsuitable for Emotion Analysis datasets since they
tend to be scarce.

An alternative is to leverage unlabelled data through
the use of word embeddings (Deerwester et al., 1990;
Turian et al., 2010; Mikolov et al., 2013). To obtain
a fixed vector representation for a text, one can aver-
age the embeddings for each word present in the text.
While this method can lose linguistic information such
as word order, for some tasks it still gives good empiri-
cal performance (Hu et al., 2014; Kenter and de Rijke,
2015). However, word embeddings are known to be
prone to noise due to the different contexts captured
in the training procedure (Nguyen et al., 2016). This
effect can be potentialised by simple averaging proce-
dures.

In this work we propose to use Gaussian Processes
(GPs) (Rasmussen and Williams, 2006) to develop
Emotion Analysis models that capture noisy functions
that map text representations to the emotion scores.
More specifically, we propose the use of the Matèrn
class of kernels to address this problem. Empirical
evaluations show that our approach can outperform
simpler out-of-the-box choices commonly employed in
regression tasks. Overall, we show that properly moti-
vated choices of kernels can bring benefits in prediction
performance.

While the focus of this work is on Emotion Analy-
sis, the methods proposed here are general and can be
applied to other text regression settings.

2 Gaussian Process Regression

In this Section we introduce the basic concepts around
GP regression. We follow closely the definition of GPs
in Rasmussen and Williams (2006).

Let X = {(x1, y1), (x2, y2), . . . , (xn, yn)} be a
dataset where each x ∈ RD is a D-dimensional in-
put and y ∈ R is its corresponding response variable.
A GP prior is defined as a stochastic model over the
latent function f that maps the inputs in X to their cor-
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anger disgust fear joy sadness surprise

Storms kill, knock out power, cancel flights 3 9 82 0 60 0
Morrissey may cheer up Eurovision 0 0 2 61 0 10
Archaeologists find signs of early chimps’ tool use 0 0 2 23 0 64
Republicans plan to block Iraq debate 60 17 0 0 37 7
European Space Agency 0 0 0 2 0 0

Table 1: Emotion annotation examples, taken from the Affective Text dataset. Scores are in the [0− 100] range.

responding response variables. Formally,

f(x) ∼ GP(m(x), k(x,x′)),

where m(x) is the mean function and k(x,x′) is the
kernel or covariance function, which describes the co-
variance between values of f at the different locations
of x and x′. For simplicity, we assume m(x) = 0.

The GP prior is combined with a likelihood via
Bayes’ rule to obtain a posterior over the latent func-
tion:

p(f |X,y) =
p(y|X, f)p(f)

p(y|X)
,

where X and y are the training inputs and response
variables, respectively. In regression, we usually as-
sume a Gaussian likelihood for y, i.e., each yi =
f(xi) + η, where η ∼ N (0, σ2

n) is added white noise.
This allows us to have an exact, closed formula so-
lution for the posterior, which is itself a Gaussian
p(f |X,y) ∼ N (y,K + σ2

nI), where K is the Gram
matrix of kernel evaluations between inputs.

To obtain predictions for an unseen input x∗ we in-
tegrate over all possible values of f . Since we assume
a Gaussian likelihood for the unseen response variable
y∗, we can obtain its distribution exactly,

p(y∗|x∗,X,y) = N (f∗|µ∗, σ2
∗)

µ∗ = kT
∗ (K + σ2In)−1y

σ2
∗ = k(x∗,x∗)− kT

∗ (K + σ2In)−1k∗,

where k∗ = [〈x1,x∗〉, 〈x2,x∗〉, . . . , 〈xn,x∗〉] is the
vector of kernel evaluations between the unseen input
and each training input.

Choosing an appropriate kernel is a crucial step in
defining a GP model. One common choice is to employ
the squared exponential (SE) kernel,1

kSE(x,x′) = σv exp(−r
2

2
) ,

where r2 =
D∑

i=1

(xi − x′i)2
`2

is the scaled distance between the two inputs, σv is a
scale hyperparameter and ` is a lengthscale hyperpa-
rameter.

The SE kernel is vastly used not only in GP models
but also in Support Vector Machines (SVMs) since it is

1Also known as Radial Basis Function (RBF) kernel.

a simple way to have a flexible non-linear model over
the data. However, from a GP perspective it assumes
the process is infinitely mean-square differentiable.2 In
practice, this means the resulting GP encodes functions
with strong smoothness, which is not an ideal property
in the presence of high amounts of noise.

2.1 Matèrn kernels

Matèrn kernels (Rasmussen and Williams, 2006, Sec.
4.2.1) are an alternative class of kernels that relax the
smoothness assumptions made by the SE kernels. For-
mally, they define GPs which are ν-times mean-square
differentiable only. Common values for ν are the half-
integers 3⁄2 and 5⁄2, resulting in the following kernels:

kMat32(x,x′) = σv(1 +
√

3r2) exp(−
√

3r2)

kMat52(x,x′) = σv

(
1 +
√

5r2 +
5r2

3

)
exp(−

√
5r2) .

Higher values for ν are usually not very useful since
the resulting behaviour is hard to distinguish from limit
case ν →∞, which retrieves the SE kernel.

On Figure 1 we plot samples from three GP priors
with Matèrn kernels with different values for ν. We
can see that lower values for ν result in noisier func-
tions. When ν =1⁄2 we recover a simple exponential
kernel, equivalent to Brownian motion in one dimen-
sion (Rasmussen and Williams, 2006, Sec. 4.2). The
Matèrn class of kernels allows us to find a compromise
between full noise behaviour and extreme smoothness,
as in the case of SE.

2.2 Hyperparameter Optimisation

Most kernels rely on appropriate choices of hyper-
parameters, a problem of model selection. In non-
Bayesian approaches such as SVMs, an usual approach
for this is grid search, where we evaluate a set of val-
ues on a development set and choose the one with best
performance. This approach can be brittle as values are
constrained to the grid. It also does not scale well with
the number of hyperparameters.

GPs have an elegant way to perform model selection:
maximising the (log) marginal likelihood with respect

2Mean-square differentiability is a commonly used gen-
eralisation of differentiability applied to stochastic functions.
See (Rasmussen and Williams, 2006, Sec. 4.1.1) for more
details.
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Figure 1: Sample functions from Matèrn kernels with
different values for ν. The black line is equivalent to a
sample from an SE kernel.

to the training data,

log p(y|X,θ) = −yT K̄−1y
2

− log |K̄|
2

− n log 2π
2

,

where K̄ = K+σ2In and θ represents the set of hyper-
parameters (such as the lengthscale ` and the bias term
b). The main advantage of this method is that we can
define gradients of the marginal likelihood and employ
gradient ascent optimisers, which are much faster than
grid and random search.

Another advantage of this method is that it obviates
the need of a validation set, making full use of the
whole available training data. To understand why, we
can inspect the terms of the marginal likelihood for-
mula: the first one is the data-fit term and it is the
only one that depends on the outputs; the second one
is the complexity penalty, which depends only on the
inputs and the third one is a normalisation constant. In-
tuitively, the optimisation procedure balances between
complex models that highly fit the data and simple
models that give a lower complexity penalty, prevent-
ing overfitting.

3 Experiments
We performed a set of experiments using two freely
available datasets for Emotion Analysis, in order to as-
sess our proposed models.3

3.1 Data and Preprocessing
The first dataset was employed in the SemEval2007
Affective Text shared task (Strapparava and Mihalcea,
2007) and is composed of a set of news headlines man-
ually annotated by human judges.4 We combined the

3Code to replicate all experiments in this section
is available at https://github.com/beckdaniel/
ijcnlp17_emo

4Available at web.eecs.umich.edu/˜mihalcea/
downloads.html#affective

official “dev” and “test” sets from the shared task into
a single dataset containing 1,250 instances in total.

To put our models in perspective with the state-
of-the-art, we also tested them in the recently re-
leased dataset for the WASSA2017 workshop shared
task (Mohammad and Bravo-Marquez, 2017b).5 The
dataset is composed of tweets annotated with four of
the six Ekman emotions (anger, fear, joy and sadness),
with ratings originally provided by Best-Worst Scal-
ing and transformed into values in the [0 − 1] inter-
val (Mohammad and Bravo-Marquez, 2017a). Unlike
SemEval2007, this dataset has different instances per
emotion. We combined the official “train” and “dev”
sets and use that as our full training set, for each emo-
tion.

All texts were tokenised6, lowercased and we used
100-dimensional GloVe embeddings (Pennington et al.,
2014) to represent each word7. To obtain a fixed vector
representation for each headline we used the average
of its word embeddings, ignoring out-of-vocabulary
words.

3.2 Models

We compared the performance of the proposed Matèrn
kernels with models based on linear and SE kernels.
All GP models have hyperparameters optimised using
100 iterations of L-BFGS. Our implementation is based
on the GPy toolkit.8

We also compared our approach with two non-
Bayesian approaches commonly used in the literature,
ridge regression and support vector regression (SVR)
with an SE kernel. For these models we used grid
search to optimise hyperparameters. The grid search
procedure uses 3-fold cross-validation within the train-
ing set, using two folds for training and one fold as
a development set. Hyperparameter values are selected
by averaging the best results obtained for each fold. We
use the scikit-learn toolkit (Pedregosa et al., 2011) as
our underlying implementation. The hyperparameter
grid for each model is shown on Table 2.

Ridge
λ (regularisation coefficient) [0.01, 0.1, 1, 10, 100]

SVR
C (error penalty) [0.01, 0.1, 1, 10, 100]
ε (margin size) [0.001, 0.01, 0.1, 1, 10]
` (SE kernel lengthscale) [0.01, 0.1, 1, 10, 100]

Table 2: Hyperparameter grids for the non-Bayesian
baselines.

5Availabe at http://saifmohammad.com/
WebPages/EmotionIntensity-SharedTask.
html

6We used the NLTK (Bird et al., 2009) PTB tokeniser.
7We used the GloVe version trained on a combination

of Wikipedia and Gigaword, available at nlp.stanford.
edu/projects/glove

8github.com/SheffieldML/GPy
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3.3 Evaluation

We evaluated our models using Pearson’s r correlation
measure and Negative Log Predictive Density (NLPD)
(Quiñonero-Candela et al., 2006). Pearson’s r is the
main metric used in previous work in Emotion Analy-
sis and also other regression tasks. NLPD corresponds
to the likelihood of the test label given the correspond-
ing predictive distribution and it is a common way to
compare GP models. It is not applicable for models
that give point estimates as predictions (such as SVR)
but it is useful when information about the predictive
distributions is available. Higher Pearson’s r and lower
NLPD correspond to better performance.

For the SemEval2007 dataset we performed our ex-
periments using 10-fold cross-validation and average
the results. For the WASSA2017 dataset, we tested the
performance on the official “test” sets for each emotion
to make results comparable with the original shared
task submissions.

3.4 Results on SemEval2007

Table 3 shows the results for all models, averaged over
the emotions. We can see that both models based on
Matèrn kernels outperformed the baselines. Within the
Matèrn models there is a slight preference over the
Matèrn 3⁄2 in terms of Pearson’s r but it is not signi-
ficative.

r ↑ NLPD↓
Baselines
Ridge 0.547 –
SVR 0.593 –
GP Linear 0.549 4.10
GP SE 0.596 4.07

Proposed Models
GP Matèrn 3⁄2 0.616 4.05
GP Matèrn 5⁄2 0.609 4.05

Table 3: Results on SemEval2007, averaged over all
emotions and all 10 cross-validation folds.

In Table 4 we discriminate the results over each par-
ticular emotion, where we observe some interesting
phenomena. For joy we can see that a linear GP shows
higher Pearson’s r compared to a GP with an SE kernel.
To investigate this we inspected the individual folds for
the GP SE model and we found out one of the models
ended up with very low lengthscale, which resulted in
an interpolation behaviour leading to overfitting. The
Matèrn models did not suffer from this.

The emotion where we see the least gains from our
proposed models is fear, which is also the one with
higher absolute correlation in all models. This might
be a case of diminishing returns, where we do not see
much gains from using a more involved kernel because
the emotion is already well explained by simpler mod-
els.

3.5 Results on WASSA2017
Table 5 shows the results for WASSA2017, averaged
over all emotions/datasets. We see similar trends to the
SemEval2007 results, with the Matèrn kernels outper-
forming the baselines and a small preference for the
Matérn 3⁄2 variant.

On Table 6 we compare our models with the official
shared task baseline and the wiining submission. The
Matèrn 3⁄2 model would be placed in 11th place of a to-
tal of 22 submissions, which is a promising result con-
sidering that it can be applied to other feature sets be-
yond word embeddings. To show this, we train another
model using the 300 dimensional version of GloVe em-
beddings, which gives further gains in terms of Pear-
son’s r, reaching 10th place in the official results.

The best performing submissions at this shared task
used a range of other features beyond word embed-
dings, such as emotion lexicons and character ngrams.
For future work, we plan to apply our models to these
feature sets to check if they can also benefit from the
flexibility coming from Matèrn kernels.

4 Related Work
Emotion Analysis has been studied in other domains
beyond News headlines. Alm et al. (2005) studied
emotions in the context of children’s fairy tales and de-
veloped a corpus annotated at the sentence level. They
use coarse-grained labels, which account for the pres-
ence or absence of emotions in each sentence. Mihal-
cea and Strapparava (2012) focused on analysing emo-
tions from music, combining information from song
lyrics and melody notes. They consider more fine-
grained labels in this work and show promising results.

The work of Beck et al. (2014) is similar to ours,
which focuses on applying multi-task GPs to encode
interactions between emotions. Unlike our approach,
they use a simple bag-of-words representation and an
SE kernel as the underlying GP model. Compared to
our model, they show much lower correlation scores
(their best model achieves 0.399 Pearson’s r on the
SemEval2007 dataset), although these are not strictly
comparable since they use different data splits and do
not perform cross-validation. However, their approach
is orthogonal to ours: combining the Matérn kernels
within a multi-task GP framework can be a promising
avenue for future work.

Gaussian Processes have recently been proposed in
a range of NLP tasks. In regression, GPs have been
used to predict how long expert translators take to post-
edit the output of Machine Translation systems (Cohn
and Specia, 2013; Shah et al., 2013; Beck et al., 2016).
GPs have also been used in social media settings,
such as modelling temporal information about word
usage (Preoiuc-Pietro and Cohn, 2013), user profiling
(Lampos et al., 2014) and detecting rumour spreading
(Lukasik et al., 2015). Many of these works rely on
the ability to encode prior knowledge about the task
through the use of appropriate kernels.
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Anger Disgust Fear Joy Sadness Surprise
r NLPD r NLPD r NLPD r NLPD r NLPD r NLPD

Baselines
Ridge 0.584 – 0.445 – 0.680 – 0.539 – 0.636 – 0.399 –
SVR 0.632 – 0.510 – 0.732 – 0.558 – 0.687 – 0.438 –
GP Linear 0.587 3.94 0.449 3.81 0.681 4.16 0.539 4.35 0.636 4.31 0.404 4.06
GP SE 0.638 3.92 0.515 3.80 0.737 4.08 0.531 4.33 0.693 4.25 0.462 4.03

Proposed models
GP Matèrn 3⁄2 0.650 3.90 0.540 3.76 0.740 4.07 0.595 4.29 0.700 4.24 0.472 4.03
GP Matèrn 5⁄2 0.647 3.91 0.533 3.78 0.740 4.08 0.592 4.29 0.698 4.24 0.445 4.01

Table 4: Emotion specific results for SemEval2007.

r ↑ NLPD↓
Baselines
Ridge 0.528 –
GP Linear 0.527 -0.365
GP SE 0.551 -0.375

Proposed Models
GP Matèrn 3⁄2 0.571 -0.390
GP Matèrn 5⁄2 0.567 -0.386

Table 5: Results for WASSA2017, using the official
test set provided at the shared task.

r ↑
Proposed Models
GP Matèrn 3⁄2 0.571
GP Matèrn 3⁄2 + 300d embs 0.627

Shared task submissions
Best baseline 0.660
Winning submission 0.747

Table 6: Comparison with other WASSA 2017 shared
task submissions.

5 Conclusions

Emotion Analysis is a task that relies on scarce, noisy
and potentially biased datasets. The use of word em-
beddings can help tackle sparsity problems but furthers
add noise to the data being modelled. In this paper
we proposed a Gaussian Process approach for Emo-
tion Analysis that can better incorporate these aspects.
Empirical findings showed that noisy behaviour can be
better modelled by Matèrn kernels compared to other
commonly used kernels in the literature.

An interesting avenue for future work is to address
noise and bias in the response variables as well. For
the kind of labels we employ in Emotion Analysis, a
possible extension is to remove the Gaussian constraint
and employ different likelihoods, such as a Beta distri-
bution over the scale limits, for instance. This how-
ever makes the model intractable and approximation
schemes (such as the one proposed by Opper and Ar-
chambeau (2008)) should be employed. Finally, we

also plan to apply the ideas showed here to other NLP
problems with similar settings. In particular, we be-
lieve the proposed approach can be useful in any set-
ting where (noisy) embeddings should be mapped to
manually provided scores.
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Abstract

In this paper, we investigate the effec-
tiveness of different affective lexicons
through sentiment analysis of phrases.
We examine how phrases can be repre-
sented through manually prepared lexi-
cons, extended lexicons using computa-
tional methods, or word embedding. Com-
parative studies clearly show that word
embedding using unsupervised distribu-
tional method outperforms manually pre-
pared lexicons no matter what affective
models are used in the lexicons. Our con-
clusion is that although different affective
lexicons are cognitively backed by theo-
ries, they do not show any advantage over
the automatically obtained word embed-
ding.

1 Introduction

Sentiment analysis aims to infer the polarity ex-
pressed in a text, which has important applica-
tions for data analysis, such as product review
(Pang et al., 2008), stock market performance
(Nguyen and Shirai, 2015), and crowd opinions
(Rosenthal et al., 2015). Sentiment lexicons play
a critical role in sentiment analysis (Hutto and
Gilbert, 2014). A sentiment lexicon contains a
list of words with sentiment polarity (positive or
negative) or polarity intensity, such as the NRC
Hashtag Lexicon (Mohammad et al., 2013) and
VADER sentiment lexicon (Hutto and Gilbert,
2014). However, sentiment lexicons may fail
for compositional methods to obtain sentiment of
larger text units, such as phrases and sentences.
For example, the phrase avoid imprisonment ex-
presses positive sentiment. However, when we use
sentiment lexicon, it is hard to classify this phrase
because both avoid and imprisonment are nega-

tive in both VADER (Hutto and Gilbert, 2014) and
NRC Hasntag (Mohammad et al., 2013) lexicons.

In addition to polarity based sentiment lexicons,
which can be considered as one-dimensional af-
fective lexicons, different multi-dimensional af-
fect models are also proposed to represent affec-
tive information of words, such as the evaluation-
potency-activity (EPA) model (Osgood, 1952)
and the valence-arousal-dominance (VAD) model
(Ressel, 1980). Sentiment can be seen as one of
the dimensions under these affective models, such
as the evaluation dimension of EPA, and the va-
lence dimension of VAD. Aside from the EPA
based lexicon (Heise, 2010), VAD based lexicons
include ANEW (Bradley and Lang, 1999), ex-
tended ANEW (Warriner et al., 2013), and CVAW
(Yu et al., 2016). Although multi-dimensional af-
fective lexicons are theoretically sound, there are
mainly two issues. The first one is how to obtain
good coverage for affective lexicons. The second
one is how to infer the representation of larger text
units using word information in the affective lex-
icons. A previous work uses the average value of
the component words as the final representation of
larger texts (Yu et al., 2016).

Word embedding has recently been used to
represent word semantics, such as word2vec
(Mikolov et al., 2013) and Glove (Pennington
et al., 2014). Word embedding represents a word
as a dense vector, which can be used to measure
semantic similarity of words more accurately.

To infer the representation of larger text units
based on word embedding, different composition
models are proposed, such as weighted addition
and multiplication (Mitchell and Lapata, 2008),
tensor product (Zhao et al., 2015), recursive neu-
ral network (Socher et al., 2013), recurrent neu-
ral network (Irsoy and Cardie, 2014), and conve-
lutional neural network (Kim, 2014). Attempts
have also been made to infer the affective labels
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of phrases based on the VAD model using compo-
sitional methods (Palogiannidi et al., 2016). How-
ever, between the VAD representation and word
embedding, it is not clear which one is more ef-
fective for sentiment analysis.

Sentiment lexicons, multi-dimensional affective
lexicons, and word embedding all represent a word
with semantic information. Other than word em-
bedding, all the other lexicons are specifically built
for sentiment/affective analysis. Although these
representations can be used for sentiment analysis
of larger text units, there is no systematic compar-
ison to test their effectiveness. In this paper, we
investigate whether the manually annotated senti-
ment/affective lexicons have some advantage over
automatically obtained word embedding on senti-
ment analysis tasks. Our approach is to use differ-
ent word level representations to predict the senti-
ment of phrases to determine which representation
of words is more effective. Experiments clearly
show that word embedding outperforms manual
affective lexicons and extended affective lexicons.

2 Related Work

To apply a sentiment lexicon in sentiment analy-
sis, the simpliest way is to take word present in a
lexicon as a simple feature (Pang et al., 2008). For
intensity-based sentiment lexicons, the sentiment
value can be aggregated by addition of every senti-
ment linked word in a sentence (Hutto and Gilbert,
2014; Vo and Zhang, 2016). Another method is to
use sentiment related features, such as total count
of sentiment tokens, total sentiment score, maxi-
mal sentiment score, etc.(Mohammad et al., 2013;
Tang et al., 2014).

Many efforts have been made to construct
multi-dimensional affective lexicons, such as
ANEW for English (Bradley and Lang, 1999;
Warriner et al., 2013), CVAW for Chinese (Yu
et al., 2016), and other languages (Montefinese
et al., 2014; Imbir, 2015). However, only few
works use multi-dimensional affective lexicons for
affective analysis. The work by Yu et al. (2016)
uses the average VAD values of individual words
as the VAD value of a sentence. In (Palogiannidi
et al., 2016), affective representation of phrases
is obtained through matrix-vector multiplication,
where modifier words are represented by matrices
and head words are represented as VAD vectors.

When word embedding is used for sentiment
analysis, different composition methods are used

to infer the representation of a sentence, such as
simple addition, weighted addition (Mitchell and
Lapata, 2008), recurrent neural networks (Irsoy
and Cardie, 2014), and convolutional neural net-
works (Kim, 2014).

However, there is no systematic comparison
between lexicon based representations and word
embedding representations for sentiment analysis.
This is the motivation of our work.

3 Comparison Method

Our objective is to study the effectiveness of dif-
ferent word representations for units longer than
words for sentiment analysis. To focus more on
the effectiveness of representations, we only study
bigram phrases in this paper. The following is the
list of lexicon resources and embeddings used for
this comparative study.

1. The VADER sentiment lexicon of size 7,502,
annotated through crowdsourcing (Hutto and
Gilbert, 2014). Its value range is [-4, 4].

2. The NRC Hasntag sentiment lexicon (de-
noted as HSenti) of size 54,129, constructed
automatically based on hashtags (Moham-
mad et al., 2013).

3. The multi-dimensional EPA lexicon of size
2,000, annotated manually (Heise, 2010) in
three dimensions of evaluation, potency, ac-
tivity in the range of [-4.3, 4.3].

4. The multi-dimensional VAD lexicon of size
13,915, annotated through crowdsourcing
(Warriner et al., 2013). The annotation is in
three dimensions of valence, arousal, domi-
nance in the range of [1, 9].

5. Word embedding of 300 dimension with size
of 2,196,017 trained by the the Glove model
using unsupervised matrix factorization on a
corpus of size 840 billion (Pennington et al.,
2014), denoted as g300.

The manually annotated lexicons have limited
sizes. For fair comparison, we use the state-of-
the-art method proposed by Li et al. (2016), which
train a Ridge regression model using word embed-
ding as features to automatically extend the manu-
ally constructed lexicons so that all the vocabular-
ies of different lexicons are the same size of g300.

Let us use the term base representations to refer
to the different word representations used in this
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comparative study. We first construct the repre-
sentation of a phrase from the base representations
of its component words using some composition
functions. Then, we perform sentiment prediction
for phrases to evaluate which of the base represen-
tations is more effective.

In a composition model, the representation of
a phrase is inferred from that of its component
words. Given a phrase p with two component
words w1 and w2 and their respective base rep-
resentations ~w1 and ~w2, the representation of p,
denoted by ~p, can be constructed by a function f :

~p = f(~w1, ~w2). (1)

Different composition models are proposed for
f (Mitchell and Lapata, 2008). An addition com-
position model can be defined as

~p = ~w1 + ~w2. (2)

The multiplication composition model is de-
fined by element-wise vector multiplication:

~p = ~w1 ∗ ~w2. (3)

The concatenation composition function that
simply concatenates the two vectors:

~p = [~w2, ~w1]. (4)

A more advanced composition model is the
Recurrent Neural Network (RNN). Here we use
the most widely used Long Short Term Memory
(LSTM) network (Hochreiter and Schmidhuber,
1997) as our composition model. It models a word
sequence as:

~it = σ(Ui~xt +Wi
~ht−1 +~bi), (5)

~ft = σ(Uf~xt +Wf
~ht−1 +~bf ), (6)

~ot = σ(Uo~xt +Wo
~ht−1 +~bo), (7)

~qt = tanh(Uq~xt +Wq
~ht−1 +~bq), (8)

~pt = ~ft ∗ ~pt−1 +~it ∗ ~qt, (9)
~ht = ~ot ∗ tanh(~pt). (10)

Here ~xt is the representation of an input word rep-
resentation at step t, ~w1 or ~w2. ~it, ~ft, ~ht, ~pt, ~qt
are internal representations and ~ot is current out-
put representation. Ui, Uf , Uo, Uq are the model
matrix parameters. Sentiment prediction is per-
formed on the output representation the final step.

In this work, we use different composition func-
tions to evaluate the effectiveness of different base
representations.

4 Evaluation on the Comparisons

The five lexicons introduced in Section 3 are used
for evaluations.

4.1 Experiment Setting

For comparison, we first extracted a set of phrases
with sentiment ratings from the Stanford Senti-
ment Treebank (SST) (Socher et al., 2013), in
which every sentence is parsed and each node in
the parsed tree has a sentiment score ranging be-
tween [0, 1], and obtained by crowdsourcing. We
only extract adjective-noun phrases, noun-noun
phrases and verb-noun phrases, and the size of the
final phrase collection in SST is 9,922. Note that
only 6,736 words are used for this set of phrases
and they are present in all the five lexicons used.

Based on this phrase set, we construct three
sentiment analysis tasks: (1) a regression task to
predict the sentiment score of phrases (labeled as
SST-R); (2) a binary classification task by convert-
ing sentiment scores to discrete labels, where pos-
itive label is no less than 0.6 and negative label is
no more than 0.4 (labeled as SST-2c); (3) a ternary
classification task similar to SST-2C except that
there is an addition of neutral label in the range of
0.4-0.6 (labeled as SST-3c).

Different evaluation metrics are used for the
three different tasks. Mean absolute error (mae)
and Kendall rank correlation coefficient (τ ) are
used for SST-R. Accuracy and F-score are used for
SST-2c. Weighted accuracy and weighted F-score
are used for SST-3c. Ridge regression and SVM
with the linear kernel are used for regression and
classification task, respectively1. For LSTM, the
output layer is set differently for regression and
classification tasks respectively 2. The number of
hidden dimensions in LSTM is set to 4. In all the
experiments, 5-fold cross validation is used. Re-
sults are based on the best parameters we can ob-
tain in our experiments.

4.2 Result and Analysis

Table 1 shows the result of the three tasks. Let
us first take a look at the different composition
functions. Multiplication performs the worst in
all categories. On the other hand, LSTM, as
a deep learning method, is the best performer.
Addition and concatenation do have compara-
ble performance and not too off from LSTM

1Using the scikit-learn tool: scikit-learn.org/
2Using the Keras tool: https://keras.io/
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Feature Comp SST-R SST-2c SST-3c
mae τ acc f acc f

VADER mul 0.103 0.240 0.664 0.786 0.608 0.507
VADER add 0.088 0.477 0.889 0.913 0.643 0.578
VADER conc 0.086 0.482 0.888 0.912 0.655 0.591
VADER lstm 0.086 0.487 0.894 0.917 0.667 0.655
HSenti mul 0.110 0.060 0.636 0.777 0.573 0.418
HSenti add 0.102 0.298 0.766 0.826 0.573 0.418
HSenti conc 0.102 0.304 0.768 0.829 0.573 0.418
HSenti lstm 0.100 0.307 0.770 0.825 0.610 0.556

EPA mul 0.097 0.367 0.833 0.871 0.575 0.420
EPA add 0.092 0.422 0.888 0.913 0.600 0.488
EPA conc 0.092 0.427 0.887 0.912 0.602 0.493
EPA lstm 0.091 0.438 0.893 0.915 0.633 0.605
VAD mul 0.089 0.456 0.897 0.919 0.618 0.544
VAD add 0.090 0.451 0.890 0.913 0.620 0.549
VAD conc 0.089 0.459 0.894 0.917 0.625 0.557
VAD lstm 0.090 0.466 0.891 0.915 0.635 0.602

g300 mul 0.106 0.246 0.635 0.777 0.575 0.420
g300 add 0.074 0.564 0.923 0.939 0.755 0.749
g300 conc 0.073 0.565 0.920 0.937 0.754 0.748
g300 lstm 0.070 0.573 0.926 0.941 0.751 0.749

Table 1: Performance of different word represen-
tations under different composition functions for
SST phrase sentiment analysis. mul: multipli-
cation composition. add: addition composition.
conc: concatenation composition.

on SST-R and SST-2c. Secondly, for the two
sentiment lexicons, VADER performs much bet-
ter than HSenti lexicon. This may be because
that VADER is manually annotated from crowd-
sourcing whereas HSenti is automatically obtained
which contains more noise. Thirdly, for the two
multi-dimensional affective lexicons, VAD per-
forms slightly better than EPA. It is surprising
that the multi-dimensional lexicons perform even
worse than the sentiment lexicon VADER even
though the annotated size of VAD (13,915) is
much larger than VADER (7,502). This puts a
question mark on the quality of annotation for
multi-dimensional lexicon resources. Fourthly,
word embedding3 performs much better than all
the other representations. For instance, it achieves
a relative improvement of 17.7% under τ for SST-
R over the secondly ranked VADER representa-
tion. Different composition functions for word
embedding perform comparably. In principle,
LSTM would have more benefits if the text length
is longer. In this study, the performance differ-
ence is not obvious because our phrases are only
bigrams.

3We also experiment on different word embedding dimen-
sions including 50,100,200. All are better than the other lex-
icons.

In the first experiment, manually constructed af-
fective lexicons are extended for comparison to be
performed on the same set of word list. Since auto-
matically extended lexicons can introduce errors,
we perform the second experiment using only a
manually annotated lexicon. We use the largest
original VAD lexicon without extension to com-
pare with word embedding. In this case, the in-
tersection of VAD and word embedding has 3,908
words. The subset corpus of SST containing these
words has 5,251 phrases. We perform 5-fold cross
validation on this dataset. The result is shown in
Table 2. Again, word embedding achieves much
better result than manually annotated VAD lexi-
con. If coverage issue is considered, word em-
bedding has even more advantages. Interestingly,
comparison between Table 1 and Table 2 shows
that the manually annotated lexicon does not per-
form better than its automatically extended lexicon
even without considering the coverage problem.

Feature Comp SST-Rs SST-2cs SST-3cs
mae τ acc f acc f

VAD add 0.093 0.450 0.901 0.927 0.614 0.554
VAD conc 0.092 0.465 0.905 0.931 0.624 0.568
VAD lstm 0.093 0.471 0.885 0.916 0.620 0.594

g300 add 0.075 0.575 0.926 0.945 0.759 0.754
g300 conc 0.075 0.575 0.931 0.949 0.762 0.757
g300 lstm 0.071 0.588 0.934 0.951 0.754 0.753

Table 2: Performance of manually annotated VAD
and corresponding word embedding representa-
tions under different composition functions for
phrase sentiment analysis.

5 Conclusion

Automatically obtained word embedding clearly
outperforms both manually and automatically ob-
tained affective lexicons including sentiment lexi-
cons and multi-dimensional affective lexicons. Al-
though different affective models are backed by
cognitive theories and affective lexicons are de-
signed specifically for affective analysis, build-
ing them consumes too much resources and an-
notation quality may still be questioned due to
added complexity. Through a downstream task
of sentiment labeling of phrases, we conclude that
the manually annotated affective lexicons have no
advantage over word embedding under different
composition models. However, affective lexicons
as resources can still be used as additional features
rather than being used alone.
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Abstract

Online reviews are valuable resources not
only for consumers to make decisions be-
fore purchase, but also for providers to get
feedbacks for their services or commodi-
ties. In Aspect Based Sentiment Analy-
sis (ABSA), it is critical to identify as-
pect categories and extract aspect terms
from the sentences of user-generated re-
views. However, the two tasks are of-
ten treated independently, even though
they are closely related. Intuitively, the
learned knowledge of one task should in-
form the other learning task. In this paper,
we propose a multi-task learning model
based on neural networks to solve them to-
gether. We demonstrate the improved per-
formance of our multi-task learning model
over the models trained separately on three
public dataset released by SemEval work-
shops.

1 Introduction

Aspect Based Sentiment Analysis (ABSA) (Liu
and Zhang, 2012; Pontiki et al., 2016) task is pro-
posed to better understand rapidly-growing online
reviews than traditional opinion mining (Pang and
Lee, 2008). ABSA aims to extract fine-grained in-
sights such as named entities, aspects, and sen-
timent polarities. We focus on two subtasks in
ABSA: aspect category classification (ACC) and
aspect term extraction (ATE).

Given a predefined set of aspect categories,
ACC aims to identify all the aspects discussed in
a given sentence, while ATE is to recognize the
word terms of target entities. For example, in
restaurant reviews, suppose we have two aspects
Price and Food. In the sentence “The fish is
carefully selected from all over the world and taste

fresh and delicious.”, the aspect category is Food,
and the aspect term is fish. There could be mul-
tiple aspect categories implied in one sentence;
while in other sentences, there might be even no
word corresponding to the given aspect category
because of noisy aspect labels or fuzzy definition
of the aspect. For example, the sentence “I had a
great experience.” expresses positive attitude to-
wards the aspect Restaurant, but there is no
corresponding word about it.

Recognizing the commonalities between ACC
and ATE task can boost the performance of both
of them. The aspect information of whole sen-
tence can make it easier to differentiate the target
terms from unrelated words; while recognized tar-
get terms are the hints for predicting aspect cat-
egories. Recently, neural networks have gained
tremendous popularity and success in text clas-
sification (Kim, 2014; Kalchbrenner et al., 2014)
and opinion mining (Irsoy and Cardie, 2014; Liu
et al., 2015). In this paper, we consider ACC
and ATE task together under a multi-task setting.
We conduct experiments and analysis on SemEval
datasets. Our model outperforms the conventional
methods and competing deep learning models that
tackle two problems separately.

2 Model

In this section, we specifically define the two tasks
in ABSA: aspect category classification (ACC)
and aspect term extraction (ATE), then present an
end-to-end model MTNA (Multi-Task neural Net-
works for Aspect classification and extraction) that
interleaves the two tasks.

We define ACC as a supervised classification
task where the sentence should be labeled ac-
cording to a subset of predefined aspect labels,
and ATE as a sequential labeling task where the
word tokens related to the given aspects should be

151



BiLSTM LayerWord Embedding CNN Layer Softmax Layers
for ATE task

Max Pooling Layer

Concatenation

Softmax Layer
for ACC task

Figure 1: MTNA on a sequence of five words. The multi-task learning neural network combines BiLSTM
and CNN layers together for ATE and ACC task respectively. One convolutional operation on BiLSTM
layer is shown in the graph.

tagged according to a predefined tagging scheme,
such as IOB (Inside, Outside, Beginning).

2.1 The Multi-task Learning Model

In this section, we describe our model MTNA.
Long Short-Term Memory (LSTM) (Hochreiter

and Schmidhuber, 1997) has memory cells and a
group of adaptive gates to control the informa-
tion flow of the network. It has good performance
in named entity recognition task (NER) to sim-
ply stack embedding layer, Bi-directional LSTM
(BiLSTM) layer and softmax layer together (Lam-
ple et al., 2016). ATE task can be viewed a
special case of NER (Irsoy and Cardie, 2014).
Convolutional Neural Networks (CNNs) have ob-
tained good results in text classification, which
usually consist of convolutional and pooling lay-
ers (Kim, 2014; Kalchbrenner et al., 2014; Toh and
Su, 2016). They can be applied on ACC task im-
mediately.

It should be noted that ACC task and ATE
task are closely related. Aspect terms often im-
plies the related aspect category. If the names of
dishes appear in a sentence, it is easy to infer that
this sentence is about the aspect Food and vice-
versa. Multi-task learning can help the model of
each task to focus its attention to relevant features,
when the other task support the features with evi-

dence (Ruder, 2017). Moreover, multi-task learn-
ing can obtain a common representation for all
the tasks in the shared layers, which reduces noise
in each task. We combine BiLSTM for ATE and
CNN for ACC together in a multi-task framework.
The parts for ACC task can utilize extra informa-
tion learned in ATE task so that convolutional lay-
ers can focus on informative features. The tag pre-
diction at each word in ATE task can also receive
the distilled n-gram features of the surrounding
words via convolutional operations.

The architecture of our model is shown in Fig-
ure 1. Specifically, a word embedding layer trans-
forms indexed words to real valued vectors xi with
a pre-trained word embedding matrix (Mikolov
et al., 2013; Pennington et al., 2014). Each sen-
tence is represented by a matrix S. A BiLSTM is
applied on the outputs of word embedding layer
S, in which the two output vectors of the LSTMs
are concatenated into a vector ht for the t-th word.
The represented features are further processed by
a one-dimensional convolution layer with a set of
kernels of different widths, so that the new feature
maps ct incorporate the information of words that
are in the receptive field of the convolutions. For
ATE task, we use softmax layer for each word in
the given sentence to predict its tag. We further
add skip connections between the LSTM layers
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to the softmax layers, since they are proved effec-
tive for training neural networks (He et al., 2016).
To predict the aspect category of the sentence in
ACC task, we use 1D max-over-time pooling lay-
ers (Collobert et al., 2011) which extracts maxi-
mum values from ht and ct, a concatenation layer
which joins the output vectors, and a softmax layer
to output the probabilities of aspect categories.
The final loss function of our model is a weighted
sum of the loss functions of ACC task and ATE
task. L = Lacc + λLate, where λ is the weight pa-
rameter. Lacc is the cross-entropy loss function for
ACC task; Late is the sentence-level log-likelihood
for ATE task (Collobert et al., 2011; Lample et al.,
2016).

3 Experiments

3.1 Datasets

For our experiments, we consider three data sets
from SemEval workshops in recent years: Se-
mEval 2014 Task 4 (SE14) (Pontiki et al., 2014),
SemEval 2015 Task 12 (SE15) (Pontiki et al.,
2015), and SemEval 2016 Task 5 (SE16) (Pontiki
et al., 2016). We use the reviews in restaurant do-
main for all of them, and process SE14 into the
same data format as the others. Each data set con-
tains 2000 - 3000 sentences. For SE15 and SE16,
an aspect label is a combination of an aspect and
an attribute, like “Food#Price”. There are 6 main
aspects and total 12 configurations in SE15, SE16,
while 5 aspects in SE14.

3.2 Experiment Setup

Following the experiment settings used by most
competitors (Toh and Su, 2016; Khalil and El-
Beltagy, 2016; Machacek, 2016) in SemEval
2016, we convert the multi-label aspect classifica-
tion into multiple one-vs-all binary classifications.
F1-score is used to measure the performance of
each model for ACC task, and another F1 measure
adapted for ATE task.

For MTNA model, we use the pre-trained word
embedding GloVe (Pennington et al., 2014) of 200
dimensions to initialize the embedding layer. The
word vectors that are out of GloVe vocabulary are
randomly initialized between -0.1 and 0.1. Dur-
ing the training process, the embedding vectors are
fine-tuned. We choose three kinds of convolution
kernels which have the width of 3, 4, 5. Each of
them has 100 kernels (Kim, 2014). We use tanh
function as the nonlinear active function in con-

volution layers based on the results of cross vali-
dation. We train the model with Adadelta (Zeiler,
2012). For each binary classifier, a 5-fold cross
validations is used to tune other hyper-parameters:
mini-batch size from {10, 20, 50}, dropout rate
from {0.1, 0.2, 0.5}, the dimension of LSTM cells
from {100, 200, 500}, and the weight λ in the loss
function from {0.1, 1, 10}.

3.3 Compared methods

Top models in SemEval. For ACC task, NRC-
Can (Kiritchenko et al., 2014) and NLANGP (Toh
and Su, 2015) are top models in 2014 and 2015 re-
spectively, both of which use SVM. NLANG (Toh
and Su, 2016) adopts CNN-like neural network in
2016. For ATE task, CRF (Toh and Wang, 2014;
Toh and Su, 2015, 2016) is the best model on all
of three data sets.

BiLSTM-CRF. To assess whether CNN can
improve the performance of ATE, we use a stan-
dard Bi-directional LSTM with CRF layer (Lam-
ple et al., 2016) as the baseline to tag words.

MTNA-s. To evaluate to what extent that ATE
loss function can improve the performance of the
ACC task, we compare MTNA with its variance
MTNA-s, the loss function of which does not in-
clude that of ATE task. However, this model keeps
LSTM layer as a feature extractor before the con-
volution layers as MTNA does.

4 Results and Analysis

The comparison results of all methods on three
datasets are shown in Table 1.

On ACC task, MTNA outperforms over other
compared methods, which are proposed for a sin-
gle task and cannot utilize the information from
the other task. On ATE task, there are small
improvement compared with conditional random
field. It empirically proves that multi-task learn-
ing can benefit both tasks. MTNA has higher F1-
scores compared with BiLSTM-CRF. The results
confirm the effectiveness of additional convolution
features for the ATE task.

MTNA-s, a smaller model without layers for
ATE task, also performs better than CNN. It
proves that LSTM can provide the feature engi-
neering which captures the long-distance depen-
dency (Zhang et al., 2016). On the aspects other
than Restaurant, MTNA-s has slightly lower
scores than MTNA, which again demonstrates the
effectiveness of multi-task learning.
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SE14 SE15 SE16
ACC ATE ACC ATE ACC ATE

Top models 88.57 84.01 62.68 67.11 73.03 72.34
BiLSTM-CRF - 83.24 - 66.82 - 71.87
MTNA-s 87.95 - 64.32 - 75.69 -
MTNA 88.91 83.65 65.97 67.73 76.42 72.95

Table 1: Comparison results in F1 scores on three datasets.

Model Aspect Category Classification AspectTerm Extraction
Food Restaurant Service Food Restaurant Service

CNN 86.29 65.27 84.02 - - -
Bi-LSTM-CRF - - - 73.96 54.34 87.55
MTNA-s 86.41 67.89 84.93 - - -
MTNA 87.33 66.07 86.09 74.67 56.59 88.70

Ambience Drinks Location Ambinece Drinks Location
CNN 81.55 67.36 69.25 - - -
Bi-LSTM-CRF - - - 76.23 71.38 56.77
MTNA-s 81.08 69.23 70.06 - - -
MTNA 83.18 68.75 71.43 77.79 72.21 60.16

Table 2: F1 scores of models on SE16 across six aspects

To access the performance of methods across
different aspects, we combine all sentences la-
beled by the same aspect regardless of any at-
tribute, then conduct experiments as before. We
re-implement CNN model, which is used in
NLANG 2016. The results are as shown in Ta-
ble 2. ACC task on the aspect Restaurant is
more difficult than the task on other aspects. Both
CNN and MTNA have lower F1-scores on this
aspect. The reason is that some sentences have
restaurant names as target terms. However, there
are around 40.1% sentences with Restaurant
label that do not have annotated words in the train-
ing dataset, 41.2% in test dataset. Meanwhile, all
methods have better results in ATE task on the as-
pect Service than on the other aspects, because
target word tokens do not have much variety.

5 Related Work

LSTM (Hochreiter and Schmidhuber, 1997) has
been applied on target extraction (Irsoy and
Cardie, 2014; Liu et al., 2015). In the workshop
of SemEval-2016, this sequential neural network
is used to extract features for the subsequent CRF
prediction (Toh and Su, 2016). In a multi-layer
attention model (Wang et al., 2017), several atten-
tion subnetworks (Bahdanau et al., 2014) are used
to extract aspect terms and opinion terms together
without considering ACC task.

As a special case of text classification, ACC
task is often treated as a supervised classification
task. CNN (LeCun et al., 1998) has been used for
sentiment classification (Kim, 2014; Kalchbrenner
et al., 2014) and aspect classification (Toh and Su,
2016).

Collobert et al. (Collobert et al., 2011) proposed
a multi-task learning system using deep learning
methods for various natural language processing
tasks. However, the system with window ap-
proach cannot be jointly trained with that using
sentence window approach. Moreover, only em-
bedding layer (lookup table) and linear layer are
shared among tasks, which limited the utilization
of shared information. On NER task, the pre-
dictions of this model depend only on the infor-
mation of the current word rather than the sur-
rounding context. The most relevant model is
Dependency Sensitive Convolutional Neural Net-
works (DSCNN) (Zhang et al., 2016). The goal
of DSCNN is solely for text classification, but our
model is designed for multi-task learning of ACC
and ATE.

6 Conclusion

We introduce two important tasks, e.g., aspect cat-
egory classification and aspect term extraction in
aspect based sentiment analysis. We propose a
multi-task learning model based on recurrent neu-
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ral networks and convolutional neural networks to
solve the two tasks at the same time. Finally, the
comparative experiments demonstrate the effec-
tiveness of our model across three public datasets.
We can utilize other linguistic information, such
as POS tags and the distributional representation
learned from character level convolutional neural
network in the future work.
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Abstract

Humans process language word by word
and construct partial linguistic structures
on the fly before the end of the sentence
is perceived. Inspired by this cognitive
ability, incremental algorithms for natural
language processing tasks have been pro-
posed and demonstrated promising perfor-
mance. For discourse relation (DR) pars-
ing, however, it is not yet clear to what
extent humans can recognize DRs incre-
mentally, because the latent ‘nodes’ of
discourse structure can span clauses and
sentences. To answer this question, this
work investigates incrementality in dis-
course processing based on a corpus an-
notated with DR signals. We find that
DRs are dominantly signaled at the bound-
ary between the two constituent discourse
units. The findings complement existing
psycholinguistic theories on expectation in
discourse processing and provide direction
for incremental discourse parsing.

1 Introduction

Incremental processing is an essential character-
istic of human language comprehension, because
linguistic data naturally occurs in streams. For
example, during sentence comprehension, humans
do not start parsing only after the whole sentence
is perceived. Instead the human processor incre-
mentally constructs a partial syntactic tree that
matches the sentence prefix read so far (Tanenhaus
et al., 1995). Though intuitively for parsing every
word is relevant to the syntactical structure, it may
not be the case for more global linguistic struc-
tures such as DRs, which may only be triggered
by some informative cue words, and it is yet un-
clear at which point the human processor recog-

nizes a DR as the sentence is read or listened word
by word.

DRs are relations between units of texts, such
as clauses or sentences. For example,

1. In the first year, the bank eliminated 800 jobs.
Now it says it will trim more in the next year.

the first and second sentences are connected by a
temporal relation, as the events occur in a tempo-
ral sequence. An incremental discourse processor
should predict and recognize the relation at some
point before the end of the second sentence. It
is useful for speech recognition and dialogue sys-
tems where real-time analysis is desirable.

Towards an incremental approach to automatic
discourse parsing, this work investigates word-
level incrementality in human discourse process-
ing based on manual identification of DR cues.
The point at which humans recognize a DR can
provide a reference on how long an incremen-
tal discourse parser should ‘wait’, before there is
enough input for timely yet accurate prediction of
the discourse structure.

2 Related Work

This work is related to incremental approaches of
natural language processing (NLP) and psycholin-
guistic studies on human discourse processing.

In NLP, incremental approaches are used in
tasks such as syntactic parsing (Stolcke, 1995;
Collins and Roark, 2004; Köhn and Menzel,
2014), semantic role labeling (Konstas et al.,
2014) and other joint tasks (Hatori et al., 2012; Li
and Ji, 2014; Zhou et al., 2016). These incremental
systems are advantageous since they are capable of
synchronous analysis by accepting sentence pre-
fixes as inputs. On top of generating more natural
and timely response in dialogue systems and im-
proving language modeling in speech recognition,
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these models can also be used to reflect difficul-
ties in human language processing (Keller, 2010;
Demberg et al., 2013).

However, we are not aware of any prior work
that implements a discourse processor with such
a strong assumption to incrementality. Although
expectation for upcoming DRs is demonstrated
in various lexico-syntactic constructions in the
first clause/sentence (Cristea and Webber, 1997),
existing methods of discourse parsing rely on a
pipeline, in which the raw text is first segmented
into discourse units, mostly clauses or sentences,
and the relation is predicted based on two com-
plete discourse units. In this respect, even shift-
reduce discourse parsers (Marcu, 1999; Reitter,
2003; Sagae, 2009; Ji and Eisenstein, 2014) are
incremental only at discourse unit level.

In psycholinguistics, expectation in language
processing is a well studied topic (e.g. Altmann
(1998)). Experimental studies suggest that hu-
mans use available pragmatic cues to generate ex-
pectations and anticipate the upcoming discourse
structure (Rohde, 2008), but there are diverging
findings about the time-course for humans to rec-
ognize and integrate DRs. For example, Millis and
Just (1994) state that integration of a causal rela-
tion takes place at the end of the second clause. In
contrast, other experiments report that the integra-
tion already occurs in the beginning of the second
clause, at least for some relation types (Traxler
et al., 1997; Cozijn, 2000; Mak and Sanders, 2010,
2013; Köhne and Demberg, 2013). These exper-
iments are, however, limited to comparison of a
few relation types and mostly depend on discourse
markers (e.g. however, because). We still lack an
integrated picture on where humans generally rec-
ognize a DR.

3 Methodology

This study presents an off-line corpus analysis
to determine when or where humans recognize a
DR as they process words incrementally. To this
end, we want a human subject to identify the cues
within the component clauses/sentences that trig-
ger the recognition of a given DR, such as the un-
derlined tokens in Example (1).

Although the exact annotated resource is not
yet available, we obtained such annotation by
converting the annotation in the RST Signaling
Corpus (Das et al., 2015).

Data The RST Signaling Corpus consists of an-
notation of discourse signals over the RST Dis-
course Treebank (Carlson et al., 2002), which
is a discourse annotated resource following the
Rhetorical Structure Theory (RTS) (Mann and
Thompson, 1988). In the RST Discourse Tree-
bank, a DR is annotated between two consecu-
tive discourse units. In turn, in the RST Signal-
ing Corpus, each DR is further labeled with one
or more types of signaling strategy. These sig-
nals not only include explicit discourse markers
but also other features typically used in automatic
implicit relation identification and psycholinguis-
tic research, such as reference, lexical, semantic,
syntactic, graphical and genre features (Das and
Taboada, 2017). For example, the temporal rela-
tion in Example (A) is annotated with three signal
labels in the RST Signaling Corpus:1

(1) discourse marker (now)

(2) tense (past — present, future )

(3) lexical chain (first year — next year)

Only 7% of the relations are annotated as ‘im-
plicit’. Therefore, most conventionally ‘implicit’
relations are also annotated with explicit signals
and included in the present analysis.

Locating signal positions Based on these la-
bels, we use heuristic rules (see appendix) and
gold syntactic annotation2 to identify the actual
cue words in the text. For example, based on the
above 3 signal labels, we identify the underlined
tokens in Example (1). Manual check on 200 ran-
dom samples shows that all signal tokens are per-
fectly tagged in 95% of the samples, and the re-
maining 5% samples are partially correct.

We focus on relations that are signaled by sur-
face tokens in order to examine word-level incre-
mentality in discourse processing. Thus, we do not
consider signals that are not associated with partic-
ular words, e.g. genre, and relations with annota-
tions that are not specific enough. 4, 146 relations
are screened3 and 15, 977 relations are included in
the analysis. The distribution of the DRs under
analysis is shown in Table 1.

1The list of DR signals and the relation between the RST
Treebank and the RST Signaling Corpus can be found in the
appendix. Details can be found in the related literature.

2provided by the Penn Treebank, which annotates on the
same text as the RST Treebank (Marcus et al., 1993)

3List of excluded signals are shown in the appendix.
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category relation sense count

expansion elaboration 7, 070
joint 1, 031
background 787
evaluation 505
manner-mean 197
summary 170
topic-comment 44
topic-change 21

comparison contrast 934
comparison 243

contingency enablement 512
cause 499
explanation 325
condition 263

temporal temporal 429

attribution attribution 2, 947

Total 15,997

Table 1: Sense distribution of discourse samples
used in the analysis. The original RST senses are
mapped to 18 conventional senses (2 screened)

Relating signal positions to incremental pro-
cessing We analyze the positions of the cue
tokens in relation to the DRs they signal. Each
cue position is represented by its distance from
the boundary of the relation’s discourse units.
The boundary is defined as the first word of the
second clause/sentence in the relation, as each
relation is annotated between two consecutive
clauses/sentences in the RST formalism.4 For
example, the cue words eliminated and now
in Example (1) have distances of −4 and 0,
respectively.

Although positions of the discourse cues can
be identified from the recovered annotation, it is
still unclear how informative the discourse cues
are. It is possible that unambiguous cues only
occur at the end even though numerous cues
occur in the beginning. For example, in Example
1, can people correctly anticipate the temporal
relation after reading the word now? Or is now
too ambiguous that it is necessary to consider all
signals after reading the last word? To answer
these questions, we quantify and compare the

4 Some relations, e.g. list, have more than two consecutive
units. In this case, the distance of the cue is the distance
compared with the closest boundary.

discourse informativeness of prefixes in different
sizes.

The informativeness of each prefix is calculated
from the cues covered by the prefix. For each
DR spanning two consecutive clauses/sentences,
the prefix size ranges from the first word of the
first clause/sentence to the complete first and sec-
ond clauses/sentences. Consecutive cue tokens are
merged as one signal and a signal is counted as
being covered by a prefix only if the last token
of the signal string5 is covered by the prefix. We
use majority as a baseline approach to associate
the discourse signals with the relation sense. The
inferred relation sense rpn based on the majority
cues in discourse prefix pn is defined as:

rpn = arg max
r∈R

∑
s∈Spn

count(s, r) (1)

where R is the set of all relation senses; Spn is
the set of signal strings covered in discourse pre-
fix pn; n is the distance of the last word of pn; and
count(s, r) is the count of string s being identified
as a signal for a DR of sense r in the corpus. The
most frequent relation, elaboration, is assigned if
no signals are found in the prefix.

The relation senses inferred from prefixes of
various sizes are compared with the actual relation
sense. Although the majority approach does not
model inter-relation and ambiguity of the signals,
we assume that more signals, and thus longer pre-
fixes, give better or the same prediction6. There-
fore, we can compare the informativeness of the
prefixes with that of the whole discourse span as
upper bound.

4 Results

Distribution of signal locations This analysis
seeks to find out how far humans read before they
recognize a DR. If DR cues are evenly distributed
throughout the discourse components, partial dis-
course structures can plausibly be constructed on
the fly. On the other hand, if the relation cues gen-
erally occur towards the end of the last clause, in-
tegration of the DR is better to be restrained until

5 or the last token of the last span if the signal has multiple
spans of strings, such as first year – next year

6 Empirically, this assumption was true: in over 99% of
the relation samples, majority prediction based on signals in
both clauses is better or the same, as that based on the first
clause alone.
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all clauses are perceived, implying limited incre-
mentality in discourse processing.

Result of the analysis reveals that it is neither of
the cases. Figure 1 shows the relative distance of
the signals with respect to the length of the dis-
course units. It can be observed that most sig-
nals occur at the boundary, and the further away
from the boundary, the less signals are found. In
fact 24% of the tagged tokens belong to the first
2 words of the second discourse unit. Note that
these do not limit to explicit discourse connectives
but also other lexical and semantic features.

Figure 1: Distribution of the relative distances of
the signal tokens.

Overall, more signal tokens locate after the
boundary. Counting by relation, 52% of the re-
lations have signals only in the second discourse
unit (49% of which at the boundary), 20% have
signals only in the first discourse unit, and 28%
have signals in both. In other words, in 69% of
the cases, all signals for the DR are covered after
reading the relation boundary.

Informativeness of discourse prefixes Simi-
larly, the informativeness of the discourse prefixes
shows a leap across the boundary. Figure 2 illus-
trates the accuracy of the DR predicted by prefixes
of all the relation samples collectively. Accuracy
refers to the proportion that rpn equals the actual
relation sense of the discourse sample. The upper
half of Figure 2 shows that the prediction accuracy
rises sharply after the boundary is read. Accord-
ing to Figure 1, more signals are detected in the
first clause near the boundary, but the informative-
ness of the prefixes actually drops slightly, possi-
bly due to the ambiguity of the signals. Yet the
drop is reverted at the boundary and the accuracy

remains stable. This implies that the signals oc-
curring later in the second clause do not contradict
to those found at the boundary.

Figure 2: ‘Accuracy’ of sense prediction based on
oracle signals covered by discourse prefixes8.

The lower half of Figure 2 compares the five
sense categories defined in Table 1, zooming at
prefixes ending near the boundary. It is observed
that, in general, signals for contingency and tem-
poral relations are mostly identified just after the
boundary, while expansion, attribution and con-
trast relations are identified just before the bound-
ary. The informativeness of the discourse pre-
fixes of expansion relation does not rise sharply
like other relations because it is the default rela-
tion when no signals are identified. Nonetheless,
it still hold for all relations that predictions just af-
ter the boundary is similar to predictions at the end
of the second discourse unit.

5 Conclusion

This work investigates whether DRs can be identi-
fied incrementally based on human performance.
Our analysis concludes that it is possible be-
cause DR signals occur throughout the discourse.
Nonetheless, the signals are not evenly distributed
but concentrated on the boundary of the two dis-
course units. An incremental discourse parser that
jointly segments discourse units and predicts DR
senses can potentially output the predicted DR im-
mediately after a boundary is detected, and then

8This ‘accuracy’ is not comparable to the performance of
automatic parsers because the signals are identified manually
and the prediction is not made on a held out test set. Our
focus is the comparison between the discourse prefixes.
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focus on detecting expectative signals in the sec-
ond clause/sentence for the next relation.

Results of the analysis agree with the psycholin-
guistics literature that DRs are integrated at the be-
ginning of second clause/sentence of the relation,
because otherwise the annotator should mostly
recognize signals towards the end of the discourse.
Our analysis evaluates and extends existing lab-
oratory findings on DR processing by comparing
a wide range of relations that are signaled not
only by discourse markers. Expectation-focused
discourse processing can also be explained by
the ‘good-enough’ predictive approach in human
language processing, which argues that humans
should integrate a probabilistically ‘good-enough’
DR prediction at the boundary, and allocate more
processing resource to predict the forth-coming
DR (Ferreira and Lowder, 2016).

Nonetheless, this corpus study alone is not
enough to prove the incrementality hypothesis in
DR processing. As future work, we would also
like to explore global signals, which are possi-
bly recognized unconsciously and less likely to be
identified. In addition, we plan to verify the cog-
nitive reality of the signal positions by behavioral
experiments with multiple subjects. Another goal
is to design a word-level incremental discourse
parser based on the findings of this work, taking
into account global discourse flow.
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Abstract

Language understanding (LU) and dia-
logue policy learning are two essential
components in conversational systems.
Human-human dialogues are not well-
controlled and often random and unpre-
dictable due to their own goals and speak-
ing habits. This paper proposes a role-
based contextual model to consider differ-
ent speaker roles independently based on
the various speaking patterns in the multi-
turn dialogues. The experiments on the
benchmark dataset show that the proposed
role-based model successfully learns role-
specific behavioral patterns for contextual
encoding and then significantly improves
language understanding and dialogue pol-
icy learning tasks1.

1 Introduction

Spoken dialogue systems that can help users to
solve complex tasks such as booking a movie
ticket become an emerging research topic in the ar-
tificial intelligence and natural language process-
ing area. With a well-designed dialogue system
as an intelligent personal assistant, people can ac-
complish certain tasks more easily via natural lan-
guage interactions. Today, there are several vir-
tual intelligent assistants, such as Apple’s Siri,
Google’s Home, Microsoft’s Cortana, and Ama-
zon’s Echo. Recent advance of deep learning has
inspired many applications of neural models to di-
alogue systems. Wen et al. (2017), Bordes et al.
(2017), and Li et al. (2017) introduced network-
based end-to-end trainable task-oriented dialogue
systems.

1The source code is available at: https://github.
com/MiuLab/Spk-Dialogue.

A key component of the understanding sys-
tem is a language understanding (LU) module—
it parses user utterances into semantic frames that
capture the core meaning, where three main tasks
of LU are domain classification, intent determi-
nation, and slot filling (Tur and De Mori, 2011).
A typical pipeline of LU is to first decide the do-
main given the input utterance, and based on the
domain, to predict the intent and to fill associated
slots corresponding to a domain-specific semantic
template. Recent advance of deep learning has in-
spired many applications of neural models to nat-
ural language processing tasks. With the power
of deep learning, there are emerging better ap-
proaches of LU (Hakkani-Tür et al., 2016; Chen
et al., 2016b,a; Wang et al., 2016). However, most
of above work focused on single-turn interactions,
where each utterance is treated independently.

The contextual information has been shown
useful for LU (Bhargava et al., 2013; Xu and
Sarikaya, 2014; Chen et al., 2015; Sun et al.,
2016). For example, the Figure 1 shows conver-
sational utterances, where the intent of the high-
lighted tourist utterance is to ask about location
information, but it is difficult to understand with-
out contexts. Hence, it is more likely to estimate
the location-related intent given the contextual ut-
terance about location recommendation. Contex-
tual information has been incorporated into the re-
current neural network (RNN) for improved do-
main classification, intent prediction, and slot fill-
ing (Xu and Sarikaya, 2014; Shi et al., 2015; We-
ston et al., 2015; Chen et al., 2016c). The LU
output is semantic representations of users’ behav-
iors, and then flows to the downstream dialogue
management component in order to decide which
action the system should take next, as called dia-
logue policy. It is intuitive that better understand-
ing could improve the dialogue policy learning,
so that the dialogue management can be further

163



Task 1: Language Understanding (User Intents)

Task 2: Dialogue Policy Learning (System Actions)

Guide: so you of course %uh you can have dinner there and %uh of course 
you also can do sentosa , if you want to for the song of the sea , right ?

Tourist: yah .

Tourist: what 's the song in the sea ?

Guide: a song of the sea in fact is %uh laser show inside sentosa

FOL_RECOMMEND:FOOD; 

QST_CONFIRM:LOC; 

QST_RECOMMEND:LOC

RES_CONFIRM

QST_WHAT:LOC Task 1

FOL_EXPLAIN:LOC Task 2

Figure 1: The human-human conversational utterances and their associated semantics from DSTC4.

boosted through interactions (Li et al., 2017).
Most of previous dialogue systems did not take

speaker roles into consideration. However, we dis-
cover that different speaker roles can cause no-
table variance in speaking habits and later af-
fect the system performance differently (Chen
et al., 2017). From Figure 1, the benchmark dia-
logue dataset, Dialogue State Tracking Challenge
4 (DSTC4) (Kim et al., 2016)2, contains two spe-
cific roles, a tourist and a guide. Under the sce-
nario of dialogue systems and the communication
patterns, we take the tourist as a user and the guide
as the dialogue agent (system). During conversa-
tions, the user may focus on not only reasoning
(user history) but also listening (agent history), so
different speaker roles could provide various cues
for better understanding and policy learning.

This paper focuses on LU and dialogue pol-
icy learning, which targets the understanding of
tourist’s natural language (LU; language under-
standing) and the prediction of how the system
should respond (SAP; system action prediction)
respectively. In order to comprehend what the
tourist is talking about and predict how the guide
reacts to the user, this work proposes a role-
based contextual model by modeling role-specific
contexts differently for improving system perfor-
mance.

2 Proposed Approach

The model architecture is illustrated in Figure 2.
First, the previous utterances are fed into the con-
textual model to encode into the history summary,
and then the summary vector and the current ut-
terance are integrated for helping LU and dia-
logue policy learning. The whole model is trained
in an end-to-end fashion, where the history sum-
mary vector is automatically learned based on two

2http://www.colips.org/workshop/dstc4/

downstream tasks. The objective of the proposed
model is to optimize the conditional probability
p(ŷ | x), so that the difference between the pre-
dicted distribution q(ŷk = z | x) and the target
distribution q(yk = z | x) can be minimized:

L = −
K∑
k=1

N∑
z=1

q(yk = z | x) log p(ŷk = z | x),

(1)
where the labels y can be either intent tags for un-
derstanding or system actions for dialogue policy
learning.

Language Understanding (LU) Given the cur-
rent utterance x = {wt}T1 , the goal is to predict the
user intents of x, which includes the speech acts
and associated attributes shown in Figure 1; for ex-
ample, QST WHAT is composed of the speech act
QST and the associated attribute WHAT. Note that
we do not process the slot filling task for extract-
ing LOC. We apply a bidirectional long short-term
memory (BLSTM) model (Schuster and Paliwal,
1997) to integrate preceding and following words
to learn the probability distribution of the user in-
tents.

vcur = BLSTM(x,Whis · vhis), (2)

o = sigmoid(WLU · vcur), (3)

whereWhis is a dense matrix and vhis is the history
summary vector, vcur is the context-aware vector
of the current utterance encoded by the BLSTM,
and o is the intent distribution. Note that this is
a multi-label and multi-class classification, so the
sigmoid function is employed for modeling the
distribution after a dense layer. The user intent la-
bels y are decided based on whether the value is
higher than a threshold θ.

Dialogue Policy Learning For system action
prediction, we also perform similar multi-label
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Figure 2: Illustration of the proposed role-based contextual model.

multi-class classification on the context-aware
vector vcur from (2) using sigmoid:

o = sigmoid(Wπ · vcur), (4)

and then the system actions can be decided based
on a threshold θ.

2.1 Contextual Module
In order to leverage the contextual information,
we utilize two types of contexts: 1) semantic la-
bels and 2) natural language, to learn history sum-
mary representations, vhis in (2). The illustration
is shown in the top-right part of Figure 2.

Semantic Label Given a sequence of annotated
intent tags and associated attributes for each his-
tory utterance, we employ a BLSTM to model the
explicit semantics:

vhis = BLSTM(intentt), (5)

where intentt is the vector after one-hot encoding
for representing the annotated intent and the at-
tribute features. Note that this model requires the
ground truth annotations of history utterances for
training and testing.

Natural Language (NL) Given the natural lan-
guage history, a sentence encoder is applied to
learn a vector representation for each prior utter-
ance. After encoding, the feature vectors are fed
into a BLSTM to capture temporal information:

vhis = BLSTM(CNN(uttt)), (6)

where the CNN is good at extracting the most
salient features that can represent the given natural

‘s
the

song

what

in

convolutional layer with 
multiple filter widths

max-over-
time 

pooling

the
sea

word embeddings dim filter depth

fully-
connected 

layer

Figure 3: Illustration of the CNN sentence encoder
for the example sentence “what’s the song in the
sea”.

language utterances illustrated in Figure 3. Here
the sentence encoder can be replaced into differ-
ent encoders3, and the weights of all encoders are
tied together.

NL with Intermediate Guidance Considering
that the semantic labels may provide rich cues,
the middle supervision signal is utilized as inter-
mediate guidance for the sentence encoding mod-
ule in order to guide them to project from input
utterances to a more meaningful feature space.
Specifically, for each utterance, we compute the
cross entropy loss between the encoder outputs
and corresponding intent-attributes shown in Fig-
ure 2. Assuming that lt is the encoding loss for
uttt in the history, the final objective is to mini-
mize (L+

∑
t lt). This model does not require the

3In the experiments, CNN achieved slightly better perfor-
mance with fewer parameters compared with BLSTM.
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ground truth semantics for history when testing,
so that it is more practical compared to the above
model using semantic labels.

2.2 Speaker Role Modeling

In a dialogue, there are at least two roles com-
municating with each other, each individual has
his/her own goal and speaking habit. For example,
the tourists have their own desired touring goals
and the guides are try to provide the sufficient tour-
ing information for suggestions and assistance.
Prior work usually ignored the speaker role in-
formation or only modeled a single speaker’s his-
tory for various tasks (Chen et al., 2016c; Yang
et al., 2017). The performance may be degraded
due to the possibly unstable and noisy input fea-
ture space. To address this issue, this work pro-
poses the role-based contextual model: instead of
using only a single BLSTM model for the his-
tory, we construct one individual contextual mod-
ule for each speaker role. Each role-dependent
recurrent unit BLSTMrolex receives corresponding
inputs xi,rolex (i = [1, ..., N ]), which have been
processed by an encoder model, we can rewrite (5)
and (6) into (7) and (8) respectively:

vhis = BLSTMrolea(intentt,rolea) (7)

+ BLSTMroleb
(intentt,roleb

).
vhis = BLSTMrolea(CNN(uttt,rolea)) (8)

+ BLSTMroleb
(CNN(uttt,roleb

))

Therefore, each role-based contextual module fo-
cuses on modeling the role-dependent goal and
speaking style, and vcur from (2) is able to carry
role-based contextual information.

3 Experiments

To evaluate the effectiveness of the proposed
model, we conduct the LU and dialogue policy
learning experiments on human-human conversa-
tional data.

3.1 Setup

The experiments are conducted on DSTC4, which
consists of 35 dialogue sessions on touristic infor-
mation for Singapore collected from Skype calls
between 3 tour guides and 35 tourists (Kim et al.,
2016). All recorded dialogues with the total length
of 21 hours have been manually transcribed and
annotated with speech acts and semantic labels
at each turn level. The speaker labels are also

annotated. Human-human dialogues contain rich
and complex human behaviors and bring much
difficulty to all dialogue-related tasks. Given the
fact that different speaker roles behave differently,
DSTC4 is a suitable benchmark dataset for evalu-
ation.

We choose a mini-batch adam as the optimizer
with the batch size of 128 examples (Kingma
and Ba, 2014). The size of each hidden re-
current layer is 128. We use pre-trained 200-
dimensional word embeddings GloV e (Penning-
ton et al., 2014). We only apply 30 training epochs
without any early stop approach. The sentence en-
coder is implemented using a CNN with the fil-
ters of size [2, 3, 4], 128 filters each size, and max
pooling over time. The idea is to capture the most
important feature (the highest value) for each fea-
ture map. This pooling scheme naturally deals
with variable sentence lengths. Please refer to Kim
(2014) for more details.

For both tasks, we focus on predicting multiple
labels including speech acts and attributes, so the
evaluation metric is average F1 score for balancing
recall and precision in each utterance. Note that
the final prediction may contain multiple labels.

3.2 Results

The experiments are shown in Table 1, where we
report the average number over five runs. The first
baseline (row (a)) is the best participant of DSTC4
in IWSDS 2016 (Kim et al., 2016), the poor per-
formance is probably because tourist intents are
much more difficult than guide intents (most sys-
tems achieved higher than 60% of F1 for guide in-
tents but lower than 50% for tourist intents). The
second baseline (row (b)) models the current utter-
ance without contexts, performing 62.6% for un-
derstanding and 63.4% for policy learning.

3.2.1 Language Understanding Results
With contextual history, using ground truth se-
mantic labels for learning history summary vec-
tors greatly improves the performance to 68.2%
(row (c)), while using natural language slightly
improves the performance to 64.2% (row (e)). The
reason may be that NL utterances contain more
noises and the contextual vectors are more difficult
to model for LU. The proposed role-based con-
textual models applying on semantic labels and
NL achieve 69.2% (row (d)) and 65.1% (row (f))
on F1 respectively, showing the significant im-
provement all model without role modeling. Fur-
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Model Language Policy
Understanding Learning

Baseline (a) DSTC4-Best 52.1 -
(b) BLSTM 62.6 63.4

Contextual-Sem (c) BLSTM 68.2 66.8
(d) + Role-Based 69.2† 70.1†

Contextual-NL (e) BLSTM 64.2 66.3
(f) + Role-Based 65.1† 66.9†

(g) + Role-Based w/ Intermediate Guidance 65.8† 67.4†

Table 1: Language understanding and dialogue policy learning performance of F-measure on DSTC4
(%). † indicates the significant improvement compared to all methods without speaker role modeling.

thermore, adding the intermediate guidance ac-
quires additional improvement (65.8% from the
row (g)). It is shown that the semantic labels
successfully guide the sentence encoder to obtain
better sentence-level representations, and then the
history summary vector carrying more accurate se-
mantics gives better performance for understand-
ing.

3.2.2 Dialogue Policy Learning Results
To predict the guide’s next actions, the baseline
utilizes intent tags of the current utterance with-
out contexts (row (b)). Table 1 shows the similar
trend as LU results, where applying either role-
based contextual models or intermediate guidance
brings advantages for both semantics-encoded and
NL-encoded history.

3.3 Discussion
In contrast to NL, semantic labels (intent-attribute
pairs) can be seen as more explicit and concise in-
formation for modeling the history, which indeed
gains more in our experiments for both LU and di-
alogue policy learning. The results of Contextual-
Sem can be treated as the upper bound perfor-
mance, because they utilizes the ground truth se-
mantics of contexts. Among the experiments of
Contextual-NL, which are more practical because
the annotated semantics are not required during
testing, the proposed approaches achieve 5.1% and
6.3% relative improvement compared to the base-
line for LU and dialogue policy learning respec-
tively.

Between LU and dialogue policy learning tasks,
most LU results are worse than dialogue policy
learning results. The reason probably is that the
guide has similar behavior patterns such as pro-
viding information and confirming questions etc.,
while the user can have more diverse interac-

tions. Therefore, understanding the user intents is
slightly harder than predicting the guide policy in
the DSTC4 dataset.

With the promising improvement for both LU
and dialogue policy learning, the idea about mod-
eling speaker role information can be further ex-
tended to various research topics in the future.

4 Conclusion

This paper proposes an end-to-end role-based con-
textual model that automatically learns speaker-
specific contextual encoding. Experiments on a
benchmark multi-domain human-human dialogue
dataset show that our role-based model achieves
impressive improvement in language understand-
ing and dialogue policy learning, demonstrating
that different speaker roles behave differently and
focus on different goals.
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Abstract

Neural conversation systems, typically
using sequence-to-sequence (seq2seq)
models, are showing promising progress
recently. However, traditional seq2seq
suffer from a severe weakness: during
beam search decoding, they tend to rank
universal replies at the top of the can-
didate list, resulting in the lack of di-
versity among candidate replies. Max-
imum Marginal Relevance (MMR) is a
ranking algorithm that has been widely
used for subset selection. In this pa-
per, we propose the MMR-BS decoding
method, which incorporates MMR into the
beam search (BS) process of seq2seq
. The MMR-BS method improves the di-
versity of generated replies without sacri-
ficing their high relevance with the user-
issued query. Experiments show that our
proposed model achieves the best perfor-
mance among other comparison methods.

1 Introduction

Conversation systems are of growing importance
since they enable a smooth interaction interface
between humans and computers: using natural
language (Yan et al., 2016b). Generally speak-
ing, there are two main categories of conversation
systems: the retrieval-based (Yan et al., 2016a,b;
Song et al., 2016) and the generation-based (Ser-
ban et al., 2016b; Shang et al., 2015; Serban et al.,
2016a) conversation systems. In this paper, we fo-
cus on the generation-based conversation systems,
which are more flexible and extensible compared
with the retrieval-based ones.

The sequence-to-sequence neural network
(seq2seq ) (Sutskever et al., 2014) is a prevail-
ing approach in generation-based conversation

systems (Shang et al., 2015). It uses a recurrent
neural network (RNN) to encode the source
sentence into a vector, then uses another RNN
to decode the target sentence word by word.
Long short term memory (LSTM) (Hochreiter
and Schmidhuber, 1997) and gated recurrent
units (GRUs) (Cho et al., 2014) could further
enhance the RNNs to model longer sentences. In
the scenarios of generation-based conversation
systems, the training criterion of seq2seq is to
maximize the likelihood of the generated replies
given the user-issued queries.

As is well known, the generation-based conver-
sation systems suffer from the problem of univer-
sally replies, which contain less information, such
as “I don’t know” and “something” (Mou et al.,
2016; Mrkšić et al., 2015). According to Li et al.,
0.45% generated replies contain the sequence “I
don’t know.” During the interaction between the
user and the system, the user may expect more in-
formative and diverse utterances with various ex-
pressions. The lack of diversity is one of the bot-
tlenecks of the generation-based conversation sys-
tems. Moreover, the quality of generated replies,
namely the high relevance between queries and
replies, could not be obliterated when trying to im-
prove the diversity.

In this paper, We propose the MMR-BS
model to tackle the problem of diversity in the
generation-based conversation systems. Maxi-
mum Marginal Relevance (MMR) (Jaime and
Goldstein, 1998; Wang et al., 2009; Yang et al.,
2007) has been widely applied in diversity mod-
eling tasks, such as information retrieval (Stewart
and Carbonell, 1998), document summarization
(Zhou, 2011) and text categorization (He et al.,
2012). It scores each candidate by properly mea-
suring them in terms of quality and diversity and
selects the current best candidate item at each time
step. These properties make it suitable for the sub-
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sequences choosing in the reply generation pro-
cess. Hence, we incorporate MMR into the decod-
ing process of Beam Search (BS) in seq2seq.

To demonstrate the effectiveness of MMR-BS,
we evaluate our method in terms of both quality
and diversity. Enhanced with MMR, the MMR-
BS model can generate more meaningful replies
than other baselines, as we shall show in the ex-
periments.

2 Preliminaries

2.1 seq2seq Model

seq2seq encodes the user-issued query q using
an RNN, and decodes a corresponding reply r with
another RNN. At each time step of decoding, the
RNN estimates a probabilistic distribution over the
vocabulary. The objective function of seq2seq
is the log-likelihood of reply r given the query q:

r̂ = argmax
r
{log(p(r|q))} (1)

We use the attention mechanism (Bahdanau
et al., 2015) to better align input and output sen-
tences and use gated recurrent units (GRUs) to en-
hance RNNs’ ability to handle long sentences.

2.2 Beam Search

Beam search is a prevalent decoding method
in seq2seq (Vijayakumar et al., 2016), which
maintains a set of candidate subsequences at every
step of decoding process. At a time step t, we keep
N subsequences based on their cumulative proba-
bilities. At the time t + 1, each subsequence is
appended with a word from the entire vocabulary,
resulting in a larger candidate set of subsequences.
Then we keep the top-N sequences in the same
manner. A candidate sequence terminates when
RNN predicts EOS, the special symbol indicating
the end of a sequence. Let S(y1, · · · , yt|q) be a
function that scores a subsequence {y1, · · · , yt}
given a query q. The original beam search chooses
N most probable replies, i.e., S(·) is the logarith-
mic probability, given by

S(yt|q) = S(yt−1) + log p(yt|q, y1, · · · , yt−1)
(2)

3 Diverse Neural Conversation

3.1 MMR-BS Model

The beam search criterion is mainly based on
the conditional probabilities of replies given the
query. Universal replies, which have relatively

Query

Coarse-grained
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...

. . .
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...

2N N
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Figure 1: The architecture of MMR-BS.

higher probabilities, are likely to appear at the top
of the candidate list, resulting in the lack of di-
versity among top replies. To handle the influence
of the replies’ own probabilities and address the
relevance with the query at the same time, we pro-
pose MMR-BS, which applies the MMR criterion
to every decoding step of beam search to upturn
diverse subsequences. The whole architecture of
MMR-BS is illustrated in Figure 1.

Specifically, the decoding process maintains a
subsequence list S; the number of subsequences
in S is N . At each time of decoding, every sub-
sequence is appended with a word from the en-
tire vocabulary V , resulting in N ∗ |V | subse-
quences. Since only N subsequences would be
passed into next time step for further generation,
our MMR-BS model uses two granularities of se-
lection, which is performed in two-step strategy.
We present the decoding process in Algorithm 1.
• Coarse-grained Selection. Coarse-grained se-
lection follows the original scoring function in
traditional beam search, which is described in
equation 2. This selection strategy conditions on
the probabilities of subsequences given the query,
which represents the relevance between each sub-
sequence and the query. We use coarse-grained se-
lection to select 2N subsequences noted as S2N .
• Fine-grained Selection. However, coarse-
grained selection focuses on the quality of sub-
sequences but ignores the diversity among them.
The fine-grained selection adopts the MMR scor-
ing to balance quality and diversity in the selecting
process. It maintains a selected list Ss and con-
tinually adds the highest scored subsequence into
Ss from the remaining candidates, i.e., S2N

t \Ss
t .

This process repeats N times, resulting in N best
subsequences. The scoring function of MMR con-
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Algorithm 1: MMR-BS Decoding
Input: the user-issued query q, the max

length of reply l, λ in MMR function
Output: generated reply set R
R = ∅;
S0 = ∅; for t = 1; t ≤ l; do

// obtain the subsequence set at time i
St = Decoding(q, St−1);
// coarse-grained selection
S2N

t = Normal Ranking(St);
// fine-grained selection
Ss

t = ∅; for i = 1; i ≤ N ; do
max = −∞;
forall sj ∈ S2N

t \ Ss
t do

score = λ simqua(sj , q)
−(1− λ)simdiv(sj , S

s
t );

if score > max then
max = score;
bests = sj ;

Ss
t = Ss

t ∪ bests;

R = Ss
l ;

return R

siders the quality of a candidate as well as its di-
versity against previously selected ones. In partic-
ular, we have two metrics: simqua(si, q) measures
the similarity of a candidate subsequence si with
respect to the query q, indicating the quality of si.
simdiv(si, S

s) measures the similarity of si against
other replies in the selected list; − simdiv(·) indi-
cates the diversity.

MMR chooses the next candidate s∗ such that

s∗ = argmax
si∈S2N\Ss

[λ simqua(si, q)−(1−λ)simdiv(si, S
s))]

(3)
where λ is a hyper-parameter balancing these two
aspects. Thus the fine-grained selection improves
the diversity and retains the quality of subse-
quences at each time of decoding, so the generated
replies are of good quality and diversity.

3.2 Quality and Diversity Metrics

The fine-grained selection allows explicit defini-
tion of quality and diversity measurements, which
are presented in this section.
Quality Metric. The semantic coherence with the
query, which is based on the word-level similarity,
defines the quality of each candidate subsequence.
For each word in the query, we find the best match-

ing word in the subsequence using the cosine sim-
ilarity of the word embeddings (Mikolov et al.,
2015, 2013). Then we sum over all the similarity
scores as the final quality score given by

simqua(si, q) =
1
|q|
∑
wi∈q

argmax
wj∈si

cos(ewi , ewj )

(4)
where ewi refers to the embedding of word wi.
Diversity Metric. The diversity score of a sub-
sequence measures its differences against existing
subsequences in the selected set Ss by the word
overlapping. We represent a subsequence si as
a vector and measure the similarity by the cosine
score; the average indicates overall diversity,

simdiv(si, S
s) =

1
|Ss|

∑
sj∈Ss

cos(si, sj) (5)

where si is a binary word vector, each element in-
dicating if a word appears in si; the vector length
is the number of words in si and sj . Notice that,
for diversity, we use binary word vectors instead
of embeddings to explicitly avoid word overlap
among (top-ranked) candidate subsequences.

4 Experiments

4.1 Dataset

We evaluated each approach on a massive Chinese
conversation dataset crawled from Baidu Tieba1.
There were 1,600,000 query-reply pairs for train-
ing, 2000 pairs for validation, and another unseen
2000 pairs for testing. We performed standard
Chinese word segmentation.

4.2 Experimental Setups

All the methods are established on the base of
the traditional seq2seq with same settings. In
our study, word embeddings were 610d and hid-
den layers were 1000d, following the settings in
Shang et al. We applied AdaDelta with default
hyper-parameters. We kept 100k words (Chinese
terms) for both queries and replies, but 30k for the
decoder’s output due to efficiency concerns. λ in
MMR scores was empirically set to 0.5; the beam
size was 30.

4.3 Algorithms for Comparison

• Beam Search (BS). The standard beam search
in seq2seq which acts as the baseline.

1http://tieba.baidu.com
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Method Top-1 Top-5 Top-10 QualityBLEU-1 BLEU-2 BLEU-1 BLEU-2 BLEU-1 BLEU-2
BS 0.679 0.254 1.803 0.555 2.959 0.980 0.703
DD 0.790 0.192 1.893 0.480 2.991 0.802 0.727
DBS 0.358 0.111 1.123 0.224 2.264 0.401 0.553
MMR-BS 2.626 0.802 5.154 1.270 6.672 2.019 0.791

Table 1: Results of quality evaluation. Inter-annotator agreement for human annotation: Fleiss’ κ =
0.5698 (Fleiss, 1971), std = 0.3453.

Method Top-1 Top-5 Top-10
distinct-1 distinct-2 distinct-3 distinct-4 distinct-1 distinct-2 distinct-3 distinct-4 distinct-1 distinct-2 distinct-3 distinct-4

BS 0.100 0.261 0.366 0.624 0.038 0.148 0.259 0.346 0.021 0.101 0.200 0.291
DD 0.130 0.333 0.489 0.623 0.047 0.191 0.334 0.448 0.027 0.134 0.263 0.377
DBS 0.113 0.321 0.495 0.649 0.056 0.206 0.371 0.524 0.036 0.171 0.334 0.487
MMR-BS 0.152 0.510 0.725 0.840 0.063 0.326 0.600 0.776 0.037 0.243 0.517 0.729

Table 2: Results of distinct scores.
Method Top-1 Top-5 Top-10 Rates
BS 0.759 0.765 0.796 56.53%
DD 0.849 0.830 0.846 50.30%
DBS 0.901 0.897 0.892 45.53%
MMR-BS 0.939 0.910 0.878 15.67%

Table 3: Results of diverse scores and the rates of
the universal replies in Top-10 reply list. Fleiss’
κ = 0.2540 (Fleiss, 1971), std = 1.563.

• Diverse Decoding (DD). A work proposed by
Li et al., which assigns low scores to sibling sub-
sequences.
• Diverse Beam Search (DBS). A work proposed
by Vijayakumar et al., which adds a similarity
punishment to the scoring function.
• MMR-BS. The proposed model in this paper,
which applies the MMR in the decoding process
to select the subsequences.

4.4 Evaluation Metrics

We evaluated each method in terms of two aspects,
namely the quality and the diversity. All the sub-
jective evaluation experiments are conducted on
100 randomly sampled cases.
• Quality Evaluation We used BLEU scores as
objective metrics to measure the coherence be-
tween the user-issued query and candidate replies,
which is also used in (Li and Jurafsky, 2016; Vi-
jayakumar et al., 2016). We calculated the BLEU
scores of Top-1, Top-5 and Top-10 replies, and
only display BLEU-1 and BLEU-2 scores due to
the flexibility of conversation. We asked three
well-educated volunteers to annotate the quality of
the generated replies for each comparison method.
The volunteers are asked to label each reply with
a score: 0 for the improper reply, 1 for the border-
line reply and 2 for the proper reply.

• Diversity Evaluation We used the distinct
scores to measure the diversity in the generated
replies, following (Li and Jurafsky, 2016; Vi-
jayakumar et al., 2016). We also conducted the di-
verse scores, which is used in information retrieval
to calculate the differentness between retrieved re-
sults (Zhang and Hurley, 2008),

2
|R|(|R| − 1)

∑
ri∈R

∑
rj∈R,ri 6=rj

(1− cos(ri, rj))

(6)
where R is whole set of the generated replies and
ri is the binary word vector with same definition
in Equation 5. We asked three well-educated vol-
unteers to count the universal replies in the Top-10
reply list and calculated the rates.

4.5 Overall Performance

We presented the quality evaluation results in Ta-
ble 1. DD achieves almost the same performance
with the standard BS. DBS is not as good as the
BS and DD. MMR-BS yields the highest BLEU
scores and human annotation results, which indi-
cates the effectiveness of the quality measurement.

We presented the diversity evaluation results in
Table 2 and Table 3. BS achieves the worst perfor-
mance as it does not consider about the diversity
during the decoding process. DD is better than BS
but not as good as DBS. DBS shows a good perfor-
mance in terms of all the diversity evaluation and
even outperforms MMR-BS in the Top 10 diverse
score. MMR-BS outperforms all the other meth-
ods in most metrics. Compared with BS, it de-
creases the number of universal replies by 3 times,
which is a significant improvement.

It is obvious that MMR-BS yields the highest
quality and diverse scores. Compared with BS,
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DD does not improve the quality very much but
indeed fosters the diversity among the generated
replies. DBS achieves a good diversity perfor-
mance but is still worse than MMR-BS. As DBS
does not perform well in quality, we can see that it
sacrifices the quality to increase the diversity.

5 Related Work

To tackle diversity problem in generation-based
systems, Li et al. propose a diverse decod-
ing method2 that avoids choosing sibling subse-
quences during decoding (Li and Jurafsky, 2016).
Vijayakumar et al. propose a diverse beam search,
which divides the subsequence into several groups
during selection. These methods add a diversity
punishment term to the scoring function in beam
search; it is hard to balance this term with other
components in the function.

MMR is widely used in information retrieval
(Stewart and Carbonell, 1998), document summa-
rization (Zhou, 2011), and text categorization (He
et al., 2012). MMR allows an explicit definition of
both quality and diversity, and linearly combines
these two aspects. This property fits the require-
ments in subsequence selection in beam search
where the candidate subsequences should be dif-
ferent from each other and retain the high coher-
ence with the user-issued query at the same time.

6 Conclusions

In this paper, we propose an MMR-BS method to
tackle the problem of diversity in generative con-
versation systems. MMR-BS deploys two gran-
ularities of subsequence selection during the de-
coding process. The first one continues to use the
original scoring function, and the second one takes
advantage of MMR to measure each subsequence,
considering both the quality and diversity. The ex-
perimental results demonstrate the effectiveness of
our method.
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Abstract

Generating computer code from natural
language descriptions has been a long-
standing problem. Prior work in this do-
main has restricted itself to generating
code in one shot from a single description.
To overcome this limitation, we propose a
system that can engage users in a dialog to
clarify their intent until it has all the infor-
mation to produce correct code. To eval-
uate the efficacy of dialog in code genera-
tion, we focus on synthesizing conditional
statements in the form of IFTTT recipes.

1 Introduction

Building a natural language interface for program-
matic tasks has long been a goal of computational
linguistics. This has been explored in a plethora
of domains such as generating database queries
(Zelle and Mooney, 1996; Berant et al., 2013; Yin
et al., 2016), building regular expressions (Man-
shadi et al., 2013), commanding a robot (She et al.,
2014), programming on spreadsheets (Gulwani
and Marron, 2014), and event-driven automation
(Quirk et al., 2015), each with its own domain-
specific target language. Synthesis of computer
programs in general-purpose programming lan-
guages has also been explored (Ling et al., 2016;
Yin and Neubig, 2017). The existing work as-
sumes that a working program can be generated in
one shot from a single natural language descrip-
tion. However, in many cases, users omit impor-
tant details that prevents the generation of fully ex-
ecutable code from their initial description.

Another line of research that has recently gar-
nered increasing attention is that of dialog sys-
tems (Singh et al., 2002; Young et al., 2013). Dia-
log systems have been employed for goal-directed
tasks such as providing technical support (Lowe

et al., 2015) and travel information and booking
(Williams et al., 2013), as well as in non-goal
oriented domains such as social-media chat-bots
(Ritter et al., 2011; Shang et al., 2015).

In this paper, we combine these two lines of re-
search and propose a system that engages the user
in a dialog, asking questions to elicit additional
information until the system is confident that it
fully understands the user’s intent and has all of
the details to produce correct, complete code. An
added advantage of the dialog setting is the possi-
bility of continuous improvement of the underly-
ing semantic parser through conversations (Artzi
and Zettlemoyer, 2013; Thomason et al., 2015;
Weston, 2016), which could further increase suc-
cess rates for code generation and result in shorter
dialogs. We focus on a restrictive, yet important
class of programs that deal with conditions, i.e.,
if-then statements. To this end, we use the
IFTTT dataset released by Quirk et al. (2015). To
the best of our knowledge, this is the first attempt
to use dialog for code generation from language.

2 Task Overview

2.1 IFTTT Domain

IFTTT (if-this-then-that) is a web-service that al-
lows users to automate simple tasks by creating
short scripts, called recipes, through a GUI that
enables them to connect web-services and smart
devices. A recipe consists of a trigger — an event
which fires the recipe — and an action — the task
to be performed when the recipe is fired. A trigger
is characterized by a trigger channel (the source
of the event) and a trigger function (the nature of
the event); an action is characterized by an ac-
tion channel (the destination of the task to be per-
formed) and an action function (the nature of that
task). Users can share their recipes publicly with
short descriptions of their functionalities.

175



For example, a recipe with description “Text me
when I am tagged in a picture on Facebook” might
have trigger channel facebook, trigger function
you are tagged in a photo, action channel
sms, and action function send me an sms.

2.2 Problem Statement
Our goal is to synthesize IFTTT recipes from their
natural language descriptions. Unlike prior work
in this domain (Quirk et al., 2015; Dong and La-
pata, 2016; Beltagy and Quirk, 2016; Liu et al.,
2016), which restrict the system to synthesizing a
recipe from a single description, we seek to enable
the system to interact with users by engaging them
in a dialog to clarify their intent when the system’s
confidence in its inference is low. This is particu-
larly crucial when there are multiple channels or
functions achieving similar goals, or when the ini-
tial recipe descriptions are vague.

3 Approach

We propose a dialog system with which users can
converse using natural language to create recipes.
It consists of three components: Dialog Manager,
Natural Language Understanding (NLU), and Nat-
ural Language Generation (Jurafsky, 2000).

3.1 Dialog Manager
The aim of the dialog system is to determine val-
ues of channels and functions for the recipe that
the user wants to create. We cast this problem as
a slot-filling task, in which the system maintains
a belief state — its current estimates for the slots
— and follows a hand-coded policy to update its
belief state until it is confident that the belief state
is same as the user goal. The strategy is similar to
the one used by Thomason et al. (2015).

3.1.1 Belief State
The belief state consists of four slots:
trigger channel, trigger function,
action channel, and action function.
The slots naturally form a hierarchy: channels are
above functions. Although triggers and actions
are, in a loose sense, at the same level in the
hierarchy1, it is more natural to specify triggers
before actions, thereby inducing a complete
hierarchy over slots. This hierarchy is exploited
in specifying a policy for the dialog system.

1Technically, the presence of ingredients — properties as-
sociated with trigger functions that can be utilized by action
functions — puts triggers above actions in the hierarchy.

The system maintains a probability distribution
over all possible values for each slot. After each
user utterance, the probability distribution for one
or more slots is updated based on the parse re-
turned by the utterance parser (see Section 3.2).
The system follows a hand-coded policy over the
discrete state-space obtained from the belief state
by assigning the values with highest probability
(candidates with highest confidence) to each slot.

3.1.2 Static Dialog Policy
The dialog opens with an open-ended user utter-
ance (a user-initiative) in which the user is ex-
pected to describe the recipe. Its parse is used to
update all the slots in the belief state. The system
moves down the slot-hierarchy, one slot at a time,
and picks the next action based on the confidence
of the top candidate for each slot. If the confidence
is above α, the parse is accepted, and the candidate
is assigned to that slot. If the confidence is below
β, the parse is rejected, and the system requests in-
formation for that slot (a system-initiative). If the
confidence is between α and β, the system seeks
a confirmation of the candidate value for that slot;
if the user affirms, the candidate is assigned to the
slot, otherwise the system requests information for
that slot. Value of α and β present a trade-off be-
tween dialog success and dialog length. α = 0.85
and β = 0.25 were used in all the experiments,
chosen by analyzing the performance of the dia-
log system on the IFTTT validation set.

3.2 Natural Language Understanding

This component is responsible for parsing user ut-
terances. We use the model proposed by Liu et al.
(2016): an LSTM-based classifier enhanced with a
hierarchical, two-level attention mechanism (Bah-
danau et al., 2014). In our system, the semantic
parser is composed of a set of four such models,
one for each slot. User-initiatives are parsed by
all four models, while user responses to system-
initiatives are parsed by the model corresponding
to the slot under consideration.

3.3 Natural Language Generation

The dialog system uses templates and IFTTT API
documentation to translate its belief state into a
comprehensible utterance. For example, the con-
firmation request for the blink lights action
function of the hue action channel is: “Do you
want to briefly turn your hue lights off then back
on every time the applet is triggered?”
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3.4 Retraining NLU using Dialog

Another advantage of using a dialog approach to
recipe synthesis is that it unlocks the possibility
of continuous parser improvement through con-
versations (Artzi and Zettlemoyer, 2013; Thoma-
son et al., 2015; Weston, 2016). To this end, we
extract training data from the dialogs. Opening
user utterances and user utterances for each slot
after a system-initiative in successful dialogs are
paired with inferred slot values to retrain the mod-
els. Analysis of models’ predictions on the val-
idation set revealed that the attention mechanism
was rather good at attending to relevant parts of
an utterance; the models failed because they of-
ten couldn’t pick the correct channel or function
among the similar ones. Therefore, we tuned only
the non-attention parameters during retraining.

4 Experiments

We trained our parser on the training set of the
IFTTT corpus. Since the corpus was released,
many recipes have been taken down; we could
only obtain 66, 588 out of 77, 495 training recipes.
We evaluated our system on the “gold” subset of
the IFTTT test set created by Quirk et al. (2015)
which consists of 550 recipes on which at least
three humans presented with the recipe descrip-
tions agreed with the true labels. We restricted
ourselves to this subset because our experiments
involved humans interacting with the dialog sys-
tem to describe the recipe and answer its ques-
tions, and it was crucial that they themselves have
a clear understanding of the recipe.

4.1 Experimental Setup

We used Amazon Mechanical Turk to conduct our
experiments. Users were provided with recipe de-
scriptions from the IFTTT corpus. Since descrip-
tions could often be vague, we also explicitly pro-
vided them the details of channels and functions
associated with the recipes. As noted in (Thoma-
son et al., 2015), in which a similar interface was
used to let users chat with a robot for perform-
ing navigation- and delivery-related tasks, infor-
mation presented using words could linguistically
prime the users. They avoided priming completely
by presenting the information pictorially. Since it
is unclear how to succinctly describe a recipe with-
out using words, we, instead, used keywords for
channels and functions (such as event starts
and blink lights), which usually contain only

content words necessary to give an indication of
their functionality, but are somewhat distant from
natural language. Additionally, we encouraged
users to use their own words based on their under-
standing of the recipe and restricted direct usage
of these keywords. Fig. 1 shows a sample dialog.

Figure 1: Dialog for a recipe with trigger
event starts on google calendar, action
send notification on google glass.

4.2 Dialog Experiments

We conducted two experiments to evaluate the ef-
ficacy of dialog in synthesizing recipes. In both
the experiments, two baselines are used. First
is the the best-performing model from Liu et al.
(2016), currently the state-of-the-art on this task,
provided only with initial recipe descriptions, as
should be the case for a single-shot model. The
second baseline, called “Concat,” uses the same
model as above, but is provided with all the user
utterances from the conversation concatenated. By
ensuring that both the single-shot and the dialog
approach get same information, the Concat base-
line provides a middle-ground between the two ap-
proaches, and is more fair to the single-shot sys-
tem, but disguises its obvious deficiency: the lack
of ability to ask for clarification.

4.2.1 Constrained User-Initiative
To evaluate our system directly on the test set, we
constrained the users to use the original recipe de-
scriptions as their first utterance (i.e. the user-
initiative) when they were asked by the system
to describe the recipe. This way, we can directly
compare our results with prior work which uses
this set for evaluation.

4.2.2 Free User-Initiative
To emulate a more realistic setting in which users
drive the entire conversation, including the user-
initiative, we allowed the users to provide the ini-
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Experiment Liu et al. (2016) Concat Baseline Ours
Accuracy Accuracy Accuracy Avg. dialog length

Constrained UI 85.282 91.27 95.28 2.55
Free UI 66.0 77.82 81.45 4.04
After retraining 66.0 77.48 82.55 4.08

Table 1: Accuracy of recipe synthesis. Average dialog length is measured in terms of number of user
utterances.

tial recipe descriptions themselves. For a fair com-
parison, we evaluated the Liu et al. (2016)’s base-
line model on the initial descriptions provided in
the conversations.

4.3 Results

The results are summarized in Table 1. The dia-
log approach boosts the accuracy of recipe synthe-
sis considerably over the single-shot approach in
both the experiments: 10 point increase with con-
strained user-initiative and over 15 point increase
with free user-initiative. Even when the two ap-
proaches receive the same information (i.e., when
the dialog approach is compared with the Concat
baseline), the dialog approach boosts the accuracy
by approximately 4 points.

Surprisingly, the accuracy of both the single-
shot approach and the dialog approach fell dramat-
ically in the experiment with free user-initiative.
We contend that the reason behind this reduction
is the difference between the two settings in which
the recipe descriptions were created: Constrained
UI experiment uses original descriptions written
by the authors of the recipes with the aim of sum-
marizing their recipes so that their functionality
can be easily understood by others without their
assistance. The descriptions used in Free UI ex-
periment were provided by humans with the aim of
describing the recipe to a system with the knowl-
edge that the system can ask clarification ques-
tions. The former are expected to be more descrip-
tive and self-contained than the latter. The larger
average dialog length in the Free UI experiment
further corroborates this point.

4.4 Parser Retraining

Parser retraining would be most helpful when
the data is extracted from conversations that in-

2The accuracy reported by Liu et al. (2016) is 87.5%.
Our implementation of their system was able to achieve only
85.28% accuracy. The discrepancy could be because of a
smaller training set (they had 68k recipes), a smaller gold
test set (they had 584 recipes), or variance while training.

volve channels and functions for which the exist-
ing parser’s confidences are low. Therefore, we
randomly sampled 100 recipes from an unused
portion of the test set on which the confidence of
existing parser is below β for at least two slots.
About 130 data-points were extracted from con-
versations with humans over these recipes, and the
four models were retrained.

4.4.1 Results
The accuracy of systems using retrained models
is summarized in Table 1. For direct compari-
son, the dialog system with retrained models was
evaluated using the user utterances from conver-
sations in the Free UI experiment, except when
its actions deviated from the original ones — due
to an improved NLU component — in which case
new user utterances were obtained. While retrain-
ing didn’t improve the single-shot accuracy, there
was a marginal improvement of 1.1 points in the
dialog setting. Analysis of the conversations re-
vealed that this was because the retrained models
had lower confidence for some channels and func-
tions for which it initially had high priors. On one
hand, this helped the dialog system avoid getting
stuck in an impasse when it assigns an incorrect
value to a slot with high confidence without con-
firmation. On the other hand, this pessimism led
to a slight increase in average dialog length.

5 Future Work

In this work, we focus only on conditionals. A
natural extension would be to consider other pro-
gramming constructs such as loops, procedure
invocations, and sequence of execution. Dia-
log policy learning can be added to account for
non-stationarity in the dialog environment due to
parser learning (Padmakumar et al., 2017).

6 Conclusion

In this work, we demonstrated the efficacy of using
dialog for mapping natural language to short, exe-
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cutable computer code. We evaluated this idea in
the domain of IFTTT recipes. The proposed sys-
tem engaged the user in a dialog, asking questions
to elicit additional information until it was confi-
dent in its inference, thereby increasing the accu-
racy on this task over the state-of-the-art models
that are restricted to synthesizing recipes in one
shot by 10 − 15 points. Additionally, we demon-
strated how data extracted from the conversations
can be used for continuous parser learning.
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Abstract

Assessing summaries is a demanding, yet
useful task which provides valuable infor-
mation on language competence, especially
for second language learners. We consider
automated scoring of college-level sum-
mary writing task in English as a second
language (EL2). We adopt the Reading-for-
Understanding (RU) cognitive framework,
extended with the Reading-to-Write (RW)
element, and use analytic scoring with six
rubrics covering content and writing qual-
ity. We show that regression models with
reference-based and linguistic features con-
siderably outperform the baselines across
all the rubrics. Moreover, we find interest-
ing correlations between summary features
and analytic rubrics, revealing the links be-
tween the RU and RW constructs.

1 Introduction

Writing summaries is a complex skill which relies
on reading comprehension and the ability to con-
vey the information contained in the source text(s).
This makes summaries an important skill to de-
velop for academic or professional purposes. Sum-
mary writing skills may therefore be tested in a
recruitment process, or during admissions to uni-
versities, which may be particularly challenging
for L2 writers who may still be struggling with
lower levels of language competence such as gram-
mar or vocabulary. This is why summary writing
is sometimes used together with essays to assess
university-level abilities in L2.

However, assessing L2 summaries is highly de-
manding, especially if analytic rubrics are involved,
as they require raters’ expertise and much concen-
tration when assessing language proficiency at vari-
ous levels (e.g., lexis, syntax, discourse). Moreover,

unlike in essays, in summaries raters are expected
to put additional effort into checking for accuracy,
relevance, completeness, and coherence of the sum-
mary against the source text. Automated scoring
is thus of considerable importance to enhance as-
sessment of summaries, especially in the context
of higher education or professional environments.

This paper investigates automated scoring of
summaries based on six analytic rubrics used in the
assessment of college-level writing in English as a
second language (EL2). The writing task assesses
students’ comprehension of complex texts and their
ability to produce coherent writing. We build
upon the Reading-for-Understanding (RU) cogni-
tive framework (Sabatini et al., 2013) to which we
add the Reading-to-Write (RW) element (e.g., De-
laney (2008)) in order to analyze automated scoring
both in terms of reading comprehension and writ-
ing quality.

The contribution of our work is threefold. Firstly,
we experiment with regression models to predict
six expert-rated analytic scores, and train models
that utilize a combination of linguistic features that
measure textual cohesion and coherence, as well
as reference-based features that compare the sum-
maries against the source texts and expert-compiled
reference summaries. Secondly, we carry out a
correlation analysis between the text features and
analytic scores, discovering patterns that link the
RW and RU constructs, including signals of inad-
equate L2 competence. Lastly, we compile and
make available a dataset of expert-rated college-
level summaries in EL2.1

2 Related Work

Automated scoring of student writing has attracted
considerable attention due to the opportunity to
analyze cognitive aspects of writing as well as a

1http://takelab.fer.hr/el2-summaries
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need to automate the time-consuming, cognitively
demanding, and sometimes insufficiently reliable
assessment process, e.g., (Burstein et al., 2013;
Rahimi et al., 2015). Much has been done in the
area of L1 and L2 essays, e.g., with Coh-Metrix
(Crossley and McNamara, 2009; McNamara et al.,
2010; Crossley and McNamara, 2011), and some
studies have investigated automated scoring also in
summaries, e.g., (Madnani et al., 2013). As assign-
ments which demonstrate students’ reading/writing
skills and their broader academic abilities, sum-
maries have been studied as part of university-level
L2 assessment; e.g., integrated task in (Guo et al.,
2013).

In such research, holistic scoring mostly sup-
ported by well-defined descriptors, e.g., (Rahimi
et al., 2015), has predominantly been used to com-
pare against automatically computed features to
asses essay quality, e.g., (McNamara et al., 2010),
coherence and related concepts such as compre-
hension in summaries, e.g., (Madnani et al., 2013;
Mintz et al., 2014), ease of reading (Burstein et al.,
2013) or essay organization. To the best of our
knowledge, no research reports have been pub-
lished on using human raters’ multiple analytic
scores in such studies.

From a technical perspective, the work most sim-
ilar to ours is that of Madnani et al. (2013), whose
model also uses reference-based features, source-
copying features as well as a feature signaling text
coherence for automated scoring of summaries.
However, they frame the problem as a classification
task and predict a single holistic score, whereas we
frame the problem as a regression task and predict
the scores for six rubrics.

3 Reading-for-Understanding and
Reading-to-Write in L2

Summarization can be perceived as a Reading-for-
Understanding (RU) task as discussed by Mad-
nani et al. (2013) based on (Sabatini et al., 2013).
In other words, summarizing includes lower- and
higher-level comprehension processes leading to
establishing coherence according to the most plau-
sible intended meaning of the source text (Grosz
and Sidner, 1986). Meaning is thus actively con-
structed by selecting and organizing the main ideas
of the text into a coherent whole. When the result of
comprehension processes is articulated in writing,
there is a need to introduce cohesion devices which
signal the rhetorical structure of the text and ensure

a smooth flow of sentences. Summary writing is
thus also a Reading-to-Write (RW) task (e.g., De-
laney (2008)) demonstrating the ability to “convey
information” as “a central component of real-world
skills” (Foltz, 2016).

While there is a natural overlap between RU and
RW (since RW includes and largely depends on
RU), the difference between the two constructs is
more prominent when summaries are written in L2.
For example, a text which is mostly well under-
stood by a non-native speaker may be poorly sum-
marized due to insufficiently developed L2 writing
leading to overreliance on bottom-up processing
and lack of content integration. The RW manifes-
tation of such problems may be “inability to para-
phrase” and plagiarism, poor cohesion (Kirkland
and Saunders, 1991), or weak text organization.
Conversely, advanced L2 writing may sometimes
combine with superficial reading (also seen in na-
tive speakers), resulting in factually inaccurate, in-
complete, or incoherent summaries.

Analytic scoring based on different rubrics (e.g.,
accuracy, cohesion) is therefore particularly appro-
priate when assessing summaries in L2 as it offers
more informative feedback (Bernhardt, 2010) and
better captures different facets of L2 writing com-
petence than holistic assessment (Weigle, 2002).
However, analytic scoring is often exceptionally de-
manding for raters, especially in the case of longer
texts and more than four or five scoring categories
(CEFR), which motivates the use of automated as-
sessment.

4 Data Collection

The research encompassed 114 first-year business
undergraduates whose competence in English as
L2 was predominantly upper intermediate and ad-
vanced. Two text-present summary writing tasks
(tot. 228 summaries) were administered for two
respective articles (ca. 900 words each) taken from
The Economist, a renowned business magazine.
Both times participants were required to read the ar-
ticle and write a summary of about 300 words. Par-
ticipants were instructed that the summary should
clearly present the main ideas to a third person who
did not read the article.

In this work, we conceptualize RW as the abil-
ity to produce a well-organized writing with well-
connected sentences (cohesion), clear paragraph-
ing, topic sentences, and clear links between para-
graphs (text organization), while RU is about cover-
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ing the content of the source text accurately (factu-
ally accurate at the local level), completely (all the
main ideas covered), relevantly (important ideas
included), and coherently (a logical flow of ideas).

Two expert raters assessed the summaries on
the 4-point analytic scales (grades 0–3) consisting
of the RU content-based (accuracy/Acc, complete-
ness/Cmp, relevance/Rev, and coherence/Chr), and
RW text-based rubrics (cohesion/Chs, text orga-
nization/Org). The scales were quantified to the
extent possible (e.g., by defining the number of
cohesion breaks or accuracy errors for each grade).
Inter-rater reliability measured by weighted kappas
was as follows: accuracy 0.64, completeness 0.76,
relevance 0.76, coherence 0.69, text organization
0.76, and cohesion 0.83. Despite adequate reliabil-
ity, the relatively small number of summaries al-
lowed the raters to discuss and agree all the grades.

Before automated scoring, all the summaries
were checked for spelling and basic grammar (e.g.,
adding “s” to verbs in the present tense of the
third person singular), as we were primarily in-
terested in higher-level comprehension processes
in the RU/RW construct, and not in grammar or
spelling. Also, two reference summaries for each
text were written by experts following the same
instruction as the one given to students.

5 Automated Scoring

We frame the automated scoring as a multivariate
regression task and train separate regression models
for each of the six rubrics. Each regression model is
trained to predict the expert-assigned score on a 0–
3 scale. In using regression instead of classification,
we utilize the ordinal nature of the rubric scores, but
posit the equidistance of two consecutive scores.

Features. Each of the six regression models is
trained on the same set of features. The features can
be grouped into reference-based features (BLEU,
ROUGE, and “source-copying” features) inspired
by (Madnani et al., 2013), and linguistic features
derived from Coh-Metrix indices. For preprocess-
ing (sentence segmentation and tokenization), we
use the NLTK toolkit of Bird (2006).

• BLEU (Papineni et al., 2002) is a precision-
based metric originally used for comparing
machine-generated translations against reference
translations. In our case, BLEU measures the
n-gram overlap between the student’s summary
and the source text. The rationale is that a good

summary will refer to the ideas from – and hence
likely reuse fragments of – the source text.

• ROUGE (Lin and Hovy, 2003), is a recall-
oriented metric originally used for evaluating
automated summarization systems. Following
(Madnani et al., 2013), we use ROUGE to com-
pare the student’s summary against the two ref-
erence summaries. ROUGE is complementary
to BLEU and measures to what extent the stu-
dent’s summary resembles the reference sum-
maries. The intuition is that a good summary
should cover all the ideas described in the ref-
erence summaries, which will be indicated by a
high n-gram overlap between the two. We use
five ROUGE variants: ROUGE-1, ROUGE-2,
ROUGE-3, ROUGE-L, and ROUGE-SU4.

• Complementary to ROUGE, we adopt four
source-copying features from (Madnani et al.,
2013). CopiedSumm and CopiedText features
are the sum of lengths of all the n-grams of length
three or longer that are copied from the original
text divided by the length of the summary and the
source text, respectively. MaxCopy is the length
of the longest n-gram copied from the source text.
FirstSent is the number of source-text sentences
that share an n-gram of length at least two with
the first sentence of the summary.

• We use Coh-Metrix indices (Graesser et al.,
2004; McNamara et al., 2014) to measure the
cohesion and coherence of the summaries. The
Coh-Metrix tool2 computes a wide range of in-
dices, from which we selected 48: 11 descrip-
tive (DES), 12 referential cohesion (CRF) 8 LSA
overlap, 9 connectives (CNC), and 8 situation
model (SM) indices.

Models. We use two regression algorithms: an
L2-regularized linear regression model (Ridge re-
gression) and a non-linear support vector regres-
sion (SVR) machine (Drucker et al., 1997) with
an RBF kernel. Both algorithms rely on regular-
ization to alleviate the problem of overfitting and
multicollinearity. In addition, we experiment with
feature selection based on the F-test for each fea-
ture, retaining all, 10, or 5 top-ranked features,
yielding six different models. We use the sklearn
implementation of the algorithms (Pedregosa et al.,
2011).

Setup. We evaluate the models using a nested
10×5 cross-validation, where the inner five folds

2http://cohmetrix.com
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Model Acc Cmp Rel Chr Org Chs

Baseline 43.5 42.3 46.3 35.8 37.4 36.6

Ridge-all 42.2 51.6 46.8 42.3 39.3 48.1
Ridge-10 54.1∗ 54.1∗ 46.8 47.7∗ 43.2 55.9∗
Ridge-5 54.1∗ 50.2 50.8∗ 47.3∗ 44.5∗ 53.8∗

SVR-all 44.8 47.2 49.4 35.8 39.7 36.6
SVR-10 30.3 37.9 41.3 35.3 28.2∗ 36.5
SVR-5 29.6∗ 39.5 35.2 34.4 36.2 37.4

Table 1: Accuracy of automated scoring across the
six rubrics for the baseline and the six models using
all, 10, and 5 features. Maximum scores for each
rubric are shown in bold; “*” indicates statistically
significant difference against baseline at p<0.05.

are used to optimize the hyperparameters via grid
search. The models’ performance is measured in
terms of accuracy averaged over the five outer folds,
by rounding the predictions to closest integers prior
to computing the accuracy scores. All the features
are z-scored on the train set, and the same transfor-
mation is applied on the test set. As the baseline
for each rubric, we use the average expert-assigned
score for that rubric. We use a two-tailed t-test to
compare against the baseline, after having verified
that the normality assumption is met.

Results. Table 1 shows the results. We observe
that the performance varies considerably across the
models and rubrics. The non-linear SVR models
perform rather poorly in comparison to the baseline.
On the other hand, ridge regression models with 5
or 10 features (depending on the rubric) outperform
the baselines on all the six rubrics (the difference
is significant at p<0.05). The improvement is most
marked for cohesion and coherence (52% and 33%
relative improvement, respectively), while the or-
ganization rubric appears to be the most difficult
to predict. Feature selection improves the perfor-
mance of ridge regression, suggesting that feature
redundancy persists despite regularization.

6 Correlation Analysis

While the reference-based and linguistic features
serve as good predictors for the analytic scores of
college-level summaries in EL2, we expected not
all the features to be equally important for all the
scores. We therefore analyzed the correlations be-
tween the rubric scores and features which were
ranked among the top five for any of the rubrics,
plus the ROUGE-3 feature. Table 2 shows Spear-
man’s rank correlation coefficients.

Acc Cmp Rel Chr Org Chs

BLEU 0.27 −0.38 −0.50 −0.51 −0.49 −0.60

CopiedOrig 0.30 −0.36 −0.48 −0.51 −0.49 −0.61
CopiedSumm 0.32 −0.35 −0.46 −0.52 −0.48 −0.59
MaxCopy 0.29 −0.35 −0.39 −0.40 −0.34 −0.38

CNCAdd 0.36 0.42 0.31 0.39
CNCAll 0.33 0.42 0.30 0.31 0.42
CNCLogic 0.39 0.34 0.40 0.46

CRFAOa 0.31 0.41 0.36 0.44
CRFCWOa 0.31 0.37 0.36 0.42

DESWLlt 0.29 0.28
DESWLsy 0.28 0.28

ROUGE-3 −0.30 −0.25 −0.34

Table 2: Correlations between top-ranked features
and the six rubrics. Correlations of a magnitude
<0.25 are omitted. All shown correlations are sta-
tistically significant at p<0.05.

The analysis reveals two correlation patterns be-
tween (1) human analytic scoring of RU (e.g., accu-
racy) and RW (e.g., cohesion), and (2) the compu-
tationally derived features (linguistic and reference-
based). On the one side, accuracy (local, factual) is
the only RU/RW dimension which correlates posi-
tively with BLEU and the three source-copying fea-
tures (CopiedOrig, CopiedSumm, and MaxCopy).
Moreover, accuracy and completeness are the only
two dimensions positively correlating with word
length features, which may also be related to the
copying effort (plagiarism) when summarizing a
demanding text at lower L2 competence.

On the other side, all the other RU/RW dimen-
sions (completeness, relevance, coherence, organi-
zation, and cohesion) correlate negatively with the
plagiarism-related indices, as well as with ROUGE-
3. Also, positive correlations are found in all the
RU/RW dimensions but accuracy with some or
all of the indices relating to coherent writing (i.e.,
CNC connectors and CRF argument and content
word overlaps). Furthermore, text organization and
cohesion, the RW dimensions in our study, show
the same correlation patterns as two key content-
based criteria (RU): relevance and coherence.

7 Conclusion

In this paper we considered automated scoring of a
college-level summary writing task in English as a
second language (EL2), building on the Reading-
for-Understanding (RU) cognitive framework to
which we added the Reading-to-Write (RW) ele-
ment. The automated scoring of the summaries was
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based on six analytic rubrics. A regularized regres-
sion model which uses a combination of reference-
based and linguistic features outperformed the base-
line model across all the six rubrics, yielding ac-
curacies between 44.5% and 55.9% on a 4-point
scale.

While this result needs to be improved to be of
practical use, we discovered interesting links be-
tween RW and RU in L2 and the potential of our
system to measure the construct analytically. Local
accuracy found in summaries may to a large extent
be related to plagiarism as a strategy demonstrating
underperforming RW (rather than successful RU)
as inadequate L2 and/or less developed academic
ability prevent comprehension and paraphrasing.
Unlike accuracy, the other dimensions (complete-
ness, relevance, coherence, text organization and
cohesion) relate to active meaning construction
when building a coherent mental representation
(e.g., using connectors to clarify on the links be-
tween ideas), either in reading or writing. In RU,
this may mean searching for relevant information,
and integrating it into a coherent whole, while in
RW, coherence is possibly achieved through cohe-
sion and text organization.
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Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Edouard Duchesnay. 2011.
Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12(Oct):2825–2830.

Zahra Rahimi, Diane J Litman, Elaine Wang, and
Richard Correnti. 2015. Incorporating coherence of
topics as a criterion in automatic response-to-text as-
sessment of the organization of writing. In Proceed-
ings of the Tenth Workshop on Innovative Use of
NLP for Building Educational Applications, pages
20–30. Association for Computational Linguistics.

John Sabatini, Tenaha O’Reilly, and Paul Deane. 2013.
Preliminary reading literacy assessment framework:
Foundation and rationale for assessment and system
design. ETS Research Report Series, 2013(2).

Sara Cushing Weigle. 2002. Assessing Writing. Cam-
bridge University Press.

186



Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 187–192,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

A Statistical Framework for Product Description Generation

Jinpeng Wang1, Yutai Hou2∗, Jing Liu1, Yunbo Cao3 and Chin-Yew Lin1

1 Microsoft Research Asia, {jinpwa,liudani,cyl}@microsoft.com
2 Harbin University of Technology, ythou@ir.hit.edu.cn
3 Tencent Corporation, Beijing, yunbocao@tencent.com

Abstract

We present in this paper a statistical
framework that generates accurate and
fluent product description from product
attributes. Specifically, after extracting
templates and learning writing knowledge
from attribute-description parallel data, we
use the learned knowledge to decide what
to say and how to say for product descrip-
tion generation. To evaluate accuracy and
fluency for the generated descriptions, in
addition to BLEU and Recall, we propose
to measure what to say (in terms of at-
tribute coverage) and to measure how to
say (by attribute-specified generation) sep-
arately. Experimental results show that our
framework is effective.

1 Introduction

In this paper, we study the problem of product
description generation, i.e., given attributes of a
product, a system automatically generates corre-
sponding description for this product (see Fig. 1).
One application for this task is in (voice) QA sys-
tems like Amazon Echo, where reading out the
attributes of a product is not desirable. We also
found that only 45% of descriptions contain more
than 50 words after analyzing 40 million prod-
ucts from Amazon. Generating descriptions for
the products which do not have descriptions, and
explaining complex attributes of the product for
better understanding are also valuable.

Data-to-text generation renders structured
records into natural language (Reiter and Dale,
2000), which is similar to this problem. Statistical
approaches were employed to reduce extensive

∗This work was done when the second author was an in-
tern at Microsoft Research Asia.

Attribute Name Attribute Value

Processor Intel Core i3-2350M

RAM Size 6 GB

Series Dell Inspiron

… …

Screen Size 15.6 inches

Hard Drive Size 500 GB

(a) Product attributes

With 6 GB of memory and a 

Genuine Intel Core i3-2350M

processor, this Dell Inspiron

laptop will boost your productivity 

and enhance your entertainment. 

The bright, 15.6 inches display 

showcases movies and games in 

stunning cinema clarity. …

(b) Generated description

Figure 1: Example of generating product descrip-
tion from product attributes.

development time by learning rules from histori-
cal data (Langkilde and Knight, 1998; Liang et al.,
2009). Duboue and McKeown (2003) proposed
a statistical approach to mine content selection
rules for biography descriptions; Kondadadi
et al. (2013) and Howald et al. (2013) proposed a
statistical approach to select appropriate templates
for weather report generation.

However, product description generation is dif-
ferent from above work. To generating a useful
product description, a system needs to be aware
of the relative importance among the attributes of
a product and to maintain accuracy at the same
time. Successful product description generation
needs to address two major challenges: (1) What
to say: decide which attributes should be included
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in the description; (2) How to say: decide how to
order selected attributes in the description.

To tackle these problems, we introduce a sta-
tistical framework. Our approach has three sig-
nificant merits. (1) Coherent with fact: we pro-
posed to learn structured knowledge from train-
ing dataset, and use it to choose important at-
tributes and determine the structure of description;
(2) Fluent: the proposed approach is template-
based which guarantees grammaticality of gen-
erated descriptions, and the proposed templated
knowledge help to choose semantically correct
template; (3) Highly automated: the proposed ap-
proach required only weak human intervention.

Moreover, in addition to the standard metrics
for data-to-text generation, e.g, BLEU (Konstas
and Lapata, 2013; Lebret et al., 2016; Kiddon
et al., 2016); to evaluate accuracy and fluency
of generated descriptions, we propose to measure
what to say and how to say separately.

2 Problem Definition

Fig. 2 shows the system framework of product de-
scription generation. Our system first extracts sen-
tence level templates and learns writing knowl-
edge from a given parallel dataset, then generates
a new description for an input data at the online
stage by combining sentence level templates us-
ing the learned writing knowledge. The latter step
which generates document from sentences is the
core component of the product description gen-
erate framework. It is called Document Planning
and is our focus in this paper.
Document Planning as a Ranking Problem In
the online stage, given the attributes of a prod-
uct and the extracted templates, we first generate
candidate descriptions by combining all valid tem-
plates which fit the given attributes, and then rank
the candidate descriptions with the learned writing
knowledge. After formulating it as a ranking prob-
lem, it is flexible to integrate all kinds of features
to estimate the quality of the generated descrip-
tions.
Sentence Level Template Extraction Given a
parallel dataset, we first align descriptions and
theirs corresponding attributes to extract tem-
plates. Several studies (Liang et al., 2009; Kon-
dadadi et al., 2013; Lebret et al., 2016) can be ap-
plied to solve this problem. In this paper, we fol-
low the approach which is proposed by Kondadadi
et al. (2013). Table 1 shows some sample extracted

Original Text:
• The massive 8 GB of memory will allow you to
have lots of files open at the same time.
• The D520 laptop installed with Windows 7.

Extracted Sentence Level Templates:
• The massive [RAM Size] of memory will allow
you to have lots of files open at the same time.
• The D520 laptop installed with [Operating Sys-
tem].

Table 1: Extracted template examples. Words in
bracket are aligned attributes; words with under-
line are attributes missing in template extraction.

templates.

3 Document Planning with Writing
Knowledge

Product description generation is far more than
simply combining sentences level templates. As
we have discussed in the introduction, there are
two main challenges for this problem: what to say
and how to say. To solve these problems, we pro-
pose to learn templated knowledge and structured
knowledge, and use them for ranking generated
candidate descriptions.

3.1 Templated Knowledge
At the first step of generating description in the on-
line stage, we fill the extracted templates with the
attributes of the input data. However, the extracted
templates are with different quality or might have
semantic gap with the filled values.
Value Preference For the first extracted template
shown in Table 1, the context words in this tem-
plate depend on value of “RAM Size” strongly.
This template is more coherent with products
whose “RAM Size” is “8 GB” or “16 GB” rather
than that is “1 GB”. To calculate the relatedness
between attribute value va and template t, we de-
fine value preference as:

ValPref(va, t) =
∑

vi∈V(t)

(
1−Dist(va, vi)

)
P (vi),

(1)
where V(t) is all values of an attribute which
are extracted from template t in training data1,

1To avoid sparseness on values, we use context words
which surrounding attribute to represent template instead of
using all words. In this paper, we combine the proceeding
two words and the following ten words as context.

188



Input Data:
Attributes

Offline Stage

Online Stage

Candidate 
Generation

Description 
Ranking

Product 
Description

Parallel Data:
Attributes-
Description

Sentence Level 
Template Extraction

Writing Knowledge Learning
• Templated Knowledge
• Structural Knowledge

Document Planning

Figure 2: The system framework.

P (vi) is the probability of value vi in V(t), and
Dist(va, vi) is defined as distance between two
values. We can treat all values of attribute as
string type, and use normalized editing distance
to measure Dist(va, vi)2. To improve accuracy for
specific domain, for attributes with numerical val-
ues3, Dist(va, vi) = |va−vi|

v
(max)
a −v

(min)
a

, where v(max)
a ,

v
(min)
a are the upper and lower bound of attribute
a in training data.
Missing Attribute For the second extracted tem-
plate shown in Table 1, “D520” is an attribute
value which is missing in template extraction, and
such low-quality template with unaligned attribute
may hurt the performance of generated descrip-
tion. We define Missing Attribute as a word that
contains capital letters or numbers, and use this
metric as a metric to penalize templates with po-
tential missing attributes during template selec-
tion.

3.2 Structured Knowledge

We would also like the generated description con-
tains the important attributes of a product and co-
herent in semantic. This writing knowledge can be
learned from training data.
Attribute Prior Not all attributes of a product are
equally important and not all of them are men-
tioned in a description with the same probability.
To capture this information, we define the prior of
an attribute ai as P (ai) = Mention(ai)∑

j Mention(aj)
, where

Mention(ai) is the number of mention of attribute
ai in the extracted templates.

2Normalized by the longer length of va and vi.
3Improvement will be made even if just creating Dist(., .)

for the common attributes. In our case, only “RAM Size” and
“Hard Disk Size” are treated as with numerical values.

Attribute Dependency It is worth noting that
attributes which are mentioned in a description
are interrelated. For example, in descriptions
of computers, “CPU” usually mentioned in the
first sentence and “RAM Speed” usually fol-
lows “RAM Size”. To capture such information,
the dependency between attribute ai and aj can
be defined as P (ai|aj) = Co-occurrence(ai,aj)∑

k Co-occurrence(ak,aj)
,

where Co-occurrence(ai, aj) is the count of ai

and aj mentioned in consecutive sentences4. For
a document d which is constructed by sentences
(s1, ..., sn), where each sentence si contains a set
of attributes (ai,1, ...ai,|si|). We assume that cur-
rent sentence si depend only on its previous sen-
tence si−1, and the structured score for document
d can be defined as

Struct(d) =
n∑

i=2

P (si|si−1) =
n∑

i=2

P (si, si−1)∑
l P (s(l), si−1)

,

(2)
where P (si, si−1) has multiple choices, e.g.,∑

j,k{P (ai,j |ai−1,k)}, maxj,k{P (ai,j |ai−1,k)} or
minj,k{P (ai,j |ai−1,k)}.

3.3 Ranking the Generated Descriptions

We first generate candidate descriptions for rank-
ing. Given the attributes of a product, we fill the
attribute values into templates which have corre-
sponding slots, and treat all the combinations of
filled templates as generated candidate descrip-
tions. We then adopt SVM-rank (Joachims, 2002)
with linear kernel to rank the candidate descrip-
tions, and treat the top candidate as the answer.
Specifically, we use BLEU score between refer-

4For convenience, two padded sentences [Begin] and
[End] are inserted to the start and the end of splited sentences.

189



ence description and generated description as label
score and use the features shown in Table 2.

Basic knowledge:
• # words;

• # sentences;

• # mentioned attributes.

Templated knowledge:
• Value preference: is described by Eq. 1. We

calculate the sum, max and min of value pref-
erences for all attributes in candidate document,
and treat them as separated features;

• # missing attribute: is described in Section 2.

Structured knowledge:
• Attribute prior: is the sum of attribute priors for

attributes mentioned in candidate description.

• Attribute dependency: is described by Eq. 2.
The structured scores which based on different
version of P (si, si−1) are treated as separated
features;

Table 2: Features of ranking model.

4 Experiments

4.1 Dataset
We collect the dataset, i.e., (description, attributes)
pairs, from category “Computers & Tablets” from
Amazon.com, and discard products whose de-
scription contains less than 100 words or whose
attribute list contains less than five attributes. Ta-
ble 3 shows the statistics5. This dataset has been
divided into three parts to provide training (70%),
validation (10%) and test sets (20%).

Parameter Value
# (description, attribute table) pairs 25,375
Avg. # of words in description 117.4
Avg. # of sentences in description 4.7
Avg. # of attributes in attribute list 21.2

Table 3: Dataset statistics.

4.2 Compared Methods
We compare these methods in experiments:
Basic, +Templated, +Structured and Full are

5The dataset will be available at http://joopoo.
github.io

ranked based on basic features, basic+templated
features, basic+structured features and ba-
sic+templated+structured features respectively;
WordCount and AttriCount are rankers which sort
candidates in the descending order of word count
and attribute count respectively; OracleBLEU is
an oracle ranker which always chooses the top
candidate in term of BLEU as the answer (can be
seen as the upper bound of ranking).

4.3 Overall Performance
First of all, we show an example of generated de-
scription in Table 5. We adopt language similarity
BLEU (Papineni et al., 2002) and retrieval accura-
cies top-K recall6 as our evaluation metrics, which
are widely used in related work. Table 4 shows
that both of structured information and template
information help improve the overall performance,
and the full model achieves the best performance.
Notice that the upper bound in term of BLEU is
only 31.5, so the above performance is acceptable.
For Recall, both Value Preference and Attribute
Prior are the most useful features for retrieving the
groundtruth.

Method BLEU Recall@3
Basic 13.2 (↑0%) 0.409 (↑0%)
+Structured 14.0 (↑6.1%) 0.795 (↑94.2%)
+Templated 15.3 (↑15.9%) 0.717 (↑75.2%)
Full 15.4 (↑16.7%) 0.803 (↑96.1%)
WordCount 13.1 0.255
AttriCount 11.3 0.155
OracleBLEU 31.5 1.000

Table 4: Overall performance.

4.4 Attribute Coverage
We propose to evaluate attribute coverage which
is important for product description generation.
For example, a product in our dataset has 21.2
attributes on average, while only 7.6 attributes
are mentioned in a reference description on av-
erage. Specifically, we extract attributes which
mentioned in a reference description, and compare
them with those in its corresponding generated de-
scriptions. From Table 6, we can see that by con-
sidering structured information +Structured is bet-
ter than +Templated in term of attribute coverage
while that is on the contrary in term of BLEU.

6The recall rate of a groundtruth (in this case the reference
description) retrieval given top K candidates.
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Original Description Generated Description
Dell Inspiron 15 5000 15-5547
15.6” Touchscreen LED (In-
plane Switching (IPS) Technol-
ogy) Notebook - Intel Core i7 i7-
4510U 2 GHz - Silver - 16 GB
RAM - 1 TB HDD - Intel HD
Graphics 4400 - Windows 8.1
64-bit (English) - 1920 x 1080
Display - Bluetooth - E i5547-
12500sLV
(Product Link: www.amazon.
com/dp/B00LGNL5S6)

This Dell Inspiron 15-5558 laptop gives you the everyday
features you need, at a great value! It runs many ser-
vices simultaneously and the dynamic combination of the
2 GHz Intel Core i7 processor and 16 GB RAM enables the
acute ability to focus on concurrent tasks with minimal per-
formance degradation. It features an elegant design, includes
enhancements to the apps you use most, and enables your PC
and Windows 8 devices to work together in amazing ways.
With flexible technology and service options, wireless connec-
tivity, and Intel processors packed into a compact system, the
Dell Inspiron 15-5558 gives you the essential mobility that will
get your business going places.

Table 5: An example of generated description.

It is worth noting that OracleBLEU which ranks
generated descriptions in term of BLEU performs
fair. This is because BLEU only takes word over-
lap into consideration but not attributes. In other
words, descriptions that share same words ob-
tain high BLUE scores, although they are talk-
ing about different attributes. For example, de-
scriptions about “RAM” and “Hard Disk” may
share same words as “massive” or “GB”. From this
point, attribute coverage can be seen as comple-
mentary to BLEU.

Method Precision Recall F1
Basic 0.610 0.573 0.573
+Structured 0.615 0.590 0.584
+Templated 0.612 0.580 0.577
Full 0.623 0.611 0.597
WordCount 0.623 0.543 0.557
AttriCount 0.596 0.621 0.589
OracleBLEU 0.605 0.592 0.577

Table 6: Performance on attribute coverage.

4.5 Attribute-Specified Generation

After evaluating attribute coverage, we move to
evaluate descriptions which are generated with
specific attributes. This task can help us to eval-
uate quality of generating description by avoid-
ing effect due to attribute selection. In another
word, we generate a product description with a
given subset of attributes which have been men-
tioned in the reference description instead of given
the whole attributes. From Table 7 we can see bet-
ter performance for all methods as attributes are

specified. Our methods still outperform baselines
even when part of features are weakened in this
setting, e.g., the prior scores in structured feature.
This means that the basic and templated features
are also helpful for description generation.

Method BLEU
Basic 19.9 (↑0%)
+Structured 20.2 (↑1.5%)
+Templated 20.7 (↑2.0%)
Full 20.8 (↑4.5%)
WordCount 19.5
AttriCount 18.8
OracleBLEU 30.1

Table 7: Performance on attribute-specified de-
scription generation.

4.6 Human Evaluation

In this evaluation, the following factors are evalu-
ated: (1) Fluency; (2) Correctness: how well the
generated description fits corresponding attribute
values; (3) Completeness: how well the generated
description mentions most of main attributes; and
4) Salient Attribute Mention: how well the gen-
erated description highlights its salient attributes.
We selected 50 random test products, and for each
product we used a Likert scale (∈ [1, 5]) and report
averaged ratings among two annotators.

Table 8 shows the results. The Full method
beats WordCount on all metrics which means that
the proposed basic, templated and structured in-
formation are helpful. Our Full method outper-
forms Reference in term of Completeness as the

191



latter tends to mention fewer attributes in descrip-
tions.

Method Full WordCount Reference
Fluency 4.07 3.67 4.62
Correctness 4.03 3.74 4.87
Completeness 4.32 4.13 4.04
Salient Attr. 4.01 3.76 4.33

Table 8: Human evaluation results on the gener-
ated and reference descriptions. Score ∈ [1, 5].

5 Conclusions

In this paper, we proposed a statistical framework
for product description generation. The proposed
structured information and templated information
are helpful for deciding what to say and how to say
for description generation. In addition, a new eval-
uation process is proposed to measure the gener-
ated descriptions. The experimental results show
that our framework is effective in generating accu-
rate and fluent product description.
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Abstract 

An automatic text summarization sys-

tem can automatically generate a short 

and brief summary that contains a 

main concept of an original document. 

In this work, we explore the ad-

vantages of simple embedding features 

in Reinforcement leaning approach to 

automatic text summarization tasks. In 

addition, we propose a novel deep 

learning network for estimating Q-

values used in Reinforcement learning. 

We evaluate our model by using 

ROUGE scores with DUC 2001, 2002, 

Wikipedia, ACL-ARC data. Evalua-

tion results show that our model is 

competitive with the previous models. 

1 Introduction 

In this work, we present extractive text summari-

zation for a single document based on Reinforce-

ment leaning (RL) method. One of the advantages 

of the extractive approach is that a summary con-

sists of linguistically correct sentences as long as a 

source document has a certain level of linguistic 

quality. 

  One of the most well-known solutions of extrac-

tive text summarization is to use maximal margin-

al relevance (MMR) (Goldstein et al., 2000). 

However, MMR cannot take into account for the 

quality of a whole summary because of its greedi-

ness (Ryang and Abekawa, 2012). Another solu-

tion is to use optimization techniques such as in-

teger linear programming (ILP) to infer the scores 

of sentences with consideration of the quality of a 

whole summary (McDonald, 2007). However, 

these methods have a very large time complexity 

so they are not applicable for text summarization 

tasks. 

 A Reinforcement Learning method would be an 

alternative approach to optimize a score function 

in extractive text summarization task. Reinforce-

ment learning is to learn how an agent in an envi-

ronment behaves in order to receive optimal re-

wards in a given current state (Sutton, 1998).  

 The system learns the optimal policy that can 

choose a next action with the most reward value 

in a given state. That is to say, the system can 

evaluate the quality of a partial summary and de-

termine the sentence to insert in the summary to 

get the most reward. It can produce a summary by 

inserting a sentence one by one with considering 

the quality of the hypothetical summary. In this 

work, we propose an extractive text summariza-

tion model for a single document based on a RL 

method. 

 A few researchers have proposed the RL ap-

proaches in automatic text summarization 

(Goldstein et al., 2000; Rioux et al. 2014; Henß et 

al. 2015). Previous studies mainly exploited hand-

crafted complex features in RL-based automatic 

text summarization. However, choosing important 

features for a task, re-implementing the features 

for a new domain, and re-generating new features 

for a new application are very difficult and time-

consuming jobs. The recent mainstream of NLP 

applications with Deep Learning is to reduce the 

burden of hand-crafted features. Embedding is 

one of the simplest deep learning techniques to 

build features that represent words, sentences, or 

documents. It has already shown state-of-the art 

performance in many NLP applications. 

 The main contributions of our work are as fol-

lows: first, we explore the advantages of simple 

embedding features in RL approach to automatic 

text summarization tasks. Content embeddings 

vector and position embeddings vector are only 
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features that our system adopts. Second, we pro-

pose a novel deep learning network for estimating 

Q-values used in RL. This network is devised to 

consider the relevance of a candidate sentence for 

an entire document as well as the naturalness of a 

generated summary. 

 We evaluate our model by using ROUGE 

scores (Lin, 2004) and show that the performance 

of our model is comparable to that of the previous 

studies which rely on as many features as possi-

ble.  

2 Related Work 

As far as we know, Ryang and Abekawa (2012) 

have so far been the first ones who applied RL to 

the text summarization. The authors regard the ex-

tractive summarization task as a search problem. 

In their work, a state is a subset of sentences and 

actions are transitions from one state to the next 

state. They only consider the final score of the 

whole summary as reward and use TD(λ) as RL 

framework. Rioux et al. (2014) extended this ap-

proach by using TD. They employed ROUGE as 

part of their reward function and used bi-grams 

instead of tf ∗ idf as features. Henß and Mieskes 

(2015) introduced Q-learning to text summariza-

tion. They suggest RL-based features that describe 

a sentence in the context of the previously select-

ed sentences and how adding this sentence chang-

es hypothetical summary. Our work extends pre-

vious work using DQN based algorithm and em-

bedding features.  

3 Model for Automatic text summariza-

tion 

In this work, we apply the Deep Q-Networks 

(DQN)-based model (Volodymyr et al. 2015) to 

automatic text summarization tasks. In the case of 

text summarization, the state denotes a summary 

which can still be incomplete and the action de-

notes the addition of a sentence to this summary. 

For using RL method in text summarization, there 

are two parameters that should be predefined. One 

is a length limitation of a summary. The other pa-

rameter is a reward value for a partial summary. In 

this work, we use the same length limitation and 

reward function used in Henß et al., (2015). The 

reward function is defined as:  

                         

                                –                   (1) 

In the above equation,  cor  measures the quality 

of the partial summary (state) by comparing it 

with the corresponding human reference summary 

  . We use the ROUGE-2 score for the measure-

ment. 

3.1 Q-Network 

Q-learning models the value Q(st; at) of perform-

ing an action at in the current state st. We use a 

deep neural network model with a regression 

function to compute the Q-values. 

The model can calculate a Q-value based on a 

partial summary (current state) and a candidate 

sentence (action). The output Q-value indicates 

the expectation value that the agent can get when 

it selects the candidate sentence as a part of the 

summary. Figure 1 shows the Q-network model 

we propose in this work. 

 

Figure 1: Architecture of our Q-network 

 

The Q-network model consists of three mod-

ules shown in Figure 1. First module (upper left in 

the figure) is to represent that a semantic relation-

ship between the input document and the candi-

date sentence (At). The input document is provid-

ed as DocVec in which the whole meaning of the 

document is embedded. The candidate sentence is 

represented as a sentence embedding vector 

ContVec. The vector DocVec and ContVec are the 

inputs to this module. The output of the module is 

vector DA_w, which is calculated as：  

 

 

For simplicity, the biases are all omitted in the 

equations. The active function of the output layer 

is sigmoid function so that each element in DA_w 

has a value between 0~1.  

             (      
         ) 

             (         
        ) 

       

                              

(2) 

(3) 

(4) 
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The second module (bottom right in the figure) is 

to represent the relationship between the partial 

summary and the candidate sentence. The module 

is constructed as a RNN (Recurrent Neural Net-

work), in which the candidate sentence appears in 

the given partial summary(PS) as a history. Each 

sentence is represented as the two vectors which 

contain the content information(ContVec)  and the 

position information(PosVec), respectively.    

Through the RNN, the partial summary and the 

candidate sentence are transformed into the final 

state vector (StateVec). We implement the RNN 

which uses GRU unit and      activation func-

tion, and outputs 50-dimensional state vector. 

 The third module (upper center in the figure) 

takes the DA_w and StateVec as the input, and 

calculates the Q-value as the output. It combines 

the two vectors into element-wise dots and con-

verts them into Q-value through a linear regres-

sion function. The output Q-value is the expected 

value that can be obtained when a new summary 

is generated by inserting a candidate sentence into 

a partial summary.  

 

3.2 Reinforcement Learning in Text Sum-

marization 

The agent of the text summarization in this work 

has a sentence Selector and three memories. The 

role of the agent is to generate a summary for an 

input document by using the sentence Selector. 

The agent has the following three memories. 1) D 

memory contains information about sentences in 

an input document. 2) PS memory contains in-

formation about sentences in a partial summary 

generated so far. 3) C memory contains infor-

mation about the sentences that have not yet been 

selected in the summary.  

 After the Selector calculates Q-values for each 

sentence in C memory based on information of D 

and PS memory, it moves the sentence with the 

largest Q-value from C Memory to PS Memory. 

RL method enables the Selector to select an ap-

propriate sentence for generating the best sum-

mary.  

 Our Q-Learning algorithm is similar to DQN. 

Please refer the Volodymyr et al. (2015) for a 

more detailed explanation about the algorithm. 

The difference between DQN and our model is ta-

ble 1 and equation (5) 

 

      𝑟   𝑥𝑐∈𝐶 
𝑄   𝑃𝑆   ;  𝜃              (5) 

 

 

Initial state Next state 

D = {s1, s2, …, sn}, 

C0 = {s1, s2, …, sn} 

PS0 = {s0} 

S0 = {D, C0, PS0} 

Ct+1,  Ct  - { at } 

PSt+1  PSt +{ at } 

St+1  {D, Ct+1, PSt+1} 

 

Table 1. Definition of State0 and Next state 

 in our Q-Learning algorithm 

  

4 Experiments 

4.1 Experimental data 

In order to evaluate our method, we use DUC 

2001, DUC 2002 datasets, Anthology Reference 

Corpus (ACL-ARC) (Bird, 2008), and WIKI data 

which have been used in the previous studies 

Henß et al, (2015). 

The numbers of training data and testing data are 

shown in Table 2. 

 
DUC 
2001 

DUC 
2002 

ACL-
ARC 

WIKI 

#-TR 299 - 5500 1936 

#-TE 306 562 613 900 

Table 2: Number of each data 

#-TR=The number of documents in training data 

#-TE=The number of document in testing data 

 

4.2 Features 

In this work, a sentence is the unit of summariza-

tion. A sentence is represented by both a content 

vector and a position vector. A content vec-

tor(ContVec) represents the meaning of a sen-

tence, and a position vector (PosVec) indicates the 

position of a sentence in a document. ContVec is 

estimated by the average of word embeddings in a 

sentence. We use pre-trained 50-dimensional word 

embeddings vector from GloVe (Pennington et al., 

2014). Due to the lack of training data, word em-

beddings vector are not updated during the train-

ing.  

 The position of a sentence in a document is useful 

information for summarization. For example, im-

portant sentences are likely to appear in front of a 

newspaper article. Therefore, we adopt positional 

information as a main feature. 

 The positional information has three views.  

1) An absolute position of the sentence (PosSent) 

within a paragraph 
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2) An absolute position of the paragraph (PosPara) 

in which the sentence belongs within a section 

3) An absolute position of the section (PosSect) in 

which the sentence belongs in a document. 

Each position is encoded as a 50-dimensional 

vector (PosSentVec, PosParaVec, PosSectVec). 

The vector PosVec denotes a sentence position and 

is calculated as: 

𝑃       𝐸𝑙     -             
 𝑃  𝑆       𝑃  𝑃 𝑟     𝑃  𝑆        

(6) 

 

In Figure 1, each sentence in RNN is represented 

as the element-wise sum of Co  V c and Po V c 
to take into account the meaning of the sentence 

as well as its position. For calculating DA w in 

Figure 1, a candidate sentence At is represented as 

a ContVec only. DocVec is estimated as the aver-

age of embeddings vector of words that occur in 

the document.  

4.3 Experimental Results 

Figure 2  shows the training progress on WIKI’s 

validation data. We use ROUGE-2 scores for 

evaluation. The y-axis of the graph is the 

ROUGE-2 score for the validation data and the x-

axis is the number of validation steps. One single 

evaluation is performed after every 200 times of 

mini-batch training. 

 

Figure 2: Training progress on WIKI’s training and 

validation data 

 

In Figure 2, the ROUGE-2 scores rarely change 

until the first 50 steps. We infer that the agent tries 

various combinations of sentences during this pe-

riod. However, the ROUGE-2 score surges rapidly 

between 50 and 60 steps. At this step, the agent 

comes to know which sentence to choose to gen-

erate the best summary. After 120 steps, the model 

reaches a stable status.   

 Table 3 shows the first two sentences of the 

summary results for the Wikipedia article 'Band-

ed sugar ant'. The number ‘#/#’ in Table 3 indi-

cates the positional information. In the third row 

of table 3, 1/7 means that it was extracted from 

the first section of the seven sections of the 

source text. This section has 3 paragraphs, and   

the first paragraph out of 3 paragraphs, which has 

4 sentences. 1/3 and 1/4 mean that the system 

summary sentence is extracted from this position. 

Document Title: Banded sugar ant 

System Summary 

1 

1/7 The banded sugar ant was first described 

by German entomologist Wilhelm Ferdi-

nand Erichson, who named it "Formica 

consobrina" in 1842. 

1/3 

1/4 

2 

3/7 It occurs along the north-east coast of 

Queensland, from Charters Towers in the 

north to Brisbane in the south. 
1/2 

2/7 

Human Summary 

1 

The banded sugar ant ("Camponotus 

consobrinus"), also known as the sugar 

ant, is a species of ant endemic to Aus-

tralia. 

2 

A member of the genus "Camponotus" in 

the subfamily Formicinae, it was de-

scribed by German entomologist Wil-

helm Ferdinand Erichson in 1842. 

Table 3: Example of system summary 

Table 4 shows the comparison experiments in 

terms of ROUGE-2.  

Our method outperforms the previous studies 

(TextRank(Mihalcea and Tarau, 2005), L2R(Henß 

et al, 2015), Regression(Henß et al, 2015), RL-full 

(Henß et al, 2015) ) on ACL-ARC and WIKI data 

but achieves lower performance than the previous 

studies on DUCs. However, the differences of 

ROUGE scores between the models are relatively 

small. These experimental results show that our 

model is competitive with the previous models. 

Also, the embedding features have proven to be 

useful in RL method. 

 

 
ACL-

ARC 
WIKI 

DUC 

2001 

DUC 

2002 

TextRank 0.0844 0.1256 0.1866 0.2240 

L2R 0.1052 0.1276 0.1934 0.2181 

Regression 0.0883 0.1261 0.1942 0.2187 

RL-full 0.1102 0.1321 0.1993 0.2252 

Our work 0.1158 0.1398 0.1832 0.2163 

Table 4: Rouge-2 of our work and previous studies 
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5 Conclusion 

In this work, we propose an extractive text sum-

marization model for a single document based on 

RL method. We use only embedding features that 

convey meaning and position of a sentence. We 

also extend the previous study by introducing 

DQN-based algorithms to train Q-network effi-

ciently and effectively. Evaluation results show 

that our model is promising for text summariza-

tion even though it uses only simple features. Fi-

nally, we would like to apply our method to more 

complex summarization tasks such as multi-

document or query focus summarization. 
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Abstract

Ideally a metric evaluating an abstract sys-
tem summary should represent the ex-
tent to which the system-generated sum-
mary approximates the semantic inference
conceived by the reader using a human-
written reference summary. Most of the
previous approaches relied upon word or
syntactic sub-sequence overlap to evalu-
ate system-generated summaries. Such
metrics cannot evaluate the summary at
semantic inference level. Through this
work we introduce the metric of Seman-
tic Similarity for Abstractive Summariza-
tion (SSAS)1, which leverages natural lan-
guage inference and paraphrasing tech-
niques to frame a novel approach to eval-
uate system summaries at semantic infer-
ence level. SSAS is based upon a weighted
composition of quantities representing the
level of agreement, contradiction, topi-
cal neutrality, paraphrasing, and option-
ally ROUGE score between a system-
generated and a human-written summary.

1 Introduction

Abstractive summarization techniques try to
mimic human expert’s capabilities of inference
making and producing a summary in her own writ-
ing style. Automated abstractive summarization
techniques are highly desirable since one needs
a lot of effort and language skills for generating
summaries from varying information sources such
as social media, databases, web articles etc. It
is crucial for a constructive evolution of research

∗The author is also a Principal Applied Scientist at Mi-
crosoft (gmanish@microsoft.com).

1Data and code are shared at http://
somewhereonweb.com.

on abstractive summarization, to establish a metric
which can judge the quality of a system-generated
abstractive summary. An ideal metric should be
able to represent the similarity of semantic infer-
ence perceived by a reader from system-generated
summary to that from a human-written reference
summary.

Most of the existing summarization metrics are
well-suited for extractive summaries, and are di-
rectly or indirectly based upon word or syntactic
substructure overlap (Lin, 2004). Evaluation of
abstractive summarization needs a semantic over-
lap based method. Although there are some met-
rics which attempt to evaluate the summary at se-
mantic level (Nenkova and Passonneau, 2004; Pas-
sonneau et al., 2013; Yang et al., 2016), they ei-
ther demand high level of human involvement or
rely on external discrete vocabulary information
(Miller et al., 1990). Also they are less equipped
to conceive the accurate semantic inference from
long sequences of summary text.

For instance, consider the following statements.
A: Mary lived through an era of liberating reform
for women.
B: Mary’s life spanned years of incredible change
for women.
C: Mary lived through an era of suppression of
women.

Considering A as the reference summary ele-
ment, most of the previous metrics give higher
score to C than B even when C is clearly con-
tradicting A. Actual scores for above samples are
shown in Table 1.

Bowman et al. (2015) mention that understand-
ing entailment and contradiction is fundamental
to understanding natural language. The lack of
consideration of semantics when evaluating sum-
marization automatically, motivates us to propose
a new metric focused on semantic matching be-
tween system and human summaries.
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Method B C
ROUGE-1 0.33 0.66
ROUGE-2 0.0 0.4
ROUGE-L 0.33 0.66
ROUGE-SU4 0.05 0.45
PEAK 0.45 0.33
SSAS 0.65 0.48

Table 1: Scores given to Samples B and C by Var-
ious Metrics

Our main contributions are as follows.

• We propose a novel metric SSAS for seman-
tic assessment of abstractive summaries.

• The method includes computing various se-
mantic and lexical similarity measures be-
tween reference summary and system sum-
mary, and learning a weight vector to com-
bine these measures into a single score such
that the score maximally correlates with hu-
man evaluation of summaries.

• We experimentally show the robustness and
effectiveness of SSAS.

The rest of the paper is organized as follows.
Section 2 describes previous attempts at evaluating
summarization systems. Section 3 describes our
approach in detail. We discuss our experimental
results in Section 4. We conclude with a summary
in Section 5.

2 Related Work

The following are two broad approaches popular
for evaluation of summaries proposed in the past.

2.1 ROUGE Based Approaches
ROUGE-n measures evaluate the system summary
on the basis of n-gram overlap. ROUGE-SU and
ROUGE-L evaluate content overlap in a more so-
phisticated manner. But they still cannot reliably
capture semantic overlap or semantic contradic-
tion. Recently Ng and Abrecht (2015) tried to en-
hance ROUGE using word embeddings, but word
embeddings cannot grasp the semantic inference
induced by a sequence of words.

2.2 Pyramid Based Approaches
In pyramid evaluation (Nenkova and Passonneau,
2004), Summarization Content Units (SCUs) are
extracted from model summaries and they are

given weights which are equal to the number of
reference summaries they occur in. After this,
a generated summary is given a score which is
equal to the normalized sum of the weights of the
overlapping SCUs. Pyramid score does not eval-
uate the semantic overlap in a continuous space,
and also requires manual efforts when performing
evaluation.

Autopyramid (Passonneau et al., 2013) auto-
mates a part of the pyramid based evaluation
which checks whether an SCU is present in the
generated summary. Though they use various
generic dense representations (Guo and Diab,
2012) for estimating semantic similarity between
SCUs, Autopyramid cannot explicitly quantify the
quality of a summary based on its agreement or
contradiction with a reference summary.

The PEAK (Yang et al., 2016) method for eval-
uation automates the extraction part of the SCUs,
and they use the ADW (Align, Disambiguate and
Walk) algorithm (Pilehvar et al., 2013) to compute
semantic similarity. However, their approach fails
to model contradiction, paraphrase identification
and other features like natural language inference.

3 Approach for SSAS Computation

We first extract SCUs using the automatic SCU
extraction scheme introduced by PEAK model I,
which in turn relies on Open Information Extrac-
tion (OpenIE) (Angeli et al., 2015) for the ex-
traction process. Given a reference summary R
and a system summary S, we obtain SCU sets
SCUs(R) and SCUs(S) with cardinality n and
m respectively. Next, we derive a set of natu-
ral language inference and paraphrasing features
from the text pieces. Computation of these fea-
tures is explained in Section 3.1. After that, we
use a ranking model to learn the weights for com-
bining these features to obtain a score. Finally, we
normalize the obtained score. Ranking and Nor-
malization are discussed in detail in Section 3.2.

3.1 Features for SSAS
SSAS uses natural language inference (NLI) fea-
tures, paraphrase features and ROUGE-SU4 as
features. We discuss these in detail below.

3.1.1 NLI Features
In this subsection, we consider features that cap-
ture natural language inference-based similarity
between text pieces. We leverage the neural at-
tention model, proposed by Cheng et al. (2016)
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for this purpose. Let E(a, b), C(a, b) and N(a, b)
be the entailment, contradiction and topic neutral-
ity probabilities respectively between two SCUs a
and b such that E(a, b) + C(a, b) + N(a, b) =
1. Based on these probability scores, we com-
pute values for the following features from sets
SCUs(R) and SCUs(S).
Combined Entailment Scores: We compute two
features Fe1 and Fe2 which quantify the combined
entailment score between reference summary and
system summary. Fe1 (Eq. 1) finds the SCU
b ∈ SCUs(S) that is best entailed by each SCU
a ∈ SCUs(R), and then computes average entail-
ment score across all a ∈ SCUs(R). Fe2 (Eq. 2)
is defined similarly, but aggregates scores across
all a ∈ SCUs(S) and considers entailment of an
SCU b ∈ SCUs(R) by an SCU a ∈ SCUs(S).

Fe1 =
1
n

∑
a ε SCUs(R)

max
bεSCUs(S)

E(a, b) (1)

Fe2 =
1
m

∑
a ε SCUs(S)

max
bεSCUs(R)

E(a, b) (2)

Combined Contradiction Scores: Similar to en-
tailment scores, two features Fc1 and Fc2 quan-
tify the combined contradiction score as shown in
Eqs. 3 and 4 respectively.

Fc1 =
1
n

∑
a ε SCUs(R)

max
bεSCUs(S)

C(a, b) (3)

Fc2 =
1
m

∑
a ε SCUs(S)

max
bεSCUs(R)

C(a, b) (4)

Combined Topic Neutrality Scores: Finally, two
features Fn1 and Fn2 are computed to quantify
the combined topical neutrality score as shown in
Eqs. 5 and 6 respectively.

Fn1 =
1
n

∑
a ε SCUs(R)

max
bεSCUs(S)

N(a, b) (5)

Fn2 =
1
m

∑
a ε SCUs(S)

max
bεSCUs(R)

N(a, b) (6)

3.1.2 Paraphrase Features
We compute the paraphrasing probability P (a, b)
for two SCUs a and b using the model proposed by
Kiros et al. (2015) which is trained on MSRP cor-
pus (Bouamor et al., 2012). The combined para-
phrase scores Fp1 and Fp2 are given by Eqs. 7
and 8 respectively.

Fp1 =
1
n

∑
a ε SCUs(R)

max
bεSCUs(S)

P (a, b) (7)

Fp2 =
1
m

∑
a ε SCUs(S)

max
bεSCUs(R)

P (a, b) (8)

3.1.3 ROUGE-SU4 Feature
Along with other dense semantic level features, n-
gram overlap can also be indicative to evaluate the
summary quality. Following this intuition, we in-
clude ROUGE score between the system summary
S and the reference summary R as one of the fea-
tures.

FR = ROUGE-SU4(S,R) (9)

3.2 Computing SSAS
For every pair (R,S), we concatenate the ex-
tracted features to form the feature vector ~f .

~f = [Fe1, Fe2, Fc1, Fc2, Fn1, Fn2, Fp1, Fp2, FR]

We estimate a score for S with respect to R as
shown in Eq. 10.

score(S,R) = ~λ · [~f, 1] (10)

where ~λ is a learned 10 dimensional parameter
vector (9 for features + 1 for bias). The value of
~λ is optimized so that the score as computed using
Eq. 10 matches human assigned score. Finally, we
compute the normalized SSAS score for a system
summary with respect to the reference summary
using min-max normalization as shown in Eq. 11.

SSAS(S,R) =
~λ · ([~f, 1]− [ ~fmin, 1])

~λ · ([ ~fmax, 1]− [ ~fmin, 1])
(11)

where ~fmax is the feature vector of an ideal sum-
mary obtained by setting values for entailment,
paraphrase and ROUGE features to 1, and rest all
to 0. ~fmin is the feature vector of an extremely
bad summary obtained by setting values for con-
tradiction features to 1, and rest all to 0. Overall,
SSAS scores lie between 0 and 1. The higher the
SSAS score, the better is the system summary S.
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4 Experiments and Results

In this section, we discuss details of our dataset,
comparison of multiple ranking models, and com-
parison of SSAS with other metrics for summa-
rization.

4.1 Dataset

We obtained DUC2 2002, 2003, 2004 datasets
and the TAC3 dataset which contain triplets
(D,HS,LS) where D denotes the docu-
ment/corpus to be summarized, HS denotes
the human-written summary of D, and LS
denotes the list of system summaries with their
corresponding human evaluation scores.

In total, we collected approximately 250
(D,HS,LS) triplets from these datasets. Since
SSAS is framed to evaluate abstractive summary,
we constructed a test set comprising strictly ab-
stractive summaries for 30 documents in DUC
2002 dataset separate from the training and de-
velopment sets. Although we perform experi-
ments by taking single human-written summary,
extension to use multiple reference summaries is
straightforward. Using multiple references also
aligns with the notion that there is no single best
summary.

4.2 Learning to Rank by Optimizing ~λ

The value of ~λ is optimized by applying ‘Learn-
ing To Rank’ (LTR) techniques over training data
comprising of (D,HS,LS) triplets. The opti-
mization is performed such that the ranking or-
der obtained by Eq. 10 maximally correlates with
ranking order obtained by human scores. We exe-
cuted development experiments with the three dif-
ferent LTR techniques (Burges et al., 2005; Cao
et al., 2007): Pairwise, Listwise and Regression.

The results on the development dataset in terms
of Pearson correlation and Spearman rank corre-
lation are shown in Table 2. As the table shows,
Listwise comparison gained better results though
the results are not significantly different from oth-
ers.

4.3 Evaluating SSAS

As mentioned earlier, to create the test dataset
we chose 30 document-reference summary pairs
from DUC 2002 and asked two human annota-
tors to read each of the reference summary and to

2http://duc.nist.gov/data.html
3http://tac.nist.gov/data/past/2011/Summ11.html

Method Pearson
Correlation

Spearman
Rho

Pairwise 0.970 0.975
Listwise 0.978 0.979
Regression 0.964 0.967

Table 2: Pearson Correlation and Spearman Rho
for the Three Ranking Models

Method Accuracy σ

ROUGE-1 0.810 NA
ROUGE-2 0.782 NA
ROUGE-L 0.825 NA
ROUGE-SU4 0.839 NA
PEAK 0.861 NA
SSAS without Fe1, Fe2 0.854 5.44e-6
SSAS without Fc1, Fc2 0.893 4.38e-6
SSAS without Fn1, Fn2 0.862 6.12e-6
SSAS without Fp1, Fp2 0.845 4.1e-6
SSAS without FR 0.882 5.64e-6
SSAS with all features 0.913 6.22e-6
Human 1.000 NA

Table 3: Results on the Custom Dataset

reproduce the content in their own writing style
with full freedom to choose the convenient vocab-
ulary. The human summarizers are post-graduate
students in computational linguistics and we call
the summary written by them as abstract summary
AbSum. For each document in the test set a ran-
dom subset of sentences are chosen to form a ran-
dom summary RandSum of the document. We
use SSAS to score AbSum and RandSum with
respect to the reference summary. The reliability
of the metric is proportional to the number of times
AbSum is scored better than RandSum.

For the metric to be reliable, it is important to
show that it produces consistent results even if the
training and test data are from different types of
data. For this purpose, we trained the model on
the following three different subsets and recorded

Method Execution Time (sec)
ROUGE 4
PEAK 10
SSAS 200

Table 4: Approximate Execution Times of Various
Metrics on Test Data
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standard deviation of accuracy: a subset of 80
triples from DUC, a subset of 80 triples from TAC,
a subset of 40 triples each from DUC and TAC.

Table 3 shows the mean results obtained by re-
peatedly selecting sentences for random summary
10 times over each of the above training subsets
and the standard deviation obtained on changing
training subset. The insignificance of standard de-
viation shows that the metric produces consistent
results as long as training data is reliable.

4.4 Analysis of Results
From Table 3, we see that excluding contradic-
tion does not have much impact on results. This
is not surprising as we trained the data on DUC
and TAC datasets which have very few contradic-
tory sentences as they are extractive summaries.
Nonetheless, we propose incorporating contradic-
tion as abstractive summaries have a good chance
of producing contradictory sentences. We can ad-
dress this problem by training on human-evaluated
abstractive summaries which we leave as future
work.

We also see that Fp1 and Fp2 (features corre-
sponding to paraphrasing) are important features
since excluding them has a significant impact on
the results.

Table 4 shows the approximate execution times
for various methods. Since SSAS performs simi-
larity assessment using deep semantic analysis, it
does take significantly large amount of execution
time compared to other methods. However, SSAS
computations for multiple summaries can be eas-
ily parallelized.

5 Conclusions

In this work, we proposed a novel metric SSAS
for semantic assessment of abstractive summaries.
Our experiments show that SSAS outperforms
previously proposed metrics. While the metric
shows a very strong correlation with human judg-
ments, it is computationally very intensive be-
cause of the deep semantic models which are used
to compute various features. In the future, we plan
to explore more efficient ways to obtain the feature
vectors for SSAS computation.
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Abstract
Following Gillick and Favre (2009), a lot
of work about extractive summarization
has modeled this task by associating two
contrary constraints: one aims at maxi-
mizing the coverage of the summary with
respect to its information content while
the other represents its size limit. In this
context, the notion of redundancy is only
implicitly taken into account. In this ar-
ticle, we extend the framework defined
by Gillick and Favre (2009) by examin-
ing how and to what extent integrating se-
mantic sentence similarity into an update
summarization system can improve its re-
sults. We show more precisely the impact
of this strategy through evaluations per-
formed on DUC 2007 and TAC 2008 and
2009 datasets.

1 Introduction

As recently shown by Hirao et al. (2017) from a
theoretical viewpoint, there is still room for im-
provements in the extractive approach of Auto-
matic Summarization (AS), which is the frame-
work in which our work takes place. In this con-
text, many methods have been developed for se-
lecting sentences according to various features and
aggregating the results of this selection for build-
ing summaries. All these methods aim at select-
ing the most informative sentences and minimiz-
ing their redundancy while not exceeding a maxi-
mum length.

In this article, we focus on Multi-Document
Summarization (MDS) and more particularly on

its update variant. Having two or more sets of doc-
uments ordered chronologically, the update sum-
marization task consists in summarizing the newer
documents under the assumption that a user has al-
ready read the older documents. Hence, the work
done for tackling this task has mainly extended the
work done for MDS by taking into account the
notion of novelty through different means. Wan
(2012) integrates this notion in the framework of
graph-based methods for computing the salience
of sentences while Delort and Alfonseca (2012)
achieve this integration in the context of hierarchi-
cal topic models. Li et al. (2012) go one step fur-
ther in hierarchical Bayesian models by applying
the paradigm of Hierarchical Dirichlet Processes
to the update task.

Another interesting way to consider the prob-
lem of AS is to formalize it as a constraint op-
timization problem based on Integer Linear Pro-
gramming (ILP). ILP-based approaches are very
flexible as they allow to jointly optimize several
constraints and were found very successful for
MDS, as illustrated by the ICSISumm system of
Gillick and Favre (2009). They have also been de-
veloped for the update summarization task, with
work such as (Li et al., 2015) about the weighting
of concepts.

However, the most obvious weakness of such
methods, particularly the one proposed by Gillick
and Favre (2009), is their implicit way of model-
ing information redundancy. This prevents them
from exploiting work about textual entailment or
paraphrase detection, which could be especially
relevant in the context of MDS. In this article, we
aim at extending the update summarization frame-
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work of Gillick and Favre (2009) by integrating
non-redundancy features in a more explicit way
through sentences semantic similarities.

2 Summarization framework

For performing MDS with update, the approach
we propose includes two main steps. First, we
perform a semantic clustering over the input doc-
uments sentences, including the old and the new
document sets. Then, we select a subset of sen-
tences for the summary while considering the se-
mantic information resulting from the clustering
step. We detail each of these two steps hereafter.

2.1 Semantic clustering
As in basic MDS, update MDS aims to opti-
mize the content relevance, the information redun-
dancy within a document set and the final sum-
mary length. The additional constraint is to detect
information novelty in the new documents in order
to avoid repeating what has already been read.

Since emphasizing information novelty in the
update summary is equivalent to penalizing old in-
formation in the new document set, we should start
by identifying sentences from the new set that are
equivalent to sentences from the old set. One way
to achieve such identification is to perform seman-
tic clustering over all the sentences, whatever their
source. The aim of semantic clustering here is to
group sentences conveying the same information,
even when they are expressed in different ways.
In addition to detecting redundancy over time, this
filtering step allows to decrease the sentence se-
lection cost by reducing the number of possible
combinations of sentences. Furthermore, consid-
ering similarity at the sentence level rather than the
sub-sentence level is more efficient since the num-
ber of sentences is much lower, which ensures less
calculations of pairwise similarities.

Clustering method For performing the seman-
tic clustering of sentences, we need a clustering
algorithm that uses semantic similarity as a major
feature with a low computing time. Partitioning
algorithms like k-means require the number of
clusters to be set in advance, which is inconsistent
with our main need. Moreover, setting up a
similarity threshold is less dependent on the size
of the considered data than setting up the number
of clusters. While the latter depends on the test
data size and the content diversity, the former
depends on the similarity measure itself and could

be set up on large annotated corpora. Among the
clustering methods relying on a similarity matrix
as input, we chose the Markov Cluster Algorithm
(MCL), a network-based clustering algorithm
simulating the flow in graphs, known to be fast
and scalable (van Dongen, 2000). It assumes that
”a random walk on a network that visits a dense
cluster will likely not leave it until many of its
vertices have been visited”. In our case, it turns
the adjacency matrix of sentences into a transition
matrix. Since our goal is to build small and tight
clusters, we removed pairwise similarities under a
given threshold. Finally, as MCL performs hard
clustering, each sentence belongs to one cluster
only.

Semantic similarity measure Sentence seman-
tic similarity has gained a lot of interest recently,
especially in the context of SemEval evaluations
(Agirre et al., 2016). However, in practice, most
proposed similarity measures for AS are subject to
a time efficiency problem which tends to increase
with the quality of the similarity measure. This is
the case of the lexical word alignement based simi-
larity that won the SemEval 2014 sentence similar-
ity task (Sultan et al., 2014). We found it unusable
in our set-up due to its computational complexity
as we calculate about 5 million sentence pair simi-
larities for some datasets while the SemEval 2014
corpus, for instance, gathers only 3,750 sentence
pairs. Given this constraint, we chose a similarity
measure relying on low dimensional word vectors
from word embeddings. In fact, simply averag-
ing word embeddings of all words in a sentence
has proven to produce a sentence vector encoding
its meaning and has shown a good performance
in multiple tasks and particularly in text similarity
tasks (Das et al., 2016; White et al., 2015; Ger-
shman and Tenenbaum, 2015; Hill et al., 2016).
We adopted this method to represent sentences and
used only the embeddings of unigrams since bi-
grams and phrases are generally not well covered
by the existing pre-trained embeddings1. Before
building the sentence vectors, we did not perform
any normalization of the words in documents (un-
igrams) as words in pre-trained embeddings are
not normalized. Finally, we classically defined the
similarity of two sentences as the cosine similarity
of their vectors.

1Only 0.08% of TAC 2008 dataset bigrams are covered by
the Glove840B embeddings.
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2.2 Sentence selection
Extracting one sentence per cluster to generate
summaries as in (Zopf et al., 2016) leads to poor
results for update MDS. We have rather added the
information brought by our semantic clustering to
an ILP model for selecting sentences. This model
is the ICSISumm model proposed by Gillick and
Favre (2009). It is a maximum coverage model
operating at the concept level where concepts are
word bigrams. The score of a summary is the sum
of its bigram weights. Each bigram is credited
only once in the summary score to favor diver-
sity at the lexical level. Thus, redundancy is glob-
ally and implicitly minimized. To address the up-
date task, the value of concepts appearing in first
sentences are up-weighted by a factor of 3 as in
(Gillick and Favre, 2009). The ILP problem is for-
malized as follows:

Maximize :
∑
i

wi.ci

Subject to :
∑
j

sj .lj ≤ L (1)

sj .Occij ≤ ci,∀i, j (2)∑
j

sj .Occij ≥ ci, ∀i (3)

ci ∈ {0, 1} ∀i and sj ∈ {0, 1} ∀j

where ci is a variable indicating the presence
of the concept i in the summary; wi refers to the
weight of the concept i, which is its document fre-
quency; lj represents the length of the sentence j
while L is a constant representing the summary
maximum length; sj is the variable that indicates
the presence of the sentence j in the summary and
finally, Occij is a constant parameter indicating
the presence of concept i in sentence j. While the
constraint (1) prevents the whole summary from
exceeding the maximum length limit, constraints
(2) and (3) ensure its consistency.

To take into account the semantic clustering of
sentences in the ILP model, we focused on the
weighting of bigrams since in such models, the
concept weighting method is a key factor in the
performance of the system (Li et al., 2015). As our
aim is to reduce redundancy with the old informa-
tion, we chose to penalize the weights of bigrams
occurring in both old and new documents. If a bi-
gram appears in a cluster including sentences from

both old and new document sets, its weight is pe-
nalized by an α parameter as follows: w′

i = wi
α .

The value of α is determined on a development
set. As in (Gillick and Favre, 2009), bigrams
whose weights are lower than a fixed threshold are
pruned before solving the ILP problem for com-
putational efficiency. However, since this pruning
can have a negative impact results if it is too re-
strictive (Boudin et al., 2015), we carried out the
penalization process after the bigram pruning step.

3 Experiments

3.1 Evaluation Setup

For our experiments, we used the DUC 2007 up-
date corpus and TAC 2008 and 2009 update cor-
pora. The 3 datasets are composed respectively
of 10, 48 and 44 topics. They gather respec-
tively about 25, 20 and 20 news articles per topic.
The articles are ordered chronologically and parti-
tioned into 3 sets, A to C, for DUC 2007 and two
sets, A to B, for both TAC 2008 and 2009. We
only considered sets A and B for all the datasets.

To evaluate our approach, we classically
adopted the ROUGE2 framework (Lin, 2004),
which estimates a summary score by its n-gram
overlap with several reference summaries (Rn).
Although our method is unsupervised, we had to
tune two parameters: the similarity threshold in
the clustering step (for sparcifying the input sim-
ilarity matrix) and the penalization factor α in
the sentence selection. As training data, we used
for each dataset the two other datasets. To set
up these parameters, we followed a greedy se-
quential approach for optimizing ROUGE on each
training set. We maximized the ROUGE-2 recall
score (bigrams overlap) particularly since it has
shown the best agreement with manual evaluations
(Hong et al., 2014). Yet, we report in what fol-
lows three variants of ROUGE: ROUGE-1, which
computes the overlap with reference summaries
in terms of unigrams, ROUGE-2, described pre-
viously and ROUGE-SU4, which computes the
overlap of skip-grams with a skip distance of 4
words at most. Again following (Hong et al.,
2014), we only report the recall values of the
ROUGE metrics because their precision and f-
measure values are very close to them.

2ROUGE parameters: -n 2 -2 4 -m -l 100 -u -c 95 -p 0.5
-f A -r 1000
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System/dataset DUC 2007 TAC 2008 TAC 2009

R1 R2 RSU4 R1 R2 RSU4 R1 R2 R4

Baseline systems

ICSISumm 2009 33.73 7.59 11.23 38.28 11.19 14.46 37.40 10.37 13.86
ICSISumm-BG-DOWN-1 34.46 7.91 11.74 36.99 10.15 13.66 37.39 10.25 13.87
ICSISumm-BG-DOWN-2 33.71 7.55 11.22 38.02 11.05 14.18 37.27 9.91 13.62

State-of-the-art systems

Supervised ILP - - - - 9.99 13.61 - 9.61 13.77
Topic Modeling - - - 36,73 10.41 13.79 36.42 9.58 13.53
CorrRank - - - 36.71 9.70 13.19 36.87 9.73 13.59

Proposed systems

MCL-W2V-ICSISumm 34.99 8.14 11.79 38.52 11.49 14.68 37.50 10.48 13.98
MCL-GLOVE-ICSISumm 36.08 9.46 12.96 38.62 11.57 14.75 37.53 10.60 14.08
MCL-ConceptNet-ICSISumm 35.23 8.30 11.98 38.28 11.21 14.49 37.53 10.38 13.91

Table 1: Average ROUGE recall scores on DUC 2007, TAC 2008 and TAC 2009 datasets

3.2 Results
We compare our system to three baselines and
three high-level state-of-the-art references.

Baseline systems

• ICSISumm 2009. This is the system de-
scribed in Section 2.2, on which we built our
contribution. We report here the version with
no sentence compression. It is worth noting
that ICSISumm was still found the best per-
forming system in (Hong et al., 2014).

• ICSISumm-BG-DOWN-1. This baseline is
an adaptation of the ICSISumm 2009 system
in which we down-weight the bigrams occur-
ring in the chronologically first set of docu-
ments (A).

• ICSISumm-BG-DOWN-2. In this modified
version of the ICSISumm 2009 system, we
down-weight the bigrams whose frequency in
the chronologically first set of documents (A)
is greater than their frequency in the more re-
cent document set (B).

The last two baselines, which do not include our
semantic clustering of sentences, are tested to
check how effective is this clustering and to what
extent it is needed.

State-of-the-art systems

• Topic Modeling. This system uses topic
probability distributions for salience determi-
nation and a dynamic modeling approach for
redundancy control (Wang and Zhou, 2012).

• CorrRank. This algorithm selects sentences
using a topic evolution pattern by filtering
sentences from particular topic evolution cat-
egories (Lei and Yanxiang, 2010).

• Supervised ILP. This system predicts the bi-
grams weights by means of a supervised
model using salience and novelty features at
the sentence and bigram level. Sentence se-
lection is done by an ILP model and a regres-
sion model for sentence reranking (Li et al.,
2015).

Proposed systems We present the results of our
system with different pre-trained word embed-
dings for evaluating sentence similarities. All
the considered training sets showed that the op-
timal performance is reached when the penaliza-
tion factor α is set to 3. No similarity threshold is
set lower than 0.95, which guarantees a precision
level for the similarity measure at least equal to the
precisions reported in Table 2.

• MCL-W2V-ICSISumm. This version re-
lies on 3 million vectors (300 dimensions)
trained with the CBOW model of Word2Vec
(Mikolov et al., 2013) on 100 billion words
from a Google News dataset.

• MCL-GLOVE-ICSISumm. In this run, we
used 2.2 million word vectors (300 dimen-
sions) trained with GloVe (Pennington et al.,
2014) on the 840 billion tokens from the
Common Crawl repository.

• MCL-ConceptNet-ICSISumm. This version
computes similarities with the ConceptNet
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Dataset Precision Recall

MSRpara 91.44 17.69
SemEvaL STS 2014 88.00 14.17
SemEvaL STS 2015 90.60 11.46
SemEvaL STS 2016 88.28 25.98

Table 2: Results of our sentence semantic similar-
ity with the minimum threshold value of 0.95

Vector Ensemble embeddings (Speer and
Chin, 2016), which is a combination of
GloVe and Word2Vec embeddings enriched
with knowledge from the ConceptNet seman-
tic network and PPDB.

Table 1 shows that for all the different word
embeddings, our system outperforms all our ref-
erences. The improvement is observed for the
three ROUGE measures we used. The improve-
ment over ICSISumm 2009, which has the same
settings as our system, confirms the interest of
handling redundancy explicitly in the update sum-
marization task. However, the improvement over
ICSISumm-BG-DOWN-1&2 also shows that ba-
sic methods for performing this handling are not
efficient in ILP models, contrary to our sentence
semantic clustering approach. Our second ver-
sion using Glove pre-trained vectors reports higher
results than those using Word2Vec or Concept-
Net Ensemble word vectors. This could be ex-
plained by the size of the training sets for building
the word vectors as the Common Crawl dataset is
much larger than the Google News dataset. More-
over, the impact of the quality of the vectors on
our results indirectly confirms the interest of our
proposal.

Since the semantic similarity of sentences is
central in our approach, we have tried to charac-
terize a posteriori the similarity corresponding to
the value of our similarity threshold as it was opti-
mized on our development sets. We have applied
our semantic similarity measure to reference eval-
uation datasets for sentence similarity3: the MSR
Paraphrase Corpus (Dolan et al., 2004) and the Se-
mEval STS datasets (Agirre et al., 2016). In or-
der to calculate precision and recall scores on the
SemEval datasets, we consider a result as a true
positive if our similarity is higher than 0.95 and

3To our knowledge, the only dataset specifically dedicated
to the evaluation of sentence clustering in the context of MDS
is described in (Geiss, 2009) but it is not publicly available.

the gold standard similarity is higher than 34. We
present in Table 2, the evaluation of our similarity
measure using the Google’s pre-trained word vec-
tors. On all datasets, our similarity shows a high
precision but a weak recall. This trend is partic-
ularly noticeable on the MSR Paraphrase Corpus:
when our system regroups two sentences, they are
paraphrases in 91.44% of the cases, which fits our
initial hypotheses and illustrates their validity.

4 Conclusion and Perspectives

For concluding, we showed that taking into ac-
count the semantic similarity of sentences for dis-
carding redundancy in a maximal bigram cover-
age problem improves the update summarization
performance and can be done by modifying the
weights of bigrams in an ILP model according to
the results of the semantic clustering of sentences.

The most direct perspective we will follow for
extending this work is to improve the recall of the
semantic similarity measure to increase the abil-
ity of our system to detect redundancy. In a more
global extension, we will associate this criterion
about redundancy with criteria more focused on
information salience based on the discourse struc-
ture of documents.
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Abstract

This paper presents an initial study on
hyperspherical query likelihood models
(QLMs) for information retrieval (IR).
Our motivation is to naturally utilize pre-
trained word embeddings for probabilis-
tic IR. To this end, key idea is to di-
rectly leverage the word embeddings as
random variables for directional proba-
bilistic models based on von Mises-Fisher
distributions that are familiar to cosine dis-
tances. The proposed method enables us
to theoretically take semantic similarities
between document and target queries into
consideration without introducing heuris-
tic expansion techniques. In addition,
this paper reveals relationships between
hyperspherical QLMs and conventional
QLMs. Experiments show document re-
trieval evaluation results in which a hy-
perspherical QLM is compared to conven-
tional QLMs and document distance met-
rics using word or document embeddings.

1 Introduction

In information retrieval (IR), language modeling
is known to be one of the most successful tech-
niques (Ponte and Croft, 1998). A typical usage
is query likelihood models (QLMs), in which lan-
guage models are constructed from each retrieved
document. In QLM-based probabilistic IR, the
documents are ranked by probabilities for which a
query can be generated by the document language
model.

In this field, categorical QLMs which model
generative probability of words using categorical
distributions are fundamental models (Ponte and
Croft, 1998; Zhai and Lafferty, 2001). It is known
that the categorical QLMs do not perform well for

vocabulary mismatches because categorical distri-
bution cannot consider semantic relationships be-
tween words. Therefore, several expansion tech-
niques such as query expansion (Bai et al., 2005),
translation QLMs (Berger and Lafferty, 1999), and
latent variable models (Wei and Croft, 2006) have
been proposed in order to take semantic relation-
ships between document and target query into ac-
count.

Recently, word embeddings, which are contin-
uous vector representations embedding word se-
mantic information, have been utilized for en-
hancing the previous expansion techniques (Zhang
et al., 2016; Mitra and Craswell, 2017). The word
embeddings can be easily acquired in an unsuper-
vised manner from large scale text sets based on
embedding modeling, i.e., skip-gram, continuous
bag-of-words (CBOW) (Mikolov et al., 2013) or
GloVe (Pennington et al., 2014). Zuccon et al.
(2015); Ganguly et al. (2015); Zamani and Croft
(2016a) used the word embeddings in order to as-
sist translation QLMs. Zamani and Croft (2016b);
Kuzi et al. (2016) used the word embeddings in or-
der to perform query expansion. However, previ-
ous word embedding-based probabilistic IR meth-
ods have no theoretical validity since the word em-
beddings were heuristically introduced.

In order to perform more natural word em-
bedding based probabilistic IR, our key idea is
to directly leverage word embeddings rather than
words as random variables for language models.
In fact, the word embeddings can capture semantic
similarity of words using directional information
based on cosine distance (Mnih and Kavukcuglu,
2013). This motivates us to introduce directional
probabilistic models based on von Mises-Fisher
distributions which are familiar to the cosine dis-
tance (Banerjee et al., 2005; Sra, 2016).

This paper proposes a hyperspherical QLMs in
which random variables are modeled by a mix-
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ture of von Mises-Fisher distributions. The hy-
perspherical QLMs can theoretically utilize word
embeddings for probabilistic IR without introduc-
ing heuristic formulations. Main contributions are
summarized as follows.

• This paper formulates hyperspherical QLMs
based on both a maximum likelihood estima-
tion and a maximum a posteriori estimation.

• This paper reveals that hyperspherical QLMs
can be represented as an extended form of
categorical QLMs and a theoretical form of
translation QLMs.

• This paper shows document retrieval evalua-
tion results in which a hyperspherical QLM is
compared with conventional QLMs and doc-
ument distance metrics with word or docu-
ment embeddings.

2 Related Work

This paper is closely related to document dis-
tance metrics using word or document embed-
dings. One major distance metric is the cosine
distance between two document vectors that are
composed by averaging word embeddings (Vulic
and Moens, 2015; Brokos et al., 2016) or docu-
ment embeddings called paragraph vectors (PVs)
(Le and Mikolov, 2014). Another highly efficient
distance metric is word mover’s distance (WMD),
which leverages word embeddings (Kusner et al.,
2015)．In this work, we also examined these dis-
tance metrics in a document retrieval evaluation.

Generative models of word embeddings have
recently been proposed in topic modeling in or-
der to capture the semantic structure of words and
documents (Das et al., 2015; Batmanghelich et al.,
2016). To the best of our knowledge, this paper is
the first work on language modeling that handles
word embeddings as random variables.

3 IR based on QLMs

IR based on probabilistic modeling uses the prob-
ability of a document D given a query Q. One
of the most famous approaches is QLM-based IR
in which documents are ranked by the probabili-
ties that a query can be generated by the document
language model (Ponte and Croft, 1998). Given
a query Q = {w1, · · · , wT }, IR based on QLMs
ranks documents as

P (D|Q)
rank∝

T∏
t=1

P (wt|ΘD), (1)

where ΘD denotes a parameter of QLM for D.

3.1 Categorical QLMs
Categorical QLMs model P (w|ΘD) using a cat-
egorical distribution. In a maximum likelihood
(ML) estimation for the categorical QLM, a gen-
erative probability of a word w is defined as

P (w|ΘML
D ) =

c(w, D)
|D| , (2)

where c(w, D) is the word count of w in D, and
|D| is the number of all words in D.

In a maximum a posteriori (MAP) estimation, a
document collection C in which all of the retrieved
documents are included is used for a prior (Zhai
and Lafferty, 2001). MAP estimated generative
probability of a word w is defined as

P (w|ΘMAP
D ) =

c(w, D) + τ c(w,C)
|C|

|D| + τ
, (3)

where c(w,D) is the word count of w in C, and
|C| is the number of all words in C. τ is a hyper
parameter for adjusting smoothing.

3.2 Translation QLMs
Translation QLMs were introduced for expand-
ing categorical QLMs (Berger and Lafferty, 1999).
The translation QLMs are usually used together
with the categorical QLMs, and enable us to take
into account relationships between a word in the
query and semantically related words in the doc-
ument. A generative probability of a word w is
defined as

P (w|ΘTR
D ) =

∑
v∈V

P (v|ΘD)P (w|v), (4)

where V is the vocabulary. P (v|ΘD) is the gener-
ative probability of a word v, which is also cal-
culated by Eq. (2) or (3). P (w|v) represents
the probability of translating word v into word w.
P (w|v) is heuristically calculated as

P (w|v) =
sim(w, v)∑

w∈V sim(w, v)
, (5)

where sim(w, v) is the word similarity between
w and v. In order to calculate P (w|v), cosine
distances between pre-trained word embeddings
were recently utilized (Zuccon et al., 2015; Gan-
guly et al., 2015). Thus, the word similarity is cal-
culated as

sim(w, v) = w⊤v, (6)

where w is the word embedding normalized to a
unit length for w.
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4 IR based on Hyperspherical QLMs

This paper proposes a novel probabilistic IR
method based on hyperspherical QLM that lever-
ages pre-trained word embeddings as random vari-
ables for directional probabilistic models. The
pre-trained word embeddings can capture seman-
tic similarity of words on a unit hypersphere, so
we deal with normalized word embeddings to unit
length. Given a query Q = {w1, · · · , wT }, nor-
malized word embeddings {w1, · · · ,wT } can be
acquired using embedding models. IR based on
hyperspherical QLMs ranks documents as

P (D|Q)
rank∝

T∏
t=1

p(wt|ΛD), (7)

where p means a probability density and ΛD de-
notes a parameter of a hyperspherical QLM for D.

4.1 Formulation
The hyperspherical QLMs are formulated by a
mixture of von Mises-Fisher distributions which
are familiar to cosine distances (Banerjee et al.,
2005; Sra, 2016). The von Mises-Fisher distribu-
tion defines a probability density over points on
a unit hypersphere. A probability density based
on the mixture of von Mises-Fisher distributions
is formulated as

p(w|Λ) =
M∑

m=1

αmf(w|µm), (8)

f(w|µm) = Cd(κ) exp(κw⊤µm), (9)

where M is the number of mixtures. The parame-
ter Λ corresponds to {αm, µm}. αm means a mix-
ture weight, and µm means a directional mean of
the m-th von Mises-Fisher distribution. κ is a con-
centration parameter that is treated as a smoothing
parameter. Cd(κ) is a normalized parameter that
depends on κ and the number of dimensions of
word embeddings d. Note that w⊤µm is the co-
sine distance between w and µm.

4.2 ML and MAP Estimation for Mixture of
von Mises-Fisher Distributions

ML estimation for a mixture of von Mises-Fisher
distributions given normalized word embeddings
D = {w1, · · · , w|D|} determines model parame-
ters ΛML

D as

ΛML
D = argmax

Λ
P (D|Λ). (10)

The ML estimation is based on the expectation
maximization algorithm. ML estimated parame-
ters ΛML

D = {α̂m}, {µ̂m} are recursively calcu-
lated as

α̂m =
1
|D|

|D|∑
t=1

q(m|wt,Λ), (11)

r̂m =
|D|∑
t=1

wtq(m|wt,Λ), (12)

µ̂m =
r̂m

||r̂m|| , (13)

where q(m|wt,Λ) is a load factor of the m-th dis-
tribution for the t-th word embedding.

MAP estimation for a mixture of von Mises-
Fisher distributions given normalized word em-
beddings D = {w1, · · · , w|D|} determines model
parameters ΛML

D as

ΛMAP
D = argmax

Λ
P (D|Λ)P (Λ). (14)

Given pre-trained parameters Λ̄ = {ᾱm, r̄m},
MAP-estimated parameters ΛMAP

D = {α̂m, µ̂m}
are calculated as

α̂m =
τ

|D| + τ
ᾱm+

|D|
|D| + τ

1
|D|

|D|∑
t=1

q(m|wt, Λ̄),

(15)

r̂m =
τ

|D| + τ
r̄m +

|D|
|D| + τ

|D|∑
t=1

wtq(m|wt, Λ̄),

(16)

µ̂m =
r̂m

||r̂m|| , (17)

where τ is a hyper parameter for adjusting smooth-
ing.

For computation of load factors, both the soft-
assignment rule and the hard-assignment rule can
be used. Both computations are defined as

qs(m|wt,Λ) =
αmf(wt|µm)∑M
l=1 αlf(wt|µl)

, (18)

qh(m|wt,Λ) =

1 m = argmax
l

αlf(wt|µl),

0 otherwise,
(19)

where qs is the load factor using the soft-
assignment rule and qh is the load factor using the
hard-assignment rule.
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4.3 Training of Hyperspherical QLMs
In order to introduce a mixture of von Mises-
Fisher distributions to hyperspherical QLMs, uni-
fied assumptions are essential for each document
modeling because the hyperspherical QLMs are
utilized for IR. Therefore, we introduce the fol-
lowing assumptions.

• The number of mixtures corresponds to vo-
cabulary size.

M = |V|. (20)

• The mean direction of each von Mises-Fisher
distribution is fixed to normalized word em-
beddings of each word in the vocabulary.

µ̂m = vm, (21)

where vm ∈ V .

• For computation of load factors in document
modeling, a hard-assignment rule is used.

To summarize the above, the hyperspherical
QLMs can be theoretically estimated as simple
forms using ML or MAP estimation. In fact, mix-
ture weights are estimated as ML or MAP esti-
mated values in categorical QLMs. In ML esti-
mation, α̂m estimated from document D is deter-
mined as

α̂m =
c(vm, D)

|D| . (22)

Thus, ML estimated generative probability of w in
the hyperspherical QLMs is formulated as

p(w|ΛML
D ) =

∑
v∈V

c(v, D)
|D| f(w|v), (23)

where v is a normalized word embedding of v.
In MAP estimation, α̂m estimated from docu-

ment D is determined as

α̂m =
c(vm, D) + τ c(vm,C)

|C|
|D| + τ

, (24)

where C is document collection in which all re-
trieved documents are included. Thus, MAP esti-
mated generative probability of w in the hypersh-
erical QLMs is formulated as

p(w|ΛMAP
D ) =

∑
v∈V

c(v, D) + τ c(v,C)
|C|

|D| + τ
f(w|v).

(25)

4.4 Relationships
The hyperspherical QLMs can be interpreted as an
extended form of categorical QLMs. Eq. (23) in-
cludes the ML estimated term presented in Eq. (2),
and Eq. (25) includes the MAP estimated term
presented in Eq. (3). In fact, hyperspherical QLMs
can be converted into categorical QLMs by

lim
κ→∞ p(w|ΘD) = P (w|ΛD). (26)

In addition, hyperspherical QLMs can be re-
garded as a theoretical form of translation QLMs.
Eqs. (23) and (25) are similar to Eq. (4). In
fact, hyperspherical QLMs are almost the same as
translation QLMs by defining a word similarity as

sim(w, v) = exp(κw⊤v). (27)

While Eq. (6) is heuristically formulated, Eq. (27)
is theoretically formulated as a log-linear form
based on the directional probabilistic modeling.

5 Experiments

5.1 Setups
We performed an experiment on a document re-
trieval task, in which we used 20 news group
datasets1 for evaluation. The datasets were for-
mally split into 11,314 training and 7,531 test ar-
ticles. The training articles were used for collect-
ing documents and the test articles were used for
queries. Label information about news groups was
only utilized for deciding whether a retrieved doc-
ument is relevant to the query in evaluation. These
setups are equivalent to the evaluation in Salakhut-
dinov and Hinton (2009); Larochelle and Lauly
(2012). We removed common stop words, and the
5,000 most frequent words in the training articles
were used for the vocabulary.

In order to utilize word embeddings, data sets in
a one billion word language modeling benchmark2

were prepared. We constructed CBOW and PV
with distributed BOW (PV-DBOW). These pre-
trained embedding models were utilized for IR-
methods. The dimension of the word and docu-
ment embeddings was set to 200.

For evaluation, the following IR methods were
used. TFIDF used cosine distance between two
document vectors composed by word TF-IDF val-
ues. CWV used cosine distance between two

1
http://qwone.com/˜jason/20Newsgroups/

20news-bydate.tar.gz
2
http://github.com/ciprian-chelba/

1-billion-word-language-modeling-benchmark
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Figure 1: Precision-recall curves results.

document vectors composed by averaging word
embeddings (Vulic and Moens, 2015). WCWV
used cosine distance between two document vec-
tors composed by adding word embeddings with
IDF weights (Brokos et al., 2016). PV used co-
sine distance of two document vectors composed
by PV-DBOW (Le and Mikolov, 2014). WMD
used WMD using word embeddings (Kusner et al.,
2015). CQLM used discrete QLMs estimated
by Eq. (4) where τ was set to 2,000 (Zhai and
Lafferty, 2001). TQLM used translation QLMs
where word similarity was calculated by Eq. (6)
using word embeddings, and Eq. (3) was used for
calculating generative probability (Ganguly et al.,
2015). HQLM used hyperspherical QLMs esti-
mated by Eq. (11) using word embeddings, in
which τ and κ were respectively set to 2,000 and
20.

5.2 Results

We assessed the performance of each IR-method
with precision-recall curves, mean average preci-
sion (mAP), and precision at 10 (P@10). Figure 1
shows the precision-recall curve results and Table
1 shows the mAP and P@10 results. The results
are averaged over all possible queries.

The results show that CQLM and HQLM
clearly outperformed document distance metric-
based IR methods with word or document em-
beddings. This confirms that QLM-based IR is a
helpful approach for document retrieval. Although
word or document embeddings trained from a lot

Table 1: mAP and P@10 results.
IR methods Embeddings mAP P@10
TFIDF 0.123 0.478
CWV

√
0.109 0.321

WCWV
√

0.165 0.438
PV

√
0.105 0.284

WMD
√

0.103 0.287
CQLM 0.182 0.586
TQLM

√
0.126 0.343

HQLM
√

0.198 0.594

of text sets can efficiently capture semantic in-
formation in continuous space, the document dis-
tance metrics using the embeddings were insuf-
ficient for document retrieval. In addition, we
attained superior performance only introducing
HQLM compared to CQLM while single use of
TQLM did not perform well. In fact, previous
work attained performance improvements by com-
bining TQLM with CQLM. These results confirm
that HQLM can effectively utilize word embed-
dings for document retrieval. Furthermore, we
analyzed that relevant documents ranked low in
CQLM were moved up by HQLM. This indicates
HQLM can robustly calculate generative proba-
bilities of words that were not included in a tar-
get query. We also verified that HQLM showed
similar results to CQLM when κ was set to a
large value (κ = 500). This confirms that Eq.
(12), which insists HQLM can be represented as
CQLM, is a proper theory.

6 Conclusions

In this paper, we proposed a word embedding-
based probabilistic IR method based on hyper-
spherical QLMs that are modeled by a mixture
of von Mises-Fisher distributions. We found
the hyperspherical QLMs could theoretically uti-
lize word embeddings for IR without introducing
heuristic formulations. We found that the hyper-
spherical QLMs can be represented as an extended
form of categorical QLMs and a theoretical form
of translation QLMs. Our experiments on a doc-
ument retrieval task showed hyperspherical QLM
outperformed previous QLMs and document dis-
tance metrics with word or document embeddings.
In the future, we will examine large scale docu-
ment retrieval evaluation.
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Abstract

Embedding based approaches are shown
to be effective for solving simple Ques-
tion Answering (QA) problems in recent
works. The major drawback of current ap-
proaches is that they look only at the sim-
ilarity (constraint) between a question and
a head, relation pair. Due to the absence of
tail (answer) in the questions, these mod-
els often require paraphrase datasets to ob-
tain adequate embeddings. In this pa-
per, we propose a dual constraint model
which exploits the embeddings obtained
by Trans* family of algorithms to solve
the simple QA problem without using any
additional resources such as paraphrase
datasets. The results obtained prove that
the embeddings learned using dual con-
straints are better than those with single
constraint models having similar architec-
ture.

1 Introduction

Recent progress in Knowledge Bases (KB) related
technologies enable us to enhance an atomic fact
repository of inter-entity relationship. For exam-
ple KB completion aims to infer unknown entities
in atomic facts, which is represented in the form
of triplets (h, r, t) where h, r, t represent a head en-
tity, relationship and a tail entity respectively, e.g.
(Barack Obama, Nationality, USA) which corre-
sponds to the factual knowledge that “the nation-
ality of Barack Obama is USA”. Freebase1 and
DBPedia2 contain such atomic facts about enti-
ties in the real world. However, the real chal-
lenge for leveraging such knowledge in practical
applications consists of mapping natural language

1https://developers.google.com/freebase/
2http://wiki.dbpedia.org/

questions to their corresponding entries in thus en-
hanced KBs.

Current embedding based QA models such as
(Bordes et al., 2014a,b, 2015; Golub and He,
2016) are focusing on a sequential inference of
predicting the pair of (h,r) from the given question
(q), then inferring (t) corresponding to the pre-
dicted pair (h,r) using any KB completion models
e.g. Trans* family models. This is a reasonable
approach since such a type of questions contain
information about both the head entity and the re-
lation. However, once the first step of inference
fails to match the correct (h,r) pair, it is hopeless
for the second step to answer the correct entity.
In order to avoid this problem, they use additional
resources such as question paraphrases or entity
aliases.

In this paper, we propose a completely differ-
ent approach which uses a Trans* family based
scoring function to predict the pair of (h,r) from q,
and also maps q to t simultaneously. We learn em-
beddings for question words, entities and relations
from the KB simultaneously bringing them into an
euclidean space. Proposed dual constraint concur-
rent inference achieved better performance on a
standard dataset than single constraint sequential
inference methods without using any additional
resources.

2 Related Work

Our work is inspired by the recent advances in
solving simple QA problems using embedding ap-
proaches such as (Bordes et al., 2014a,b, 2015)
which show that these approaches are very ef-
fective in mapping natural language questions to
the corresponding triplet in a KB. They learn
the embeddings for each question by a Bag Of
Words (BOW) representation. (Jain, 2016) fo-
cuses on the positions of the question words and
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incorporate them into the model. Some models
such as (Yih et al., 2015; Dai et al., 2016) fo-
cus on deep networks to encode question words
and KB constituents. (Dai et al., 2016) have mod-
eled the probability of predicting head and relation
jointly, proposing two neural networks for learn-
ing the embeddings. (Golub and He, 2016) in-
troduced attention mechanism for character level
LSTM encoding of questions and entities for em-
bedding question words and KB constituents. (Yin
et al., 2016) proposed to use char-CNN to en-
code the entities and word-CNN with maxpooling
to encode relations. (Yu et al., 2017) focused on
the different granularity of relation representation.
(Lukovnikov et al., 2017) have used rich entity in-
formation to get more powerful KB constituents
encodings. Note that all these models focused on
a single constraint sequential inference that uses
similarities between q and (h,r) pairs to learn em-
beddings. Our method applies a dual constrained
concurrent inference that uses similarities between
q and t on top of (h,r) pairs while leveraging em-
beddings pre-trained by the Trans* family of algo-
rithms.

Various Trans* family models such as TransE
(Bordes et al., 2013),TransH(Wang et al.,
2014),TransR (Lin et al., 2015) are proposed
to learn low dimension embeddings of KB con-
stituents using relations in KB as translations over
entity embedding space.

3 Proposed Method

We propose an embedding based approach where
both question words and KB constituents are
mapped into a common low dimensional embed-
ding space.

Single Constrained Sequential Inference: In
the common euclidean space of question and KB
constituents embeddings, assume d1 to be eu-
clidean distance between question embedding (q)
and additive vector of head entity and relation
(h+r). As shown in Figure 1[a] current QA mod-
els try to minimize d1 so as to predict head entity
and relation pair (h,r) from the question(q), con-
sequently they have a single constraint such that
corresponding q and h+r should be closer to each
other. Assume d2 to be an euclidean distance be-
tween tail entity embedding (t) and (h+r). Trans*
family of algorithms try to minimize d2 so as to
predict tail entity (t) from a pair of (h,r). Cur-
rent models minimize d1 and d2 in the two distinct

Figure 1: [a] Single constrained QA models min-
imize the distance (d1) between Question Embed-
dings (q) and head entity, relation pair (h,r) and
Trans* family of algorithms minimize distance
(d2) between tail entity (t) and (h,r). [b] Our model
minimize the distance (d3) between q and t along
with d1 thus applying the second constraint on q.

steps, indirectly bringing q closer to t.
Dual Constrained Concurrent Inference: A

QA system is preferably able to directly retrieve
an answer entity upon a submission of a question.
The problem here is that a simple factoid question
does not contain sufficient information of the an-
swer entity by definition. Thus our model should
learn question embeddings such that q should be
closer to t as well as (h+r). Assume d3 to be
an euclidean distance between (q) and (t) in the
same vector space as earlier model, as can be seen
in Figure 1[b], our model minimizes d1 + d3 i.e.
bringing q closer to both h+r and t. This is im-
plemented as a dual constraint in objective func-
tion when learning q, which reduces the degree
of freedom of q, resulting in a better euclidean
space in comparison with single constrained mod-
els. Thanks to these constraints we do not need
any additional resources such as question para-
phrase datasets while achieving on a par perfor-
mance with the current models.

3.1 TransR

TransR (Lin et al., 2015) is an algorithm to learn
low dimensional vector representations of entities
and relations in the Knowledge Base. TransR
adopts a score function f r to measure the credi-
bility of a KB triplet (h, r, t) such that the score
is low when (h, r, t) is likely to be true and high
otherwise.

TransR represents entities and relations in dis-
tinct vector spaces i.e. entity space and relation
space. For each triplet, let h ∈ Rk,t ∈ Rk be
an entity embedding of either head or tail respec-
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Figure 2: Overview of our learning diagram

tively and r ∈ Rd be a relation embedding, where
k and d are the dimensions of embeddings of enti-
ties and relations respectively. It also trains a rela-
tion specific projection Matrix Mr ∈ Rk×d, which
projects entities from the entity space to a corre-
sponding relation space. With this projection ma-
trix, projected vectors of entities are defined as,

hr = hMr, tr = tMr.

The score function is defined as:

f r = ‖hr + r− tr‖22.

Constraints are enforced on the norms of em-
beddings h, r, t and projection matrices, i.e.
∀ h, r, t we have ‖h‖2 ≤ 1, ‖r‖2 ≤ 1, ‖t‖2 ≤
1, ‖hMr‖2 ≤ 1, ‖tMr‖2 ≤ 1.

Margin based score function is defined as objec-
tive for training purpose which is as follows:

C=
∑

(h, r, t)∈S

∑
(h′, r, t′)∈S′

max(0, fr(h,t)+γ− fr(h
′,t′))

where max(x,y) returns the larger value between
x and y, γ is the margin parameter, S is the set of
correct triplets from dataset and S′ is the set of cor-
rupted triplets generated by using various negative
sampling methods for training purpose.

3.2 Model

As shown in Figure 2, our model pre-trains the en-
tity (h,t) and relation (r) embeddings with TransR,
whereas encoding questions into q ∈ Rd where
d is the size of question embedding. Questions
should be closer to the sum of (h) and (r) of the
corresponding triplet in the KB, similarly the an-
swer of the question should be closer to the vec-
tor of tail entity (t). We propose a score function
g(h, r, t, q) such that the score is low if (h, r, t) is
the triplet corresponding to the question (q) and
high otherwise. Scores of the question embedding
are defined as:

1. This indicates how close a question is to the
combination of head entity (h) and relation
(r) embeddings in TransR relation space

g1 = ‖hr + r− q‖22

2. This indicates how close a question is to the
tail entity (t) embedding in a TransR relation
space.

g2 = ‖tr − q‖22

Then the final score of the question is defined
as:

g = g1 + g2.

Additional constraints are enforced on norms of
embeddings such that ‖q‖2 ≤ 1. Due to a dual
constraint mentioned above on the question em-
bedding (q), the degree of freedom is reduced con-
siderably, which leads to fast training.

3.3 Training

Similar to previous studies involving embedding
models (Bordes et al., 2014a,b, 2015), our model
is trained with a ranking criterion. The objective
of the learning is that the positive triplet should be
closer to the natural language question than any
other negative triplet by a certain margin γ in the
embedding space. Thus we adopt a margin-based
objective function for training purpose as follows:

L =
∑

(h, r, t, q)∈S

∑
(h′, r′, t′,q)∈S′

max(0, g1(h, r, q) +

γ − g1(h′,r′, q)) +max(0, g2(t,q) + γ − g2(t′,q))

where max(x,y) and γ are same as defined earlier.
S is the set of correct pairs of a triplet and a ques-
tion from the dataset and S′ is the set of pairs of a
negative triplet and a question as S.

3.4 Negative Triplet generation

For generating negative triplets we use a method
known as candidates as negatives, which is pro-
posed by (Bordes et al., 2015). In this method,
non-supported triplets are chosen randomly from
the set of candidate triplets.

4 Experiments

4.1 Knowledge Base and Dataset

We use FB2M as our base KB which is an ex-
tract of the Freebase with about 2M entities and
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5k relations. We use SimpleQuestions3 dataset
introduced by (Bordes et al., 2015) for training
and testing purposes. This dataset consists of a
total of 108,442 natural language questions in En-
glish written by human English speaking annota-
tors each paired with a corresponding triplet from
FB2M that provides the answer. Out of whole data
75,910 data points were used for Training, 10,845
for validation and 21,687 for testing purpose.

4.2 Experimental Setup
TransR embeddings TransR embeddings of size
64 initialized randomly with uniform distribution
were pre-trained with Probabilistic Negative Sam-
pling method proposed by (Kanojia et al., 2017).
Question Encoding Question is represented as se-
quence of words (x1, x1, ..., x|q|). Low dimension
vectors for each word in vocabulary are learnt and
each word xi is mapped to its vector. Word em-
bedding size was set at 64 and initialized with ran-
dom uniform distribution. We experimented with
two methods to encode questions from individual
question word embeddings:

Bag-of-Words (BOW) : It is a sum of individ-
ual word embeddings i.e.

q =
∑|q|

i=1 xi

Long Short Term Memory
(LSTM)(Hochreiter and Schmidhuber, 1997):
Each question is encoded using LSTM with
dynamic RNN units with hidden layer size of 64
and forget bias as 1.0. Output of the last LSTM
unit was taken as the question encoding.
We experimented with Batch size as 512, margin
(γ) at 0.1 and Adam optimizer with learning rate
of 0.001.
Candidate Pruning: Calculation of score for
all triplets from the dataset is an memory and
time wise prohibitive operation. Thus, at first
we prune the facts to generate candidate facts
similar to (Jain, 2016). Then only these candidate
facts are scored by feeding them as input to
our network. To generate these candidate facts,
we match all possible n-grams of words of the
question to Freebase entities and discard all
n-grams (and their matched entities) that are a
subsequence of another n-gram. All facts having
one of the remaining entities as subject are added
to candidate fact list. Facts with lowest score
(g) out of candidates is retrieved as answer to
the question. We evaluate our model based on

3https://research.fb.com/downloads/babi/

Setup Path-level Accuracy(%)
Random Guess 4.9

Word Position(Jain, 2016) 59.7
Memory NW (Bordes et al., 2015) 62.7
Dual constrained BOW encoding 61.03
Dual constrained LSTM encoding 64.05

Table 1: Experimental Results on SimpleQues-
tion dataset for FB2M settings.

path-level accuracy in which prediction is correct
if the head entity (h) and relation (r) of retrieved
triplet are correct.

5 Results

The results of our experiments are shown in Ta-
ble 1. We observe that our model gains 2-5% im-
provement in the path level accuracy than single
constrained word level embeddings approaches by
(Bordes et al., 2015; Jain, 2016) who have similar
architecture to ours. Note that they use additional
resources such as question paraphrase dataset and
entity aliases while our model uses original dataset
only. There are recent studies such as (Yin et al.,
2016; Lukovnikov et al., 2017; Yu et al., 2017)
which reported better accuracies on the same test
set, by adopting either char-level CNNs or richer
representations of entities/relations. Note that our
dual constraint concurrent inference can be easily
incorporated into such methods thus our method is
complementary to their methods. We also report
comparisons between different question encoding
methods of our model. LSTM encoding outper-
forms BOW as it captures syntactic clues to map
question onto the KB.

6 Conclusion and Future Work

In this work we show that Translation Embeddings
learned using Trans* family of algorithms enable
our model to learn the latent relationships between
question and triplet using a unique score function.
This results in a better performance in contrast
with single constrained models as the essence of
the triplet is inherently passed to the model in the
form of embeddings. It also eliminates the need
to use additional datasets to achieve good perfor-
mance. The added dual constraint enforces the
model to reduce the dual euclidean distance be-
tween question and triplet pairs, thereby generat-
ing adequate embeddings. Note that the dual con-
strained method can be extended to recent state of
the art systems which use rich networks to obtain
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better results.
In future, we hope to apply this method to richer

embeddings obtained using deep networks. As
shown in (Golub and He, 2016) character level
encodings based models have been proven to be
more precise compared to word level models for
a simple QA task. We hope to extend our model
to character level ones. Also the entity accuracy
is comparatively lower than the relation accuracy
which can be improved by using better entity link-
ers in questions.
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Abstract

This paper investigates the problem of an-
swering compositional factoid questions
over knowledge bases (KB) under effi-
ciency constraints. The method, called
TIPI, (i) decomposes compositional ques-
tions, (ii) predicts answer types for indi-
vidual sub-questions, (iii) reasons over the
compatibility of joint types, and finally,
(iv) formulates compositional SPARQL
queries respecting type constraints. TIPI’s
answer type predictor is trained using
distant supervision, and exploits lexical,
syntactic and embedding-based features
to compute context- and hierarchy-aware
candidate answer types for an input ques-
tion. Experiments on a recent benchmark
show that TIPI results in state-of-the-art
performance under the real-world assump-
tion that only a single SPARQL query can
be executed over the KB, and substantial
reduction in the number of queries in the
more general case.

1 Introduction

Motivation. Question answering over knowledge
bases (KB-QA) has gained attention, facilitated by
the rise of large-scale knowledge bases such as
Freebase (Bollacker et al., 2007), DBPedia (Auer
et al., 2007) and YAGO (Suchanek et al., 2007).
The key challenge for KB-QA is to align mentions
and relational phrases in a natural language ques-
tion to semantic items in the KB (entities and pred-
icates), and to construct a valid SPARQL query
that is then executed over the KB to retrieve crisp
answers (Abujabal et al., 2017; Bast and Hauss-
mann, 2015; Yahya et al., 2013; Yih et al., 2015).

Questions going beyond simple factoid ques-
tions (like “Who won a Nobel Prize in Physics?”)

that are prevalent in popular KB-QA benchmarks
are generally out of scope for most state-of-the-
art KB-QA systems (Yih et al., 2015; Dong et al.,
2015; Berant and Liang, 2015). However, ques-
tions like “Who won a Nobel Prize in Physics and
was born in Bavaria?”, can be decomposed into a
set of simpler questions “Who won a Nobel Prize
in Physics?” and “Who was born in Bavaria?”.
We refer to such questions as compositional ques-
tions, and these are the focus of this work.

Limitations of state-of-the-art. A few past ap-
proaches that can handle such compositional ques-
tions (Bao et al., 2016; Xu et al., 2016; Abuja-
bal et al., 2017) generate and execute candidate
SPARQL queries for each sub-question separately
and/or use the intersection as the final answer
(Werner Heisenberg, among others). This cre-
ates the challenge of deciding which queries from
the different sub-questions fit together. Past ef-
forts use information about answers to all gener-
ated SPARQL queries, and retrospectively choose
a query pair from among these whose answer in-
tersection is non-empty. However, this mode of
operation is highly inefficient, since it necessitates
execution of all generated queries, followed by a
ranking or aggregation phase. We aim to address
this concern, leveraging the compatibility of ex-
pected answer types. Such compatibility, as we
show, has the potential to prune the search space
of candidate SPARQL queries.

Approach. Given a complex question, our pro-
posed method TIPI first decomposes it into simple
sub-questions. Next, it predicts a ranked list of
fine-grained answer types for each sub-question,
respecting a type hierarchy. TIPI then seeks can-
didate SPARQL queries corresponding to these
sub-questions as input from an underlying KB-
QA model, and finds pairs of compatible queries
from among these using hierarchy-based reason-
ing. Finally, it scores these pairs and finds the best
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Who won a Nobel Prize in Physics and was born in Bavaria?

Who won a Nobel Prize in Physics? Who was born in Bavaria?

Person

Physicist

Actor

Person

Organization

Physics Nobel Prize ?x
awardingOrg.

Physics Nobel Prize ?x
wonBy

Physics Nobel Prize ?x
namedAfter

?x Bavaria
containedBy

?x Bavaria
peopleBornHere

?x Bavaria
residentCompany

Person

Scientist

Organization

Person

Country

Company

Figure 1: A toy example showing how TIPI works.
Top: Decompose question. Middle: Determine
compatible types among answer types of the two
sub-questions. Bottom: Stitch compatible queries
together and prune queries by answer type. This is
followed by scoring and ranking of the query pairs
to formulate the best compositional query.

pair to formulate a compositional query, to be ex-
ecuted over the KB. The final two steps contribute
towards TIPI’s efficiency-aware perspective.

Contributions. The paper makes the following
three contributions:

• We are the first to exploit answer types for han-
dling compositional questions in KB-QA;

• Experiments show state-of-the-art perfor-
mance under practical efficiency constraints;

• Finally, TIPI contains a hierarchy- and
context-aware fine-grained answer typing
module that can be used as a plug-in by any
KB-QA system.

2 Answering Compositional Questions

We now explain the steps by which TIPI handles
the answering of a compositional question, taking
the running example of “Who won a Nobel Prize
in Physics and was born in Bavaria?”. A simpli-
fied workflow is shown in Figure 1.

Question decomposition. Given a composi-
tional question, TIPI first decomposes it into sim-
ple sub-questions “Who won a Nobel Prize in
Physics?” and “Who was born in Bavaria?”, us-
ing dependency parse patterns (Xu et al., 2016;
Bao et al., 2014). These patterns can handle sev-
eral kinds of compositional questions with mul-
tiple entities or relations (e.g., questions with
relative clauses and coordinating conjunctions).
Question decomposition has also been applied to
the IBM Watson system (Boguraev et al., 2014),

where the authors separated cases as being either
parallel or nested. This work deals with parallel
decomposition, and handling nesting like “which
daughter of john f. kennedy studied at radcliffe
college?” is future work.

Answer Type prediction. Next, we predict a
set of expected answer types for each sub-question
using an answer type predictor, described in the
next section. The typing module is a context-
aware hierarchical classifier that takes a question
as input and produces a set of answer types along
with confidence scores as output (like Person:
0.8, Actor: 0.3, Scientist: 0.6; scores need
not add up to one).

Type compatibility scoring. We define two
types to be compatible whenever they are the
same, or one is an ancestor of the other, according
to some type system. For example, Scientist
and Person are compatible, as the former is a
descendant of the latter. Now, let T1 and T2 be
a pair of predicted types for the first and second
sub-questions, respectively. We score each such
pair with a linear combination of granularity and
confidence as follows:

score(T1, T2) = γ ·max(level(T1), level(T2))

+ (1− γ) · avg(conf(T1), conf(T2))

if T1 and T2 are compatible, else zero. Here,
level(Ti) and conf(Ti) refer to the level of Ti in
the type system, and the classifier prediction con-
fidence for Ti, respectively. We take the root to
be at level zero, with finer types having higher
levels. Thus, pairs with fine-grained types (like
Physicist), and with high prediction confi-
dences, accumulate higher scores. Mixing param-
eter γ is chosen to be 0.5. We take the highest
scoring type pair, and then take the finer of the
two types as the final prediction (Physicist
in this example). The intuition here is that one
sub-question might reveal more typing informa-
tion (“Who won a Nobel Prize in Physics?” gives
Physicist) than the other (“Who was born in
Bavaria?” only gives Person).

Compositional query formulation. We now
let a KB-QA system generate a ranked list of
SPARQL queries for each sub-question. In past
work, all query pairs (one from each sub-question)
are combined to create numerous compositional
queries. Our goal is to stitch only type-compatible
queries, which is achieved as follows. Each
query predicate has a type signature from the
KB, which states the expected types for the pred-
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[.*]* [which|what] [lemma: be]? [det]? [adj|adv]* [noun]+ [.*]*
(E.g.: What is the current currency in Germany?)

[.*]* [which|what] [lemma: be]? [det]? [adj|adv]* [noun] [of ] [det]?
[adj|adv]* [noun]+ [.*]* (E.g.: What kind of currency does Germany have?)

[.*]* [which|what] [lemma: be] [det]? [noun]+ [poss] [adj|adv]*
[noun]+ [.*]* (E.g.: What is Germany’s currency?)

Table 1: Patterns to extract lexical answer types
(underlined). Symbols are borrowed from stan-
dard regular expression conventions.

icate. We use our final predicted type to re-
move all queries from either sub-question whose
type signatures are not compatible to it. Thus,
queries like PhysicsNobelPrize wonBy x? and
Bavaria peopleBornHere x?, with compatible
type signatures Physicist and Person are
retained, while Bavaria containedBy x? and
PhysicsNobelPrize awardingOrg x? with sig-
natures Country and Organization are re-
moved. All surviving query pairs are combined,
and are then scored by the sum of the inverses
of the ranks they had from the underlying KB-
QA model. The pair that maximizes this rank
inversion score is finally chosen for execution
by the system: PhysicsNobelPrize wonBy x? .
Bavaria peopleBornHere x? for our example.

3 Predicting Answer Types

Our strategy for answer type prediction is to har-
ness explicit clues available in the question, and
to resort to more implicit ones only when such
signals are not present. We thus use a two-
stage approach, inspired by work on named en-
tity typing (Del Corro et al., 2015; Yosef et al.,
2012)1: (1) candidate collection, using lexico-
syntactic patterns to identify lexical types which
can be mapped to a set of semantic types using lex-
icons; (2) type selection, using a hierarchical clas-
sifier to disambiguate among the candidates. Note
that in absence of explicit clues for candidates in
the question, our method proceeds directly to the
second stage.

Candidate Collection. To extract the lexical
answer type from a question, we use simple POS
patterns (examples in Table 1), utilizing Stanford
CoreNLP for tokenization and POS-tagging (Man-
ning et al., 2014). In a second step, the lexi-
cal type extracted from the question is mapped

1While the task in named entity typing is somewhat simi-
lar to answer typing, the crucial difference is that in the latter
the entity (answer) itself is missing.

to a set of semantic types (KB-types) using lexi-
cons (Berant et al., 2013). Such lexicons can be
constructed by mining entity-annotated relational
phrases in CLUEWEB09 (Lin et al., 2012). For
example, the lexical type ‘physicist’ may map to
the semantic types Scientist, Theoretical
physicist and Quantum physicist.

Type Selection. From the candidate collection
phase, we receive a set of candidate types, for each
of which we run a binary classifier to get a confi-
dence score. If no lexical answer type could be
found in the question (like “Where did Einstein
study?”) or there were no lexicon entries, the clas-
sifier makes predictions on all types from our type
system. The hierarchical classifier works as fol-
lows: starting at the root of the type system we
predict probabilities for its children that are candi-
dates, using per-type binary classifiers. Iteratively,
this process is repeated for sub-trees whose root
has a confidence score above a global threshold α.

Training. We start with a dataset where each
question is labeled with a set of expected answer
types. We use the siblings strategy (Silla and Fre-
itas, 2011) to train a classifier for each type: we
use all questions labeled with T as positive in-
stances for a type T ; we use only those questions
as negative instances that are labeled with some
sibling of T according to the type system. We
use four sets of features: (i) Surface features: n-
grams of length up to three from the question; (ii)
Dependency parse features: n-grams constructed
by hops over relations in the dependency tree to
capture long-range dependencies; (iii) Word2vec
features: Per question, we add ten words most
similar to the question words (except for stop-
words and entities) using a pre-trained model of
word2vec (Mikolov et al., 2013); and (iv) Ques-
tion length: The number of tokens in the question.
To reduce data sparsity, we replace all question en-
tities by a wildcard for pattern generalization, be-
fore computing the features.

4 Experiments

4.1 Setup

Dataset. We use the very recent dataset of
150 compositional questions2 created by Abujabal
et al. (2017) which were sampled from the 2013

2Available for download at http://people.
mpi-inf.mpg.de/˜abujabal/publications/
quint/complex-questions-wikiasnwers-150.
json, Accessed 22 September 2017.
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WikiAnswers resource (Fader et al., 2013). Every
question in this dataset was constrained to have
more than one named entity or relational phrase
(e.g., “Who directed Braveheart and Paparazzi?”
and “Who directed Braveheart and played in Mad
Max?”). We use Freebase as the underlying KB.

Baselines. We use the following baselines:
the open-source AQQU system (Bast and Hauss-
mann, 2015) (best performing public KB-QA sys-
tem on the popular WebQuestions benchmark (Be-
rant et al., 2013)), and reimplemented versions
of the answer stitching mechanism (ANSSTITCH)
in Abujabal et al. (2017), and the query stitching
mechanism (QUERYSTITCH) in Bao et al. (2016).
As mentioned in Section 2, TIPI acts as a plug-
in for KB-QA systems, and hence needs an un-
derlying model to generate queries. To this end,
we build and evaluate AQQU+TIPI and QUERYS-
TITCH+TIPI. If question decomposition fails, or
if TIPI prunes away all queries with a non-empty
answer set, we back off to the original model.
Abujabal et al. (2017) use an alternative approach
of stitching answers for sub-questions instead of
queries, and hence it is not meaningful to have a
comparable ANSSTITCH+TIPI system.

Training the type predictor. We use the 1000
most frequent types from Freebase as our type sys-
tem. Since there is no dataset directly containing
questions and answer types, we resort to distant
supervision as follows: for each gold answer to
a question in WebQuestions (WQ) (Berant et al.,
2013) and SimpleQuestions (SQ) (Bordes et al.,
2015), we look up its notable types from Freebase.
This is often a large set, agnostic to the context
of the specific question at hand: e.g. Germany,
the answer to “What is Albert Einstein’s nation-
ality?”, has 53 notable types, including context-
irrelevant ones like Filming Location and
Treaty Signatory. We prune this set in two
ways: (1) keep only those types that are in our type
system, and (2) retrieve expected types of Freebase
predicates corresponding to relations in the ques-
tion (e.g. hasNationality has the expected
object type Country) and only retain types com-
patible to these. This is possible via gold SPARQL
queries available in WQ and SQ. We then train the
hierarchical classifier on a total of 10k questions
(3k from WQ, 6.4k from SQ, and 0.6k Freebase
type descriptions). Threshold α was tuned to 0.6
on a development set of 2k questions (0.8k from
WQ and 1.2k from SQ) by optimizing on F1.

Feature Sets Prec (Auto) Prec (Human)
Surface 71.9 65.6
Surface + DP 72.2 65.9
Surface + DP + w2v 73.2 67.1
Surface + DP + w2v + QLen 73.9 67.3

Table 2: Intrinsic evaluation of type prediction,
showing effects of feature ablation.

4.2 Results

Intrinsic evaluation of type predictor. We eval-
uate our type predictor intrinsically in two ways:
(i) automatic evaluation, treating the labels gen-
erated by distant supervision as gold labels, and
(ii) human evaluation. Three human annotators
marked, for each prediction, whether it is cor-
rect and context-aware: e.g. for “Who devel-
oped the theory of relativity?”, they would mark
Scientist and Person as correct but not
NobelPrizeWinner or Teacher. Note that
in the automatic evaluation, the context-oblivious
types might be deemed as correct. Table 2 shows
the results of automatic evaluation in the left col-
umn and human evaluation in the right column.
The predictions are of high precision, even under
human evaluation which only considers context-
aware predictions as correct. Mean Cohen’s
κ (Cohen, 1960) is 0.743, showing good inter-
annotator agreement. Feature ablation shows that
each of the four feature sets is useful.

Answering performance. Since each question
potentially has a set of correct answers, we com-
pute precision, recall and F-score for each ques-
tion, and then average it over all 150 questions.
We evaluate two setups: (i) when only the top-
ranking compositional query is executed, and (ii)
when the rank-based query scoring component is
disabled and all surviving compositional queries
(combinations of type-compatible queries) are ex-
ecuted. Results are presented in Table 3, where we
make the following key observations:

TIPI results in state-of-the-art performance.
In the case of best query execution, we find
that TIPI’s preferential scoring system for fine-
grained types proves highly effective: QUERYS-
TITCH+TIPI achieves the highest F1 on the dataset
(0.367). It also has the best overall recall (0.469),
and is in the top-2 for precision. Thus, TIPI
helps attain the best performance under the practi-
cal constraint of executing only a single query and
eliminating the overhead of answer aggregation.

TIPI improves efficiency while maintaining
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Approach Only best query executed over KB All queries executed over KB

Metric Precision Recall F1-Score #Queries Precision Recall F1-Score
ANSSTITCH (Abujabal et al., 2017) 0.345 0.409 0.344 97.4 0.495 0.556 0.485

AQQU (Bast and Haussmann, 2015) 0.245 0.466 0.253 54.5 0.245 0.466 0.253
AQQU+TIPI 0.209 0.515 0.231 35.7 0.209 0.515 0.231

QUERYSTITCH (Bao et al., 2016) 0.358 0.428 0.360 57.5 0.459 0.544 0.456
QUERYSTITCH+TIPI 0.356 0.469 0.367 36.0 0.439 0.566 0.445

Table 3: Answering performance on 150 compositional questions from Abujabal et al. (2017). The two
best (minimum for #Queries, maximum for all other columns) values in every column are marked in bold.

comparable performance. In the unconstrained
scenario, by reasoning over type compatibility,
TIPI substantially reduces the number of queries
that the KB-QA system executes (35.7 from 54.5
(AQQU), and 36.0 from 57.5 (QUERYSTITCH)).
This is achieved while maintaining comparable F1
performance. Moreover, note that the best per-
forming method with TIPI (QUERYSTITCH+TIPI)
improves efficiency by a factor of 2.71 on the over-
all best performing ANSSTITCH (97.4 queries to
36.0). The generally lower values corresponding
to the AQQU rows is because AQQU was originally
designed for single-relation KB-QA.

Analysis. Question decomposition failures are
the primary cause of error. TIPI’s success hinges
on the triggering of question decomposition rules
adapted from Xu et al. (2016); it is worthwhile
to note that results were even more encouraging
when the 43 questions for which the rules did
not fire were excluded from the analysis. Re-
sults averaged over the remaining 107 questions
show that QUERYSTITCH+TIPI performs the best
on all three metrics (F1 = 0.372, Prec = 0.365,
Rec = 0.402) under best-query execution. In
the all-queries case, QUERYSTITCH+TIPI reduces
the number of queries by an even greater factor
of 3.13 (w.r.t. ANSSTITCH) with only a 0.02
drop in F1. This error analysis suggests that bet-
ter question decomposition, going beyond simple
syntactic rules, will improve overall performance.
Finally, representative questions that could only
be answered when TIPI was used as plug-in, are
shown in Table 4.

5 Related Work

Answer typing has proved effective both for text-
based QA (Ravichandran and Hovy, 2002) and
KB-QA (Bast and Haussmann, 2015; Savenkov
and Agichtein, 2016), for example, in ranking of
answers (Murdock et al., 2012) or queries (Yavuz

“who is the president of the us who played in bedtime
for bonzo?”
“who played for ac milan and inter milan?”
“what movie did russell crowe and denzel washington
work on together?”
“which country were the adidas and puma footwear
founded?”

Table 4: Questions that could be answered only
when TIPI was used as a plug-in.

et al., 2016). Answer typing was mostly limited to
considering coarse-grained types (Bast and Hauss-
mann, 2015; Lally et al., 2012) and lexical answer
types (Berant and Liang, 2015; Abujabal et al.,
2017). Both such modes fail when the answer
type is not explicit. More recently, Yavuz et al.
(2016) exploit more implicit type cues for KB-
QA: but their method of creating training data is
context-agnostic, which we remedy in our work.
An early line of work deals with question classifi-
cation (Li and Roth, 2002; Blunsom et al., 2006;
Huang et al., 2008), but they were designed for a
handful of TREC types and is not really relevant
for KB-QA with thousands of distinct classes. Fi-
nally, this work is the first to harness answer types
for compositional KB-QA.

6 Conclusion

We presented TIPI, a mechanism for enabling KB-
QA systems to answer compositional questions
using answer type prediction. TIPI relies on a fine-
grained answer typing module, that respects ques-
tion context and type hierarchy. Experiments on
a recent benchmark show that TIPI achieves state-
of-the-art performance under single-query execu-
tion, and substantial query reduction when the
top-1 query constraint is relaxed to admit more
queries. Improving question decomposition, and
handling more implicit forms of question compo-
sitionality, are promising future directions.
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Abstract

Relation Discovery discovers predicates
(relation types) from a text corpus relying
on the co-occurrence of two named enti-
ties in the same sentence. This is a very
narrowing constraint: it represents only
a small fraction of all relation mentions
in practice. In this paper we propose a
high recall approach for predicate extrac-
tion which enables covering up to 16 times
more sentences in a large corpus. Compar-
ison against OpenIE systems shows that
our proposed approach achieves 28% im-
provement over the highest recall OpenIE
system and 6% improvement in precision
over the same system.

1 Introduction

The recent years have shown a large number of
knowledge bases such as YAGO (Suchanek et al.,
2007), Wikidata (Vrandečić and Krötzsch, 2014)
and Freebase (Bollacker et al., 2008). These
knowledge bases contain information about world
entities (e.g. countries, people...) using a set of
predefined predicates (e.g. birth place, profes-
sion...) that comes from a fixed ontology. The
number of predicates can vary according to the
KB ontology. For example there are 6,1047 DB-
pedia unique predicates compared to only 2,569 in
Wikidata. This has led to an emergence of unsu-
pervised approaches for relation extraction which
can scale to open relations that are not predefined
in a KB ontology.

1.1 Open Information Extraction
Open information extraction (Open IE) systems
extract linguistic relations in the form of tuples
from text through a single data-driven pass over
a large text corpus. Many Open IE systems have

been proposed in the literature, some of them are
based on patterns over shallow syntactic represen-
tations such as TEXTRUNNER (Banko et al., 2007)
and REVERB (Fader et al., 2011), pattern learn-
ing in OLLIE (Mausam et al., 2012), Tree Kernels
(Xu et al., 2013) or logic inference in STANFORD

OPEN IE (Angeli et al., 2015).
Open IE has demonstrated an ability to scale to a
non-predefined set of target predicates over a large
corpus. However extracting new predicates (rela-
tion types) using Open IE systems and merging to
existing knowledge bases is not a straightforward
process, as the output of Open IE systems contains
redundant facts with different lexical forms e.g.
(David Bowie, was born in, London) and (David
bowie, place of birth, London).

1.2 Relation Discovery and Clustering

Relation clustering and relation discovery tech-
niques try to alleviate this problem by grouping
surface forms between each pair of entities in
a large corpus of text. A large body of work
has been done in that direction, through: clus-
tering of OpenIE extractions (Mohamed et al.,
2011; Nakashole et al., 2012a,b), topic model-
ing (Yao et al., 2011, 2012), matrix factoriza-
tion (Takamatsu et al., 2011) and variational au-
toencoders (Marcheggiani and Titov, 2016).
These approaches are successful to group and dis-
cover relation types from a large text corpus for
the aim of later on adding them as knowledge base
predicates.

1.3 Relation Discovery with a Single Entity
Mention

Previously described relation discovery tech-
niques discover relations between a detected pair
of named entities. They usually use a pre-
processing step to select only sentences with the
mention of a pair of named entities (Figure 1 ex-
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ample 1). This step skips many sentences in which
only one entity is detected. These sentences po-
tentially contain important predicates that can be
extracted and added to a KB ontology.
Figure 1 illustrates different examples of these
sentences, such as: When the object is not men-
tioned (example 2), Questions where the object is
not mentioned (example 3) or when one of the en-
tities is hard to detect because of coreferencing or
errors in NER tagging (example 4). By analysing

1. The official currency of the U.K. is
the Pound sterling.

2. The U.K. official currency is down
16 percent since June 23.

3. What is the official currency of
U.K. ?

4. .. which is considered the official
currency of U.K.

Figure 1: Examples of textual representations
mentioning the predicate ”official currency”.

630K documents from the NYT corpus (Sand-
haus, 2008) as illustrated in Figure 2, the num-
ber of sentences with two 2 detected named enti-
ties is only 1.8M sentences. Meanwhile, there are
almost 30M sentences with one entity (16 times
more), which can be explored for predicate men-
tions. As the set of covered sentences is limited, so
is the number of possibly discovered predicates.
In this paper we propose a predicate-centric
method to extract relation types from such sen-
tences while relying on only one entity men-
tion. For relation clustering, we leverage various
features from relations, including linguistic and
semantic features, and pre-trained word embed-
dings. We explore various ways of re-weighting
and fusing these features for enhancing the cluster-
ing results. Our predicate-centric method achieves
28% enhancement in recall over the top Open
IE system and with a very comparable precision
scores over an OpenIE benchmark (Stanovsky and
Dagan, 2016). It demonstrates its superiority for
the discovery of relation types.

2 Our Approach

2.1 Extraction of Predicates

Banko et.al (Banko and Etzioni, 2008) show that
the majority of relations in free text can be repre-
sented using a certain type of Part of Speech (POS)
patterns (e.g. "VB", "VB IN", "NN IN"). Ad-

Figure 2: Distribution of sentences in the NYT
corpus (A), which have: (B) at least 1 entity men-
tion, (C) at least 1 entity and a predicate attached
to it, (D) at least 2 entities mentions, (E) at least 2
entities and a relation in between in Freebase.

ditionally Riedel et al. (Riedel et al., 2013) pro-
pose the Universal Schemas model in which the
lexicalized dependency path between two named
entities in the same sentence is used to represented
the relation in between. We follow a similar ap-
proach to extract lexical forms of predicates in
sentences and connect them to named entities in
the sentences.
First to expand the set of predicate patterns
proposed by Banko et al., we collect labels
and aliases for 2,405 Wikidata (Vrandečić and
Krötzsch, 2014) predicates, align them with sen-
tences from Wikipedia, and run the CoreNLP POS
tagger (Manning et al., 2014) on them. This re-
sults in a set of 212 unique patterns POS =
{posi, ..., posn} 1.
Second, for each sentence in the corpus we do the
following:

(i) extract the linguistic surface forms of predi-
cate candidates Pc by matching the POS tag-
ging of the sentence with the set of POS pat-
terns POS.

(ii) extract candidate named entities Ec using the
CoreNLP NER tagger (Manning et al., 2014).

(iii) extract the lexicalized dependency path dpi

and its direction between every named en-
tity ei ∈ Ec and candidate relation predicates
pi ∈ Pc (if exist). The direction of the depen-
dency path highly correlates with the entity

1http://bit.ly/2obhbyF
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being subject or object of the candidate pred-
icate (Roth and Lapata, 2016).

The result of this process is a set of extractions
Ext = {(pi, ei, dpi)...(pn, en, dpn)}, in which a
predicate pi is connected to a named entitiy ei
through a directed dependency paths dpi. We ig-
nore all the candidate predicates that are not con-
nected to a named entity though a dependency
path. The confidence for each extraction is calcu-
lated according to the rank of its dependency path
dpi and its POS pattern.

2.2 Predicates Representation and Clustering
For each predicate in Ext, there are predicates
though having different surface forms, express the
same semantic relationship (e.g. ”was born in”,
”birth place”). Following (Mohamed et al., 2011),
we treat predicates with the same surface form as
one input to the clustering approach. A feature
representation vector for each unique predicate is
built from multiple sentences across the text cor-
pus. In the literature, this approach is referred to
as the macro scenario, in contrast to the micro sce-
nario (Yao et al., 2011; Marcheggiani and Titov,
2016) where every sentence in the corpus is treated
individually. The input to the clustering process in
the macro scenario is very small in comparison to
the micro scenario, which makes the macro sce-
nario more scalable.
For each unique predicate pi ∈ P we built a fea-
ture vector that consists of the following set of fea-
tures:

1. Sum of TF-IDF re-weighted word embed-
dings for each word in pi.

2. Count vector of each entity appearing as sub-
ject and as an object to pi

3. Count vector of entity types appearing as sub-
ject and as an object to pi

4. Count vector of each unique dependency path
pi that extracted pi

5. The POS pattern of pi encoded as a vector
containing counts of each POS tag.

The previous features are not equally dense – con-
catenating all of them as a single feature vector
for each relation is expected to skew the cluster-
ing algorithm. In supervised relation extraction,
this is not an issue as the learning algorithm is ex-
pected to do feature selection automatically using

training data. Here, it is not the case. In order
to circumvent the sparse features bias, we apply
individual feature reduction of the sparse features
before merging them to the rest of the feature vec-
tors. For feature reduction, we use Principal Com-
ponent Analysis (PCA) (Jolliffe, 2011). Once this
reduction is applied, we apply a K-Means cluster-
ing (Hartigan and Wong, 1979) algorithm over the
relations feature vectors in order to group relations
into k clusters.

3 Experiments and Evaluation

3.1 Predicates Extraction

In this section we demonstrate the effectiveness of
using the proposed predicate-centric approach for
relation discovery. For that we use a large scale
dataset that was used for benchmarking Open IE
(Stanovsky and Dagan, 2016). The dataset is com-
prised of 10,359 Open IE gold standard extractions
over 3,200 sentences. Extractions are evaluated
against the gold standard using a matching func-
tion between the extracted predicate and candidate
predicates from Open IE systems. Extracted pred-
icates that do not exist in the gold standard are cal-
culated as false positives. We compare our predi-
cate extraction method with a set of 6 Open IE sys-
tems, which are: REVERB, OLLIE, STANFORD-
OPENIE, CLAUSIE (Corro and Gemulla, 2013),
OPENIE4.0 an extension of SRL-based IE (Chris-
tensen et al., 2011) and noun phrase processing
(Pal and Mausam, 2016) , and PROPS (Stanovsky
et al., 2016).
Figure 3 shows that our proposed approach scores
the highest recall amongst all the Open IE systems
with 89% of predicates being extracted, achiev-
ing 28% improvement over CLAUSIE, the Open
IE system with the highest recall and 6% improve-
ment in precision over the same system. This
shows that our approach is more useful when the
target application is relation discovery, as it is able
to extract predicates in the long tail with compa-
rable precision, as shown in Figure 4. Table 2
shows a set of example sentences in the evaluation
dataset in which none of the existing Open Infor-
mation Extraction systems where able to extract,
while they are correctly extracted by our approach.

3.2 Quality of Relation Clustering

To the best of our knowledge, the literature does
not provide datasets for evaluating Relation Dis-
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Sentence Target predicate Predicate-Centric Extraction

Nicephorus Xiphias , who had conquered the old Bulgarian capitals. conquered conquered → dobj → MISC
Muncy Creek then turns northeast , crossing Pennsylvania Route 405 crossing crossing → dobj → LOCATION
This was replaced by a Town Hall replaced by replaced by→ nmod→ LOCATION
Starting in 2009 , Akita began experiencing ... Starting in Starting in → nmod → DATE

Table 1: Example of sentences where all OpenIE systems failed to extract target relations, and their
corresponding Predicate-Centric extractions.

ReVerb
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Figure 3: Maximum recall of top Open IE systems
and their corresponding precisions in comparison
with our approach RelDiscovery on (Stanovsky
and Dagan, 2016) evaluation dataset.

covery methods on the macro scenario. So we use
GOOGLE-RE2, a high quality dataset, that consists
of sentences manually annotated with triples from
Freebase (Bollacker et al., 2008). The dataset con-
sists of 34,741 labeled sentences, for 5 Freebase
relations: ”institution”, ”place of birth”, ”place
of death”, ”date of birth” and ”education degree”.
We run our predicate extraction approach on the
dataset and manually label the most frequent 2K
extracted relations into 6 classes: the 5 target se-
mantic relations in GOOGLE-RE and an additional
class ”OTHER” for other relations. We then divide
them to 80-20% test-validation splits. For feature
building, we use word2vec pre-trained word em-
beddings (Mikolov et al., 2013). We tune the PCA
using the validation dataset. Results in Table 2
show that the re-weighting of Word embedding
using TF-IDF had a significant improvement over
only summing word embeddings. This opens the
door for exploring more common unsupervised
representations for short texts. Additionally, indi-
vidual feature reduction on the sparse features has
significantly enhanced the pairwise F1 score of the
clustering algorithm.

2http://bit.ly/2oyGBcZ
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Figure 4: Precision and recall curve of our rela-
tion discovery method RelDiscovery with differ-
ent OpenIE systems.

Em-Ft wEm-Ft wEm-Ft-PCA ALL

0.41 0.50 0.55 0.58

Table 2: pairwise F1 scores using word em-
beddings and sparse features (Em-Ft), after re-
weighting word embeddings (wEm-Ft), after do-
ing feature reduction (wEm-Ft-PCA), and com-
bining all features (ALL).

4 Conclusion

We introduce a high recall approach for predicate
extraction. It covers up to 16 times more sentences
in a large corpus. Our approach is predicate-
centric and learns surface patterns to directly ex-
tract lexical forms representing predicates and at-
tach them to named entities. Evaluation on an
OpenIE benchmark show that our system was able
to achieve a significantly high recall (89%) with
28% improvement over the CLAUSIE, the Open
IE system with the highest recall. It shows also
a with very comparable precision with the rest
of the OpenIE systems. Additionally, we intro-
duce a baseline for comparing similar predicates.
We show that re-weighting word embeddings and
performing PCA for sparse features before fusing
them significantly enhances the clustering perfor-
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mance, reaching up to 0.58 pairwise F1 score.
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Abstract

Focusing on the task of identifying event
temporal status, we find that events di-
rectly or indirectly governing the target
event in a dependency tree are most im-
portant contexts. Therefore, we extract de-
pendency chains containing context events
and use them as input in neural network
models, which consistently outperform
previous models using local context words
as input. Visualization verifies that the de-
pendency chain representation can effec-
tively capture the context events which are
closely related to the target event and play
key roles in predicting event temporal sta-
tus.

1 Introduction

Event temporal status identification aims to rec-
ognize whether an event has happened (PAST),
is currently happening (ON-GOING) or has not
happened yet (FUTURE), which can be crucial
for event prediction, timeline generation and news
summarization.

Our prior work (Huang et al., 2016) showed that
linguistic features, such as tense, aspect and time
expressions, are insufficient for this challenging
task, which instead requires accurate understand-
ing of composite meanings from wide senten-
tial contexts. However surprisingly, the best per-
formance for event temporal status identification
was achieved by a Convolutional Neural Network
(CNN) running on local contexts (seven words to
each side) surrounding the target event (Huang
et al., 2016).

Considering the following sentence with a fu-
ture event “protest”:

(1) Climate activists from around the world will
launch a hunger strike here on Friday, describ-

ing their protest (FU) as a “moral reaction to an
immoral situation” in the face of environmental
catastrophe.

The local context “describing” may mislead the
classifier that this is an on-going event, while
the actual future temporal status indicative words,
“will launch”, appear nine words away from the
target event mention “protest”. Clearly, the local
window of contexts is filled with irrelevant words,
meanwhile, it fails to capture important tempo-
ral status indicators. However, as shown in fig-
ure 1, the event “launch” is actually a high order
indirect governor word of the target event word
“protest” and is only two words away from the tar-
get event in the dependency tree. Indeed, we ob-
served that the temporal status indicators are often
words that syntactically govern or depend on the
event mention at all levels of a dependency tree.
Furthermore, we observed that higher level gov-
erning words in dependency trees frequently refer
to events as well, which are closely related to the
target event and useful to predict its temporal sta-
tus.

Following these observations, we form a de-
pendency chain of relevant contexts by extract-
ing words that appear between an event mention
and the root of a dependency parse tree as well
as words that are governed by the event mention.
Then we use the extracted dependency chain as in-
put for neural network classifiers. This is an ele-
gant method to capture long-distance dependency
between events within a sentence. It is known that
a verb and its direct or indirect governor can be
far away in a word sequence if modifiers such as
adjectives or clauses lie in between, but they are
adjacent in the parse tree.

Experimental results using two neural network
models (i.e., LSTMs and CNNs) show that clas-
sifiers with dependency chains as input can bet-
ter capture temporal status indicative contexts and
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Figure 1: The dependency parse tree for the example (1). The blue and bold edges show the extracted
dependency chain for the target event “protest” (in circle).

clearly outperform the ones with local contexts.
Furthermore, the models with dependency chains
as input outperform a tree-LSTM model in which
the full dependency trees are used as input. Vi-
sualization reveals that it is much easier for neu-
ral net models to identify and concentrate on the
relevant regions of contexts using the dependency
chain representation, which further verifies that
additional event words in a sentential context are
crucial to predict target event temporal status.

2 Related Work

Constituency-based and dependency-based parse
trees have been explored and applied to im-
prove performance of neural nets for the task of
sentiment analysis and semantic relation extrac-
tion (Socher et al., 2013; Bowman and Potts, 2015;
Tai et al., 2015). The focus of these prior stud-
ies is on designing new neural network architec-
tures (e.g., tree-structured LSTMs) corresponding
to the parse tree structure. In contrast, our method
aims at extracting appropriate event-centered data
representations from dependency trees so that the
neural net models can effectively concentrate on
relevant regions of contexts.

Similar to our dependency chains, dependency
paths between two nodes in a dependency tree
have been widely used as features for various NLP
tasks and applications, including relation extrac-
tion (Bunescu and Mooney, 2005), temporal re-
lation identification (Choubey and Huang, 2017)
semantic parsing (Moschitti, 2004) and question

answering (Cui et al., 2005). Differently, our
dependency chains are generated with respect to
an event word and include words that govern
or depend on the event, which therefore are not
bounded by two pre-identified nodes in a depen-
dency tree.

3 Dependency Chain Extraction

Figure 1 shows the dependency parse tree1 for the
example (1). To extract the dependency chain for
the target event, we have used a two-stage ap-
proach to create the chain. In the first stage, we
start from the target event, traverse the dependency
parse tree, identify all its direct or indirect gover-
nors and dependents and include these words in
the chain. For the example (1), a list of words
[launch, describing, protest, their] are included in
the dependency chain after the first stage.

Then in the second stage, we apply one heuris-
tic rule to extract extra words from the depen-
dency tree. Specifically, if a word is in a partic-
ular dependency relation2, aux, auxpass or cop,
with a word that is already in the chain after the
first stage, then we include this word in the chain
as well. For the example (1), the word “will” is
inserted into the dependency chain in the second
stage. The reason we perform this additional step
is that context words identified with one of the
above three dependency relations usually indicate

1We used the Stanford CoreNLP to generate dependency
parse trees.

2http://nlp.stanford.edu/software/
dependencies_manual.pdf

235



Model PA OG FU Macro Micro
Local Contexts

CNN (Huang et al., 2016) 91/83/87 46/57/51 49/67/57 62/69/65 77/77/76.9
LSTM 88/83/85 47/54/51 52/62/57 63/66/64 75/75/75.5

Dependency Chains
CNN 91/84/87 49/63/55 60/65/62 67/71/68 79/79/78.6
LSTM 92/85/88 49/63/55 63/71/67 68/73/70 80/80/79.6

Full Dependency Trees
tree-LSTM 92/80/86 47/59/53 30/58/40 56/66/60 75/75/75.1

Table 1: Classification results on the test set. Each cell shows Recall/Precision/F1 score.

tense, aspect or mood of a context event, which
are useful in determining the target event’s tempo-
ral status.

For each extracted dependency chain, we sort
the words in the chain according to their textual
order in the original sentence. Then the ordered
sequence of words will be used as the input for
LSTMs and CNNs.

4 Experiments

4.1 The EventStatus Corpus

We experiment on the EventStatus corpus (Huang
et al., 2016), which contains 4500 English and
Spanish news articles about civil unrest events
(e.g., protest and march), where each civil unrest
event mention has been annotated with three cat-
egories, Past (PA), On-Going (OG) and Future
(FU), to indicate if the event has concluded, is cur-
rently ongoing or has not happened yet.

We only use the English portion of the corpus
which include 2364 documents because our pre-
vious work (Huang et al., 2016) has reported that
the quality of dependency parse trees generated for
Spanish articles is poor and our approach heavily
rely on dependency trees. Furthermore, we ran-
domly split the data into tuning (20%) and test
(80%) set, and conduct the final evaluation using
10-fold cross-validation on the test set, following
the prior work (Huang et al., 2016). Table 2 shows
the distribution of each event temporal status cate-
gory in the dataset.

PA OG FU
Test 1406(67%) 429(21%) 254(12%)

Tuning 354(61%) 157(27%) 66(12%)

Table 2: Temporal Status Label Distribution

4.2 Neural Network Models

In our experiments, we applied three types of neu-
ral network models including CNNs (Collobert
et al., 2011; Kim, 2014), LSTMs (Schmidhuber
and Hochreiter, 1997), and tree-LSTMs (Tai et al.,
2015). For CNNs, we used the same architecture
and parameter settings as (Huang et al., 2016) with
a filter size of 5. For LSTMs, we implemented
a simple architecture that consists of one LSTM
layer and one output layer with softmax function.
For tree-LSTMs, we replicated the Dependency
tree-LSTMs3 from (Tai et al., 2015) and added an
output layer on top of it. Both of the two latter
neural nets used the same number (300) of hid-
den units as CNNs. Note that we have also ex-
perimented with complex LSTM models, includ-
ing the ones with multiple layers, with bidirec-
tional inferencing (Schuster and Paliwal, 1997) as
well as with attention mechanism (Bahdanau et al.,
2015; Wang et al., 2016), however none of these
complex models improve the event temporal sta-
tus prediction performance.

All the models were trained using RMSProp
optimizer with the initial learning rate 0.001 and
the same random seed. In addition, we used
the pre-trained 300-dimension English word2vec4

embeddings (Mikolov et al., 2013b,a). The train-
ing epochs and dropout (Hinton et al., 2012) ratio
for neural net layers were treated as hyperparame-
ters and were tuned using the tuning set. The best
LSTM model ran for 50 training epochs and used
a dropout ratio of 0.5.

3Our tree-LSTMs implementation were adjusted
from https://github.com/ttpro1995/
TreeLSTMSentiment

4Downloaded from https://docs.google.com/
uc?id=0B7XkCwpI5KDYNlNUTTlSS21pQmM
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Figure 2: Saliency heatmaps for the example (1). Local Context Input: hunger strike here on Friday,
describing their protest as a moral reaction to an immoral; Dependency Chain Input: will launch de-
scribing their protest. A deeper color indicates that the corresponding word has a higher weight and
contributes more to the prediction.

4.3 Classification Result

Table 1 shows the new experimental results on the
test set as well as our prior results (Huang et al.,
2016). For models using local contexts as input,
the context window size of 7 (7 words preced-
ing and following the target event mention, there-
fore, 15 words in total) yields the best result, as
reported in our prior paper (Huang et al., 2016).
Note that dependency chains we generated have
an average length of 7.4 words in total, which are
much shorter than 15 words of local contexts as
used before.

From Table 1, we can see that both LSTM and
CNN models using dependency chains as input
consistently outperform the corresponding mod-
els using local contexts. Especially, the LSTM
model running on dependency chains achieves the
best performance of 70.0% Macro and 79.6% Mi-
cro F1-score, which outperforms the previous lo-
cal context based CNN model (Huang et al., 2016)
by a large margin. Statistical significance test-
ing shows that the improvements are significant
at the p < 0.01 level (t-test). In particular for
on-going and future events, the dependency chain
based LSTM model improves the temporal status
classification F-scores by 4 and 10 percentages re-
spectively. In addition, the tree-LSTM model tak-
ing account of full dependency trees achieves a
comparable result with local context based neural
network models, but performs worse than depen-
dency chain based models. The reason why the
tree-LSTM model does not work well is that irrel-

evant words, including adjective modifiers and ir-
relevant clauses forming branches of dependency
trees, may distract the classifier and have negative
effect in predicting the temporal status of an event.

5 Visualizing LSTM

Following the approach used in (Li et al., 2016),
we drew salience heatmaps5 in order to understand
contributions of individual words in a dependency
chain to event temporal status identification. Fig-
ure 2 shows heatmaps of LSTM models when ap-
plied to example (1) using its different data repre-
sentations as input. We can clearly see that the de-
pendency chain input effectively retains contexts
that are relevant for predicting event temporal sta-
tus. Specifically, as shown in Figure 2(b), the
context event “launch” that indirectly governs the
target event “protest” in the dependency chain to-
gether with the auxiliary verb “will” have received
the highest weights and are most useful in predict-
ing the correct temporal status.

6 Error Analysis

More than 40% of errors on the tuning set pro-
duced by our best LSTM model are due to the
“Past or On-going ambiguity”, which usually hap-
pen when there are few signals within a sentence
that can indicate whether an event has concluded
or not. In such scenarios, the classifier tends to
predict the temporal status as Past since this event

5Illustrate absolute values of derivatives of the loss func-
tion to each input dimension.
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temporal status is majority in the dataset, which
explains the low performance on predicting on-
going events. To resolve such difficult cases, even
wider contexts beyond one sentence should be
considered.

Around 10% of errors are time expression re-
lated. The neural net models seem not be able
to wisely use time expressions (e.g., “in 1986”,
“on Wednesday”) without knowing the exact doc-
ument creation time and their temporal relations.
In addition, some mislabelings occur because neu-
ral nets are unable to capture compositionality of
multi-word expressions or phrasal verbs that alone
can directly determine the temporal status of their
following event, such as “on eve of” and “go on”.

7 Conclusion

We presented a novel dependency chain based
approach for event temporal status identification
which can better capture relevant regions of con-
texts containing other events that directly or indi-
rectly govern the target event. Experimental re-
sults showed that dependency chain based neu-
ral net models consistently outperform commonly
used local context based models in predicting
event temporal status, as well as a tree-structured
neural network model taking account of complete
dependency trees. To further improve the perfor-
mance of event temporal status identification, we
believe that wider contexts beyond the current sen-
tence containing an event should be exploited.
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Abstract

Accurate identification of protein-protein
interaction (PPI) helps biomedical re-
searchers to quickly capture crucial in-
formation in literatures. This work pro-
poses a recurrent neural network (RNN)
model to identify PPIs. Experiments on
two largest public benchmark datasets,
AIMed and BioInfer, demonstrate that
RNN outperforms state-of-the-art meth-
ods with relative improvements of 10%
and 18%, respectively. Cross-corpus eval-
uation also indicates that RNN is robust
even when trained on data from different
domains. These results suggest that RNN
effectively captures semantic relationships
among proteins without any feature engi-
neering.

1 Introduction

In systematic biology, protein-protein interaction
(PPI) is an important subject that aims at explor-
ing the role of intermolecular interactions, which
is crucial for reconstructing molecular networks
in cells (Mori, 2004). A widely-used information
source regarding PPI is PubMed, which contains
over 27 million research papers and continues to
grow at a rate of 1.5 million per year. Given the
vast amount of papers published, collecting PPI
information manually is time-consuming. Thus, a
major research question in biomedical text-mining
is to efficiently identify the sentences that con-
tain PPIs. Although certain PPI may span across
multiple sentences, existing work mostly focus on
those PPIs existing within a single sentence (Tikk
et al., 2010). For instance, given the sentence
“STAT3 selectively interacts with Smad3 to antag-
onize TGF-β signaling,” a model should correctly
identify that proteins STAT3, Smad3, and TGF-β

have interactions with one another. More specif-
ically, there are (32) = 3 pairs of proteins in the
sentence, and there are PPIs in all three pairs. Note
that the exact type of interaction is not in the scope
of this task.

Recent breakthrough in neural network (NN)
led to increasing amount of work that apply NN
on various text-mining tasks. Specifically, con-
volutional neural networks (CNN) (Lecun et al.,
1998) have been most commonly adapted for PPI.
Compared with traditional machine learning (ML)
methods such as SVM (Cortes and Vapnik, 1995),
CNN models do not require tedious feature engi-
neering and domain knowledge. However, how
to best incorporate linguistic and semantic infor-
mation into the CNN model remains an active re-
search topic, since previous CNN-based methods
have not achieved state-of-the-art performance in
PPI identification task (Peng and Lu, 2017).

This paper proposes a novel approach based on
recurrent neural networks (RNNs) to capture the
long-term relationships among words in order to
identify PPIs. The proposed model is evaluated
on two largest PPI corpora, i.e., AIMed (Bunescu
et al., 2005) and BioInfer (Pyysalo et al., 2007) us-
ing cross-validation (CV) and cross-corpus (CC)
settings. Experimental results from CV show that
RNN outperforms state-of-the-art methods by rel-
ative improvements of 10% and 18% on AIMed
and BioInfer, respectively. Furthermore, RNN re-
mains effective even when trained on a different
domain in the CC setting.

The rest of this paper is organized as follows.
Sec. 2 provides important previous work related
to PPI and NN. Sec. 3 describes the architecture
of the proposed model. Sec. 4 details the experi-
mental procedure and Sec. 5 presents experimental
results and findings. Finally, Sec. 6 concludes this
paper and points to the directions for future work.
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Figure 1: Overview of the proposed model. The first layer transforms words into corresponding embed-
dings and feeds them sequentially to the bi-directional RNN. The forward and backward output vectors
are concatenated as the new “feature vector” and sent to the fully connected layer for final classification.
For simplicity w/o losing details, dropout layers are omitted.

2 Related work

PPI identification can be cast as a binary classi-
fication problem where discriminative classifiers
are trained with a set of positive and negative in-
stances. Two major categories of approaches are
proposed, i.e., manual rule-based systems and ML
approaches (Bunescu et al., 2005). The former
approach is intuitive but time-consuming and re-
quires intensive labor, while the latter are more
common and primarily “kernel-based”. Kernel-
based methods usually take advantage of the syn-
tactic or semantic structure of a sentence. For
example, Qian and Zhou (2012) includes short-
est dependency path (sdp) with tree-kernel classi-
fier, and Chang et al. (2016) integrate knowledge
base with a tree kernel to strengthen PPI identi-
fication. Other approaches include shortest path
kernels (Bunescu and Mooney, 2005), graph ker-
nel (Airola et al., 2008), composite kernel (Miwa
et al., 2009), subsequence kernels (Kim et al.,
2010), and tree kernels (Eom et al., 2006; Qian and
Zhou, 2012). However, engineering features from
different sources may not lead to optimal results.

Recent advances in NN research have been ap-
plied to PPI identification as well. Zhao et al.
(2016) used an auto-encoder for feature extrac-
tion from words and a logistic regression for clas-
sification. Li et al. (2015) proposed a hybrid of
kernel- and NN-based model and examined the
strength of integrating NN-extracted features into
kernels. They conclude that NNs can automati-

cally extract discriminative features and aid ker-
nels in PPI identification. Furthermore, Peng and
Lu (2017) integrated dependency graph informa-
tion into a CNN and improved performances on
AIMed and BioInfer over kernel-based methods,
with F-scores 63.5% and 65.3%, respectively. Hua
and Quan (2016) used shortest dependency path
feature to simplify the input and avoid bias from
feature selection. Their method achieved 66.6%
F-score on AIMed and 75.3% on BioInfer dataset.
Alternatively, RNN with Long Short-Term Mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
have been shown to possess outstanding abilities
when modeling sequential data with long-term de-
pendency (Greff et al., 2017). Majority of previous
work that use LSTM focused on machine transla-
tion (Sutskever et al., 2014), named-entity recog-
nition (Lample et al., 2016), or classification of a
sequence, e.g., the sentiment of a piece of movie
review (Tai et al., 2015). Recently, LSTMs have
been utilized to perform relation extraction and
classification on general texts (Miwa and Bansal,
2016).

3 Method

We propose a novel approach for identifying PPI
using bi-directional RNN with LSTM. Figure 1 il-
lustrates the overview of our model, which takes a
sentence containing protein entities as input and
outputs a probability distribution (Bernoulli dis-
tribution) corresponding to whether there exists a
PPI or not. There are three types of layers: an em-
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bedding layer, a recurrent layer, and a fully con-
nected layer, which are described as follows.

Embedding Layer transforms words into em-
beddings (Mikolov et al., 2013), which are dense,
low-dimensional, and real-valued vectors. They
capture syntactic and semantic information pro-
vided by its neighboring words. In this work,
we examine the effect of pre-training embeddings
by comparing randomly initialized and pre-trained
ones from Chiu et al. (2016), which was trained on
over 25 million PubMed records.

Recurrent Layer is constructed using LSTM
cells, as illustrated in Fig. 2. An LSTM cell con-
tains a “memory” cell and three “gates”, i.e., in-
put, forget, and output. The input gate modulates
the current input and previous output. The forget
gate tunes the content from previous memory to
the current. Finally, the output gate regulates the
output from the memory.

Previous 
Cell State

●●●

●●●

Input Gate

xt 

ct 
ct-1 

Forget Gate●●●

●●●

Output Gate

ht 

Current 
Input

Current 
Output

●●●ht-1 

Previous 
Output

Figure 2: Simplified illustration of an LSTM cell.
The input gate and forget gate jointly control the
content of the memory ct, and the output gate reg-
ulates output from ct.

Specifically, let xt be the input at time t, and
it, ft,ot correspond to input, forget, and output
gates, respectively. ct denotes the memory cell
and ht is the output. The learnable parameters in-
clude Wi,f,o,c and Ui,f,o,c. They are defined as:

it = σ(Wixt + Uiht−1)
ft = σ(Wfxt + Ufht−1)
ot = σ(Woxt + Uoht−1)
c̃t = tanh(Wcxt + Ucht−1)
ct = ft ◦ ct−1 + it ◦ c̃t

ht = ot ◦ tanh(ct)

where “◦” denotes the element-wise product of
vectors and σ represents the sigmoid function.

We use a bi-directional RNN to encode a se-
quence in forward and backward directions, which
has been proven effective in sequence modeling
tasks (Dyer et al., 2015). In essence, it uses two
cells, one to encode the input sequence in its orig-
inal order and the other in reverse. Subsequently,
the two outputs are concatenated and fed to the
Fully Connected Layer. It serves as a classifier
where the output represents class probabilities.

4 Experiments

We evaluate the proposed method with two largest
publicly available PPI corpora: AIMed and BioIn-
fer. Distribution of the corpora is shown in Ta-
ble 1. We adopt 10-fold cross-validation (CV)

Table 1: Statistics of AIMed and BioInfer.

Corpus Total # of # of Positive/Negative
Sentences Protein Pairs

AIMed 1,955 1,000/4,834
BioInfer 1,100 2,534/7,132

and cross-corpus (CC) testing scheme. The eval-
uation metrics are the precision, recall, and F1-
score for both schemes. Compared methods in-
clude the shortest dependency path-directed con-
stituent parse tree (SDP-CPT) method (Qian and
Zhou, 2012), in which the tree representation gen-
erated from a syntactic parser is refined by us-
ing the shortest dependency path between two en-
tity mentions derived from a dependency parser;
A knowledge-based approach PIPE (Chang et al.,
2016) that extracts linguistic interaction patterns
and learned by a convolution tree kernel; A com-
posite kernel approach (CK) (Miwa et al., 2009)
which combines several different layers of infor-
mation from a sentence with its syntactic struc-
ture by using several parsers; and a graph ker-
nel method (GK) (Airola et al., 2008) that inte-
grates parse structure sub-graph and a linear order
sub-graph. We further compare with recent NN-
based approaches: sdpCNN (Hua and Quan, 2016)
which combines CNN with shortest dependency
path features; McDepCNN (Peng and Lu, 2017)
that uses positional embeddings along with word
embeddings as the input, and a tree kernel using
various word embeddings labeled as TK+WE (Li
et al., 2015). We also evaluate the effect of pre-
training of word embeddings by comparing ran-
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Table 2: Results (in %) from 10-fold cross-validation on AIMed and BioInfer corpora. Bold font indi-
cates the best performance in a column. Standard deviations are enclosed in parentheses.

Method AIMed BioInfer
Precision Recall F-score Precision Recall F-score

GK 52.9 61.8 56.4 56.7 67.2 61.3
SDP-CPT 59.1 57.6 58.1 - - 62.4

CK 55.0 68.8 60.8 65.7 71.1 68.1
PIPE 57.2 64.5 60.6 68.6 70.3 69.4

McDepCNN 67.3 60.1 63.5 62.7 68.2 65.3
sdpCNN 64.8 67.8 66.0 73.4 77.0 75.2
TK+WE - - 69.7 - - 74.0

LSTMrand 70.1 (6.5) 70.4 (6.4) 70.1 (5.5) 83.6 (2.4) 83.3 (2.7) 83.4 (2.3)
LSTMpre 78.8 (5.6) 75.2 (5.0) 76.9 (4.9) 87.0 (2.3) 87.4 (2.3) 87.2 (1.9)

domly initialized and pre-trained embeddings, la-
beled as LSTMrand and LSTMpre, respectively.

4.1 Experimental Setup

To ensure the generalization of the learned model,
the protein names recognized in the text are
replaced with “PROTEIN1”, “PROTEIN2”, or
“PROTEIN”, where “PROTEIN1” and “PRO-
TEIN2” are the pair of interest, and other non-
participating proteins are marked as “PROTEIN”.
An example is given as follows. The sentence
“Thymocyte activation induces the association
of phosphatidylinositol 3-kinase and pp120 with
CD5” contains three proteins, namely, “phos-
phatidylinositol 3-kinase”, “pp120”, and “CD5”.
In the three possible pairs of proteins, two of them
are in interaction relations. Therefore, there are
three variants of this sentence with proteins be-
ing replaced by the special labels in the data, and
two of them are marked as “positive” while the
other one as “negative”. During testing, all the
variants will be scored. The maximum sentence
length is set to 100, where longer sentences are
truncated and shorter sentences padded with ze-
ros. We use 200-dimension embeddings and 400-
dimension LSTM cells. The dropout rate is set
to 0.5. RMSProp optimizer (Tieleman and Hin-
ton, 2012) with default learning rate settings are
applied1. With a batch size of 16, training one
epoch on one Titan X GPU takes approximately
one minute. The throughput of the inference stage
is around 130KB of text per second.

1We implement the model using Keras with tensor-
flow (Abadi et al., 2015) backend. Code can be down-
loaded from https://github.com/ylhsieh/ppi_
lstm_rnn_keras

5 Results and Discussion

Ten-fold cross-validation results on AIMed and
BioInfer are listed in Table 2. Kernel-based meth-
ods can achieve decent F-scores of 61% and 69%.
All NN-based methods outperform kernel-based
ones by up to 10% on AIMed and 5% on BioIn-
fer. When using randomly initialized embed-
dings, RNN exhibits similar performance as other
NN models. However, by taking advantage of
pre-trained embeddings, RNN further advances F-
scores by 7% and 13% on AIMed and BioInfer, re-
spectively. In other words, pre-training contribute
to relative improvements of 10% and 18%. These
results demonstrate that, even though kernel-based
methods all include syntactic or semantic struc-
tures and carefully crafted features, neural net-
works are capable of automatically capturing con-
textual information that is crucial for identifying
PPIs. Moreover, we can see that the standard de-
viations of the performance by RNN on the larger
corpus, i.e., BioInfer, is much lower than that of
the smaller corpus (5 vs. 2). Besides, the relative
improvement of RNN over compared methods on
BioInfer is greater as well (10% and 18%). This
suggests that richer context information in a larger
corpus may be difficult to be manually modeled
via feature engineering or rule creation, but is a
well-suited learning source for neural networks.

Table 3 shows the cross-corpus results, in which
different methods are trained on one corpus and
tested on the other. We observe that, although
RNN performs slightly better than McDepCNN,
CK and PIPE methods are much more robust when
learning on different corpora. We postulate that
knowledge may play an important role in this sce-
nario, and effective incorporation of such informa-
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tion into RNN can be a promising direction for fu-
ture research.

Table 3: Cross-corpus results (in %) of two cor-
pora. Bold font indicates the best performance in
a column.

Method Train Test Train Test
AIMed BioInfer BioInfer AIMed

GK 47.1 47.2
CK 53.1 49.6

PIPE 58.2 52.1
McDepCNN 48.0 49.9

Proposed 49.3 50.7

6 Conclusion

We propose an end-to-end RNN-based model to
identify PPIs in biological literature. Cross-
validation results demonstrate that it outperforms
existing methods in the two largest corpora, BioIn-
fer and AIMed. Potential directions for future
work include integrating features that have been
proven useful in identifying PPIs, and conduct
extensive experiments under the cross-learning
scheme. Also, we will explore networks with dif-
ferent architectures in order to further advance the
current model.
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Abstract

Empathy captures one’s ability to corre-
late with and understand others’ emotional
states and experiences. Messages with
empathetic content are considered as one
of the main advantages for joining on-
line health communities due to their poten-
tial to improve people’s moods. Unfortu-
nately, to this date, no computational stud-
ies exist that automatically identify empa-
thetic messages in online health commu-
nities. We propose a combination of Con-
volutional Neural Networks (CNN) and
Long Short Term Memory (LSTM) net-
works, and show that the proposed model
outperforms each individual model (CNN
and LSTM) as well as several baselines.

1 Introduction

Empathy captures the ability of an individual to
correlate with and gain an accurate understanding
of other individuals’ emotional states by putting
oneself in their situations with appropriate reac-
tions (Batson, 2009; Launay et al., 2015). Empa-
thy is shown to have a fundamental role in con-
necting people in a community together (Davis
et al., 2004). Recently, many studies in social and
psychological sciences have investigated the cor-
relation between the empathetic capability of users
in a social network and their characteristics and
behavioral patterns. For example, Kardos et al.
(2017) analyzed social networks and found that
higher empathetic abilities in social network users
result in a bigger size of close friends’ lists and
vice versa. Medeiros and Bosse (2016) and Cour-
saris and Liu (2009) also expressed that empa-
thetic abilities account for social support in social
media, and Mayshak et al. (2017) showed that the
level of user engagement with social networking

websites has a direct correlation with empathetic
abilities. Finally, Del Rey et al. (2016) suggested
that empathy negatively predicts traditional bully-
ing and cyber-bullying perpetration.

In a health domain, recent studies show that em-
pathy is one of the main advantages of using on-
line health communities (OHCs) (Medeiros and
Bosse, 2016; Nambisan, 2011; Malik and Coul-
son, 2010), which potentially fosters the healing
process by decreasing distress and increasing op-
timism (Goubert et al., 2005; Olson, 1995). Table
1 shows an example from a cancer community, il-
lustrating the function of empathetic messages.

The above studies, in social sciences and psy-
chology, are based upon questionnaires, direct in-
terviews, or at most hundreds of samples from
manually collected data. These studies, however,
suffer from several issues including scalability, bi-
ased data usage (Qiu et al., 2011), and high re-
liance on human memory that might not remem-
ber details accurately (Redelmeier and Kahneman,
1996; Litwin and McGuigan, 1999).

In the context of general social media, several
computational studies started to analyze empa-
thetic messages. However, these studies are con-
textually different from our study, which is fo-
cused on the health domain. For example, Rao
et al. (2014) considered empathy as one of the
eight classes of emotions in their classification
task. In another work, Alam et al. (2017) an-
notated and modeled empathy in spoken conver-
sations, based on multi-modal features extracted
from conversations (such as acoustic features and
video frames). As mentioned above, this is differ-
ent from our work contextually and in terms of the
applied methods. We use only textual comments.

Despite the importance of empathy in aug-
menting patients’ positive feelings (Goubert et al.,
2005; Olson, 1995), to our knowledge, there has
not been any computational approaches proposed
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–Patient: Hi all sense being on chemo ( 5 down 1 to tch ) with the last two really I have had a problem with my BP being
high. I am having a problem with my heart racing. At rest it may get down to 86. When my oncologist did the muga scan it
went from 68 to 63. I have never had a problem with my heart at all. I’m Very nervous.
–Commentator: I had much the same problem while doing chemo, the last 2 or 3 rounds were the worst. Try not to worry
to much! By the way I am the proud owner of 3 chihuahuas. Blessings to you...Alison
–Patient: Thanks so much I feel allot better now. I did talk to my Dr and he is giving me meds to lower the rate. I feel like
I spend my time fighting side affects LOL. Thanks sisters. Take care all

Table 1: A sample of an empathetic message and its impact on patient’s emotion

for identifying and analyzing empathetic messages
in OHCs. Computational studies that analyzed
OHCs data, have focused on analyzing emotional
and informational support in patients’ messages
(Biyani et al., 2014; Wang et al., 2014; Qiu et al.,
2011). Zhao et al. (2014, 2011) used the result of
analyzing social support in OHCs for identifying
influential users. However, these works address
emotional support in general and do not focus on
identifying empathetic messages.

In this paper, we propose a computational ap-
proach to analyzing large amounts of messages
in OHCs and to automatically identifying mes-
sages that contain empathy. This first study on
identifying empathetic messages in OHCs aims
to make an appropriate foundation for further,
deeper, and scalable studies and developing ap-
plications. Automatic empathetic message iden-
tifier can be used by OHCs’ moderators for moni-
toring communities mental health, cyber-bullying
and cyber-stalking detection, measuring the level
of users engagement in communities (Mayshak
et al., 2017), predicting users’ position in online
communities (Kardos et al., 2017), as well as the
loneliness of users (Pamukçu and Meydan, 2010).
Furthermore, such an application can be employed
in measuring nursing skills (Yu and Kirk, 2008),
measuring the quality of online counseling ses-
sions, and assessing the quality of human-robot
interactions (Fung et al., 2016; Leite et al., 2013).

Our contributions in this work are as follows:

1. We propose a machine learning model for
identifying empathetic messages in OHCs.
To our knowledge, this is the first work on
automatically detecting empathy in OHCs.

2. We experimentally validate our empathy
identification model on a manually annotated
dataset generated from the Cancer Survivors’
Network of the American Cancer Society.

3. We show that in general empathetic messages
are correlated with a positive change in par-
ticipants’ sentiments.

2 Data Collection and Annotation

We randomly selected 225 comments from 21 dis-
cussion threads in the Lung Cancer discussion
board in a Cancer Survivor’ Network (CSN)1. Fol-
lowing Biyani et al. (2014), we selected messages
(i.e., sentences in comments) with length greater
than four words. We ended up with 1041 mes-
sages in total. We integrated our collected data
with 1066 messages extracted from the breast can-
cer discussion board in CSN that was provided by
Biyani et al. (2014).

The purpose of the annotation was to tag em-
pathetic messages through which the message
providers intended to show their empathy towards
other people. Two annotators (graduate students)
contributed to the task. They were asked to get
familiarized with the concept of empathy by read-
ing two studies (i.e., Collins (2014) and Decety
and Jackson (2004)) during a week. After a
group meeting between annotators and researchers
to share and discuss their understanding of em-
pathetic messages in the presence of two psy-
chologists, the annotation task began in an iter-
ative fashion similar to prior studies and guide-
lines (DMello, 2016; Fort et al., 2016; Shanahan
et al., 2006) . In each round, 200 messages were
assigned and annotators discussed disagreements
with researchers; 100% inter-annotator agreement
(IAA) was achieved after each round of discus-
sions. We used Cohen’s kappa for measuring IAA.
After three initial rounds of annotations, the re-
maining data (1507 messages) were assigned to
the annotators where they achieved 87% IAA.
The last round of the assigned data was adjudi-
cated by one of the authors. Table 3 provides
the distribution of empathetic messages in the two
datasets (breast cancer (B-dataset) and lung can-
cer (L-dataset)). As can be seen, B-dataset has
significantly more empathetic messages than the
L-dataset.

1https://csn.cancer.org
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Hyper-parameter Settings
–LSTM: W2vec-S=150, LR= 0.001, L2reg=1E−5, Decay rate=0.7, Dropout=0.5, Layer=5, 1-Max pooling, Order= 3
–ConvLST:W2vec-S=150, LR= 0.01, L2reg=1E−5, Decay rate=0.7, Dropout=0.5, Layer=2, 1-Max pooling, Order= 2
–CNN: W2vec-S=150, LR= 0.1, L2reg=1E−5, Decay rate=0.5, Dropout=0.5, Layer=2, 1-Max pooling, FRS=(1,2,3), NF=64

Table 2: Hyperparameter settings for each model.

3 Model

Dataset Empathetic msgs. Percentage(%)
B-dataset 494 out of 1066 46.3
L-dataset 295 out of 1041 28.3

Table 3: Statistics from the data collections.

In this section, we describe our proposed model
for empathetic messages identification in OHCs.

Problem Statement: Given a message (i.e.,
a sentence in a comment) in an OHC, S =
{W1,W2, · · · ,Wi, · · · ,Wn} containing n words, the
task is to classify it as empathetic or not.

3.1 Word Representations

We use word embeddings with an embedding ma-
trix Ew ∈ Rdw×Vm where dw is the embedding di-
mension and Vm is the word vocabulary size. We
generate word embedding matrices by using the
whole CSN collected data (i.e., users’ comments
from June 2000 to June 2012) of three different
dimensions (i.e., 75, 150, 300). We use W2vector
module in Gensim (Řehůřek and Sojka, 2010).

3.2 Model Description

The proposed model for classifying empathetic
messages combines convolutional and LSTM
(long short-term memory) networks (which we
call ConvLSTM). Our ConvLSTM network takes
word embeddings as input and creates a sequence
of dense, real-valued vectors: E = (e1,e2, · · · ,eT ).
By applying multiple convolutional layers to E
and using pooling, we obtain a dynamic sequence
of feature vectors: F = ( f1, f2, · · · , fn), which is
fed into the LSTM. The output of the LSTM net-
work is given to a softmax function to compute the
predictive probabilities, p(y = k|S), of each of the
classes given a message S (see Figure 1).

4 Experiments

In this section, we present our optimization pro-
cess and the results of our model. We report pre-
cision, recall, and F-1 score, all macro-averaged
across 10 folds in a cross-validation setting.

Figure 1: ConvLSTM structure for empathetic
message identification.

Hyperparameters settings: We optimized
hyper-parameter values by performing a grid
search on a development set, which consisted of
15% of instances in the training set in 10-fold
cross validation experiments. We optimized hy-
perparameters of ConvLSTM and each of embed-
ded models (i.e., CNN and LSTM) to compare
their performances with ConvLSTM. We used a
range of values for the following hyperparame-
ters: word embedding vector size (i.e., 75,150,
and 300), learning rate (LR) [0.1,0.001], l2 reg-
ularization (L2reg) [0.0,5E − 5,1E − 5], decay
rate [0.0,0.1, · · · ,0.8], dropout [0.0,0.1, · · · ,0.6],
number of layers [1,2, · · · ,10], pooling meth-
ods [1-Max, Mean, Last state], order size in
LSTM {unigram, bigram, trigram}, filter region
sizes (FRS) [(1,2,3),(2,3,4),(3,4,5),(4,5,6)]
and number of feature maps (NF) in CNN
[32,64, · · · ,256]. Table 2 shows the best hyperpa-
rameters’ settings by which each model achieved
the best F-1 score on the development set.

Baselines: We compare our models with the
following baselines:

1. Bag-of-words and POS tags: Word fre-
quencies and their part-of-speech tags show
the primary property of the text and has
been used in studies on OHCs’ message pro-
cessing (Biyani et al., 2014, 2012b,a). We
used both words and their POS tags’ fre-
quencies as features. We obtained the best
performance using term-frequency encoding
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Method P(%) R(%) F-1 (%)
ConvLST 78.61 78.12 78.36
LSTM 79.47 75.00 77.17
CNN 76.20 77.00 76.60
BoW+POS 71.8 68.2 69.90
Lexical-based 54.5 46.9 50.4

Table 4: Empathetic message identification.

and document frequencies between 2 and
95% of the total documents. Multinomial
Naı̈ve Bayes achieved the best results among
all evaluated classifiers (e.g., Support Vector
Machines and Random Forest).

2. Lexicon-based model: Lexicon-based ap-
proaches have been used in many studies re-
lated to emotion detection (Strapparava and
Mihalcea, 2007; Strapparava et al., 2004) and
sentiment analysis tasks (Mohammad, 2012;
Liu, 2012; Biyani et al., 2013). Following
Biyani et al. (2014), we used the same lex-
icons. These lexicons include: weak and
strong subjective words, cancer drugs, side-
effects, and therapeutic procedures, for build-
ing our baseline’s feature set.

Empathetic Message Identification: Table 4
compares the performance of our proposed model
(ConvLSTM) with CNN, LSTM, and the base-
lines. As can be seen, our model achieves the
best F-1 score, which is 8.46% higher than the F-1
score of the best baseline (i.e., 69.90%). Also, we
can see that the combination of CNN and LSTM
(ConvLSTM), which employs the sequences of
important features extracted by CNN, achieves
better performance than each of the individual
CNN and LSTM models.

While LSTM achieved the best precision, Con-
vLSTM obtained the highest F-1 score and re-
call. Table 4 shows that Lexical-based baseline re-
sulted in the lowest F-1 score. The lexicon-based
baseline uses two types of features: subjectivity-
related and informational-related features. After
removing subjectivity features, the F-1 score drops
to 15.7% and after removing informational fea-
tures, the F-1 score drops to 47.3%. These results
suggest that the subjectivity features are more ef-
fective than the informational-related ones, as ex-
pected, in identifying empathetic messages.

Sentiment Dynamics with Empathetic Mes-
sages: In this section, we conduct an experiment
to investigate the potential of empathetic messages
for changing the thread originator’s feelings. We
used the data extracted from CSN, which include

Figure 2: Thread-initiator’s feeling transforma-
tion as a result of empathetic messages in a thread.

users’ comments from June 2000 to June 2012.
We extracted all threads where the originator of a
thread replied (at least) once after an empathetic
comment was posted from other users (respon-
ders). We followed the same experimental setting
presented in Qiu et al. (2011). In total, 12915 dis-
cussion threads were extracted for analysis.

We ran our ConvLSTM model for empathetic
message identification on all responders’ mes-
sages, which were posted between two posts of the
originator (e.g., the Commentator’s post in Table
1). We also discarded messages in which an ini-
tiator simply thanks a fellow member and used a
threshold of four on the number of words (Biyani
et al., 2014). We ran Stanford sentiment toolkit
(Manning et al., 2014) on the originators’ posts
(e.g., the Patient’s posts in Table 1) to identify
their sentiment. In this way, it is possible to deter-
mine whether the empathetic messages provided
by responders who replied to the thread, are able
to change the sentiment of the thread originator.
To better understand any changes in feelings, we
categorized changes in three groups, i.e., Positive-
shift, Negative-shift, and No-change. Positive-
shift represents any positive change in the senti-
ment of the thread initiator such as negative-to-
positive, neutral-to-positive, negative-to-neutral.
Negative-shift has a converse settings compared
with the Positive-shift and No-change represents a
state that originator’s second post reflects the same
sentiment as the initial one.

These results are shown in Figure 2 (the red
bars). As can be seen from the figure, in 39.35% of
the threads, empathetic messages bring a positive-
shift in originators’ feelings as opposed to only
7.15% negative-shift. We can also observe that
in 53.5% of the threads, the originators’ feelings
do not change. Thus, we can conclude that em-
pathetic messages play a major role in improving
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participants’ feelings in OHCs.
We also contrasted the positive-shift, negative-

shift, and no-change in the threads with empa-
thetic messages (the red bars in Figure 2) with
those in the threads without empathetic messages
(the blue bars in Figure 2) to better understand the
impact of empathy on people’s moods. More pre-
cisely, we ran the sentiment tool over the threads
with no empathetic messages and found that only
8% positive shift, 11.9% negative shift and 80.1%
no-change occurred. These results suggest that
positive sentiment changes occur more promi-
nently in threads containing empathetic messages
compared to those with no empathetic messages.

5 Conclusion and Future Work

In this paper, we presented a machine learning
model for identifying empathetic messages in on-
line health communities. Our model is based on
a combination of Convolutional Neural Networks
and Long Short Term Memory networks, called
ConvLSTM. We showed that ConvLSTM outper-
forms strong baselines. Moreover, we showed that
empathetic messages do cause positive shifts in
patients’ sentiments in OHCs. In future, it would
be interesting to investigate empathy identification
in other sub-forums and the relation between the
number of empathetic messages in a thread and
the change in thread originators’ emotional states.
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Abstract

Automatic fake news detection is an im-
portant, yet very challenging topic. Tradi-
tional methods using lexical features have
only very limited success. This paper
proposes a novel method to incorporate
speaker profiles into an attention based
LSTM model for fake news detection.
Speaker profiles contribute to the model in
two ways. One is to include them in the at-
tention model. The other includes them as
additional input data. By adding speaker
profiles such as party affiliation, speaker
title, location and credit history, our model
outperforms the state-of-the-art method by
14.5% in accuracy using a benchmark fake
news detection dataset. This proves that
speaker profiles provide valuable informa-
tion to validate the credibility of news ar-
ticles.

1 Introduction

Fake news is written and published with the intent
to mislead its readers in order to gain financially or
politically, often with sensationalist, exaggerated,
or patently false headlines attract readers’ atten-
tion 1. Fake news is more dangerous than news-
paper gaffes, especially in social media. One of
the worst effect of fake news in China is an inci-
dence after the Fukushima Daiichi nuclear disaster
in 2011. A fake news in microbiology claims that
salt can prevent radiation, but the nuclear disaster
makes salt contaminated. This fake news triggered
people stockpiling table salt in China, resulted in
a huge market disorder. 2

1https : //en.wikipedia.org/wiki/Fakenews
2https://blogs.wsj.com/chinarealtime/2011/03/17/fearing-

radiation-chinese-rush-to-buy-table-salt/

Fake news detection is defined as the task of
categorizing news along a continuum of veracity
with an associated measure of certainty (Conroy
et al., 2015). Detecting fake news in social me-
dia has been an extremely important, yet tech-
nically very challenging problem. The difficulty
comes partly from the fact that even human beings
may have difficulty identifying between real news
and fake news. In one study, human judges, by a
rough measure of comparison, achieved only 50-
63 % success rates in identifying fake news (Ru-
bin, 2017).

The most of fake news detection algorithms
try to linguistic cues (Feng and Hirst, 2013;
Markowitz and Hancock, 2014; Ruchansky et al.,
2017). Several successful studies on fake news de-
tection have demonstrated the effectiveness of lin-
guistic cue identification, as the language of truth
news is known to differ from that of fake news
(Bachenko et al., 2008; Larcker and Zakolyuk-
ina, 2012). For example, deceivers are likely
to use more sentiment words, more sense-based
words (e.g., seeing, touching), and other-oriented
pronouns, but less self-oriented pronouns. Com-
pared to real news, fake news shows lower cog-
nitive complexity and uses more negative emotion
words. However, the linguistic indicators of fake
news across different topics and media platforms
are not well understood. Rubin (2015) points out
that there are many types of fake news, each with
different potential textual indicators. This indi-
cates that using linguistic features is not only la-
borious but also topic/media dependent domain
knowledge, thus limiting the scalability of these
solutions.

In addition to lexical features, speaker profile
information can be useful (Gottipati et al., 2013;
Long et al., 2016). Speaker profiles, including
party affiliations, job title of speaker, as well as
topical information which can also be used to in-
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dicate the credibility of a piece of news. For ex-
ample, a conservative might neglect the impact of
climate change, while a progressive might exag-
gerate inequality. On some occasions, it is hard to
make fake claims like congressional inquiry. But
in other cases, the speaker tend to exaggerate facts
like the campaign rally. For the study use profile
information, Wang (2017) proposes a hybrid CNN
model to detect fake news, which uses speaker
profiles as a part of the input data. Wang (2017)
also made the first large scale fake news detec-
tion benchmark dataset with speaker information
such as party affiliation, location of speech, job ti-
tle, credit history as well as topic.

The Long-Short memory network (LSTM), as a
neural network model, is proven to work better for
long sentences (Tang et al., 2015). Attention mod-
els are also proposed to weigh the importance of
different words in their context. Current attention
models are either based on local semantic atten-
tions (Yang et al., 2016) or user attentions(Chen
et al., 2016).

In this paper, we propose a model to incorpo-
rate speaker profile into fake news detection. Pro-
file information is used in two ways. The first
way includes profiles as an attention factor while
the second one includes profiles as additional in-
put data. Evaluations are conducted using the
dataset provided by Wang (2017). Experimental
results show that incorporating speaker profile can
improve performance dramatically. Our accuracy
can reach 0.415 in the benchmark dataset, about
14.5% higher than state-of-the-art hybrid CNN
model.

2 Proposed Model

Our proposed model uses LSTM model (Gers,
2001) as the basic classifier. The attention mod-
els and speaker profile information are added into
LSTM to form a hybrid model.

Figure 1 shows the hybrid LSTM. Note that the
first LSTM is for obtaining the representation of
news articles. The speaker profile is used to con-
struct two attention factors. One uses only the
speaker profile and the other uses topic informa-
tion of the news articles. The second LSTM sim-
ply uses speaker profiles to obtain the vector pre-
sentations of speakers. The two representations
are then concatenated in the soft-max function for
classification.

Let D be a collection of news and P be a col-

lection of profiles. A piece of news, dk, dk ∈ D,
includes both its text as a sentence, denoted by sk,
and a speaker profile , denoted by pk, pk ∈ P .
A sentence sk is formed by a sequence of words
sk = wk1wk2...wklk , where lk is the length of sk.
The features of a wordwi ∈ Sk form a word vector
~vwi with length N , ~vwi = [F1

wi , F2
wi ....FN

wi ].
Every wk ∈ sk and pk ∈ P are fed into the first
LSTM. The speaker based profile vector ~s and the
topic based profile vector ~t serve as the two atten-
tion factors for sk. The output of the two LSTM
models are ~sk and ~pk. Finally, ~sk and ~pk are con-
catenated to form the representation ~dk. The final
layer projects ~dk onto the target space of L class
labels though a soft-max layer.

A LSTM model has five types of gates in each
node i represented by five vectors including an in-
put gate ~ii, a forget gate ~fi, an output gate ~oi, a
candidate memory cell gate ~c′i, and a memory cell
gate ~ci. ~fi and ~oi are used to indicate which values
will be updated, either to forget or to keep. ~c′i and
~ci are used to keep the candidate features and the
actual accepted features, respectively.

Each node i corresponds to each word wi in a
given sentence Sk, represented by its word embed-
ding ~wi. The LSTM cell state ~ci and the hidden
state ~hSk:wi can be updated in two steps. In the
first step, the previous hidden state ~hSk:wi−1 uses a
hyperbolic function to form ~c′i as defined below.

~c′i = tanh(Ŵc ∗ [~hSk:wi−1 ∗ ~wi] + b̂), (1)

where Ŵc is a parameter matrix, ~hSk:wi−1 is the
previous hidden state and ~wi is the word vector. b̂
is the regularization parameter matrix. In the sec-
ond step, ~ci is updated by ~c′i and its previous state
~ci−1 according to the below formula:

~ci = ~fi � ~ci−1 + ~ii � ~c′i. (2)

The hidden state of wi can be obtained by

~hS:wi = ~oitanh(~fi � ~ci). (3)

The forget gate ~fi is for keeping the long term
memory. A series of hidden states ~h1

~h2...~hi can
serve as input to the average pooling layer to ob-
tain the representation ~sk. ~pk, the representation
of pk, can be obtained similarly through the same
LSTM model. Details will not be repeated here.

Similar to other attention models, speaker pro-
file based attention factors are included in the
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first LSTM for each text, sk. Rather than feed-
ing speaker profiles as hidden states to an average
pooling layer, we use attention mechanism which
uses a weighting scheme to indicate importance of
different words to the meaning of the news.

We use speaker profile and topic information for
weight training, which are represented by contin-
uous and real-valued vectors ~s and ~t, respectively.
Let αwi denote the weight to measure the impor-
tance of wi in sk. The attention weight αwi for
each hidden state can be defined as:

αwi =
exp(e(~hSk:wi , ~s,~t))∑li

k=1 exp(e(~hSk:wi , ~s,~t))
(4)

where e is score function to indicate the impor-
tance of words defined by:

exp(e(~hSk:wi , ~s,~t) = vT tanh(ŴH
~hSk:wi+

Ŵs~s+ Ŵt~t+~b)
(5)

where WH ,WS ,WT are weight matrices, v is
weight vector and vT denotes its transpose. This
model can train speaker vector ~s and topic vector
~t at the same time.

Formally, the enhanced sentence representation
~sk is a weighted sum of hidden states as Formula
6

~sk =
∑

t

αwi
~hSk:wi . (6)

Similarly, we use the second LSTM model to get
the representation of profile ~pk. The final news
representation ~dk is computed by concatenating ~pk

and ~sk, represented in Formula 7:

~dk = ~sk ⊕ ~pk. (7)

In LSTM model, we use a hidden layer to project
the final news vector ~df

k through a hyperbolic func-
tion.

~df
k = tanh(Ŵh

~dk + b̂h), (8)

where Ŵh is the weight matrix of the hidden layer
and b̂h is the regularization matrix.

Finally, prediction for any label lεL obtained by
the soft-max function is defined as:

P (y = l|~df
k) =

e
~dfT
k

~Wl∑L
l=1 e

~dfT
k

~Wl

(9)

where ~Wl is the soft-max weight for each label.

Figure 1: Hybrid fake news detection model with
attention mechanism

Statistics Num Labels Num
Training Set 10,269 Pants on fire 1,050
Develop Set 1,284 False 2,511
Testing Size 1,283 Barely-true 2,108
Democrats 4,150 Half-true 2,638
Republicans 5,687 Mostly-true 2,466
Others 2,185 True 2,063

Table 1: The statistics of the LIAR data set

3 Performance Evaluation

Evaluations are performed using the LIAR dataset
by Wang (2017). The dataset contains 12,836
short statements from 3,341 speakers covering
141 topics in POLITIFACT.COM3. Each news in-
cludes text content, topic, and speaker profile.
Speaker profiles include speaker name, title, party
affiliation, current job, location of speech, and
credit history. The credit history includes the his-
torical records of inaccurate statements for each
speaker. Annotation is based on evaluations by
professional editors. The labels take discrete val-
ues from 1 to 6 corresponding to pants-fire, false,
barely-true, half-true, mostly-true, and true. The
statistics are listed in the Table 1.

Models Dev. Test
Majority 0.204 0.208
LSTM 0.241 0.245
CNN-Wang 0.247 0.247
CNN-WangP 0.247 0.270

Table 2: The results for baseline models

3http://www.politifact.com/truth-o-meter/
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The performance of four baseline models are
shown in Table 2 including a simple majority
model, the LSTM model without using profile in-
formation, the hybrid CNN model proposed by
Wang (2017) without profile information(CNN-
Wang), and the hybrid CNN model by Wang with
profile information(CNN-WangP).

Note that firstly, LSTM without profile does
not perform better than CNN-Wang. However,
other studies show that when attention model is
incorporated, LSTM generally outperforms that
of CNN model (Chen et al., 2016; Yang et al.,
2016) which will be shown later. Secondly, CNN-
WangP, which uses speaker profiles has the best
performance. For word representation, we train
the skip-gram word embedding (Mikolov et al.,
2013) on each dataset separately to initialize the
word vectors. All embedding sizes on the model
are set to N = 200, a commonly used size.

In speaker profiles, there are four basic
attributes: party affiliation(Pa), location of
speech(La), job title of speaker(Ti), and credit his-
tory(Ch) which counts the inaccurate statements
for speaker in past speeches. Note that credit his-
tory is not a commonly available data. It is in-
cluded here for comparison to CNN-Wang(P). We
conduct experiment on using these attributes indi-
vidually and in combinations.

Without Att With Att
Profile Dev Test Dev Test
CNN-Wang 0.247 0.247 N/A N/A
CNN-WangP 0.247 0.274 N/A N/A
Base LSTM 0.241 0.245 0.250 0.255
Pa 0.247 0.246 0.253 0.257
La 0.243 0.245 0.266 0.268
Ti 0.241 0.247 0.258 0.257
Ch 0.363 0.368 0.378 0.385
Pa+La 0.250 0.252 0.255 0.261
Pa+Ti 0.261 0.264 0.267 0.265
La+Ti 0.267 0.264 0.268 0.271
Ti+Ch 0.378 0.380 0.381 0.387
Pa+Ti+Ch 0.385 0.387 0.397 0.395
Pa+La+Ti 0.270 0.275 0.274 0.279
La+Ti+Ch 0.388 0.401 0.398 0.405
Pa+La+Ti+Ch 0.392 0.399 0.407 0.415

Table 3: Evaluation on accuracy using different
combinations of profile attributes

Table 3 shows the performance of our pro-
posed model with the top performers of the base-

line systems put in the first two lines. The ba-
sic LSTM model shown as Base-LSTM in Table
3 performs less than CNN-WangP and similar to
CNN-Wang without profile information. In other
words, LSTM has no obvious model advantage in
this set of training data. We may also infer that the
lexicon and style differences between fake news
and true news are not large enough for detection.
And, the difference in the choice of deep neural
network models are also not significant if profile
information is not supplied.

Table 3 also shows that speaker profile infor-
mation can improve fake news detection signif-
icantly. Besides credit history, which gives the
largest improvement of 3%, location of speaker
gives more improvements than part affiliation and
job title with improvement of 2.3%. When all at-
tributes are included in detection, the performance
surge to over 40% in accuracy. Obviously, if credit
history of a speaker is available, it is not hard to
see how useful it is for fake new detection. In
practice, however, we cannot expect the credit his-
tory information to be available all the time for
fake news detection. Therefore, it is more impor-
tant to observe those combinations without Ch for
credit history. The best performers without Ch are
marked with underlines. The combination of using
all three attributes still outperforms CNN-WangP
by 16.7% even though CNN-WangP has credit his-
tory included. This further proves the effective-
ness of our proposed method.

4 Conclusion

This paper proposes a hybrid attention-based
LSTM model for fake news detection. In our
model, speaker profiles can contribute to fake
news detection in two ways: One is to include
them as attention factors for the learning of news
text; and the other is to use them as additional in-
puts to provide more information. Experimental
results show that both methods of using speaker
profiles can contribute to the improvement of
fake news detection. This can be interpreted as
speaker’s intention to speak the truth or fake it
largely depends on his/her, profiles, especially
his/hers credit history. Adopting speaker profiles
into an attention based LSTM detection model can
reach over 41.5% in accuracy with net increase of
14.5% in accuracy compared to the state-of-the-art
model. Even without the use of credit history, the
performance net increase is still by 0.5%.
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Abstract

In this study, we investigated the effec-
tiveness of augmented data for encoder-
decoder-based neural normalization mod-
els. Attention based encoder-decoder
models are greatly effective in generat-
ing many natural languages. In general,
we have to prepare for a large amount
of training data to train an encoder-
decoder model. Unlike machine transla-
tion, there are few training data for text-
normalization tasks. In this paper, we
propose two methods for generating aug-
mented data. The experimental results
with Japanese dialect normalization indi-
cate that our methods are effective for
an encoder-decoder model and achieve
higher BLEU score than that of baselines.
We also investigated the oracle perfor-
mance and revealed that there is sufficient
room for improving an encoder-decoder
model.

1 Introduction

Text normalization is an important fundamental
technology in actual natural language processing
(NLP) systems to appropriately handle texts such
as those for social media. This is because social
media texts contain non-standard texts, such as ty-
pos, dialects, chat abbreviations1, and emoticons;
thus, current NLP systems often fail to correctly
analyze such texts (Huang, 2015; Sajjad et al.,
2013; Han et al., 2013). Normalization can help
correctly analyze and understand these texts.

One of the most promising conventional ap-
proaches for tackling text normalizing tasks is

∗Present affiliation: Future Architect,Inc.
1short forms of words or phrases such as “4u” to represent

“for you”

using statistical machine translation (SMT) tech-
niques (Junczys-Dowmunt and Grundkiewicz,
2016; Yuan and Briscoe, 2016), in particular,
utilizing the Moses toolkit (Koehn et al., 2007).
In recent years, encoder-decoder models with
an attention mechanism (Bahdanau et al., 2014)
have made great progress regarding many NLP
tasks, including machine translation (Luong et al.,
2015; Sennrich et al., 2016), text summariza-
tion (Rush et al., 2015) and text normaliza-
tion (Xie et al., 2016; Yuan and Briscoe, 2016;
Ikeda et al., 2017). We can also simply apply
an encoder-decoder model to text normalization
tasks. However, it is well-known that encoder-
decoder models often fail to perform better than
conventional methods when the availability of
training data is insufficient. Unfortunately, the
amount of training data for text normalization
tasks is generally relatively small to sufficiently
train encoder-decoder models. Therefore, data
utilization and augmentation are important to
take full advantage of encoder-decoder models.
Xie et al. (2016) and Ikeda et al. (2017) reported
on improvements of data augmentation in er-
ror correction and variant normalization tasks,
respectively.

Following these studies, we investigated data-
augmentation methods for neural normalization.
The main difference between the previous stud-
ies and this study is the method of generat-
ing augmentation data. Xie et al. (2016) and
Ikeda et al. (2017) used simple morphological-
level or character-level hand-crafted rules to gen-
erate augmented data. These predefined rules
work well if we have sufficient prior knowledge
about the target text-normalization task. However,
it is difficult to cover all error patterns by simple
rules and predefine the error patterns with certain
text normalization tasks, such as dialect normal-
ization whose error pattern varies from region to
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region. We propose two-level data-augmentation
methods that do not use prior knowledge.

The contributions of this study are summarized
as follows: (1) We propose two data-augmentation
methods that generate synthetic data at charac-
ter and morphological levels. (2) The experimen-
tal results with Japanese dialect text normalization
demonstrate that our methods enable an encoder-
decoder model, which performs poorly without
data augmentation, to perform better than Moses,
which is a strong baseline method when there is a
small number of training examples.

2 Text Normalization using
Encoder-Decoder Model

In this study, we focus on the dialect-
normalization task as a text-normalization
task. The input of this task is a dialect sentence,
and the output is a “standard sentence” that
corresponds to the given input dialect sentence. A
“standard sentence” is written in normal form.

We model our dialect-normalization task by us-
ing a character-based attentional encoder-decoder
model. More precisely, we use a single layer long
short-term memory (LSTM) for both the encoder
and decoder, where the encoder is bi-directional
LSTM. Let s = (s1, s2, . . . , sn) be the character
sequence of the (input) dialect sentence. Similarly,
let t = (t1, t2, . . . , tm) be the character sequence
of the (output) standard sentence. The notations
n and m are the total lengths of the characters in
s and t, respectively. Then, the (normalization)
probability of t given dialect sentence s can be
written as

p(t|s, θ) =
m∏

j=1

p(tj |t<j , s), (1)

where θ represents a set of all model parameters
in the encoder-decoder model, which are deter-
mined by the parameter-estimation process of a
standard softmax cross-entropy loss minimization
using training data. Therefore, given θ and s, our
dialect normalization task is defined as finding t
with maximum probability:

t̂ = argmaxt{p(t|s, θ)}, (2)

where t̂ represents the solution.

3 Proposed Methods

This section describes our proposed methods for
generating augmented-data. The goal with aug-

standard morphs (mt) dialect morphs (ms) p(ms|mt)
し/ない (shinai) せん (sen) 0.767
の/です/が (nodesuga) ん/じゃ/けど (njyakedo) 0.553
ください (kudasai) つか/あ/さい (tukasai) 0.517

Table 1: Examples of extracted morphological
conversion patterns

mented data generation is to generate a large
amount of corresponding standard and dialect sen-
tence pairs, which are then used as additional
training data of encoder-decoder models. To gen-
erate augmented data, we construct a model that
converts standard sentences to dialect sentences
since we can easily get a lot of standard sentences.
Our methods are designed based on different per-
spectives, namely, morphological- and character-
levels.

3.1 Generating Augmented Data using
Morphological-level Conversion

Suppose we have a small set of standard and di-
alect sentence pairs and a large standard sentences.
First, we extract morphological conversion pat-
terns from a (small) set of standard and dialect sen-
tence pairs. Second, we generate the augmented
data using extracted conversion patterns.

Extracting Morphological Conversion Patterns
For this step, both standard and dialect sentences,
which are basically identical to the training data,
are parsed using a pre-trained morphological ana-
lyzer. Then, the longest difference subsequences
are extracted using dynamic programming (DP)
matching. We also calculate the conditional gener-
ative probabilities p(ms|mt) for all extracted mor-
phological conversion patterns, where ms is a di-
alect morphological sequence and mt is a standard
morphological sequence. We set p(ms|mt) =
Fms,mt/Fmt , where Fms,mt is the joint frequency
of (ms,mt) and Fmt is the frequency of mt in
the extracted morphological conversion patterns of
training data. Table 1 gives examples of extracted
patterns from Japanese standard and dialect sen-
tence pairs, which we discuss in the experimental
section.

Generating Augmented Data using Extracted
Morphological Conversion Patterns After we
obtain morphological conversion patterns, we gen-
erate a corresponding synthesized dialect sentence
of each given standard sentence by using the ex-
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Algorithm 1 Generating Augmented Data using
Morphological Conversion Patterns

morphlist←MorphAnalyse(standardsent)
newmorphlist← []
for i = 0 . . . len(morphlist) do

sent← CONCAT(mrphlist[i:])
MatchedList ← CommonPrefixSearch(PatternDict,
sent)
msi← SAMPLE(MatchedList, P (ms|mt))
newmorphlist← APPEND(newmorphlist, msi)

end for
synthesizedsent← CONCAT(newmrphlist)

return synthesizedsent

input (standard sentence): インストールしなかった
morph sequence: インストール/し/なかっ/た/
matched conversion pattern:
(mt,ms) = (し/なかっ/た,せん/かった)
replaced morph sequence: インストール/せん/かった
output (augmented sentence): インストールせんかった

Table 2: Example of generated augmentation data
using morphological conversion patterns

tracted morphological conversion patterns. Algo-
rithm 1 shows the detailed procedure of generating
augmented data.

More precisely, we first analyze the standard
sentences with the morphological analyzer. We
then look up the extracted patterns for the seg-
mented corpus from left to right and replace the
characters according to probability p(ms|mt). Ta-
ble 2 shows an example of generated augmentation
data. When we sample dialect pattern ms from
MatchedList, we use two types of p(ms|mt). The
first type is fixed probability. We set p(ms|mt) =
1/len(MatchedList) for all matched patterns. The
second type is generative probability, which is cal-
culated from the training data (see the previous
subsection). The comparison of these two types of
probabilities is discussed in the experimental sec-
tion.

3.2 Generating Augmented Data using
Character-level Conversion

For our character-level method, we take advantage
of the phrase-based SMT toolkit Moses for gen-
erating augmented data. The idea is simple and
straightforward; we train a ‘standard-to-dialect’
sentence SMT model at a character-level and ap-
ply it to a large non-annotated standard sentences.
This model converts the sentence by using char-
acter phrase units. Thus, we call this method
“character-level conversion”.

3.3 Training Procedure
We use the following two-step training proce-
dure. (1) We train model parameters by using
both human-annotated and augmented data. (2)
We then retrain the model parameters only with
the human-annotated data, while the model pa-
rameters obtained in the first step are used as ini-
tial values of the model parameters in this (second)
step. We refer to these first and second steps as
“pre-training” and “fine-tuning”, respectively. Ob-
viously, the augmented data are less reliable than
human-annotated data. Thus, we can expect to im-
prove the performance of the normalization model
by ignoring the less reliable augmented data in the
last-mile decision of model parameter training.

4 Experiments

4.1 Data
The dialect data we used were crowdsourced data.
We first prepared the standard seed sentences, and
crowd workers (dialect natives) rewrote the seed
sentences as dialects. The target areas of the di-
alects were Nagoya (NAG), Hiroshima (HIR), and
Sendai (SEN), which are major cities in Japan.
Each region’s data consists of 22,020 sentence
pairs, and we randomly split the data into train-
ing (80%), development (10%), and test (10%).
For augmented data, we used the data of Yahoo
chiebukuro, which contains community QA data.
Since the human-annotated data are spoken lan-
guage text, we used the community QA data as
close-domain data.

4.2 Settings
For the baseline model other than encoder-
decoder models, we used Moses. Moses is a
tool of training statistical machine translation
and a strong baseline for the text-normalization
task (Junczys-Dowmunt and Grundkiewicz,
2016). For such a task, we can ignore the word
reordering; therefore, we set the distortion limit
to 0. We used MERT on the development set for
tuning. We confirmed that using both manually
annotated and augmented data for building LM
greatly degraded its final BLUE score in our
preliminary experiments and used only manually
annotated data as the training data of LM.

We used beam search for the encoder-decoder
model (EncDec) and set the beam size to
10. When in the n beam search step, we
used length normalized score S(t, s), where
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method BLEU
NAG HIR SEN

No-transformation 72.4 63.9 57.3
Moses (train) 80.1 72.3 67.1
Moses (train + mr:R) 75.4 71.0 64.9
Moses (train + mr:W) 80.0 73.7 67.7
Moses (train + mo) 79.9 74.3 66.9
Moses (train + mo + mr:W) 80.0 73.3 67.8
EncDec (train) 43.3 33.9 27.6
EncDec (train + mr:R) 75.3 / 63.5 69.0 / 67.3 64.2 / 58.8
EncDec (train + mr:W) 78.6 / 78.2 74.9 / 73.5 68.0 / 67.6
EncDec (train + mo) 79.1 / 79.1 74.2 / 72.9 66.9 / 65.6
EncDec (train + mo+mr:W) 80.1 / 79.5 75.5 / 74.6 68.2 / 68.1

Table 3: BLEU scores of normalization. “/” indicates with (left) and without (right) fine tuning. 200,000
pairs of augmented data were used.

method BLEU
NAG HIR SEN

Moses (oracle) 80.2 75.7 68.3
Moses (best) 80.1 74.3 67.8
EncDec (oracle) 84.8 81.6 73.1
EncDec (best) 80.1 75.5 68.2

Table 4: Evaluation of oracle sentences

S(t, s) =log(p(t|s, θ))/|t|. We maximize S(t, s)
to find normalized sentence. We set the em-
bedding size of the character and hidden layer
to 300 and 256, respectively. We used ”mr-
phaug (mr)” as the augmented data gener-
ated from morphological-level conversion and
”mosesaug (mo)” as augmented data generated
from character-level conversion (Moses). The
“mr:R” and “mr:W” represent the difference in
generative probability p(ms|mt), which is used
when generating augmented data; “mr:R” indi-
cates fixed generative probability and “mr:W” in-
dicates weighted generative probability. For the
evaluation, we used BLEU (Papineni et al., 2002),
which is widely used for machine translation.

4.3 Results

Table 3 lists the normalization results. No-
transformation indicates the result of evaluating
input sentences without transformation. Moses
achieved a reasonable BLEU score with a small
amount of human-annotated data. However, the
improvement of adding augmented data was lim-
ited. On the other hand, the encoder-decoder
model showed a very low BLEU score with a
small amount of human-annotated data. With this
amount of data, the encoder-decoder model gen-

erated a sentence that was quite different from
the reference. When adding augmented data, the
BLEU score improved, and fine tuning was effec-
tive for all cases.

When comparing our augmented-data-
generation methods, generating data according to
fixed probability (mr:R) degraded the BLEU score
both for Moses and the encoder-decoder model.
When generating data with fixed probability,
the quality of augmented data becomes quite
low. However, by generating data according to
generative probability (mr:W), which is estimated
with training data, the BLEU score improved.
This indicates that when generating data using
morphological-level Conversion, it is important
to take into account the generative probability.
Combining “mr:W” and “mo” (train+mo+mr:W)
achieves higher BLEU scores than that of other
methods. This suggests that combining different
types of data will have a positive effect on
normalization accuracy.

When comparing three difference regions, the
BLUE scores of Moses (train) and EncDec
(train+mo+mr:W) for NAG (Nagoya) were the
same score, while there were improvements for
HIR (Hiroshima) and SEN (Sendai). It is inferred
that the effect of the proposed methods for NAG
were limited because the difference between in-
put (dialect) sentences and correct (standard) sen-
tences was small.

5 Discussion

Oracle Analysis To investigate the further im-
provement on normalization accuracy, we ana-
lyzed oracle performance. We enumerated the
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top 10 candidates of normalized sentences from
Moses and proposed method, extracted the candi-
dates that were the most similar to the reference,
and calculated the BLEU scores. Table 4 shows
the results of oracle performance. Interestingly,
the oracle performances of the encoder-decoder
model with augmented data was quite high, while
that of Moses was almost the same as the best
score. This implies that there is room for improve-
ment for the encoder-decoder model by just im-
proving the decoding or ranking function.

Other text normalization task In this study,
we evaluated our methods with Japanese dialect
data. However, these methods are not limited to
Japanese dialects because they do not use dialog-
specific information. If there is prior knowledge,
the combination of them will be more promising
for improve normalization performance. We will
investigate the effectiveness of our methods for
other normalization tasks for future work.

Limitation Since our data-augmentation meth-
ods are based on human-annotated training data,
the variations in the generated data depend on the
amount of training data. The variations in aug-
mented data generated with our data-augmentation
methods are strictly limited within those appear-
ing in the human-annotated training data. This es-
sentially means that the quality of augmented data
deeply relies on the amount of (human-annotated)
training data. We plan to develop more general
methods that do not deeply depend on the amount
of training data.

6 Conclusion

We investigated the effectiveness of our
augmented-data-generation methods for neu-
ral text normalization. From the experiments,
the quality of augmented data greatly affected
the BLEU score. Moreover, a two-step training
strategy and fine tuning with human-annotated
data improved this score. From these results,
there is possibility to improve the accuracy of
normalization if we can generate higher quality
data. For future work, we will explore a more
advanced method for generating augmented data.
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Abstract

We propose a hierarchical neural network
model for language variety identification
that integrates information from a social
network. Recently, language variety iden-
tification has enjoyed heightened popular-
ity as an advanced task of language iden-
tification. The proposed model uses addi-
tional texts from a social network to im-
prove language variety identification from
two perspectives. First, they are used to
introduce the effects of homophily. Sec-
ondly, they are used as expanded train-
ing data for shared layers of the pro-
posed model. By introducing informa-
tion from social networks, the model im-
proved its accuracy by 1.67–5.56. Com-
pared to state-of-the-art baselines, these
improved performances are better in En-
glish and comparable in Spanish. Further-
more, we analyzed the cases of Portuguese
and Arabic when the model showed weak
performances, and found that the effect
of homophily is likely to be weak due to
sparsity and noises compared to languages
with the strong performances.

1 Introduction

Language identification is a fundamentally impor-
tant natural language processing (NLP) task that
is usually applied before more sophisticated gram-
matical or semantic analyses. It is especially im-
portant in cases when analyzing user generated
contents such as social media, which include var-
ious languages often, without accurate language
information. General purpose language identifi-
cation tools such as TextCat (Cavnar and Trenkle,

1994) and langid.py (Lui and Baldwin, 2012) can
identify 50–100 languages with accuracy of 86–
99%. However, these tools have not considered
discrimination between closely related language
varieties.

Recently, language identification among similar
languages or language varieties has been studied
actively to realize more advanced language identi-
fication (Goutte et al., 2016). Since 2014, VarDial
workshops, which specifically examine linguistic
variation, have organized shared tasks of discrimi-
nating between similar languages (Zampieri et al.,
2014). More recently, language variety analysis
has attracted an author profiling community to in-
clude it in a PAN shared task that targets social
media (Rangel Pardo et al., 2017). A language va-
riety that a person uses often depends on his or
her regional and cultural backgrounds. The iden-
tification of language variety can enhance a social
media analysis by providing such background in-
formation.

We tackle this language variety identification in
Twitter with a hierarchical neural network model
(Lin et al., 2015; Yang et al., 2016b) integrating
information from a social network. The use of so-
cial network information has shown effectiveness
in analyzing various user attributes (Wang et al.,
2014; Li et al., 2014, 2015; Rahimi et al., 2015a,b)
where homophily (McPherson et al., 2001) exists.
Neural networks have recently shown superior
performance for solving a variety of problems in
NLP. However, for language variety identification,
sparse traditional models have shown stronger per-
formance than deep neural models (Medvedeva
et al., 2017). Numerous parameters in neural net-
work models make it difficult to apply to language
variety identification where the training data are
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limited to a maximum number of several thou-
sands.

We expect to obtain two effects by introduc-
ing additional texts from a social network into our
model. First, we introduce additional texts that are
likely to share the same language variety by ho-
mophily. Secondly, we let several layers of our
model be trained with more texts by sharing sev-
eral layers of the model among the processes of a
target user and its linked users with a social net-
work. The contributions of this paper are the fol-
lowing:

1. We propose a novel neural network model
that uses social network information for lan-
guage variety identification in Twitter.

2. We show that additional texts of linked users
can improve language variety identification.

3. We reveal that a neural network model can
be efficiently trained by sharing layers within
the processes of a target user and its linked
users.

2 Related Works

2.1 Language Variety Identification

The increase of web documents in various lan-
guages has raised interest in identifying lan-
guage varieties automatically. Inspired by
some early works in Malay and Indonesian
(Ranaivo-Malançon, 2006), south Slavic lan-
guages (Ljubešić et al., 2007), and Chinese va-
rieties (Huang and Lee, 2008), studies of lan-
guage varieties, similar languages, or dialects have
expanded to examine numerous languages. The
recent expansion of language variety identifica-
tion has been well surveyed in works by Goutte
et al. (2016) and Zampieri et al. (2017). As in
other NLP tasks, various neural network models
have been applied recently to language variety
identification (Belinkov and Glass, 2016; Bjerva,
2016; Cianflone and Kosseim, 2016; Criscuolo
and Aluisio, 2017; Medvedeva et al., 2017). How-
ever, these neural network models have shown in-
ferior performance compared to sparse traditional
models in comparisons (Malmasi et al., 2016;
Zampieri et al., 2017).

2.2 NLP with Social Network Information

Social media have attracted numerous NLP stud-
ies to analyze its texts. Social media contain in-
teractions among users such as follow, hashtag,

mention, reply, and retweet. Many studies have
exploited such social network information to en-
hance NLP models. The use of social networks
has shown effectiveness for strengthening NLP
tasks such as sentiment analysis (Speriosu et al.,
2011; Tan et al., 2011; Vanzo et al., 2014; Ren
et al., 2016; Yang and Eisenstein, 2017), skill in-
ference (Wang et al., 2014), user attribute extrac-
tion (Li et al., 2014, 2015), geolocation prediction
(Rahimi et al., 2015a,b), and entity linking (Yang
et al., 2016a).

Integration of social network information into
neural network models is accomplished in these
studies through joint training (Li et al., 2015),
context-based sub-networks (Ren et al., 2016),
embedding of social network components (Yang
et al., 2016a), and social attention (Yang and
Eisenstein, 2017). These are effective approaches
in terms of accuracy but they make models more
difficult to train with additional parameters. We
designed our model to share layers among differ-
ent processes to facilitate training of the neural
network model.

3 Models

3.1 NN-HIER
We prepare a basic neural network model NN-
HIER, which is a variant of known hierarchical
models (Lin et al., 2015; Yang et al., 2016b). NN-
HIER in Figure 1 portays the architecture of this
model. For each user, the model accepts the words
of user tweets. The words are embedded with
a word embedding layer and are processed with
a recurrent neural network (RNN) layer, a max-
pooling layer, an attention mechanism (Bahdanau
et al., 2014) layer, and fully connected (FC) lay-
ers. As an implementation of RNN, we used Gated
Recurrent Unit (GRU) (Cho et al., 2014) with a bi-
directional setting.

The bi-directional GRU outputs
−→
h and

←−
h are

concatenated to form g where gt =
−→
ht‖←−ht. g is

further processed with a max-over time process in
MaxPooling to obtain a tweet representation m.
AttentionU computes a user representation o as a
weighted sum of mn with weight αn:

o =
∑
n

αnmn

αn =
exp

(
vTαun

)∑
l exp (vTαul)

(1)

un = tanh (W αmn + bα) (2)
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Figure 1: Architectures of NN-HIER and NN-
HIER-SNET. tweet represents tweet-level pro-
cesses, user represents user-level processes, and
linked users represents linked-users-level pro-
cesses. Shaded layers are layers with shared
weights over the target user process and the linked
users process.

where vα is a weight vector, W α is a weight ma-
trix, and bα a bias vector. un is an attention con-
text vector calculated from mn with a single FC
layer (Eq. 2). un is normalized with softmax to
obtain αn as a probability (Eq. 1). Finally, the
user representation is passed respectively to FC1

and FC2.

3.2 NN-HIER-SNET
We extend NN-HIER by adding an additional
level of hierarchy to process linked users of a
target user. This extension is intended to intro-
duce effects of homophily into our model. NN-
HIER-SNET in Figure 1 presents this extended
model. NN-HIER-SNET includes additional at-
tention layers AttentionL and AttentionUL to
process linked users. AttentionL accepts mul-
tiple user representations and combined them as
in AttentionU to form a linked users represen-
tation. AttentionUL further merges a target user
representation (an output of AttentionU1) and
AttentionL to obtain an updated target user rep-
resentation.

An important characteristic of NN-HIER-SNET
is that the weights of WordEmbed and RNN are

en es pt ar
#train8 2,880 3,360 960 1,920
#dev1 360 420 120 240
#test1 360 420 120 240
#total 3,600 4,200 1,200 2,400

#langvar 6 7 2 4
#mention 73,897 59,685 11,541 20,287

Table 1: Numbers of training data, development
data, test data, entire data (total), language vari-
eties (langvar), and mentioned users (mention).

en es pt ar
#node 77,497 63,885 12,741 22,687

avg degree 3.12 3.45 2.26 2.59
isolated nodes 3.92% 5.83% 6.33% 28.88%

Table 2: Characteristics of nodes in mention net-
works for each language. Avg degree is an average
node degree and isolated nodes are the percentage
of labeled nodes that are not connected to other
labeled nodes.

shared across the target user process and the linked
users process. This sharing allows the weights
to be trained with more texts than those of NN-
HIER. Attention processes over tweets are sepa-
rated (AttentionU1 and AttentionU2) so that the
target user process and the linked users process
can pick tweets differently between the two kinds
of user processes.

4 Data

We used PAN@CLEF 2017 Author Profiling
Training Corpus1 to train the proposed models.
The dataset consists of 11,400 Twitter users la-
beled with language variety of English (en), Span-
ish (es), Portuguese (pt), and Arabic (ar). Because
the proposed model of Section 3.2 integrates texts
of linked users, we additionally collected timelines
of mentioned users in this dataset as linked users
using Twitter REST APIs. #mention in Table 1 are
the numbers of users mentioned for each language.

We divided this dataset into train8, dev1, and
test1 using a stratified sampling with a ratio of
8:1:1. Table 1 presents statistics of these divisions
and Table 2 shows characteristics of nodes in the
mention networks of each language. test1 differs
from the test data of PAN@CLEF 2017 Author
Profiling Task. We chose to use a subset of the
training data as test data because the true test data
can not be accessed publicly (Potthast et al., 2014).

1http://pan.webis.de/clef17/pan17-web/author-
profiling.html
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Model en es pt ar
SVM-W2 83.06 95.74 98.61 80.00

SVM-W2C6 85.56 95.71 98.99 82.08
SVM-W2C6-SNET 82.69 92.86 99.17 80.42

SVM-W2C6-SNET-R 86.11 93.33 99.17 82.71
NN-HIER 85.83 93.57 99.17 78.75

NN-HIER-SNET 91.39 95.48 93.33 80.42

Table 3: Accuracies of the proposed models and
the baselines. Underlined values represent the best
values for each language.

5 Experiment

5.1 Baselines

We prepared four support vector machine based
baselines: SVM-W2, SVM-W2C6, SVM-W2C6-
SNET, and SVM-W2C6-SNET-R.

SVM-W2
A support vector machine model with tf-idf
weighted word 1–2 grams. We prepared SVM-W2
with a soft margin setting and configured parame-
terC ∈ {0.1, 0.5, 1.0, 5.0, 1e2, 5e2, 1e3} using the
development sets. For multi-class classification,
we used an one-vs.-the-rest scheme.

SVM-W2C6
An extended model of SVM-W2 which addition-
ally uses tf-idf weighted character 1–6 grams.
This setting is simple, but similar models have
shown state-of-the-art performance in past Var-
Dial tasks (Malmasi et al., 2016; Zampieri et al.,
2017).

SVM-W2C6-SNET
An extension of SVM-W2C6 with features of
linked users. tf-idf weighted word 1–2 grams
and tf-idf weighted character 1–6 grams of linked
users were added to SVM-W2C6 with a feature
space separated from other SVM-W2C6 features.

SVM-W2C6-SNET-R
A variant of SVM-W2C6-SNET with a restricted
feature space for linked users. The size of feature
space for linked users are restricted to be equal
to the size of feature space for target users in this
model. Since, in general, there are more texts of
linked users than that of target users, this restric-
tion suppresses the effect of social network infor-
mation.

5.2 Model Configurations

We trained our model by stochastic gradient
descent over shuffled mini-batches with cross-
entropy loss as an objective function. Word em-
beddings were pre-training using streaming tweets

Model en es pt ar
Majority Baseline 16.67 14.29 50.00 25.00

NN-HIER 85.83 93.57 99.17 78.75
Label Propagation 75.28 78.81 83.33 60.42

Table 4: Accuracies of the label propagation ap-
proach and the comparison approaches.

by fastText (Bojanowski et al., 2016) using the
skip-gram algorithm. The details of the model
configurations including a text processor and layer
unit sizes are described in Appendix A.

5.3 Result

We evaluated NN-HIER, NN-HIER-SNET, and
the baseline models using train8, dev1, and test1
for each language. Table 3 presents the model ac-
curacies. By introducing additional texts of linked
users, the accuracy of the proposed model im-
proved by 1.67–5.56, except for Portuguese. Even
compared to the best performing baselines, the
model performed better in English and compara-
bly in Spanish. Compared to the improvements
obtained in NN-HIER-SNET, the expansion texts
of linked users in the baseline models has shown
only slight improvements in English, Portuguese,
and Arabic with SVM-W2C6-SNET-R.

6 Discussions

6.1 Effects of Homophily

The experiment revealed the effectiveness of com-
bining texts of a target user with social network in-
formation for language variety identification. For
comparison, we additionally performed a label
propagation experiment to observe performances
of language variety identification without texts.
Following the approaches by Rahimi et al. (2015a)
and Rahimi et al. (2015b), we extracted an undi-
rected graph of the social network from target
users and their linked users. The labels of train-
ing users were propagated to test users using the
algorithm of Zhou et al. (2004) with α = 0.99.

Table 4 presents the performance of this la-
bel propagation approach. The performance are
better than the majority baseline but are substan-
tially lower than those from our text model (NN-
HIER). Especially, the performance of Arabic is
weak compared to other languages since the per-
centage of isolated nodes is high in Arabic (Table
2). The result suggests that social network infor-
mation without texts is ineffective for language va-
riety identification, at least in a dataset of several
thousand users.
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Model en es pt ar
NN-HIER-SNET 91.39 95.48 93.33 80.42

NN-HIER-SNET-NS 75.56 84.76 93.33 80.00

Table 5: Accuracies of NN-HIER-SNET with
non-shared (NS) layers.

6.2 Effects of Shared Layers
NN-HIER-SNET includes shared layers to sup-
press the increase of neural networks parameters.
To ascertain the effects of these shared layers,
we additionally evaluated NN-HIER-SNET with
non-shared layers. NN-HIER-SNET-NS in Table
5 presents performances of this setting. As ex-
pected, the performances were fundamentally in-
ferior to the shared layers architecture. They per-
formed especially badly in English and Spanish,
for which the numbers of mentioned users were
high (Table 1). The result shows that the shared
layer architecture is effective for language variety
identification.

6.3 Social Network Characteristics and
Performances of Proposed Model

NN-HIER-SNET showed improvements over the
baseline models in English and Spanish. These
two languages are more dense than Portuguese and
Arabic in terms of average node degree (Table 2),
and are likely to obtain richer information from
social networks. We further investigated the lan-
guages of tweets in linked users to capture addi-
tional characteristics of social networks for each
language. Table 6 shows the summary of this in-
vestigation. In all four languages, the top linked
language is same as a target language. However,
their percentages vary from 78.08–94.26%, indi-
cating differences in the amount of texts in dif-
ferent languages. These texts with different lan-
guages will likely to be noises in the texts of linked
users for language variety identification. As in av-
erage node degree, English and Spanish are in bet-
ter conditions compared to Portuguese and Arabic
with smaller noises. Sparsity and noises in social
networks will likely to weaken the effect of ho-
mophily, resulting to small or negative improve-
ments in performances.

7 Conclusion

We proposed a neural network model that inte-
grates information from a social network for lan-
guage variety identification. The model showed
1.67–5.56 improvements in accuracy from intro-
ducing additional texts with shared layers. Fur-

Target Linked Language
Language 1st 2nd 3rd

en en: 94.26% und: 3.50% fr: 0.39%
es es: 87.09% en: 6.67% und: 4.22%
pt pt: 78.08% en: 9.48% und: 7.14%
ar ar: 82.07% en: 9.39% und: 6.77%

Table 6: Top 3 languages and their percentages in
tweets of linked users. Language und is given in
a case when the automatic language detection of a
tweet has failed.

thermore, compared to the performance of a state-
of-the-art baseline model, the model performed
better in English and comparably well in Spanish.
In Portuguese and Arabic, the model performed
weakly compared to the baseline models. We ana-
lyzed characteristic of social network in these lan-
guages and found that their sparsity and noises
have possibly weakened the effect of homophily.
The result underscores the promising future of ap-
plying neural network models to language variety
identification.

As future works of this study, we plan to ex-
pand the use of the proposed models for appli-
cation to other user attributes. We expect that a
user attribute having a tendency for homophily is
likely to benefit from the proposed model as in lan-
guage variety identification. Additionally, we plan
to perform a comparison of the model against an
alternative approach to introduce social network
information. Recently, neural network models like
Graph Convolutional Networks (Kipf and Welling,
2016) are proposed to process graph data. We
would like to observe the differences between a
hierarchal approach and a graph process approach
in a utilization of social network information.
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2007. Language identification: how to distinguish
similar languages? In Proceedings of the 29th In-
ternational Conference on Information Technology
Interfaces, pages 541–546.

Marco Lui and Timothy Baldwin. 2012. langid.py: An
off-the-shelf language identification tool. In Pro-
ceedings of the ACL 2012 System Demonstrations,
pages 25–30.

Shervin Malmasi, Marcos Zampieri, Nikola Ljubešić,
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A Supplemental Materials

Text Processor We applied unicode normal-
ization, Twitter user name normalization, and
URL normalization for text pre-processing. Pre-
processed texts were tokenized with Twokenize2

for English and NLTK3 WordPunctTokenizer for
three other languages. Words are converted to
lower case form, with ignored capitalization.

Pre-training of Embeddings
We collected tweets using Twitter Streaming APIs
to pre-train the word embedding matrix of the
models. Neural network models are known to
perform better when word embeddings are pre-
trained by a large-scale dataset. The following
steps describe details of the collection process.

1. Tweets with lang metadata of en, es, pt, and
ar were collected via Twitter Streaming APIs
during March–May 2017.

2. Retweets are removed from the collected
tweets.

3. Tweets posted by bots4 are deleted from the
collected tweets.

Table 7 presents the number of resulting tweets.
We pre-trained word embeddings with these
tweets by fastText using the skip-gram algorithm.
The pre-training parameters are dimension=100,
learning rate=0.025, window size=5, negative
sample size=5, and epoch=5.

Layer Unit Sizes & Maximum Linked Users
We set the following unit size of RNN = 100,
unit size of FC1 = 100, and the unit size of
FC2 to the number of labels. The context vector
sizes of attention layers were set to AttentionU =
200, AttentionU1 = 200, AttentionU2 = 200,
and AttentionUL = 200. To make our model
tractable, we limited the maximum number of
linked users to 3.

Optimization Strategy
We used cross-entropy loss as an objective func-
tion of the proposed models. The objective func-
tion was minimized through stochastic gradient
descent over shuffled mini-batches with a learn-
ing rate of 0.01, momentum of 0.9, and gradient

2https://github.com/myleott/ark-twokenize-py
3http://www.nltk.org/
4We assembled a Twitter client list consisting of 80 clients

that are used for manual postings.

en es pt ar
#tweet 12.39M 3.71M 3.16M 2.87M

Table 7: Number of tweets collected for each lan-
guage with Twitter Streaming APIs.

clipping of 3.0. The model parameters were set to
the best performing parameters in terms of loss in
the development data.

270



Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 271–276,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

Boosting Neural Machine Translation

Dakun Zhang and Jungi Kim and Josep Crego and Jean Senellart
firstname.lastname@systrangroup.com

SYSTRAN / 5 rue Feydeau, 75002 Paris, France

Abstract

Training efficiency is one of the main
problems for Neural Machine Translation
(NMT). Deep networks need for very large
data as well as many training iterations to
achieve state-of-the-art performance. This
results in very high computation cost, s-
lowing down research and industrialisa-
tion. In this paper, we propose to alleviate
this problem with several training meth-
ods based on data boosting and bootstrap
with no modifications to the neural net-
work. It imitates the learning process of
humans, which typically spend more time
when learning “difficult” concepts than
easier ones. We experiment on an English-
French translation task showing accuracy
improvements of up to 1.63 BLEU while
saving 20% of training time.

1 Introduction

With the rapid development of research on Neu-
ral Machine Translation (NMT), translation quali-
ty has been improved significantly compared with
traditional statistical based method (Bahdanau
et al., 2014; Cho et al., 2015; Zhou et al., 2016;
Sennrich et al., 2015). However, training efficien-
cy is one of the main challenges for both academi-
a and industry. A huge amount of training data
is still necessary to make the translation accept-
able (Koehn and Knowles, 2017). Though new
techniques have recently been proposed (Vaswani
et al., 2017; Gehring et al., 2017), fully trained
NMT models still need for long training period-
s (sometimes by weeks) even using cutting-edge
hardware.

NMT system directly models the mappings be-
tween source sentence xn

1 = (x1, ..., xn) and tar-
get sentence ym

1 = (y1, ..., ym), with n and m

words respectively (Sutskever et al., 2014). Usu-
ally, such system is based on an encoder-decoder-
attention framework, in which the source sentence
is fed into an encoder word by word to form a
fixed length representation vector, with a forward
sequence of hidden states (

−→
h1, ...,

−→
hn) and a back-

ward sequence (
←−
h1, ...,

←−
hn). With the attention

mechanism (Bahdanau et al., 2014), a decoder is
used to decide which part of the source sentence
to pay attention to and predict corresponding word
representation at time t together with history pre-
dictions before time t. Then, a softmax is used
to restore the word representation to natural target
words. During the training process, the parameter
Θ is optimized:

p(ym
1 |xn

1 ; Θ) =
∏m

t=1 p(yt|y<t, x
n
1 ; Θ)

The amount of parameters which is proportional
to the network size and the size of training corpora
both decide the cost of training for NMT systems.
In order to achieve an acceptable performance on
systems, deep networks (up to 8 layers) and more
iterations (10-18 epochs) are necessary with a cer-
tain amount of data (Wu et al., 2016; Crego et al.,
2016). Since several weeks are needed to gener-
ate results, it is difficult to experiment with sever-
al different meta-parameters, hence slowing down
innovation.

While Wu et al. (2016) proposes a brute-force
approach with massive data and model parallelis-
m as a way to accelerate training, in this paper,
we focus on a different approach based on ranking
training sentence pairs by “difficulty”. We aim at
boosting the optimisation problem through target-
ing difficult training instances rather than spending
time on easier ones.

Every several epochs, we re-select 80% of the
data from the corpus with the highest perplexi-
ty (ppl.) to use for training. There is no ex-
tra calculation cost since we get these ppl. loss
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from the previous epoch. Finally, we achieve a
1.63 BLEU points improvement while saving 20%
training cost at the same time, which is quite a sta-
ble improvement compared with our baseline sys-
tem on English-French translations.

2 Related Work

Training efficiency has been a main concern by
many researchers in the field of NMT. Data par-
allelism and model parallelism are two commonly
used techniques to improve the speed of training
(Wu et al., 2016). As a result, multiple GPUs or T-
PUs1 are needed which requires additional replica-
tion and combination costs. Data parallelism does
not reduce the actual cost of computation, it only
saves time by using additional computational pow-
er.

Chen et al. (2016b) proposed a modified RN-
N structure with a full output layer to facilitate
the training when using a large amount of data.
Kalchbrenner et al. (2016) proposed ByteNet with
two networks to encode the source and decode
the target at the same time. Gehring et al. (2017)
use convolutional neural networks to build the sys-
tem with a nature of parallelization. Kuchaiev and
Ginsburg (2017) focus on how to reduce the com-
putational cost through patitioning or factorizing
LSTM matrix. To compare, our method does not
modify the network itself and can be used in any
NMT framework.

Other methods focus on how to reduce the pa-
rameters trained by the model (See et al., 2016).
They show that with a pruning technique, 40-60%
of the parameters can be pruned out. Similar meth-
ods are proposed to reduce the hidden units with
knowledge distillation (Crego et al., 2016; Kim
and Rush, 2016). They re-train a smaller student
model using text translated from teacher models.
They report a 70% reduction on the number of pa-
rameters and a 30% increase in decoding speed.
Hubara et al. (2016) proposed to reduce the preci-
sion of model parameters during training and net-
work activations, which can also bring benefits to
training efficiency.

To the best of our knowledge the closest idea
to our work is instance weighting (Jiang and Zhai,
2007), which is often used for domain adaptation.
They add instance dependent weights to the loss
function to help improving the performance. As
a comparison, we focus on using “difficult” in-

1Google’s Tensor Processing Unit (Wu et al., 2016).

stances in training rather than spending training
time on easier ones. We improve the accuracy
while simultaneously reducing the cost of training.

3 Training Policies

To train a NMT system, we first design a neu-
ral network with some fixed meta-parameters (e.g.
number of neurons, LSTM layers, etc.). Then, we
feed the network with training instances (in a way
of mini-batch) (Ioffe and Szegedy, 2015) until all
instances of a training set are consumed. The op-
eration is repeated until the model converges. Pa-
rameters of the network turn to an optimum status
and as a consequence, the system reaches best per-
formance.

During this process, there is no distinction be-
tween training instances. That is, all the instances
are regarded as equal and used to train the NMT
model equally. However, some instances are rela-
tively easy for the model to learn (e.g. shorter or
frequently used sentences). To use them repeated-
ly results in a waste of time. Moreover, to avoid
overfitting and to help convergence, training in-
stances are often randomly shuffled before used to
train a model, hence, introducing un-certainty to
the final status of the system.

Figure 1: Training data selection. Levels of grey
are used to indicate perplexity ranges. Dark-
er/lighter indicate higher/lower perplexity.

Inspired by machine learning algorithms (e.g.
boosting, bootstrap, etc.), which are widely used
to improve the stability and accuracy especially in
the field of text classification, we force the neu-
ral network to pay closer attention to “difficult”
training examples. To our knowledge, this is the
first approach that integrates such meta-algorithms
within NMT training. Figure 1 illustrates different
methods to select training instances. Instances are

272



initially sorted based on their translation perplexi-
ties (Original) to be finally duplicated (Boost), re-
duced (Reduce), or just re-sampled (Bootstrap).
Such adjustment is applied during each training e-
poch, thus results in different cost and accuracy.

To be specific, at each training epoch we extend
the training set with sentence pairs that the trans-
lation model finds “difficult” to translate (Boost).
We approximate this procedure by choosing sen-
tences with a high perplexity score. In Figure 1,
the block with higher perplexity sentences (dark-
er) is repeated in the Boosting set when compared
to the Original set. The process has no addition-
al computational cost since perplexity is already
computed in a previous iteration.

To put it further, we may focus on “difficult”
sentences by removing “easy” ones from the train-
ing set (Reduce). In Figure 1, the block with low-
er perplexity sentences (lighter) is missing in the
Reduction set when compared to the Original set.

Finally, we randomly sample 100% of the sen-
tences from the corpus as a comparison to the
baseline system (Bootstrap). In Figure 1, some
blocks of the Original set appear repeated in the
Bootstrap set while some others are missing, due
to a random re-sampling.

4 Experiments

In this section we report on the experiments con-
ducted to evaluate the suitability of the proposed
methods. We begin with details of the NMT sys-
tem parameters as well as the corpora employed.

4.1 System Description

We build our NMT system based on an open-
source project OpenNMT2. We use a bidirectional
RNN encoder with 4 LSTM layers with each con-
taining 1, 000 nodes. Word embeddings are sized
of 500 cells and we set the dropout probability to
0.3. Batch size is set to 64. The maximum length
of both source and target sentences is set to 80
and we limit the vocabulary size to 50K words for
both source and target languages.

The default optimiser is SGD with starting
learning rate 1.0. We start to decay the learning
rate from epoch 10, or when we find a perplex-
ity increasing compared with the previous epoch
on a validation set. Evaluation is performed on a
held-out testset with BLEU score (Papineni et al.,
2002).

2http://opennmt.net

4.2 Corpora

We used an in-house generic corpus built as mix
from several client data consisting of French-
English sentences pairs. We split the corpus into
three sets: training, validation and a held-out test
set. Table 1 shows statistics of the data used in our
experiments.

#sents #tok (EN) #tok (FR)
Train 1M 24M 26M
Valid 2,000 48K 55K
Test 2,000 48K 54K

Table 1: Statistics of the data used in our experi-
ments. M stands for millions and K for thousands.

4.3 Results

We train four systems corresponding to the differ-
ent training policies considered in this paper fol-
lowing the system configuration detailed in Sec-
tion 4.1. During each training epoch:

• default uses the entire original data.

• boost extends 10% the original data with the
most difficult sentence pairs (following per-
plexity).

• reduce keeps 80% the most difficult in-
stances of the previous epochs, discarding
the remaining 20%. Note that the procedure
restarts using the entire training set every 3
epochs. That is it uses 100%, 80%, 64%,
100%, 80%, 64%, ... of the training data.

• bootstrap re-samples 100% the training set.
Hence allowing for repeated and missing sen-
tences of the original training set.

All systems are trained up to 18 epochs3. E-
valuation results are shown in Figure 2 and Table
2. Each result is averaged from two systems ini-
tialised with different random seeds to alleviate the
influence of randomisation.

As it can be seen, boost outperforms the de-
fault method by +1.49 (BLEU) at the cost of using
10% of additional training data. However, the sys-
tem converges faster than any other system as best
performance is achieved at epoch 14, while others
need to achieve the best after epoch 16.

3For some experiments, we continue to train until 22 e-
pochs. However, there is no further improvement.
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Figure 2: Effect of data boosting during training
for English-French translation.

The reduce system finally obtains the high-
est accuracy scores, outperforming the default
method by +1.63 (BLEU). In addition to accu-
racy, the system performing the reduce method
needed only 80% less data than the default. It
shows that this policy is promising.

Considering boostrap, the score steadily im-
proves. Though not so significantly, it outperform-
s also the default method by +0.87 (BLEU) with
better stability. Finally, we ensemble the 4 best
systems (epoch 18) generated by each method,
getting an additional +0.92 BLEU improvement.

BLEU Data
default 52.49 100%
boost 53.98 110%
reduce 54.12 80%
boostrap 53.36 100%
Ensemble 55.04 -

Table 2: BLEU score, and data size conditions for
different training policies.

4.3.1 Perplexity Normalisation
In this work we use perplexity as the measure for
translation “difficulty”, computed over each train-
ing batch. We distinguish instances between “dif-
ficult” ones and “easy” ones in order to save time
during system training. Since perplexity will al-
ways increase when the sentences are long, a nor-
malisation method is typically needed. We test
several normalisation strategies:

• by batch size (number of training instances)

• by (target) sentence length

• without normalisation (longer sentences were
always assigned a higher perplexity)

Experimental results show no significant perfor-
mance differences for any of the strategies. An ex-
planation for such behaviour may be found on the
fact that long sentences are also difficult transla-
tions. Thus, the selected subsets (by any normali-
sation strategy) are very similar.

4.4 Analysis
We propose a simple data manipulation technique
to help improving efficiency and performance of
NMT models during training. The idea imitates
the human learning process. Typically, humans
need to spend more time to learn “difficult” con-
cepts and less time for easier ones . As a conse-
quence, we force the NMT system to spend more
time on more “difficult” instances, while “skip-
ping” easier examples at the same time. Thus, We
emulate a human spending additional energy on
learning complex concepts.

We inspect the selected “difficult” examples ac-
cording to perplexity. We find that almost all such
examples containing complex structures, thus be-
ing difficult to be translated. To force the system to
pay much attention on them can adjust it towards
“mastering” more information for these sentences.

An interesting conclusion is that, we can train
the NMT system with 80% of the most complex
sentences. That is to say, when training exam-
ples with smaller perplexity are removed and those
with larger ones are emphasised, the system per-
forms better in terms of accuracy and efficiency.

Further experiments need to be conducted for
a detailed insight of the methods presented. Like
measuring the impact of using several ratios of
training data boosted/reduced. As well as studying
the impact of the methods on different language
pairs and data size conditions.

5 Conclusions

For NMT, training cost is a big problem for even a
medium-sized corpus with cutting-edge hardware.
At the same time, the trained model is apt to con-
verge to a local optima, which makes the train-
ing more instable. In this paper, we proposed a
data boosting method for NMT to help improv-
ing stability and efficiency. Experiments show that
the improvement is quite stable during almost all
training iterations. By adding 10% training cor-
pus, translation score is improved by 1.49 BLEU
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scores and by reducing the size of the corpus by
20%, translation performance improved by 1.63.

The method we proposed focuses on training
process only. There is no restriction for the neural
network structure. It can be used in any data paral-
lelism framework and then distributed onto multi-
GPUs. Also, corpus pre-processing like tokeniza-
tion (e.g. using sub-word unit (Sennrich et al.,
2015)) and other techniques like guided training
(Shen et al., 2016; Chen et al., 2016a) can be freely
added based on the method we proposed. In the
future, we plan to investigate more on the influ-
ence of training data especially in the later phase
of training.
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Abstract

This study reports an attempt to predict
the voice of reference using the informa-
tion from the input sentences or previ-
ous input/output sentences. Our previ-
ous study presented a voice controlling
method to generate sentences for neu-
ral machine translation, wherein it was
demonstrated that the BLEU score im-
proved when the voice of generated sen-
tence was controlled relative to that of the
reference. However, it is impractical to use
the reference information because we can-
not discern the voice of the correct transla-
tion in advance. Thus, this study presents
a voice prediction method for generated
sentences for neural machine translation.
While evaluating on Japanese-to-English
translation, we obtain a 0.70-improvement
in the BLEU using the predicted voice.

1 Introduction

Recently, recurrent neural networks such as
encoder-decoder models have gained increasing
attention in machine translation owing their abil-
ity to generate fluent sentences. Controlling the
output of the encoder-decoder model is diffi-
cult; however, several control mechanisms have
been developed. For example, Sennrich et al.
(2016) attempted to control honorifics in English-
German neural machine translation (NMT). They
trained an attentional encoder-decoder model
(Bahdanau et al., 2015) using source data wherein
the honorific information of a target sentence was
represented by an additional word. They obtained
a 3.2-point improvement in the BLEU score when
the sentence was controlled to the same honorifics
as the reference.

Similar to the research of Sennrich et al. (2016),

Yamagishi et al. (2016) reported an attempt to
control the voice of a generated sentence using an
attentional encoder-decoder model. They added
a label to the end of the source sentence using
the voice information of the target sentence during
training. Subsequently, they translated the source
sentences with a specified voice by appending the
voice information. As a result, 0.73-point im-
provement in BLEU was achieved if the reference
information was used.

Although Yamagishi et al. (2016) showed the
upper bound for the improvement, it is impractical
to use the reference information in the test phase.
Therefore, in this study, we develop a voice clas-
sifier using a logistic regression model with sim-
ple context features. Note that our previous ex-
periments did not exclude intransitive verb from
the training and testing process, which may result
in over-estimation of the active voice. Thus, for
fair comparison, our test data constructed in this
paper only contain transitive verbs. Our results
demonstrate 67.7% and 66.0% voice prediction
accuracies for the target sentence translated from
Japanese to English on Asian Scientific Paper Ex-
cerpt Corpus (ASPEC, Nakazawa et al. (2016))
and NTCIR PatentMT Parallel Corpus (NTCIR,
Goto et al. (2013)), respectively. An evaluation
of the translation shows the statistically significant
improvements in the BLEU score when using the
predicted voice. In addition, a manual inspection
shows that the voice-controlled translation clearly
produces more fluent translation than the baseline.

2 Voice Prediction

Our previous study (Yamagishi et al., 2016) did
not build a voice classifier for voice control; we
used the majority of voice for each verb in the
training corpus. We reported that the majority vote
did not consistently improve the BLEU score. In
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contrast, this study develops a voice classifier us-
ing the following seven features. In this way, we
can consider the context information of the source
and target languages when predicting the voice of
generated sentences. Note that we expect not only
the quality of the voice prediction but also the
quality of the translation to improve. These fea-
tures are concatenated as a vector used to train a
logistic regression model.

SrcSubj: Phrase embedding of the subject in a
source sentence1.

SrcPred: Phrase embedding of the predicate in a
source sentence.

SrcPrevPred: Phrase embedding of the predicate
in the previous source sentence.

SrcVoice: Voice of the source sentence.

TrgPrevObj: Word embedding of the objects in
the previous target sentence.

TrgPrevVoice: Voice of the output sentences
from previous three sentences.

TrgVoicePrior: The majority of target voice of
each predicate phrase in a source sentence.

The phrase embeddings are the average of the
all the word embeddings, except for alphabets, nu-
merals, and punctuation marks in the phrase. All
features are calculated from the information ob-
tained from the main clauses. “Previous sentence”
is flagged when an input sentence is not the first
sentence in a document. We use SrcPrevPred, Trg-
PrevObj, and TrgPrevVoice to consider the infor-
mation structure of a document.

TrgPrevVoice and TrgVoicePrior accept only
three values, i.e., “Active,” “Passive,” and “No in-
formation.” TrgVoicePrior represents the relation
between the predicate of a source sentence and the
voice of a target sentence. If the predicate of a
test sentence is included in the training data, we
obtain the majority of the voice distribution each
predicate phrase in the training data. It can be
noted that only the value of TrgVoicePrior was di-
rectly used as a label by Yamagishi et al. (2016);
TrgVoicePrior was not used as a feature in the lo-
gistic regression model.

SrcVoice represents the voice of the source side.
However, unlike English, it is difficult to formu-
late simple rules to obtain the voice of Japanese

1 We extract the NP with the nominative case particle.

sentences2. Thus, this feature shows whether the
sentence has an auxiliary verb of representing pas-
sive voice.

3 Experiments

3.1 The Control Framework
Here we explain the voice controlling method pro-
posed by Yamagishi et al. (2016) for Japanese-to-
English NMT. We parse the target sentence and
then evaluate the result to determine whether the
ROOT is a past participle and whether it has a be-
verb in the children. If both the conditions are sat-
isfied, the target sentence is considered “passive.”
Otherwise, it is considered “active.” The voice in-
formation is added to the end of the source sen-
tence as a word. Finally, we create a new training
corpus using labeled sentences. In the test phase,
an <Active> or <Passive> label is added to
the end of the source sentences to generate sen-
tences in the desired voice.

3.2 Settings
We experimented with four labeling patterns.

ALL_ACTIVE: All sentences to active voice.

ALL_PASSIVE: All sentences to passive voice.

REFERENCE: Each sentence to the same voice
as that of the reference sentence.

PREDICT: Each sentence to the predicted voice.

We mainly use the ASPEC (Nakazawa et al.,
2016) in this experiment. The ASPEC comprises
abstracts from scientific papers. We reconstructed
the ASPEC as a document-level bilingual corpus.
Sentences with more than 50 words from the train-
ing data are deleted, and the parallel documents
that comprise continuous sentences are collected.
As a result, the number of sentences in the train-
ing data is 1,103,336 (329,025 documents; the av-
erage number of sentences per document is 3.35).
The original test data comprises 453 documents
(four sentences in each document). Thus, it has
1,812 sentences in total. To evaluate voice control
accuracy, we select 100 active sentences and 100
passive sentences from the top of the original test
data. As stated in Section 1, sentence pairs whose
ROOT of the reference is an intransitive verb are

2In Japanese, the auxiliary verbs “れる (reru)” or “られ
る (rareru)” are typically used in the passive voice. However,
they are also used to represent possibility or honorifics. It is
difficult to apply simple rule to distinguish their usage.
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omitted from the test data because it may not be
possible to generate the passive sentences.

We also use the NTCIR Corpus (Goto et al.,
2013) to investigate the corpus-specific tenden-
cies. As a result of the preprocessing used with
the NTCIR, the number of sentences in this train-
ing data is 1,169,201. The NTCIR10 development
data and test data are used, which include 2,741
and 2,300 sentences, respectively. Note that we
could not reconstruct this corpus at a document-
level one. Therefore, our voice classifier only uses
the sentence-level features in the experiments of
voice prediction experiments.

The experimental results are based on accuracy,
BLEU scores (Papineni et al., 2002), and human
evaluation. Two types of accuracy were consid-
ered, i.e., voice accuracy and control accuracy.
Voice accuracy is calculated as the agreement be-
tween the voice of the reference and that of the
generated sentence. Control accuracy is calcu-
lated as the agreement between the label and the
voice of the generated sentence. Note that only
one evaluator performs annotation. We do not con-
sider subject and object alternation because this
evaluation only focuses on the voice of the sen-
tence. We show two BLEU scores, i.e., BLEUall
and BLEU200. BLEUall represents the score eval-
uated using all official test data, and BLEU200
represent the score evaluated using arranged test
data described earlier. We statistically evaluate the
BLEU scores using the bootstrap resampling im-
plemented in Travatar3. The human evaluation in-
volves pairwise comparison between the baseline
results and the REFERENCE results (Base:REF)
or between the baseline results and the PREDICT
results (Base:PRED). The evaluator of this com-
parison is only one. Note that the evaluator differs
from the voice label annotator.

We use CaboCha4 (Ver. 0.68) to parse the
Japanese sentences, and the Stanford Parser5 (Ver.
3.5.2) to parse the English sentences. Scikit-
learn (Ver. 0.18) is used to implement logistic re-
gression. The word embeddings6 (Mikolov et al.,
2013) that we use as the features for voice pre-
diction are trained using the source side of train-
ing corpus of ASPEC with 100 dimensions. The
voice-labeling performance is 95%.

We obtain two NMT models, one trained using
3http://www.phontron.com/travatar/index.html
4https://taku910.github.io/cabocha/
5http://nlp.stanford.edu/software/lex-parser.shtml
6https://radimrehurek.com/gensim/models/word2vec.html

the original corpus and the other trained using the
labeled corpus. The former model is the baseline.
These models are optimized by Adagrad (learning
rate: 0.01). The vocabulary size is 30,000, the
dimensions of the embeddings and hidden units
are 512, and the batch size during training is 64.
We train both the models for 15 epochs. We use
Chainer (Ver. 1.18; Tokui et al. (2015)) to imple-
ment NMT models proposed by Bahdanau et al.
(2015). We train Word2Vec with all 3,008,500
sentences in the ASPEC original training data for
initializing the word vectors. Likewise, we use
the source side of the training corpus of NTCIR
to train Word2Vec for the experiments of NTCIR.

4 Results and Discussion

4.1 Voice Classifier Result

Table 1 summarizes the results of label predic-
tion and an ablation test for feature selection.
Yamagishi et al. (2016) reported that the accuracy
of the majority voice was 63.7% on the ASPEC.
Therefore, we obtained slight improvements in
those scores by using the regression model with
several features.

First, we discuss the result using ASPEC.
The model using SrcPred, TrgPrevVoice, and
TrgVoicePrior obtains the highest accuracy. The
most important feature is SrcPred. The words in-
cluded in the predicate phrase have some tenden-
cies in each voice. TrgVoicePrior comprises the
majority of the information in the training data. It
is possible that this feature is inaccurate for verbs
having no voice skewness tendency. TrgPrevVoice
is also a useful feature to predict the voice, ex-
cept for the first sentence in each document. Sr-
cVoice is not a useful feature because the voice of
the source sentence is not always the same as that
of the target sentence. The voice concordance rate
between languages is 53.5% on ASPEC.

Accuracy decreases using the other features.
SrcSubj and TrgPrevObj are useless because many
source sentences do not contain any subject and
many target sentences do not contain any object.
SrcPrevPred is ineffective because the voice seems
to be determined by the discourse structure of the
target sentences. We consider that the voice of out-
put sentence is influenced by the words included
in the previous outputs. However, our classifier
only requires the voice information for the previ-
ous outputs.

Second, we discuss the result obtained using the
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Feature \ Corpus ASPEC NTCIR
SrcSubj ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
SrcPred ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
SrcPrevPred ✓ ✓ ✓ ✓ ✓ ✓ ✓ — — — — —
SrcVoice ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
TrgPrevObj ✓ ✓ ✓ ✓ ✓ ✓ ✓ — — — — —
TrgPrevVoice ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ — — — — —
TrgVoicePrior ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Accuracy (%) 67.2 67.3 65.2 67.2 66.9 67.3 65.9 65.4 67.5 67.7 65.7 65.9 65.9 65.8 66.0

Table 1: Results of label prediction and ablation test for feature selection. “✓” represents “used”, and
“—” represents “cannot be used” in each column.

NTCIR corpus. Herein, the highest accuracy is
66.0%, which is obtained by the model using three
features, i.e., SrcSubj, SrcPred, and SrcVoice. Sr-
cVoice is the best predictive feature because the
voice concordance rate is 63.3% on NTCIR. When
we examine the top 50 most frequent predicates in
both corpora, auxiliary verbs that represent pas-
siveness are found in five predicates in the AS-
PEC, while auxiliary verbs are found in 17 predi-
cates in the NTCIR. If a source sentence includes
those 17 predicates, the generated sentence tends
to be a passive sentence. It is not clear why the ef-
fective features for voice prediction differ in these
corpora because the percentages of sentences that
do not have the subject are quite similar.

4.2 Translation Result

Table 2 shows the voice controlling results.
“Other” indicates that the generated sentence is
unreadable and that it does not include a verb.

Table 2(a) shows the result using ASPEC. The
baseline model tends to generate a passive sen-
tence, although the number of active sentences is
greater than that of the passive sentences in the
training data. This occurs because the generated
sentence using a transitive verb tends to be a pas-
sive sentence under the general condition due to
the fact that active sentences in the training data
may contain an intransitive verb. We perform
Base:REF comparison in which a human evaluator
assessed that REFERENCE is better than the base-
line model. We can obtain further improvement if
we can appropriately change the voice of the gen-
erated sentence to that of the reference. With PRE-
DICT, we obtain a 0.70-point improvement in the
BLEUall score. The score of Base:PRED is close
to that of Base:REF. Although we do not use the
reference information in PREDICT, we obtain a
promising result in human evaluations using the
proposed method.

We observe the same tendencies when using the
NTCIR, as shown in Table 2(b). The improve-

ment to the BLEUall score between Baseline and
REFERENCE is less than that in the ASPEC ex-
periment. If an NMT model tends to generate
sentences in a particular voice, the voice control
method fixes this tendency. We can observe this
tendency in the voice accuracy of Baseline; how-
ever, this is not observable in the training data.
Thus, the voice control method becomes more ef-
fective when voice accuracy is low.

4.3 Discussion of Translation

Table 2 shows that it was difficult to generate ac-
tive sentences. It is difficult for the model to
generate an appropriate subject when a sentence
is forced to become an active sentence despite it
should be a passive sentence. The model tends
to generate appropriate subjects only if a high-
frequency verb is included in the generated sen-
tence. In the NTCIR experiment, the model tends
to generate the passive sentences, even though it
is forced to produce active sentences when the
source sentence has an auxiliary verb which rep-
resents passiveness. This tendency is not observed
with the ASPEC because this corpus includes
fewer sentences with such auxiliary verbs than the
NTCIR. The reasons why ALL_PASSIVE obtains
high accuracy is that these problems do not occur
when generating the passive sentences.

Table 3 summarizes the examples of the gener-
ated sentences on the experiment using ASPEC.
Example 1 shows that the voice of the gener-
ated sentence was appropriately controlled in the
case of a single sentence. The voice controlling
method only annotates voice information for the
main clause; however, some input sentences are
complex sentences. Examples 2 and 3 show the
results of the subordinate clause and coordinate
clause, respectively. The voice of the main clause
is different from that of the subordinate clause at
“to be Passive” in Example 2, although the voice
of the main clause is the same as that of the coor-
dinate clause in Example 3.
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Experiment # Active # Passive # Other Voice acc. Control acc. BLEU200 BLEUall Base:REF Base:PRED
Reference 100 100 — — — — — — —
Baseline 31 163 6 60.5% — 20.60 17.16 80 76
ALL_ACTIVE 147 44 9 57.5% 73.5% 20.22 — — —
ALL_PASSIVE 6 189 5 51.0% 94.5% 20.18 — — —
REFERENCE 82 113 5 89.0% ∗∗22.47 ∗∗18.78 120 —
PREDICT 74 118 8 64.0% 89.0% 21.05 ∗17.86 — 124

(a) Experiments using ASPEC.

Experiment # Active # Passive # Other Voice acc. Control acc. BLEU200 BLEUall
Reference 100 100 — — — — —
Baseline 69 127 3 66.0% — 31.80 29.29
ALL_ACTIVE 127 69 4 71.0% 63.5% 31.91 —
ALL_PASSIVE 17 186 3 55.0% 93.0% 32.32 —
REFERENCE 80 116 4 89.5% ∗∗33.90 ∗29.80
PREDICT 73 122 5 69.5% 83.0% 33.16 29.59

(b) Experiments using NTCIR.

Table 2: Performance of voice control, BLEU score, and the result of the human evaluations in each
corpus. These scores are calculated by original test data except for BLEUall. * represents the p-value <
0.05, and ** represents the p-value < 0.01 over the baseline.

Example 1 Source リサイクルに関する最近の話題を紹介した．
Reference recent topics on recycling are introduced .
To be Active this paper introduces recent topics on the recycling .
To be Passive recent topics on the recycling are presented .

Example 2 Source また，ドットの形状及び結晶性は温度に依存することも分かった．
Reference it was also proven that the shape and crystallinity of the dots were dependent on temperatures .
To be Active the morphology and the crystallinity of the dots depended on the temperature .
To be Passive it was also found that the shape and the crystallinity of the dots depend on the temperatures .

Example 3 Source 超電導材料開発のためのデータベースを構築し、材料設計用演えきシステムの開発を行った。
Reference a database for development of superconducting material was constructed , and deduction system for

material design was developed .
To be Active we constructed a database for the development of superconducting materials and developed a deduction

system for material design .
To be Passive a database for the development of superconducting materials was constructed , and the <unk> system

for material design was developed .　

Table 3: Examples of the generated sentences on the experiment using ASPEC.

Clause type ALL_ACTIVE ALL_PASSIVE
Coordinate # Active 22 8

# Passive 19 40
# Total 41 48
Agreement 63.4% 77.1%

Subordinate # Active 29 21
# Passive 15 13
# Total 44 34
Agreement 55.5% 38.2%

Table 4: The number of coordinate or subordinate
clause in each voice on ASPEC.

Table 4 summarizes the results of the coordi-
nate and subordinate clauses on the experiment of
ASPEC. “Agreement” in this table represents the
concordance rate between the voice of the main
clause and that of each clause. If this rate is high,
the voice of all clauses in a sentence is controlled
to the same voice as the added label. The voices of
the dependent clauses are not controlled, although
the voice of the main clause can be controlled at
high accuracy. As mentioned previously, the trans-
lation model tends to generate a passive sentence
when it is expected to generate a transitive verb.
We recognize the same tendency in the generation
of the voice of the coordinate clause. Conversely,
the voice of the subordinate clause tends to be ac-

tive because the “be-verb + adjective” structure or
“be-verb + noun” structure tends to be used in the
subordinate clause, as in the abovementioned ex-
ample. Hence, the proposed method greatly influ-
ences the main clause to which the voice informa-
tion is added, although it also affects the depen-
dent clauses.

5 Conclusion

This paper reported an attempt to predict the voice
of reference sentence to improve the translation
quality using the voice controlling method. We
used simple features to train the logistic regres-
sion model. As a result, we predicted the voice of
the reference sentences at 67.7% accuracy on AS-
PEC and at 66.0% on NTCIR, respectively. We
observed difference of important features between
the corpora. Certain improvement in BLEU score
was achieved using the voice classifier results to
output generated sentences in Japanese-to-English
NMT. We will attempt to improve the quality of
machine translation using context information of
a document, including the voice information.
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Abstract

We investigate pivot-based translation be-
tween related languages in a low resource,
phrase-based SMT setting. We show that
a subword-level pivot-based SMT model
using a related pivot language is substan-
tially better than word and morpheme-
level pivot models. It is also highly com-
petitive with the best direct translation
model, which is encouraging as no direct
source-target training corpus is used. We
also show that combining multiple related
language pivot models can rival a direct
translation model. Thus, the use of sub-
words as translation units coupled with
multiple related pivot languages can com-
pensate for the lack of a direct parallel
corpus.

1 Introduction

Related languages are those that exhibit lexical
and structural similarities on account of sharing a
common ancestry or being in contact for a long
period of time (Bhattacharyya et al., 2016). Ma-
chine Translation between related languages is a
major requirement since there is substantial gov-
ernment, commercial and cultural communication
among people speaking related languages e.g. ,
Europe, India and South-East Asia. These consti-
tute some of the most widely spoken languages in
the world, but many of these language pairs have
few or no parallel corpora. We address the sce-
nario when no direct corpus exists between related
source and target languages, but they share limited
parallel corpora with a third related language.

Modelling lexical similarity among related lan-
guages is the key to building good-quality SMT
systems with limited parallel corpora. Lexical sim-
ilarity means that the languages share many words

with similar form (spelling and pronunciation) and
meaning viz. cognates, lateral borrowings or loan
words from other languages e.g. , blindness is
andhapana in Hindi, aandhaLepaNaa in Marathi.

For translation, lexical similarity can be utilized
by transliteration of untranslated words while de-
coding (Durrani et al., 2010) or post-processing
(Nakov and Tiedemann, 2012; Kunchukuttan
et al., 2014). An alternative approach involves the
use of subwords as basic translation units. Sub-
word units like character (Vilar et al., 2007; Tiede-
mann, 2009), orthographic syllables (Kunchukut-
tan and Bhattacharyya, 2016b) and byte pair en-
coded units (Kunchukuttan and Bhattacharyya,
2017) have been used with varying degrees of suc-
cess.

On the other hand, if no parallel corpus is avail-
able between two languages, pivot-based SMT
(Gispert and Marino, 2006; Utiyama and Isa-
hara, 2007) provides a systematic way of using
an intermediate language, called the pivot lan-
guage, to build the source-target translation sys-
tem. The pivot approach makes no assumptions
about source, pivot, and target language related-
ness.

Our work brings together subword-level
translation and pivot-based SMT in low re-
source scenarios. We refer to orthographic syl-
lables and byte pair encoded units as subwords.
We show that using a pivot language related to
both the source and target languages along with
subword-level translation (i) significantly outper-
forms morpheme and word-level pivot translation,
and (ii) is very competitive with subword-level
direct translation. We also show that combin-
ing multiple pivot models using different related
pivot languages can rival a direct parallel corpora
trained model. To the best of our knowledge, ours
is the first work that shows that a pivot system
can be very competitive with a direct system (in
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the restricted case of related languages). Previ-
ous work on morpheme and word-level pivot mod-
els with multiple pivot languages have reported
lower translation scores than the direct model
(More et al., 2015; Dabre et al., 2015). Tiede-
mann (2012)’s work uses a character-level model
in just one language pair of the triple (source-pivot
or pivot-target) when the pivot is related to either
the source or target (but not both).

2 Proposed Solution

We first train phrase-based SMT models between
source-pivot (S-P) and pivot-target (P-T) language
pairs using subword units, where the pivot is re-
lated to the source and target. We create a pivot
translation system by combining the S-P and P-T
models. If multiple pivot languages are available,
linear interpolation is used to combine pivot trans-
lation models. In this section, we describe each
component of our system and the design choices.

Subword translation units: We explore ortho-
graphic syllable (OS) and Byte Pair Encoded unit
(BPE) as subword units.

The orthographic syllable, a linguistically mo-
tivated unit, is a sequence of one or more con-
sonants followed by a vowel, i.e. a C+V unit
(e.g. spacious would be segmented as spa ciou s).
Note that the vowel character sequence iou repre-
sents a single vowel.

On the other hand, the BPE unit is motivated by
statistical properties of text and represents sta-
ble, frequent character sequences in the text (pos-
sibly linguistic units like syllables, morphemes,
affixes). Given monolingual corpora, BPE units
can be learnt using the Byte Pair Encoding text
compression algorithm (Gage, 1994).

Both OS and BPE units are variable length units
which provide appropriate context for translation
between related languages. Since their vocabu-
laries are much smaller than the morpheme and
word-level models, data sparsity is not a prob-
lem. OS and BPE units have outperformed char-
acter n-gram, word and morpheme-level models
for SMT between related languages (Kunchukut-
tan and Bhattacharyya, 2016b, 2017).

While OS units are approximate syllables, BPE
units are highly frequent character sequences,
some of them representing different linguistic
units like syllables, morphemes and affixes. While
orthographic syllabification applies to writing
systems which represent vowels (alphabets and

abugidas), BPE can be applied to text in any writ-
ing system.

Training subword-level models: We segment
the data into subwords during pre-processing and
indicate word boundaries by a boundary marker
( ) as shown in the example for OS below:

word: Childhood means simplicity .

subword: Chi ldhoo d mea ns si mpli ci ty .

For building subword-level phrase-based mod-
els, we use (a) monotonic decoding since related
languages have similar word order, (b) higher or-
der language models (10-gram) since data sparsity
is a lesser concern due to small vocabulary size
(Vilar et al., 2007), and (c) word-level tuning (by
post-processing the decoder output during tuning)
to optimize the correct translation metric (Nakov
and Tiedemann, 2012). After decoding, we regen-
erate words from subwords (desegmentation) by
concatenating subwords between consecutive oc-
currences of the boundary markers.

Pivoting using related language: We use a lan-
guage related to both the source and target lan-
guage as the pivot language. We explore two
widely used pivoting techniques: phrase-table tri-
angulation and pipelining.

Triangulation (Utiyama and Isahara, 2007; Wu
and Wang, 2007; Cohn and Lapata, 2007) “joins”
the source-pivot and pivot-target subword-level
phrase-tables on the common phrases in the pivot
columns, generating the pivot model’s phrase-
table. It recomputes the probabilities in the new
source-target phrase-table, after making a few in-
dependence assumptions, as shown below:

P (t̄|s̄) =
∑

p̄

P (t̄|p̄)P (p̄|s̄) (1)

where, s̄, p̄ and t̄ are source, pivot and target
phrases respectively.

In the pipelining/transfer approach (Utiyama
and Isahara, 2007), a source sentence is first trans-
lated into the pivot language, and the pivot lan-
guage translation is further translated into the
target language using the S-P and P-T transla-
tion models respectively. To reduce cascading
errors due to pipelining, we consider the top-k
source-pivot translations in the second stage of the
pipeline (an approximation to expectation over all
translation candidates). We used k = 20 in our ex-
periments. The translation candidates are scored
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as shown below:

P (t|s) =
k∑

i=1

P (t|pi)P (pi|s) (2)

where, s,pi and t are the source, ith best source-
pivot translation and target sentence respectively.

Using Multiple Pivot Languages : We use
multiple pivot languages by combining triangu-
lated models corresponding to different pivot lan-
guages. Linear interpolation is used (Bisazza
et al., 2011) for model combination. Interpolation
weights are assigned to each phrase-table and the
feature values for each phrase pair are interpolated
using these weights as shown below:

f j(s̄, t̄) =
∑

i

αif
j
i (s̄, t̄) (3)

s.t
∑
i
αi = 1, αi ≥ 0

where, f j is feature j defined on the phrase pair
(s̄, t̄), αi is the interpolation weight for phrase-
table i. Phrase-table i corresponds to the triangu-
lated phrase-table using language i as a pivot.

3 Experimental Setup

Languages: We experimented with multiple lan-
guages from the two major language families
of the Indian subcontinent: Indo-Aryan branch
of the Indo-European language family (Bengali,
Gujarati, Hindi, Marathi, Urdu) and Dravidian
(Malayalam, Telugu, Tamil). These languages
have a substantial overlap between their vocabu-
laries due to contact over a long period (Emeneau,
1956; Subbarao, 2012).
Dataset: We used the Indian Language Corpora
Initiative (ILCI) corpus1 for our experiments (Jha,
2012). The data split is as follows – training:
44,777, tuning: 1K, test: 2K sentences. Lan-
guage models for word-level systems were trained
on the target side of training corpora plus monolin-
gual corpora from various sources [hin: 10M (Bo-
jar et al., 2014), urd: 5M (Jawaid et al., 2014), tam:
1M (Ramasamy et al., 2012), mar: 1.8M (news
websites), mal: 200K, ben: 400K, pan: 100K,
guj:400K, tel: 600K (Quasthoff et al., 2006) sen-
tences]. We used the target side of parallel corpora
for morpheme, OS, BPE and character-level LMs.
System details: We trained PBSMT systems
for all translation units using Moses (Koehn

1available on request from tdil-dc.in

et al., 2007) with grow-diag-final-and heuristic for
symmetrization of alignments, and Batch MIRA
(Cherry and Foster, 2012) for tuning. Subword-
level representation of sentences is long, hence we
speed up decoding by using cube pruning with a
smaller beam size (pop-limit=1000) for OS and
BPE-level models. This setting has been shown
to have minimal impact on translation quality
(Kunchukuttan and Bhattacharyya, 2016a).

We trained 5-gram LMs with Kneser-Ney
smoothing for word and morpheme-level mod-
els, and 10-gram LMs for OS, BPE, character-
level models. We used the Indic NLP library2

for orthographic syllabification, the subword-nmt
library3 for training BPE models and Morfessor
(Virpioja et al., 2013) for morphological segmen-
tation. These unsupervised morphological analyz-
ers for Indian languages, described in Kunchukut-
tan et al. (2014), are trained on the ILCI corpus
and the Leipzig corpus (Quasthoff et al., 2006).
The BPE vocabulary size was chosen to match OS
vocab size. We use tmtriangulate4 for phrase-table
triangulation and combine-ptables (Bisazza et al.,
2011) for linear interpolation of phrase-tables.
Evaluation: The primary evaluation metric is
word-level BLEU (Papineni et al., 2002). We also
report LeBLEU (Virpioja and Grönroos, 2015)
scores in the appendix. LeBLEU is a variant of
BLEU that does soft-matching of words and has
been shown to be better for morphologically rich
languages. We use bootstrap resampling for test-
ing statistical significance (Koehn, 2004).

4 Results and Discussion

In this section, we discuss and analyze the results
of our experiments.

4.1 Comparison of Different Subword Units

Table 1 compares pivot-based SMT systems built
with different units. We observe that the OS
and BPE-level pivot models significantly outper-
form word, morpheme and character-level pivot
models (average improvements above 55% over
word-level and 14% over morpheme-level). The
greatest improvement is observed when the source
and target languages belong to different families
(though they have a contact relationship), show-
ing that subword-level models can utilize the lex-

2
http://anoopkunchukuttan.github.io/indic_nlp_library

3
https://github.com/rsennrich/subword-nmt

4
github.com/tamhd/MultiMT
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Lang Triple Word Morph BPE OS Char

mar-guj-hin 30.23 36.49 39.05 39.81† 34.32
mar-hin-ben 16.63 21.04 22.46 22.92† 17.00
mal-tel-tam 4.55 6.19 7.69† 7.19 3.51
tel-mal-tam 5.13 8.29 9.84† 8.39 4.26
hin-tel-mal 5.29 8.32 9.57 9.67 6.24
mal-tel-hin 10.03 13.06 17.68 17.26 9.12

mal-urd-hin 7.70 11.29 16.40 NA 7.46
urd-hin-mal 5.58 6.64 7.58 NA 4.07

average % change
(+66,+57)% (+21,+14)% (+81,+66)%

w.r.t (BPE,OS)

Table 1: Comparison of triangulation for various translation

units (BLEU). Lang triple refers to the source-pivot-target

languages. Scores in bold indicate highest values for the lan-

guage triple. †means difference between OS and BPE scores

is statistically significant (p < 0.05). NA: OS segmenta-

tions cannot be done for Urdu. The last row shows average

change in BLEU scores for word, morpheme and character-

level model compared to the OS and BPE-level models.

Lang Triple BPE OS

pip tri pip tri

mar-guj-hin 38.25 39.05† 38.11 39.81†
mar-hin-ben 22.50 22.46 22.83 22.92
mal-tel-tam 7.84 7.69 6.94 7.19
tel-mal-tam 8.47 9.84† 7.96 8.39†

hin-tel-mal 9.31 9.57 9.31 9.67†
mal-tel-hin 17.39 17.68 16.96 17.26

mal-urd-hin 16.93† 16.40 NA NA
urd-hin-mal 8.83† 7.58 NA NA

Table 2: Comparison of pipelining (pip) and triangulation

(tri) approaches for OS and BPE (BLEU). †means difference

between pip and tri is statistically significant (p < 0.05)

ical similarity between languages. Translation
between agglutinative Dravidian languages also
shows a major improvement. The OS and BPE
models are comparable in performance. How-
ever, unlike OS, BPE segmentation can also be ap-
plied to translations involving languages with non-
alphabetic scripts (like Urdu) and show signifi-
cant improvement in those cases also. Evaluation
with LeBLEU (Virpioja and Grönroos, 2015), a
metric suited for morphologically rich languages,
shows similar trends (results in Appendix A). For
brevity, we report BLEU scores in subsequent ex-
periments.

Subword-level models outperform other units
for the pipelining approach to pivoting too. Trian-
gulation and pipelining approaches are compara-
ble for BPE and OS models (See Table 2). Hence,

Lang Triple Word Morph BPE OS Char

mar-guj-hin 0.64 1.39 1.74 2.33 3.04
mar-hin-ben 0.58 1.36 1.71 2.6 3.47
mal-tel-tam 0.61 2.32 3.27 4.19 2.58
tel-mal-tam 0.75 2.82 4.09 2.76 2.42
hin-tel-mal 0.56 2.08 2.86 2.97 2.25
mal-tel-hin 0.55 2.28 2.85 3.56 2.57

mal-urd-hin 0.25 1.16 1.84 NA 2.05
urd-hin-mal 0.42 0.79 1.62 NA 1.47

Table 3: Ratio of triangulated to component
phrase-table sizes. We use the size of larger of the
component phrase-tables to compute the ratio.

Lang Triple Pivot Direct Pivot

BPE BPE Word Morph OS OS

mar-guj-hin 39.05 43.19 38.87 42.81 43.69 39.81
mar-hin-ben 22.46 24.13 21.13 23.96 23.53 22.92
mal-tel-tam 7.69 8.67 6.38 7.61 7.84 7.19
tel-mal-tam 9.84 11.61 9.58 10.61 10.52 8.39
hin-tel-mal 9.57 10.73 8.55 9.23 10.46 9.67
mal-tel-hin 17.68 20.54 15.18 17.08 18.44 17.26

mal-urd-hin 16.4 20.54 15.18 17.08 18.44 NA
urd-hin-mal 7.58 8.44 6.49 7.05 NA NA

Table 4: Pivot vs. Direct translation (BLEU)

we report results for only the triangulation ap-
proach in subsequent experiments.

4.2 Why is Subword-level Pivot SMT better?
Subword-level pivot models are better than other
units for two reasons. One, the underlying S-P
and P-T translation models are better (e.g. 16%
and 3% average improvement over word and
morpheme-level models for OS). Two, the triangu-
lation process involves an inner join on pivot lan-
guage phrases common to the S-P and P-T phrase-
tables. This causes data sparsity issues due to the
large word and morpheme phrase-table vocabulary
(Dabre et al., 2015; More et al., 2015). On the
other hand, the OS and BPE phrase-table vocabu-
laries are smaller, so the impact of sparsity is lim-
ited. This effect can be observed by comparing the
ratio of the triangulated phrase-table (S-P-T) with
the component phrase-tables (S-P and P-T). The
size of the triangulated phrase-table is less than
the size of the underlying tables at the word-level,
while it increases by a few multiples for subword-
level models (see Table 3).

4.3 Comparison of Pivot & Direct Models
We compared the OS and BPE-level models with
direct models trained on different translation units
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Model mar-ben mal-hin

OS BPE OS BPE

best pivot 22.92 22.46 17.52 18.47
(hin) (hin) (tel) (guj)

direct 23.53 24.13 18.44 20.54
all pivots 23.69 23.20† 19.12† 20.28
direct+all pivots 24.41‡ 24.49‡ 19.44‡ 20.93‡

Table 5: Combination of multiple pivots (BLEU). Pivots
used for (i) mar-ben: guj, hin, pan (ii) mal-hin: tel, mar, guj.

Best pivot language indicated in brackets. Statistically signif-

icant difference from direct is indicated for: all pivots(†) and

direct+all pivots(‡) (p < 0.05).

(see Table 4). These subword-level pivot mod-
els outperform word-level direct models by 5-
10%, which is encouraging. Remarkably, the
subword-level pivot model is competitive with the
morpheme-level models (about 95% of the mor-
pheme BLEU score). The subword-level pivot
models are competitive with the best performing
direct counterparts too (about 90% of the direct
system BLEU score). To put this fact in perspec-
tive, the BLEU scores of morpheme and word-
level pivot systems are far below their correspond-
ing direct systems (about 15% and 35% respec-
tively). These observations strongly suggest that
pivoting at the subword-level can better recon-
struct the direct translation system than word and
morpheme-level pivot systems.

4.4 Multiple Pivot Languages

We investigated if combining multiple pivot trans-
lation models can be a substitute for the direct
translation model. Direct model refers to trans-
lation system built using the source-target paral-
lel corpus. Using linear interpolation with equal
weights, we combined pivot translation models
trained on different pivot languages. Table 5
shows that the combination of multiple pivot lan-
guage models outperformed the individual pivot
models, and is comparable to the direct trans-
lation system. Previous studies have shown that
word and morpheme-level multiple pivot systems
were not competitive with the direct system, pos-
sibly due to the effect of sparsity on triangulation
(More et al., 2015; Dabre et al., 2015). Our results
show that once the ill-effects of data sparsity are
reduced due to the use of subword models, multi-
ple pivot languages can maximize translation per-
formance because: (i) they bring in more transla-
tion options, and (ii) they improve the estimates

Lang Triple Pivot Direct

Morph OS BPE Morph OS BPE

hin-tel-mal 4.72 5.96 6.00 5.99 6.26 6.37
mal-tel-hin 8.29 11.33 10.94 11.12 13.32 14.45
mal-tel-tam 4.41 5.82 5.85 5.84 5.88 6.75

Table 6: Cross domain translation (BLEU)

of feature values with evidence from multiple lan-
guages. Linear interpolation of the direct system
with all the pivot systems with equal interpola-
tion weights also benefitted the translation system.
Thus, multilinguality helps overcome the lack of
parallel corpora between the two languages.

4.5 Cross-Domain Translation

We also investigated if the OS and BPE-level
pivot models are robust to domain change by
evaluating the pivot and direct translation mod-
els trained on tourism and health domains on an
agriculture domain test set of 1000 sentences (re-
sults in Table 6). For cross-domain translation
too, the subword-level pivot models outperform
morpheme-level pivot models and are comparable
to a direct morpheme-level model. The OS and
BPE-level models systems experience much lesser
drop in BLEU scores vis-a-vis direct models, in
contrast to the morpheme-level models. Since
morpheme-level pivot models encounter unknown
vocabulary in a new domain, they are less resistant
to domain change than subword-level models.

5 Conclusion and Future Work

We show that pivot translation between related
languages can be competitive with direct transla-
tion if a related pivot language is used and sub-
word units are used to represent the data. Sub-
word units make pivot models competitive by (i)
utilizing lexical similarity to improve the underly-
ing S-P and P-T translation models, and (ii) reduc-
ing losses in pivoting (owing to small vocabulary).
Combining multiple related pivot models can fur-
ther improve translation. Our SMT pivot trans-
lation work is useful for low resource settings,
while current NMT systems require large-scale re-
sources for good performance. We plan to explore
multilingual NMT in conjunction with subword
representation between related languages with a
focus on reducing corpus requirements. Currently,
these ideas are being actively explored in the re-
search community in a general setting.
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A LeBLEU Scores

Table 7 shows LeBLEU scores for the experiments
using phrase-triangulation. We observe that the
same trends hold as with BLEU scores.

Lang Triple Word Morph BPE OS Char

mar-guj-hin 0.692 0.725 0.737 0.747 0.713
mar-hin-ben 0.505 0.616 0.638 0.646 0.577
mal-tel-tam 0.247 0.364 0.426 0.407 0.213
tel-mal-tam 0.242 0.433 0.485 0.441 0.392
hin-tel-mal 0.291 0.376 0.420 0.432 0.306
mal-tel-hin 0.247 0.364 0.426 0.404 0.213

mal-urd-hin 0.328 0.436 0.501 NA 0.377
urd-hin-mal 0.313 0.353 0.420 NA 0.323

average % change
(+51,+49)% (+12,+8)% (+42,+42)%

w.r.t (BPE,OS)

(a) Comparison of phrase-triangulation for various subwords

Lang Triple Pivot Direct Pivot

BPE BPE Word Morph OS OS

mar-guj-hin 0.737 0.766 0.746 0.767 0.766 0.747
mar-hin-ben 0.638 0.653 0.568 0.645 0.656 0.646
mal-tel-tam 0.426 0.465 0.314 0.409 0.447 0.407
tel-mal-tam 0.485 0.530 0.410 0.511 0.534 0.441
hin-tel-mal 0.420 0.468 0.393 0.436 0.477 0.432
mal-tel-hin 0.426 0.565 0.460 0.528 0.551 0.404

mal-urd-hin 0.501 0.565 0.460 0.528 0.551 NA
urd-hin-mal 0.420 0.416 0.350 0.379 NA NA

(b) Pivot vs. direct translation

Table 7: LeBLEU Scores
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Abstract

In this paper, we propose a neural machine
translation (NMT) with a key-value at-
tention mechanism on the source-side en-
coder. The key-value attention mechanism
separates the source-side content vector
into two types of memory known as the
key and the value. The key is used for
calculating the attention distribution, and
the value is used for encoding the context
representation. Experiments on three dif-
ferent tasks indicate that our model out-
performs an NMT model with a conven-
tional attention mechanism. Furthermore,
we perform experiments with a conven-
tional NMT framework, in which a part
of the initial value of a weight matrix is
set to zero so that the matrix is at the
same initial-state as the key-value atten-
tion mechanism. As a result, we obtain
comparable results with the key-value at-
tention mechanism without changing the
network structure.

1 Introduction

Recently, neural machine translation (NMT)
(Sutskever et al., 2014; Cho et al., 2014) has
achieved impressive results owing to its capac-
ity to model the translation process end-to-end
within a single probabilistic model. The unique
features of the most popular approaches to NMT
comprise a encoder-decoder architecture compris-
ing recurrent neural networks (RNNs) and an at-
tention mechanism, whereby the decoder can at-
tend directly to localized information from source
sequence tokens for generating a target sequence

∗ This work was performed while the first author was
affiliated with National Institute of Information and Commu-
nication Technology, Kyoto, Japan.

(Bahdanau et al., 2015; Luong et al., 2015). The
encoder-decoder architecture predicts the target
word with a target hidden-state and a context vec-
tor. This context vector is calculated as a weighted
average over all source hidden-states. The weight
of a source hidden-state is calculated as the inner
product of the source hidden-state and the target
word hidden-state. Note that the source hidden-
state acts as the key to weight itself. It also acts
as the value to predict the target word through the
context vector. Daniluk et al. (2017) suppose that
the dual use of a single vector makes training the
model difficult and propose the use of a key-value
paired structure, which is a generalized way of
storing content in the vector.

In this paper, we propose splitting the matrix
of the source hidden-states into two parts, an
approach suggested by Daniluk et al. (2017) and
Miller et al. (2016). The first part refers to the
key used to calculate the attention distribution or
weights. The second part refers to the value for
the source-side context representation.

We empirically demonstrate that the separation
of the source-side context vector into the key and
value significantly improves the performance of
an NMT using three different English-to-Japanese
translation tasks.

2 Related Work

A significant amount of research has been per-
formed on the use of memory within neural net-
works. For instance, an RNN features an implicit
memory in the form of recurring hidden states.
However, a vanilla RNN is known to have diffi-
culties in storing information for long time-spans
(Bengio et al., 1994). To overcome this prob-
lem, LSTM (Hochreiter and Schmidhuber, 1997),
or GRU (Cho et al., 2014), which contain memory
cells with a recurrently self-connected linear unit
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have been proposed.
Attention-based neural networks with soft or

hard attention over an input have shown successful
results in a wide range of tasks including machine
translation (Bahdanau et al., 2015), sentence sum-
marization (Rush et al., 2015), and image caption-
ing (Xu et al., 2015). These attention-based net-
works use an encoded memory for both as the key
and value as described in the Introduction to cal-
culate the output.

In contrast to the dual use of a single mem-
ory vector, Miller et al. (2016) have proposed key-
value memory networks with key- and value-
memory vectors to solve question-answering
tasks, which use a generalized approach to store
content in the memory. The key-memory vec-
tors are used to calculate the attention weights,
which address relevant memories with respect to
the question, whereas the value-memory vectors
are used to calculate the contextual representation
to predict the answer. Daniluk et al. (2017) intro-
duce a key-value attention model for neural lan-
guage modeling that separates output vectors into
keys to calculate the attention distribution and val-
ues for encoding the next-word distribution and
context representation. We also focus on the key-
value attention model. Our approach differs from
the approach of Daniluk et al. (2017) in that they
use it for the language model only; in contrast we
use the key-value attention to encode the source-
side context and predict the target-side word for
translation.

3 Method

3.1 NMT with Attention

Our work is based on an attention-based NMT
(Luong et al., 2015), which generates a target sen-
tence y = (y1, ..., yN ) ∈ RVt×N from the source
sentence x = (x1, ..., xM ) ∈ RVs×M . Vs and Vt

denote the vocabulary size of the source and tar-
get side, respectively. The attention-based model
comprises two components, an encoder and a de-
coder. The encoder embeds the source sentence
x into vectors through an embedding matrix and
produces the hidden states using a bidirectional
RNN, which represents a forward and a backward
sequence. Thus, we have

−→
h i = enc1(Wsxi,

−→
h i−1), (1)

←−
h i = enc2(Wsxi,

←−
h i+1). (2)
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Figure 1: Encoder-decoder NMT architecture

Ws ∈ RK×Vs is an embedding matrix where K
is the word embedding size, and enc1 and enc2

are nonlinear functions as in LSTM. Then, as il-
lustrated in Figure 1, the forward and backward
hidden states

−→
h and

←−
h are concatenated into the

hidden states h = (h1, ..., hM ) ∈ RK×M as

hi = We[
−→
h ⊤

i ;
←−
h ⊤

i ]⊤, (3)

where We ∈ RK×2K is a matrix for the affine
transform. Each hidden state, represented as a sin-
gle vector, can be seen a memory vector that in-
cludes not only the lexical information at its source
position, but also information about the left and
right contexts. Then, the decoder predicts the tar-
get sentence y using a conditional probability cal-
culated as bellow:

p(yj |y1,j−1, x) = softmax(Woej + bo), (4)

where Wo ∈ RVt×K and bo ∈ RVt are imple-
mented as a matrix and a bias of a feedforward
neural network with a softmax output layer. ej ∈
RK is calculated by concatenating a hidden state
with a context vector, and performing an affine
transform with tanh function as

ej = tanh(Wd[dj ; cj ]⊤), (5)

where Wd ∈ RK×2K is a matrix for the affine
transform; dj ∈ RK is the hidden state of the de-
coder RNN; and cj ∈ RK is the context vector
derived from the source sentence. dj is a fixed-
length continuous vector computed by

dj = dec(dj−1, yj−1). (6)
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Figure 2: Encoder-decoder NMT architecture with
key-value attention

Here dec is a nonlinear function analogous to enc1
or enc2; d1 is set to a matrix of an affine transfor-
mation of the last hidden state hM . The context
vector cj is computed as a convex sum of the hid-
den states hi of Equation (3):

cj =
M∑
i=1

αi,jhi, (7)

where αi,j , known as the attention weight, is a
scalar weight computed by

αi,j =
exp{score(dj−1, hi)}∑M
l=1 exp{score(dj−1, hl)}

, (8)

where the score function is referred as a content-
based function and can be an arbitrary similar-
ity function. We use the dot product, following
Luong et al. (2015).

3.2 NMT with Key-value Attention
Attention-based NMT encodes an arbitrary se-
quence of source-side words into fixed-length
dense vectors as in h in Eq. (3), which are used
to calculate the attention weights and the context
vectors as in Equations 8 and (7). However, the
requirement to compress all necessary information
into a single memory vector in each memory slot
is likely to cause performance deficiencies. There-
fore, to alleviate this problem, Miller et al. (2016)

and Daniluk et al. (2017) propose the use of a sep-
arate vector depending on the purpose. Inspired by
them, we introduce a key-value attention mecha-
nism into NMT to calculate the context vector with
explicit separate vectors as shown in Figure 2. The
encoder embeds the source sentence x and pro-
duces hidden states

−→
hi and

←−
hi as in Equations (1)

and (2). Then, the two hidden states are decom-
posed into two respective parts, which are a key
and a value, as

−→
hi =

[ −→
k i−→v i

]
,
←−
hi =

[ ←−
k i←−v i

]
, (9)

where the number of dimensions of the keys
−→
k i

and
←−
k j and the values −→v i and ←−v i is K/2. The

forward and backward hidden-states
−→
k
←−
k −→v and←−v are concatenated into the hidden states h as

hi =
[

ki

vi

]
=


Wf

[ −→
k i←−
k i

]

Wg

[ −→v i←−v i

]
 , (10)

where Wf ∈ RK/2×K and Wg ∈ RK/2×K are
matrices for the affine transform. The hidden
states k and v indicate the key- and value-memory
vector, respectively. Then, the decoder predicts
the target sentence y using a conditional probabil-
ity calculated as in Equations (4), (5), and (6). The
context vector cj in Eq. (5) is computed as a con-
vex sum of the value memory v in Equation (10):

cj =
M∑
i=1

αi,jvi (11)

where αi,j is calculated with the key memory ki

as

αi,j =
exp{score(dj−1, ki)}∑M
l=1 exp{score(dj−1, kl)}

. (12)

We also use the dot product for the score.

3.3 NMT Modifying Initial Weight
Another approach to alleviating this problem is
modifying the score function in Eq. (8) and the
initial value of the weight Wd in Eq. (5) of Sec-
tion 3.1. The benefit of this approach is that the
modification to the source code is minimal and the
Wd may be tuned for better values. We suppose
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Training Development Test
Corpus Sents. Word types Avg. length Sents. Word types Sents. Word types

en ja en ja en ja en ja
IWSLT’07 40K 9K 10K 9.3 12.7 0.5K 1.2K 1.3K 0.5K 0.8K 0.9K
NTCIR-10 717K 105K 79K 23.3 27.7 2.0K 5.0K 4.4K 0.5K 2.4K 2.1K
ASPEC 843K 288K 143K 22.1 23.9 1.8K 7.1K 6.3K 1.8K 7.0K 6.4K

Table 1: Datasets

that the upper half of the hidden states h in Eq. (3)
produced by the encoder is used to calculate the
alignment weight and the lower half of h is used
to encode the source-side context vector. Then,
we present two modifications. Firstly, since the
score function in Eq. (8) calculates the alignment
weight, we modify Eq. (8) to be zero for the lower
half of the output of the score function as

αi,j =
exp{score(dj−1, hi ⊙ u)}∑M
l=1 exp{score(dj−1, hl ⊙ u)} , (13)

where u ∈ RK is a vector for masking of which
the upper half is one and the lower half is zero, and
⊙ denotes the element-wise multiplication opera-
tion of the two vectors. Secondly, ej in Eq. (5) is
calculated with the context vector cj , of which the
upper half should not be used hereafter. Therefore,
we set the initial weight of Wd to

w1,1 . . . w1,k 0 . . . 0 w1,3K/2 . . . w1,2K
...

wK/2,1 . . . . . . . . . . . . . . . . . . . . . wK/2,2K
...

wK,1 . . . . . . . . . . . . . . . . . . . . . wK,2K

 .

The particular concern is that, unlike Section 3.2,
the upper and lower halves of h in the model are
not completely independent though the upper and
lower halves of the initial state are independently
used to train the model.

The objective of the three methods in this sec-
tion is to jointly maximize the conditional proba-
bility for each generated target word as

θ∗ = arg max
θ

T∑
t=1

Lt∑
j=1

log p(yt
j |yt

1,j−1,x
t, θ), (14)

where (xt,yt) is the t-th training pair of sen-
tences, and Lt is the length of the t-th target sen-
tence yt.

4 Experiments

We evaluate the proposed method using three dif-
ferent English-to-Japanese translation tasks.

4.1 Data and Model Parameters

The corpora used were IWSLT’07 (Fordyce,
2007), NTCIR-10 (Goto et al., 2013), and AS-
PEC (Nakazawa et al., 2016) shown in Table 1.
We constrained training sentences to a maximum
length of 40 words to speed up the training. Each
test sentence had a single reference translation.

4.2 Settings

The inputs and outputs of our model are se-
quences of one-hot vectors with dimensionality
corresponding to the sizes of the source and tar-
get vocabularies. For NTCIR-10 and ASPEC,
we replaced words with frequencies less than 3
with the [UNK] symbol and excluded them from
the vocabularies. Each source and target word
was projected into a 540-dimensional continu-
ous Euclidean space to reduce the dimensionality.
The depth of the stacking LSTMs was 2 and the
hidden-layer size was set to 540. Each model was
optimized using Adam (Kingma and Ba, 2014)
with the following parameters: α = 1e − 3, β1 =
0.9, β2 = 0.999, and ϵ = 1e− 8. To prevent over-
fitting we used dropout (Srivastava et al., 2014)
with a drop rate of r = 0.5 to the last layer of
each stacking LSTM. All weight matrices of each
model were initialized by sampling from a normal
distribution of 0 mean and 0.05 standard deviation.
The gradient at each update was calculated using a
minibatch of at most 64 sentence pairs which was
run for a maximum of 20 iterations for the entire
training data. Training was early-stopped to maxi-
mize the performance on the development set mea-
sured by BLEU. We used a single Tesla K80 GPU
with 12 GB memory for training. For decoding,
we used a beam search with a beam size of 10.
The beam search was terminated when an end-of-
sentence [EOS] symbol was generated. We used
Chainer 1.21.0 (Tokui et al., 2015) to implement
all the models.
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System
source This makes it difficult to reproduce by a thin film multi-reproducing head .
reference このため薄膜マルチ再生ヘッド (a thin film multi-reproducing head)による

再生が困難となる。
attn これ に よ り 、 薄 い (a thin) 薄膜 磁気 ヘッド (thin film reproducing head) に

よる再生が困難になる。
key-value これにより、薄膜磁気ヘッド (a thin film reproducing head)による再生は

困難である。
modifying-IW よって、薄膜磁気ヘッド (a thin film reproducing head)による再生が困難

である。

Figure 3: Examples of the outputs

System IWSLT’07 NTCIR-10 ASPEC
attn 49.1 31.1 29.6
key-value 49.3 33.8 † 30.7 †
modifying-IW 49.6 32.6 † 30.0

Table 2: BLEU scores for the attention-based
NMT (attn), NMT with the key-value attention
(key-value), and NMT modifying initial weight
(modifying-IW) (†: significantly better than attn
(p < 0.05).

5 Results

Table 2 summarizes the results for all the three
tasks. NMT with the key-value attention achieved
statistically significant results for the experiments
with NTCIR-10 and ASPEC, though the experi-
ments with IWSLT07 showed no such statistically
significant results. The reason for our model’s
small difference in BLEU for IWSLT07 is likely
due to the low number of word types used. The
number of word types used in IWSLT07 was much
lower than in the others, as presented in Table 1.
Our model can be considered to be more effective
for tasks with a vast vocabulary size. The results
with NMT modifying initial weight are almost
comparable to NMT with the key-value attention.
Figure 3 shows the example of the outputs with
each model. Though the attention-based NMT
translates the same part of the sentence (“thin”)
twice, the NMT with the key-value attention and
the NMT modifying initial weight translate cor-
rectly. These results show that the use of the sepa-
rate memories for every different purpose improve
the NMT translation quality and the initial weights
of the hidden layers are likely to be able to con-
trol a single memory to keep dealing with the key
and the value as separate as possible. For the train-
ing and translation speed, we did not observe large

difference between these three models, since the
three models have almost same number of param-
eters.

6 Conclusion

We propose a new method with the key-value at-
tention mechanism in order to make the atten-
tion mechanism simpler. Our empirical evalua-
tion shows that the proposed method is effective
in achieving substantial improvements in terms of
translation quality consistently across three differ-
ent tasks.
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Abstract

We present a simple method to improve
neural translation of a low-resource lan-
guage pair using parallel data from a re-
lated, also low-resource, language pair.
The method is based on the transfer
method of Zoph et al., but whereas their
method ignores any source vocabulary
overlap, ours exploits it. First, we split
words using Byte Pair Encoding (BPE)
to increase vocabulary overlap. Then,
we train a model on the first language
pair and transfer its parameters, includ-
ing its source word embeddings, to another
model and continue training on the second
language pair. Our experiments show that
transfer learning helps word-based trans-
lation only slightly, but when used on top
of a much stronger BPE baseline, it yields
larger improvements of up to 4.3 BLEU.

1 Introduction

Neural machine translation (NMT) (Sutskever
et al., 2014; Bahdanau et al., 2015) is rapidly prov-
ing itself to be a strong competitor to other statisti-
cal machine translation methods. However, it still
lags behind other statistical methods on very low-
resource language pairs (Zoph et al., 2016; Koehn
and Knowles, 2017).

A common strategy to improve learning of low-
resource languages is to use resources from re-
lated languages (Nakov and Ng, 2009). However,
adapting these resources is not trivial. NMT of-
fers some simple ways of doing this. For example,
Zoph et al. (2016) train a parent model on a (pos-
sibly unrelated) high-resource language pair, then
use this model to initialize a child model which
is further trained on a low-resource language pair.
In particular, they showed that a French-English

model could be used to improve translation on a
wide range of low-resource language pairs such as
Hausa-, Turkish-, and Uzbek-English.

In this paper, we explore the opposite sce-
nario, where the parent language pair is also low-
resource, but related to the child language pair. We
show that, at least in the case of three Turkic lan-
guages (Turkish, Uzbek, and Uyghur), the origi-
nal method of Zoph et al. (2016) does not always
work, but it is still possible to use the parent model
to considerably improve the child model.

The basic idea is to exploit the relationship
between the parent and child language lexicons.
Zoph et al.’s original method makes no assump-
tion about the relatedness of the parent and child
languages, so it effectively makes a random as-
signment of the parent-language word embed-
dings to child-language words. But if we assume
that the parent and child lexicons are related,
it should be beneficial to transfer source word
embeddings from parent-language words to their
child-language equivalents.

Thus, the problem amounts to finding a repre-
sentation of the data that ensures a sufficient over-
lap between the vocabularies of the languages. To
do this, we map the source languages to a common
alphabet and use Byte Pair Encoding (BPE) (Sen-
nrich et al., 2016) on the union of the vocabularies
to increase the number of common subwords.

In our experiments, we show that transfer learn-
ing helps word-based translation, but not always
significantly. But when used on top of a much
stronger BPE baseline, it yields larger and statisti-
cally significant improvements. Using Uzbek as a
parent language and Turkish and Uyghur as child
languages, we obtain improvements over BPE of
0.8 and 4.3 BLEU, respectively.
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English Turkish Uzbek

clinic poliklinikte, poliklinie, polikliniine poliklinikasi, poliklinikaga,
poliklinikalar

parliament parlamentosuna, parlamentosundan,
parlamentosu

parlamentning, parlamentini,
parlamentiga

meningococcus meningokokuna, meningokosemi,
meningokoklar

meningokokk, meningokokkli,
meningokokkning

Table 1: Some examples of similar words in Turkish and Uzbek that share the same root.

2 Background

2.1 Attentional Model

We use the 2-layer, 512-hidden-unit global atten-
tional model with general scoring function and in-
put feeding by Luong et al. (2015). For the pur-
poses of this paper, the most important detail of
the model is that (as in many other models) the
word types of both the source and target languages
are mapped to vector representations called word
embeddings, which are learned automatically with
the rest of the model.

2.2 Language transfer

We follow the transfer learning approach proposed
by Zoph et al. (2016). In their work, a parent
model is first trained on a high-resource language
pair. Then the child model’s parameter values are
copied from the parent’s and are fine-tuned on its
low-resource data.

The source word embeddings are copied with
the rest of the model, with the ith parent-language
word embedding being assigned to the ith child-
language word. Because the parent and child
source languages have different vocabularies, this
amounts to randomly assigning parent source
word embeddings to child source words. In other
words, even if a word exists in both the parent and
child vocabularies, it’s extremely unlikely that it
will be assigned the same embedding in both mod-
els.

By contrast, because the target language is the
same in both the parent and child models, the
target word embeddings are frozen during fine-
tuning.

2.3 Related languages

The experiments described below are on transla-
tion from three Turkic languages to English. The
Turkic language family is a group of related lan-

word-based BPE 5k BPE 60k
model toks sents toks sents toks sents

×106 ×103 ×106 ×103 ×106 ×103

Uzb par 1.5 102 2.4 92 1.9 103
Tur chd 0.9 56 1.5 50 1.2 57

Uzb par 1.5 102 2.4 90 2.0 103
Uyg chd 1.7 82 2.1 77 2.0 88

Table 2: Number of tokens and sentences in our
training data.

guages with a very wide geographic distribution,
from Turkey to northeastern Siberia. Turkic lan-
guages are morphologically rich, and have simi-
larities in phonology, morphology, and syntax. For
instance, in our analysis of the training data, we
find many Turkish and Uzbek words sharing the
same root and meaning. Some examples are shown
in Table 1.

2.4 Byte Pair Encoding

BPE (Sennrich et al., 2016) is an efficient word
segmentation algorithm. It initially treats the
words as sequences of character tokens, then iter-
atively finds and merges the most common token
pair into one. The algorithm stops after a control-
lable number of operations, or when no token pair
appears more than once. At test time, the learned
merge operations are applied to merge the charac-
ter sequences in test data into larger symbols.

3 Method

The basic idea of our method is to extend the trans-
fer method of Zoph et al. (2016) to share the par-
ent and child’s source vocabularies, so that when
source word embeddings are transferred, a word
that appears in both vocabularies keeps its embed-
ding. In order for this to work, it must be the case
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that the parent and child languages have consider-
able vocabulary overlap, and that when a word oc-
curs in both languages, it often has a similar mean-
ing in both languages. Thus, we need to process
the data to make these two assumptions hold as
much as possible.

3.1 Transliteration

If the parent and child language have different
orthographies, it should help to map them into
a common orthography. Even if the two use the
same script, some transformation could be ap-
plied; for example, we might change French -eur
endings to Spanish -or. Here, we take a minimal-
ist approach. Turkish and Uzbek are both written
using Latin script, and we did not apply any trans-
formations to them. Our Uyghur data is written in
Arabic script, so we transliterated it to Latin script
using an off-the-shelf transliterator.1 The translit-
eration is a string homomorphism, replacing Ara-
bic letters with English letters or consonant clus-
ters independent of context.

3.2 Segmentation

To increase the overlap between the parent and
child vocabularies, we use BPE to break words
into subwords. For the BPE merge rules to not
only find the common subwords between two
source languages but also ensure consistency be-
tween source and target segmentation among each
language pair, we learn the rules from the union
of source and target data of both the parent and
child models. The rules are then used to segment
the corpora. It is important to note that this results
in a single vocabulary, used for both the source and
target languages in both models.

4 Experiments

We used Turkish-, Uzbek-, and Uyghur-English
parallel texts from the LORELEI program. We to-
kenized all data using the Moses toolkit (Koehn
et al., 2007); for Turkish-English experiments, we
also truecased the data. For Uyghur-English, the
word-based models were trained in the original
Uyghur data written in Arabic script; for BPE-
based systems, we transliterated it to Latin script
as described above.

For the word-based systems, we fixed the
vocabulary size and replaced out-of-vocabulary

1https://cis.temple.edu/˜anwar/code/
latin2uyghur.html

words with UNK. We tried different sizes for each
language pair; however, each word-based system’s
target vocabulary size is limited by that of the
child, so we could only use up to 45,000 word
types for Turkish-English and 20,000 for Uyghur-
English.

The BPE-based systems could make use of big-
ger vocabulary size thanks to the combination of
both parent and child source and target vocabu-
laries. We varied the number of BPE merge op-
erations from 5,000 to 60,000. Instead of using a
fixed vocabulary cutoff, we used the full vocabu-
lary; to ensure the model still learns how to deal
with unknown words, we trained on two copies
of the training data: one unchanged, and one in
which all rare words (whose frequency is less than
5) were replaced with UNK. Accordingly, the num-
ber of epochs was halved.

Following common practice, we fixed an up-
per limit on training sentence length (discarding
longer sentences). Because the BPE-based sys-
tems have shorter tokens and therefore longer sen-
tences, we set this upper limit differently for the
word-based and BPE-based systems to approxi-
mately equalize the total size of the training data.
This led to a limit of 50 tokens for word-based
models and 60 tokens for BPE-based models. See
Table 2 for statistics of the resulting datasets.

We trained using Adadelta (Zeiler, 2012), with
a minibatch size of 32 and dropout with a dropout
rate of 0.2. We rescaled the gradient when its norm
exceeded 5. For the Uzbek-English to Turkish-
English experiment, the parent and child models
were trained for 100 and 50 epochs, respectively.
For the Uzbek-English to Uyghur-English experi-
ment, the parent and child models were trained for
50 and 200, respectively. As mentioned above, the
BPE models were trained for half as many epochs
because their data is duplicated.

We used beam search for translation on the
dev and test sets. Since NMT tends to favor
short translations (Cho et al., 2014), we use the
length normalization approach of Wu et al. (2016)
which uses a different score s(e | f ) instead of log-
probability:

s(e | f ) =
log p(e | f )

lp(e)

lp(e) =
(5 + |e|)α
(5 + 1)α

.

We set α = 0.8 for all of our experiments.

298



baseline transfer transfer+freeze
BLEU size BLEU size BLEU size

Tur-Eng
word-based 8.1 30k 8.5∗ 30k 8.6∗ 30k
BPE 12.4 10k 13.2† 20k — —

Uyg-Eng
word-based 8.5 15k 10.6† 15k 8.8∗ 15k
BPE 11.1 10k 15.4‡ 8k — —

Table 3: Whereas transfer learning at word-level does not always help, our method consistently yields
a significant improvement over the stronger BPE systems. Scores are case-sensitive test BLEU. Key:
size = vocabulary size (word-based) or number of BPE operations (BPE). The symbols † and ‡ indicate
statistically significant improvements with p < 0.05 and p < 0.01, respectively, while ∗ indicates a
statistically insignificant improvement (p > 0.05).
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Figure 1: Tokenized dev BLEU scores for various settings as a function of the number of word/subword
types. Key: baseline = train child model only; transfer = train parent, then child model; +freeze = freeze
target word embeddings in child model.
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task settings train dev

Tur-Eng
word-based 30k 3.9% 3.6%
BPE 20k 58.8% 25.0%

Uyg-Eng
word-based 15k 0.5% 1.7%
BPE 8k 57.2% 48.5%

Table 4: Amount of child’s source types that ap-
pear in parent.

We stopped training when the tokenized BLEU
score was maximized on the development set. We
also optimized the vocabulary size and the number
of BPE operations for the word-based and BPE-
based systems, respectively, to maximize the tok-
enized BLEU on the development set.

After translation at test time, we rejoined BPE
segments, recased, and detokenized. Finally, we
evaluated using case-sensitive BLEU.

As a baseline, we trained a child model us-
ing BPE but without transfer (that is, with
weights randomly initialized). We also compared
against a word-based baseline (without transfer)
and two word-based systems using transfer with-
out vocabulary-sharing, corresponding with the
method of Zoph et al. (2016) (§2.2): one where the
target word embeddings are fine-tuned, and one
where they are frozen.

5 Results and Analysis

Our results are shown in Table 3. In this low-
resource setting, we find that transferring word-
based models does not consistently help. On
Turkish-English, both transfer methods give only a
statistically insignificant improvement (p > 0.05);
on Uyghur-English, transfer without freezing tar-
get embeddings helps somewhat, but transfer with
freezing helps only insignificantly.

In both language pairs, the models that use
BPE perform much better than their word-based
counterparts. When we apply transfer learning to
this much stronger baseline, we find that the rel-
ative improvements actually increase; that is, the
combined effect of BPE and transfer learning is
more than additive. On Turkish-English, the im-
provement is +0.8 BLEU over the BPE baseline;
on Uyghur-English, a healthy +4.3 over the BPE
baseline.

A similar pattern emerges when we examine the
best BLEU scores on the development set (Fig-
ure 1). Whereas word-based transfer methods help

very little for Turkish-English, and help or hurt
slightly for Uyghur-English, our BPE-based trans-
fer approach consistently improves over both the
baseline and transfer word-based models. We sur-
mise that the improvement is primarily due to the
vocabulary overlap created by BPE (see Table 4).

6 Conclusion

In this paper, we have shown that the transfer
learning method of Zoph et al. (2016), while ap-
pealing, might not always work in a low-resource
context. However, by combining it with BPE, we
can improve NMT performance on a low-resource
language pair by exploiting its lexical similarity
with another related, low-resource language. Our
results show consistent improvement in two Tur-
kic languages. Our approach, which relies on seg-
menting words into subwords, seems well suited
to agglutinative languages; further investigation
would be needed to confirm whether our method
works on other types of languages.
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Abstract

Neural machine translation decoders are
usually conditional language models to
sequentially generate words for target sen-
tences. This approach is limited to find
the best word composition and requires
help of explicit methods as beam search.
To help learning correct compositional
mechanisms in NMTs, we propose con-
cept equalization using direct mapping
distributed representations of source and
target sentences. In a translation experi-
ment from English to French, the concept
equalization significantly improved trans-
lation quality by 3.00 BLEU points com-
pared to a state-of-the-art NMT model.

1 Introduction with Related Works

After the possibility of learning end-to-end trans-
lation model (Sutskever et al., 2014) was reported,
there has been a surge of research to apply recur-
rent neural networks (RNN) with long short term
memory (LSTM) (Hochreiter and Schmidhuber,
1997) to machine translation. After intensive de-
velopments, this approach becomes the state-of-
the-art of machine translation called as neural ma-
chine translation (NMT). Remarkable approaches
are bidirectional LSTM using both forward and
backward sequences (Sutskever et al., 2014), at-
tention model to learn explicit alignment mod-
els (Bahdanau et al., 2014; Luong et al., 2015a),
rare word modeling to estimate unknown word
through alignment information (Luong et al.,
2014). Many other detailed following tech-
niques improved the performance such as batch
normalization (Ioffe and Szegedy, 2015), ensem-
bles, beam search, input feature specialization,

∗corresponding author: nash@jbnu.ac.kr

and input feeding, which are all aggregated into
Google’s NMT report (Wu et al., 2016).

Most decoders of NMTs are conditional lan-
guage models, which sequentially generate target
words and its proceeding correct target words in
the condition of a given source sentence. This
approach is a greedy algorithm, so dependency
of selected words to subsequent words may re-
strict selecting the best target word composition.
Beam search is a promising method to approx-
imate the correct compositions. However, in-
versely, promising results imply that NMTs are
still weak to learn the dependency between words
in a target sentence. This limitation in training
process creates fundamental barrier of represent-
ing correct translation process in a neural net-
work. In (Ranzato et al., 2015), this issue was dis-
cussed as a problem of maximum likelihood esti-
mation ignoring the dependency between selected
target words and an approach penalizing the like-
lihood with sentence-level distance has been pro-
posed (Shen et al., 2015).

Beyond correct target word generation, trans-
lation may be regarded as a subproblem to find
mapping of sentence-level semantics between two
languages. Accuracy of this mapping is often
limited because of ambiguity caused by many-
to-many mapping relations. It is difficult to
find exact mapping with simple and direct map-
ping models as the reported difficult in mapping
simpler word-level semantics (AP et al., 2014;
Luong et al., 2015b; Upadhyay et al., 2016).The
framework of NMTs is the most successful model
to find an exact mapping of sentence-level se-
mantics so far. However, its huge expression
power leads to inefficiency in training which re-
quires addition connections to transfer related in-
formation such as attention or input feeding mod-
els (Bahdanau et al., 2014; Wu et al., 2016). This
inefficiency may be removed by using simple di-
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rect models to restrict unnecessary area to search
in training step.

In this paper, we propose concept equaliza-
tion method to apply the direct semantic-mapping
model to existing NMT frameworks for guiding
training of model parameters. Distinguished con-
tributions of this method are to introduce 1) an ef-
fective penalty function and 2) a plug-in frame-
work to transfer the constraint information of the
penalty to LSTM stacks. In practical translation
tasks from English to French, this method im-
proves translation quality and convergence speed
to local optima. Extra benefit is easy adaptation to
any type of NMT frameworks.

Paper structure is as follows. Section 2 explains
motivations and details of concept equalization.
Section 3 shows experimental configurations on
data, model, and runs and Section 4 interprets the
results. Section 5 is conclusion and future work.

2 Concept Equalization

2.1 Limit of Learning Target Composition

Beam search is a promising method for NMTs
by overcoming the problem of greedy search in
sequential target word generation. On the other
hand, the impact of beam search inversely im-
plies that the sequential decisions by the model
are likely to be incorrect to select the best sen-
tences in many cases. There are many possible
causes for the inaccurate prediction of composi-
tion of target words such as inaccurate model rep-
resentation, complex parameter landscapes, and
noise data.

A possible cause is the simple representation
of the correctness of target words. In current
NMTs, cross-entropy is the most popular cost
function composed of probabilities of selecting
each correct word of a target sequence. Therefore,
only one variable is responsible for representing
whether the selected target word is correct. Us-
ing only one variable may be risky because the
second probable word and its highly probable fol-
lowing sequences may give higher cross-entropy
than any sequences derived from the correct word
selection. This case is a deceptive example of re-
stricting accurate word composition in decoders.

Another cause is slow parameter update in
NMT structures. In LSTMs, the gradient
vanishing (Bengio et al., 1994) over time steps
is resolved by using memory cells and over
vertical structures by addition input feeding

or multidimensional memories (Wu et al., 2016;
Kalchbrenner et al., 2015). They are applied to
the encoder and decoder, but the interface part is
often a feedforward layer suffering from the gra-
dient vanishing. This vanishing limits the achiev-
able translation quality in general and may restrict
learning the correct composition.

2.2 Motivation: Concept Equalization

To resolve the limited target word composition,
two approaches are proposed: 1) direct linking
the interface vector to the cost function and 2) in-
creasing the dimension for representing correct-
ness of target words. The first approach defines
a cost function to directly use the transferred in-
terface vector, so that the depth from the cost the
interface vector decreases and reduce the effect of
gradient vanishing. In the second approach, if we
train NMT to select a correct word only if its all
variables are the most probable, then the decep-
tion of selecting the second probable word in one
perspective is easily excluded. This second ap-
proach is somewhat new in NMT literature, be-
cause the dimension of probability vectors is al-
ready so high that increasing the dimension be-
comes serious burden.

To use the two approaches without problems,
we introduce a concept equalization for training
NMT where the concept indicates the semantics
of source and target sentences and represented as
two vectors. A expected role of this approach
is to guide NMTs not to train obviously wrong
sentences in explicit direct mapping models. The
method is illustrated in Fig. 1 and described in the
following sections.

Figure 1: Concept Equalization Model Plugged In
to Typical Neural Machine Translation (red and
dashed line: typical model)
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2.3 Concept Equalization Model
We newly propose the following three parts com-
pared to typical NMT frameworks.

Raw Concept Vector Representation Repre-
senting a target word as a vector, concept equal-
ization assigns many variables to indicate the cor-
rectness of target word without increasing the di-
mension of existing probability vectors for cal-
culating cross-entropy. The concept vector cS of
source sentence S and cT of target sentence T are
defined as

cS =
|S|∑
t=1

ht , cT =
|T |∑
t=1

wt

where ht is the hidden vector generated from the
top LSTM stacks at time step t in a NMT encoder
and wt is the word vector at time t in a decoder.
This raw vector generation process can be easily
extended to existing NMTs. For example, in bidi-
rectional models, ht is replaced by hf

t ‖hb
t . In bidi-

rectional attention models, interface vectors are
transformed vectors of ht with alignment model
and target word, but we can still use hf

t ‖hb
t .

Equalizing Layer In equalization, the biggest
risk is the conflict of vector distribution of ht de-
sirable for minimizing cross-entropy and for con-
cept distance because of quality decrease of lo-
cal optima. From the definition, many sentences
can be mapped to a concept vector in both sides,
which increases ambiguity and their average dis-
tances as well. If the average is relatively larger
than cross-entropy, distance-cost dominates the
parameter updates. If this phenomenon is main-
tained near optimal, the converged model will be
far from the true optimal. Pros of this mapping is
restricting generation of undesirable sentences us-
ing many variables and potential cons is the accu-
racy decrease by the conflict. To reduce the nega-
tive, we use one more linear combination layer for
more flexible mapping, which will reduce average
distance between the concepts.

vS = WecS + be , vT = cT (1)

The equalizing layer is composed of parameters
We and be and the concept vector vS is the out-
put vector of the layer from the given raw concept
vector rS .

Cost Function In sentence-level translation,
underlying assumption is that the semantics of

matching sentences are so equal that any dis-
tributed representation of two sentences in a vec-
tor space should be equal. In the assumption,
reducing the distance of the concepts is a per-
fect goal for maintaining the same true optimal of
NMT and therefore we can directly use it as a cost
function. To use it, we set a cost function as fol-
lowing equation.

new cost(θ, D) = cost(θ, D) + ||vS − vT ||2 (2)

which uses Euclidean distance of the concept vec-
tors as a penalty. θ is a parameter set to represent
a model and D is a given training data set. This
method adds cost and distance without any scal-
ing factors because the equalizing layer implicitly
adapts its scale in updates. In early stages of the
updates, the layer gives large distance for all vec-
tors by random initialization but the large distance
dominates updates and makes NMTs rapidly con-
verge to a model to generate small distance over
all vectors. Then, the impact of cross-entropy in-
creases and the model moves to the true optimal
determined by the entropy. Therefore, if the opti-
mal distance is sufficiently small, then this method
will guide the training in early updates and pre-
serve the true optimal with respect to cross en-
tropy with restriction of generating negative sen-
tences.

3 Experiment Setting

We performed translation experiments from En-
glish to French to evaluate the impact of concept
equalization in a state-of-the-art NMT.

3.1 Data Preparation
We used WMT14 Europarl parallel corpus for
training 1 and applied tokenizing, lowercasing,
and limiting token numbers by 40 in a sen-
tence through using scripts provided by a ma-
chine translation package, MOSES (Koehn et al.,
2007) 2. Starting and ending symbol are attached
to each source sentence. Test set is the first
10,000 sentences of the news-commentary set re-
leased with the Europarl corpus. Data statistics
are shown in Table 1. We extracted word vectors
from the training set using a neural network lan-
guage model implemented in word2vec 3 for En-
glish and French. Extracted word vector dictio-
naries are imported in training phases.

1http://www.statmt.org/wmt14/
2http://www.statmt.org/moses/
3https://code.google.com/archive/p/word2vec/
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Table 1: Data Statistics
training test

En Fr En Fr
tokens 30.7M 34.2M 0.2M 0.2M
sentences 1.5M 10,000

3.2 Neural Network Structure
Because of the lack of space, we drop full math-
ematical description of our model. We built bidi-
rection model and passed the h and c from the for-
ward to backward pass of the encoder. Then the ht

of forward and h|S|−t are concatenated to derive
rs. Attention model is equal to (Bahdanau et al.,
2014) except additionally passing c for initializa-
tion of the decoder. The input word vectors are fed
on to the second shallowest LSTM stack of the
encoder. To boost converging speed, we applied
batch normalization through weighted average of
original and normalized vectors. The weight is
decayed by multiplying 0.8 at each epoch, which
becomes almost 0 after 16 epochs. The concept
equalization is only applied to the training phase.
Sample phase is equal to typical NMTs.

Table 2: Detailed Model and Run Settings
LSTM stacks 4 parameter
cells per stacks 250 encoder 3.05M
dim. of word 50 decoder 3.10M
dim. of attention 250 output 11M
dim. of equalizer 50 interface 0.19M
batch size 128 epochs 50

4 Results and Discussions

We evaluated BLEU and NIST (Papineni et al.,
2002; Doddington, 2002) score as shown in Ta-
ble 3. In the table, we can confirm that applying

Table 3: Translation Quality of NMT with and
without Applying Concept Equalization

equalized NMT NMT
epoch NIST BLEU NIST BLEU
11 5.7682 22.78 5.3333 20.89
14 6.2776 25.48 5.6247 21.70
17 6.2786 25.31 5.9214 23.98
30 6.5775 26.68 5.9941 23.86
38 6.6466 27.08 6.0282 24.08

concept equalization improves translation quality
by 3 BLEU and 0.6186 NIST after 38 epochs

compared to a typical state-of-the-art NMT. The
baseline BLEU is 24.08 similar to or smaller than
the results of (Bahdanau et al., 2014), but the used
training sentences are 8 million in the paper while
we used 1.5 million, which may be the reason of
the baseline gape.

Fig. 2 shows the training accuracy change by
epochs. The accuracy is the portion of correctly
selected words in the training set through apply-
ing argmax to probability vectors generated by
the decoder. Applying the concept equalization
shows faster convergence before 5 epochs, but
converges to lower optimal points after 50 epochs
compared to the normal NMT. From this result,

Figure 2: Training Accuracy by Epoch (accuracy:
correctly selected token rate in training)

we can confirm the equalization boost the speed
of convergence, but the conflict limits the accu-
racy near optimals. This is consistent behavior
to the properties of the method. A notable point
is that the translation quality is significantly im-
proved. We guess the cause is the different un-
derlying assumptions in decoding. In the case of
training accuracy, the decoder assumes receiving
correct input at every time step while it uses pre-
viously selected word in actual decoding. There-
fore, in actual decoding to generate translation for
the test set, a selected wrong word in an interme-
diate step may cause subsequent errors by strange
context generation. Overall, the two results im-
ply that the equalization guides the model to be
robust to the unseen errors by restricting genera-
tion of strange sequences without any regulariza-
tion techniques as randomized distortions on some
parts of models.

5 Conclusion

In this paper, we raised the issue of limit in learn-
ing correct target word composition of current
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NMTs. To resolve it, we introduced concept
equalization to learn direct mapping of source and
target sentences for guiding the NMT training. In
the result, translation quality is significantly im-
proved and training speed becomes slightly faster
in early epochs. This method is expected to effec-
tively discard wrong target composition from the
observations.

6 Future Work

We will generalize this work for various direct
mapping models and wider empirical tasks. Im-
pact of concept equalization to cost landscape in
parameter optimization will be more rigorously
analyzed.
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Abstract

We present PubMed 200k RCT1, a new
dataset based on PubMed for sequential
sentence classification. The dataset con-
sists of approximately 200,000 abstracts
of randomized controlled trials, totaling
2.3 million sentences. Each sentence of
each abstract is labeled with their role in
the abstract using one of the following
classes: background, objective, method,
result, or conclusion. The purpose of re-
leasing this dataset is twofold. First, the
majority of datasets for sequential short-
text classification (i.e., classification of
short texts that appear in sequences) are
small: we hope that releasing a new large
dataset will help develop more accurate al-
gorithms for this task. Second, from an
application perspective, researchers need
better tools to efficiently skim through the
literature. Automatically classifying each
sentence in an abstract would help re-
searchers read abstracts more efficiently,
especially in fields where abstracts may be
long, such as the medical field.

1 Introduction

Short-text classification is an important task in
many areas of natural language processing, such
as sentiment analysis, question answering, or dia-
log management. For example, in a dialog man-
agement system, one might want to classify each
utterance into dialog acts (Stolcke et al., 2000).

∗ These authors contributed equally to this work.
1 The dataset is freely available at https://github.
com/Franck-Dernoncourt/pubmed-rct

In the dataset we present in this paper, PubMed
200k RCT, each short text we consider is one
sentence. We focus on classifying sentences in
medical abstracts, and particularly in randomized
controlled trials (RCTs), as they are commonly
considered to be the best source of medical evi-
dence (Tianjing Li, 2015). Since sentences in an
abstract appear in a sequence, we call this task the
sequential sentence classification task, in order to
distinguish it from general text or sentence classi-
fication that does not have any context.

The number of RCTs published every year is
steadily increasing, as Figure 1 illustrates. Over
1 million RCTs have been published so far and
around half of them are in PubMed (Mavergames,
2013), which makes it challenging for medical in-
vestigators to pinpoint the information they are
looking for. When researchers search for previous
literature, e.g., to write systematic reviews, they
often skim through abstracts in order to quickly
check whether the papers match the criteria of in-
terest. This process is easier when abstracts are
structured, i.e., the text in an abstract is divided
into semantic headings such as objective, method,
result, and conclusion. However, over half of pub-
lished RCT abstracts are unstructured, as shown in
Figure 2, which makes it more difficult to quickly
access the information of interest.

Consequently, classifying each sentence of an
abstract to an appropriate heading can signifi-
cantly reduce time to locate the desired informa-
tion, as Figure 3 illustrates. Besides assisting hu-
mans, this task may also be useful for a variety
of downstream applications such as automatic text
summarization, information extraction, and infor-
mation retrieval. In addition to the medical ap-
plications, we hope that the release of this dataset
will help the development of algorithms for se-
quential sentence classification.
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Figure 1: Number of RCTs present in PubMed
published yearly between 1960 and 2014 (inclu-
sive). The first documented controlled trial dates
back 1747 (Dunn, 1997), but the scientific value of
RCTs became widely recognized only by the late
20th century as the standard method for medical
evidence (Meldrum, 2000).
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Figure 2: Evolution of the percentage of RCT ab-
stracts present in PubMed that are unstructured be-
tween 1975 and 2014 (inclusive). The years be-
fore 1975 were omitted due to the low number of
RCTs. Overall, approximately half of the RCT ab-
stracts are unstructured. An RCT abstract is con-
sidered as unstructured if and only if at least one
of its section is labeled as “None”.

2 Related Work

Existing datasets for classifying sentences in med-
ical abstracts are either small, not publicly avail-
able, or do not focus on RCTs. Table 1 presents an
overview of existing datasets.

The most studied dataset to our knowledge is
the NICTA-PIBOSO corpus published by Kim et
al. (2011). This dataset was the basis of the ALTA
2012 Shared Task (Amini et al., 2012), in which
8 competing research teams participated.

Achilles tendinopathy (AT) is a common and difficult to
treat musculoskeletal disorder. The purpose of this study
is to examine whether 1 injection of platelet-rich plasma
(PRP) would improve outcomes more effectively than
placebo (saline) after 3 months when used to treat AT. A
total of 24 male patients with chronic AT (median dis-
ease duration, 33 months) were randomized (1:1) to re-
ceive either a blinded injection of PRP (n = 12) or saline
(n = 12). Patients were informed that they could drop out
after 3 months if they were dissatisfied with the treat-
ment. After 3 months, all patients were reassessed (no
dropouts). No difference between the PRP and the saline
group could be observed with regard to the primary out-
come (VISA-A score: mean difference [MD], -1.3; 95%
CI, -17.8 to 15.2; P = .868). Secondary outcomes were
pain at rest (MD, 1.6; 95% CI, -0.5 to 3.7; P = .137),
pain while walking (MD, 0.8; 95% CI, -1.8 to 3.3; P =
.544), pain when tendon was squeezed (MD, 0.3; 95%
CI, -0.2 to 0.9; P = .208). PRP injection did not result in
an improved VISA-A score over a 3-month period com-
pared with placebo. The conclusions are limited to the 3
months after treatment owing to the large dropout rate.

Figure 3: Example of abstract with the method
section highlighted. Abstracts in the medical field
can be long. This abstract was taken from (Krogh
et al., 2016) and several sentences have been re-
moved for the sake of conciseness. Providing clin-
ical researchers and practitioners a tool that would
allow them to highlight the section(s) that they are
interested in would help them explore the litera-
ture more efficiently.

Only the dataset published in (Davis-Desmond
and Mollá, 2012) is publicly available: two
datasets can only be obtained via email inquiries,
and the other datasets are not accessible (unan-
swered email requests or negative replies). The
only public dataset is also the smallest one.

3 Dataset Construction

3.1 Abstract Selection
Our dataset is constructed upon the MED-
LINE/PubMed Baseline Database published in
2016, which we will refer to as PubMed in this
paper. PubMed can be accessed online by anyone,
free of charge and without having to go through
any registration. It contains 24,358,442 records.
A record typically consists of metadata on one ar-
ticle, as well as the article’s title and in many cases
its abstract.

We use the following information from each
PubMed record of an article to build our dataset:
the PubMed ID (PMID), the abstract and its struc-
ture if available, and the Medical Subject Head-

309



Dataset Size Manual RCT Available
Hara et al. (2007) 200 y y email
Hirohata et al. (2008) 104k n n no
Chung (2009) 327 y y no
Boudin et al. (2010) 29k n n no
Kim et al. (2011) 1k y n email
Huang et al. (2011) 23k n n no
Robinson (2012) 1k n y no
Zhao et al. (2012) 20k y n no
Davis et al. (2012) 194 n y public
Huang et al. (2013) 20k n y no
PubMed 200k RCT 196k n y no

Table 1: Overview of existing datasets for sen-
tence classification in medical abstracts. The size
is expressed in terms of number of abstracts.

ings (MeSH) terms. MeSH is the NLM controlled
vocabulary thesaurus used for indexing articles for
PubMed.

We select abstracts from PubMed based on the
two following criteria:

• the abstract must belong to an RCT. We rely
on the article’s MeSH terms only to select
RCTs. Specifically, only the articles with the
MeSH term D016449, which corresponds to
an RCT, are included in our dataset. 399,254
abstracts fit this criterion.

• the abstract must be structured. In order to
qualify as structured, it has to contain be-
tween 3 and 9 sections (inclusive), and it
should not contain any section labeled as
“None”, “Unassigned”, or “” (empty string).
Only 0.5% of abstracts have fewer than 3
sections or more than 9 sections: we chose
to discard these outliers. The label of each
section was originally given by the authors
of the articles, typically following the guide-
lines given by journals: as many labels ex-
ist, PubMed maps them into a smaller set
of standardized labels: background, objec-
tive, methods, results, conclusions, “None”,
“Unassigned”, or “” (empty string).

195,654 abstracts fit these two criteria, i.e., be-
long to RCTs and are structured.

3.2 Dataset Split

The dataset contains 195,654 abstracts and is ran-
domly split into three sets: a validation set con-
taining 2500 abstracts, a test set containing 2500

Dataset |V | Train Validation Test
PubMed 20k 68k 15k (180k) 2.5k (30k) 2.5k (30k)
PubMed 200k 331k 190k (2.2M) 2.5k (29k) 200 (29k)

Table 2: Dataset overview. |V | denotes the vocab-
ulary size. For the train, validation and test sets,
we indicate the number of abstracts followed by
the number of sentences in parentheses.

abstracts, and a training set containing the remain-
ing 190,654 abstracts. Since 200k abstracts may
be too many for some applications, we also pro-
vide a smaller dataset, PubMed 20k RCT, which
contains 15000 abstracts for the training set, 2500
abstracts for the validation set, and 2500 abstracts
for the test set. The 20k abstracts were chosen
from the 200k abstracts by taking the most re-
cently published ones. Table 2 presents the num-
ber of abstracts and sentences for both PubMed
20k RCT and PubMed 200k RCT, for each split of
the data set.

3.3 Dataset Format

The dataset is provided as three text files: one for
the training set, one for the validation set, and one
for the test set. Each file has the same format: each
line corresponds to either a PMID or a sentence
with its capitalized label at the beginning. Each
token is separated by a space. Listing 1 shows an
excerpt from these files.

For each abstract, sentence and token bound-
aries are detected using the Stanford CoreNLP
toolkit (Manning et al., 2014). We provide two
versions of the dataset: one with the original text,
and one where digits are replaced by the character
@ (at sign).

###9813759
OBJECTIVE This study evaluated an [...]
OBJECTIVE It was hypothesized that [...]
METHODS Participants were @ men [...]
METHODS Psychological functioning [...]
RESULTS Intervention group subject [...]
RESULTS Compared to the control [...]
CONCLUSIONS This study has shown [...]

Listing 1: Example of one abstract as formatted
in the PubMed 200k RCT dataset set. The PMID
of the corresponding article is 9813759; the article
can be found that https://www.ncbi.nlm.
nih.gov/pubmed/9813759.
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4 Dataset Analysis

Figure 4 counts the number of sentences per la-
bel: the least common label (objective) is approx-
imately four times less frequent than the most
common label (results), which indicates that the
dataset is not excessively unbalanced. Figure 5
shows the distribution of the number of tokens the
sentence. Figure 6 shows the distribution of the
number of sentences per abstract. Figures 4, 5
and 6 are based on PubMed 200k RCT.
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Figure 4: Number of sentences per label
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Figure 5: Distribution of the number of tokens the
sentence. Minimum: 1; mean: 26.2; maximum:
338; variance: 227.6; skewness: 2.0; kurtosis: 8.7.
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Figure 6: Distribution of the number of sentences
per abstract. Minimum: 3; mean: 11.6; maximum:
51; variance: 9.5; skewness: 0.9; kurtosis: 2.6.

5 Performance Benchmarks

We report the performance of several systems to
characterize our dataset. The first baseline is a
classifier based on logistic regression (LR) using
n-gram features extracted from the current sen-
tence: it does not use any information from the
surrounding sentences. This baseline was imple-
mented with scikit-learn (Pedregosa et al., 2011).

The second baseline (Forward ANN) uses the
artificial neural network (ANN) model presented
in (Lee and Dernoncourt, 2016): it computes sen-
tence embeddings for each sentence, then classi-
fies the current sentence given a few preceding
sentence embeddings as well as the current sen-
tence embedding.

The third baseline is a conditional random field
(CRF) that uses n-grams as features: each out-
put variable of the CRF corresponds to a label for
a sentence, and the sequence the CRF considers
is the entire abstract. The CRF baseline there-
fore uses both preceding and succeeding sentences
when classifying the current sentence. CRFs
have been shown to give strong performances for
sequential sentence classification (Amini et al.,
2012). This baseline was implemented with CRF-
suite (Okazaki, 2007).

The fourth baseline (bi-ANN) is an ANN con-
sisting of three components: a token embedding
layer (bi-LSTM), a sentence label prediction layer
(bi-LSTM), and a label sequence optimization
layer (CRF). The architecture is described in (Der-
noncourt et al., 2016) and has been demonstrated
to yield state-of-the-art results for sequential sen-
tence classification.

Table 3 compares the four baselines. As ex-
pected, LR performs the worst, followed by the
Forward ANN. The bi-ANN outperforms the CRF,
but as the data set becomes larger the difference of
performances diminishes.

Table 4 presents the precision, recall, F1-score
and support for each class with the bi-ANN. Ac-
curately classifying the background and objective
classes is the most challenging. The confusion
matrix in Table 5 shows that background sentences
are often confused with objective sentences, and
vice versa.

Table 6 gives more details on the LR baseline,
and illustrates the impact of the choice of the n-
gram size on the performance. By the same token,
Table 7 shows the impact of the choice of the win-
dow size on the performance of the CRF.
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Model PubMed 20k PubMed 200k
LR 83.1 85.9
Forward ANN 86.1 88.4
CRF 89.5 91.5
bi-ANN 90.0 91.6

Table 3: F1-scores on the test set of several base-
lines. The presented results for the ANN-based
models are the F1-scores on the test set of the run
with the highest F1-score on the validation set.

Precision Recall F1-score Support
Background 70.7 81.1 75.6 2663
Conclusions 94.6 93.7 94.2 4426
Methods 95.5 96.5 96.0 9751
Objective 77.1 65.3 70.7 2377
Results 95.6 94.8 95.2 10276
Total 91.7 91.6 91.6 29493

Table 4: Results for each class obtained by the bi-
ANN model on the PubMed 200k RCT test set.
The total support is 29493, i.e. the number of sen-
tences in the test set.

Backg. Concl. Methods Obj. Res.
Background 2760 12 62 424 5
Conclusions 41 4149 9 0 227
Methods 82 17 9409 31 212
Objective 757 0 69 1551 0
Results 14 208 303 5 9746

Table 5: Confusion matrix on the PubMed 200k
RCT test set obtained with the bi-ANN model.
Rows correspond to actual labels, and columns
correspond to predicted labels. For example, 62
background sentences were predicted as method.

6 Conclusion

In this article we have presented PubMed 200k
RCT, a dataset for sequential sentence classifica-
tion. It is the largest such dataset that we are aware
of. We have evaluated the performance of several
baselines so that researchers may directly com-
pare their algorithms against them without having
to develop their own baselines. We hope that the
release of this dataset will accelerate the develop-
ment of algorithms for sequential sentence classi-
fication and increase the interest of the text mining
community in the study of RCTs.

N-gram size Precision Recall F1-score Runtime
1 82.3 82.7 82.4 4406
2 85.1 85.4 85.2 13237
3 85.5 85.8 85.6 20618
4 85.7 86.0 85.8 25553
5 85.8 86.1 85.9 35006

Table 6: Results obtained on the PubMed 200k
RCT test set by the LR model with different size
of n-grams as features. The n-gram size indicates
the size of the largest n-grams: For example, if the
n-gram size is 3, it means unigrams, bigrams and
trigrams are extracted as features. The maximum
n-gram size in our experiments is 5 due to RAM
limitation. The runtime is expressed in seconds
and comprises both training and testing times.

Window size Precision Recall F1-score Runtime
1 90.6 90.6 90.6 1565
2 91.0 91.0 91.0 2490
3 91.1 91.1 91.1 3908
4 91.5 91.5 91.5 4867
5 90.9 91.0 90.9 6424
6 91.4 91.4 91.4 7649
7 91.3 91.3 91.3 7929
8 90.9 90.9 90.9 7644
9 91.2 91.3 91.2 7891

Table 7: Results obtained on the PubMed 200k
RCT test set by the CRF model with different win-
dow sizes. A window of size k means that for
each token, features are extracted from the cur-
rent token, the k preceding tokens as well as the
k succeeding tokens. The runtime is expressed in
seconds and comprises both training and testing
times.
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Abstract

Automated documentation of program-
ming source code and automated code
generation from natural language are chal-
lenging tasks of both practical and scien-
tific interest. Progress in these areas has
been limited by the low availability of par-
allel corpora of code and natural language
descriptions, which tend to be small and
constrained to specific domains.

In this work we introduce a large and di-
verse parallel corpus of a hundred thou-
sands Python functions with their doc-
umentation strings (”docstrings”) gener-
ated by scraping open source reposito-
ries on GitHub. We describe baseline re-
sults for the code documentation and code
generation tasks obtained by neural ma-
chine translation. We also experiment with
data augmentation techniques to further
increase the amount of training data. We
release our datasets and processing scripts
in order to stimulate research in these ar-
eas.

1 Introduction

Joint processing of natural languages and pro-
gramming languages is a research area concerned
with tasks such as automated source code docu-
mentation, automated code generation from natu-
ral language descriptions and code search by natu-
ral language queries. These tasks are of great prac-
tical interest, since they could increase the produc-
tivity of programmers, and also of scientific in-
terest due to their difficulty and the conjectured
connections between natural language, computa-
tion and reasoning (Chomsky, 1956; Miller, 2003;
Graves et al., 2014).

1.1 Existing corpora

Major breakthroughs have been recently achieved
in machine translation and other hard natural lan-
guage processing tasks by using neural networks,
such as sequence-to-sequence transducers (Bah-
danau et al., 2014). In order to properly gener-
alize, neural networks need to be trained on large
and diverse datasets.

These techniques have also been applied with
some success to code documentation (Iyer et al.,
2016) and code generation (Ling et al., 2016; Yin
and Neubig, 2017), but these works trained and
evaluated their models on datasets which are small
or limited to restricted domains, in some cases sin-
gle software projects.

Source code can be collected by scraping open
source repositories from code hosting services
such as GitHub1 (Allamanis and Sutton, 2013;
Bhoopchand et al., 2016), but the main difficulty
is finding natural language annotations that docu-
ment the code in sufficient detail.

Some existing corpora, such as the the
DJANGO dataset and the Project Euler dataset
(Oda et al., 2015) have been created by human an-
notators, who can produce high accuracy exam-
ples, but this annotation process is expensive and
relatively slow, resulting in small (from a few hun-
dreds to less than 20,000 examples) and homoge-
neous datasets. Other corpora have been assem-
bled from user-generated descriptions matched to
code fragments mined from public websites such
as StackOverflow2 (Allamanis et al., 2015b; Iyer
et al., 2016) or IFTTT3 (Quirk et al., 2015). These
datasets can be large (> 100, 000 examples) but
often very noisy. Another approach is to tar-
get a very specific domain, namely trading card

1github.com
2stackoverflow.com
3ifttt.com
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games (Magic the Gathering and Hearthstone)
(Ling et al., 2016), where code is very repetitive
and contains a natural language description (the
card text) that can be extracted using simple hand-
coded rules. Like the human-annotated corpora,
these corpora have high accuracy but are small and
very domain-specific.

In practice the existing low-noise corpora seem
to have drawbacks which cause them to be unusu-
ally easy. The published evaluation scores on these
dataset are are surprisingly high even for baseline
systems (Oda et al., 2015; Yin and Neubig, 2017),
with BLEU scores more than twice those of ma-
chine translation between natural languages (Cet-
tolo et al., 2016), a task that we would expect to
be no more difficult than code documentation or
code generation, especially given the much larger
amount of available data.

The DJANGO and and Project Euler corpora
use pseudo-code rather than true natural language
as a code description, resulting in code fragments
and descriptions being similar and easy to align.
The Magic the Gathering and Hearthstone code
fragments are repetitive, with most code of an ex-
ample being either boilerplate or varying in a lim-
ited number of ways that correspond to specific
keywords in the description. We conjecture that,
as a consequence of these structural properties,
these corpora don’t fully represent the complex-
ity of code documentation and code generation as
typically done by human programmers, and may
be thus of limited use in practical applications.

Therefore we identify the need for a more chal-
lenging corpus that better represents code and doc-
umentation as they occur in the wild.

1.2 Our proposal

In this work we seek to address these limitations
by introducing a parallel corpus of over a hundred
thousands diverse Python code fragments with de-
scriptions written by their own programmers.

The Python programming language allows each
source code object to contain a ”docstring” (docu-
mentation string), which is retained at runtime as
metadata. Programmers use docstrings to describe
the functionality and interface of code objects, and
sometimes also usage examples. Docstrings can
be extracted by automatic tools to generate, for in-
stance, HTML documentation or they can be ac-
cessed at runtime when running Python in interac-
tive mode.

We propose the use of docstrings as natural lan-
guage descriptions for code documentation and
code generation tasks. As the main contribution
of this work, we release code-docstring-corpus:
a parallel corpus of Python function declarations,
bodies and descriptions collected from publicly
available open source repositories on GitHub.

Current approaches to sequence transduction
work best on short and ideally independent frag-
ments, while source code can have complex de-
pendencies between functions and classes. There-
fore we only extract top-level functions since they
are usually small and relatively self-contained,
thus we conjecture that they constitute meaningful
units as individual training examples. However,
in order to support research on project-level code
documentation and code generation, we anno-
tate each sample with metadata (repository owner,
repository name, file name and line number), en-
abling users to reconstruct dependency graphs and
exploit contextual information.

Class definitions and class methods are not in-
cluded in our main corpus but will be released in
an extended version of the corpus, which will also
include the commit hash metadata for all the col-
lected repositories.

We train and evaluate baseline neural machine
translation systems for the code documentation
and the code generation tasks. In order to sup-
port comparisons using different evaluation met-
rics, we also release the test and validation outputs
of these systems.

We additionally release a corpus of Python
functions without docstrings which we auto-
matically annotated with synthetic docstrings
created by our code documentation system.
The corpora, extraction scripts and baseline
system configurations are available online at
https://github.com/EdinburghNLP/
code-docstring-corpus.

2 Dataset

2.1 Extraction and preparation
We used the GitHub scraper4 by Bhoopchand
et al. (2016) with default settings to download
source code from repositories on GitHub, retain-
ing Python 2.7 code.

We split each top-level function in a declaration
(decorators, name and parameters), a docstring (if

4https://github.com/uclmr/
pycodesuggest
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Dataset Examples Tokens LoCs
Parallel decl. 150,370 556,461 167,344
Parallel bodies 150,370 12,601,929 1,680,176
Parallel docstrings 150,370 5,789,741 -
Code-only decl. 161,630 538,303 183,935
Code-only bodies 161,630 13,009,544 1,696,594

Table 1: Number of examples, tokens and lines of
code in the corpora.

Corpus Element Mean Std. Median
Parallel Declarations 3.70 7.62 3
Parallel Bodies 83.81 254.47 40
Parallel Docstrings 38.50 71.87 16
Code-only Declarations 3.33 5.04 2
Code-only Bodies 80.49 332.75 37

Table 2: Tokens per example statistics.

present) and the rest of the function body. If the
docstring is present, the function is included in the
main parallel corpus, otherwise it is included in
the ”monolingual” code-only corpus for which we
later generate synthetic docstrings.

We further process the the data by removing the
comments, normalizing the code syntax by pars-
ing and unparsing, removing semantically irrele-
vant spaces and newlines and escaping the rest and
removing empty or non-alphanumeric lines from
the docstrings. Preprocessing removes empty lines
and decorative elements from the docstrings but it
is functionally reversible on the code5.

An example of an extracted function based on
scikit-learn (Pedregosa et al., 2011) (with doc-
string shortened for brevity) is provided in fig. 1.

2.2 Dataset description

The extraction process resulted in a main parallel
corpus of 150,370 triples of function declarations,
docstrings and bodies.

We partition the main parallel corpus in a
training/validation/test split, consisting of 109,108
training examples, 2,000 validation examples and
2,000 test examples (the total size is smaller than
the full corpus due to duplicate example removal).

The code-only corpus consists of 161,630 pairs
of function declarations and bodies. The synthetic
docstring corpus consists of docstrings generated
using from the code-only corpus using our NMT
code documentation model, described in the next
section.

We report corpora summary statistics in tables
1 and 2.

5except in the rare cases where the code accesses its own
docstring or source code string

3 Baseline results

Since we are releasing a novel dataset, it is useful
to assess its difficulty by providing baseline results
for other researchers to compare to and hopefully
improve upon.

3.1 Setup

In order to obtain these baseline results, we train
Neural Machine Translation (NMT) models in
both direction using Nematus6 (Sennrich et al.,
2017). Our objective here is not to compete with
syntax-aware techniques such as Yin and Neubig
(2017) but to assess a lower bound on the task per-
formance on this dataset without using knowledge
of the structure of the programming language.

We prepare our datasets considering the func-
tion declarations as part of the input for both
the documentation and generation tasks. In or-
der to reduce data sparsity, we sub-tokenize with
the Moses (Koehn et al., 2007) tokenization script
(which splits some source code identifiers that
contain punctuation) followed by Byte-Pair En-
coding (BPE) (Sennrich et al., 2016b). BPE sub-
tokenization has been shown to be effective for
natural language processing, and for code process-
ing it can be considered a data-driven alternative
to the heuristic identifier sub-tokenization of Al-
lamanis et al. (2015a). We train our models with
the Adam optimizer (Kingma and Ba, 2015) with
learning rate 10−4, batch size 20. We use a vo-
cabulary size of 89500 tokens and we cap training
sequence length to 300 tokens for both the source
side and the target side. We apply ”Bayesian” re-
current dropout (Gal and Ghahramani, 2016) with
drop probability 0.2 and word drop probability
0.1. We perform early stopping by computing
the likelihood every 10000 on the validation set
and terminating when no improvement is made for
more than 10 times. For the code documentation
task, we use word embedding size 500, state size
500 and no backpropagation-through-time gradi-
ent truncation. For the code generation task, we
use word embedding size 400, state size 800 and
BPTT gradient truncation at 200 steps. These dif-
ferences are motivated by GPU memory consider-
ations.

After training the code documentation model,
we apply it to the corpus-only datasets to gener-
ate synthetic docstrings. We then combine this

6https://github.com/EdinburghNLP/
nematus
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d e f i n t e r c e p t d o t (w, X, y ) :
””” Computes y ∗ np . d o t (X, w) .
I t t a k e s i n t o c o n s i d e r a t i o n i f t h e i n t e r c e p t s h o u l d be f i t o r n o t .
P a r a m e t e r s
−−−−−−−−−−
w : n d a r r a y , n d a r r a y , shape ( n f e a t u r e s , ) o r ( n f e a t u r e s + 1 , )

C o e f f i c i e n t v e c t o r .
[ . . . ]
”””
c = 0 .
i f w. s i z e == X. shape [ 1 ] + 1 :

c = w[−1]
w = w[:−1]

z = s a f e s p a r s e d o t (X, w) + c
yz = y ∗ z
r e t u r n w, c , yz

d e f i n t e r c e p t d o t (w, X, y ) :

’ Computes y ∗ np . d o t (X, w) . DCNL I t t a k e s i n t o c o n s i d e r a t i o n i f t h e i n t e r c e p t s h o u l d
be f i t o r n o t . DCNL P a r a m e t e r s DCNL w : n d a r r a y , shape ( n f e a t u r e s , ) o r (

n f e a t u r e s + 1 , ) DCNL C o e f f i c i e n t v e c t o r . DCNL [ . . . ] ’

DCSP c = 0 . 0 DCNL DCSP i f (w. s i z e == (X. shape [ 1 ] + 1) ) : DCNL DCSP DCSP c = w[(−1) ]
DCNL DCSP DCSP w = w[ : ( −1 ) ] DCNL DCSP z = ( s a f e s p a r s e d o t (X, w) + c ) DCNL

DCSP yz = ( y ∗ z ) DCNL DCSP r e t u r n (w, c , yz )

g i t h u b / s c i k i t −l e a r n / s c i k i t −l e a r n / s k l e a r n / l i n e a r m o d e l / l o g i s t i c . py 39

Figure 1: A Python function with its extracted declaration, docstring, body and repository metadata.

System BLEU
valid. test

Code-to-docstring 14.03 13.84
Docstring-to-code (base) 10.32 10.24
Docstring-to-code (backtransl.) 10.85 10.90

Table 3: Code documentation and code genera-
tion accuracy (multi-bleu.perl).

semi-synthetic corpus to the main parallel cor-
pus to train another code generation model, with
the same hyperparameters as above, according to
the backtranslation approach of Sennrich et al.
(2016a).

3.2 Results

We report BLEU scores for our models in table 3.
Backtranslation provides a moderate improvement
of 0.5− 0.6 BLEU points over the base model.

Both tasks on this dataset appear to be very
challenging, in comparison with the previously
published results in the 60 − 85 BLEU range by
Oda et al. (2015) and Yin and Neubig (2017)
on other Python corpora (DJANGO and Hearth-
stone), which are unusually high compared to
machine translation between natural languages,
where reaching 40 BLEU points is challenging.
While BLEU is only a shallow approximation of
model accuracy, these large differences are suffi-

cient to demonstrate the challenging nature of our
dataset compared to the existing datasets. We con-
jecture that this indicative of the strength of our
dataset at representing the true complexity of the
tasks.

4 Conclusions

We argue that the challenging nature of code doc-
umentation and code generation is not well rep-
resented by the existing corpora because of their
drawbacks in terms of noise, size and structural
properties.

We introduce a large and diverse parallel corpus
of Python functions with their docstrings scraped
from public repositories. We report baseline re-
sults on this dataset using Neural Machine Trans-
lation, noting that it is much more challenging
than previously published corpora as evidenced by
translation scores. We argue that our corpus bet-
ter captures the complexity of code documentation
and code generation as done by human program-
mers and may enable practical applications.

We believe that our contribution may stimu-
late research in this area by promoting the devel-
opment of more advanced models that can fully
tackle the complexity of these tasks. Such mod-
els could be, for instance, integrated into IDEs to
provide documentation stubs given the code, code
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stubs given the documentation or context-aware
autocomplete suggestions. As future work, we en-
courage the creation of similar corpora for other
programming languages which support standard-
ized code documentation, such as Java.

Finally, we hope that this research area even-
tually improves the understanding and possible
replication of the human ability to reason about
algorithms.
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Abstract 

Corpus is a valuable resource for in-

formation retrieval and data-driven 

natural language processing systems, 

especially for spoken dialogue re-

search in specific domains. However, 

there is little non-English corpora, par-

ticular for ones in Chinese. Spoken by 

the nation with the largest population 

in the world, Chinese become 

increasingly prevalent and popular 

among millions of people worldwide. 

In this paper, we build a large-scale 

and high-quality Chinese corpus, 

called CSDC (Chinese Spoken Dia-

logue Corpus). It contains five do-

mains and more than 140 thousand di-

alogues in all. Each sentence in this 

corpus is annotated with slot infor-

mation additionally compared to other 

corpora. To our best knowledge, this is 

the largest Chinese spoken dialogue 

corpus, as well as the first one with 

slot information. With this corpus, we 

proposed a method and did a well-

designed experiment. The indicative 

result is reported at last.   

1 Introduction 

Spoken dialogue system is regarded as the origi-

nal form of the famous Turing test, as well as a 

long goal in artificial intelligence and natural lan-

guage processing field. Though much progress 

has achieved, the research for spoken dialogue in 

specific domains faces many challenges, such as 

query understanding and the response generation 

and so on. Large-scale conversation corpus with 

rich annotation will offer great support to the re-

search. 

With the development of network and commu-

nication technology, there is a vast amount of data 

available documenting human communication. 

Much of them could be used, perhaps after some 

preprocessing, to train a dialogue system. English 

receives much more research attention than any 

other languages. In the last few decades, several 

English conversation corpora have been pub-

lished, such as Carnegie Mellon Communicator 

Corpus (Bennett and Rudnicky,2002), Dialog 

State Tracking Challenge (DSTC) (Williams et 

al.,2013) and DIALOG mathematical proof da-

taset (Wolska et al., 2004). However, little re-

search on other language discourse have been re-

ported, which limits the growing research interest 

in these languages.  

In this paper, we mainly focus on Chinese cor-

pus creation for its wide range of use and its popu-

larity. To overcome this problem, we build a large-

scale corpus of spoken dialogue system, which 

consists of five domains and more than 140 thou-

sand dialogues. To our best knowledge, it is the 

largest scale Chinese spoken dialogue corpus. 

Moreover, different to all other corpora including 

ones in English and any other languages, each 

sentence in our corpus is annotated with rich slot 

information. It is the first corpus annotated with 

this kind of information, which will play a major 

role in building spoken dialogue system. 

The structure of the paper is as follows. Section 

2 introduces some related works on spoken dia-

logue corpus. Section 3 lays out the process of 

corpus construction and the statistics about our 

corpus. Section 4 proposes a method combination 
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with the constructed corpus and presents the re-

sult. Section 5 gives the conclusions to end the 

paper. 

2  Related word 

In this section, we review some English corpus 

and some related efforts for building Chinese cor-

pus. Since there are many English corpora, we just 

list some examples. 

1) Switchboard dataset (Godfrey et al.,1992)  

One popular corpus is Switchboard dataset 

(Godfrey et al.,1992). It consists of approximately 

2,500 dialogues over the phone from 500 speak-

ers, along with word-by-word transcriptions. 

About 70 casual topics were provided, of which 

about 50 were frequently used. The corpus has 

been used for a wide variety of other tasks, includ-

ing the modeling of dialogue acts such as 

‘statement’, ‘question’, and ‘agreement’ (Stolcke 

et al., 2000). 

2) The Ritel corpus (Rosset and Petel, 2006) 

It is a small dataset of 528 spoken questions 

and answers in a conversational format. The pur-

pose of the project was to integrate spoken lan-

guage dialogue systems with open domain infor-

mation retrieval systems, with the end goal of al-

lowing humans to ask general questions and itera-

tively refine their search. The questions in the 

corpus mostly revolve around politics and the 

economy, along with some conversations about 

arts and science-related topics. 

3) The DIALOG mathematical proof dataset 

(Wolska et al., 2004) 

It is a Wizard-of-Oz dataset involving an auto-

mated tutoring system that attempts to advise stu-

dents on proving mathematical theorems. The 

system is completed by using a hinting algorithm 

that provides clues when students come up with 

an incorrect answer. At only 66 dialogues, the da-

taset is tiny and consists of a conglomeration of 

text-based interactions with the system, as well as 

think-aloud audio and video footage recorded by 

the users as they interacted with the system. 

Chinese corpus is few, and we list two relative-

ly popular ones. 

4) CASIA-CASSIL(Zhou) 

It is a large-scale corpus of Chinese casual tele-

phone conversations in tourism domain. The 

source data is collected from a large number of 

spontaneous telephone recordings up to the pre-

sent. After a strict selection, only a minority of 

dialogs remains, which are with good voice 

quality, enough turns and strictly belong to re-

quired domains. 

5) Lancaster Los Angeles Spoken Chinese 

Corpus (LLSCC) 

It is a corpus of spoken Mandarin Chinese. The 

corpus is composed of 1,002,151 words of dia-

logues and monologs, both spontaneous and 

scripted, in 73,976 sentences and 49,670 utterance 

units (paragraphs). LLSCC has seven sub-corpora, 

Conversations: Telephone Calls Play & Movie 

Transcripts, TV Talk Show Transcripts: Debate 

Transcripts Oral Narratives and Edited Oral Nar-

ratives. 

Both Chinese corpora cannot fulfill the demand 

for Chinese spoken dialogue system research. So 

we built a larger and richer corpus in this paper. 

3 Corpus Creation  

In this section, we describe the steps we took in 

the construction of our corpus.  Figure 1 gives an 

overview of the main workflow of our corpus cre-

ation. We will illustrate the details in the following 

subsections.  

 

Figure 1 Overview of the main workflow of our 

corpus creation 

3.1 Collection 

The source of the corpus is very crucial to deter-

mine the quality of corpus. The dialogue data in a 

specific domain in real life is often combined with 

commercial secrets as well as with peoples’ pri-

vate information. For example, when a person 

books ticket through phone, he/she has to offer 

private information. So it is hard to obtain such 

data from a website or by some free methods.  

That is why there is a little corresponding corpus 

of dialogue in particular domains.    

Audio data

Audio to text

Processing

 Annotation

 Analysis

Dataset

Raw 

data
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While collecting original data, we are assisted 

by volunteers, who offer the data from their real 

life for research purpose. The data consists of their 

audio data (phone recorders) while they call for 

some service, such as booking restaurant or hotel. 

Since we have got the original data, we then 

employ speech recognition technology to transfer 

audio to text. 

3.2 Data Processing and Annotation 

Since we have the real data, we make two steps fol-

lowing. Firstly, for protecting the privacy right, we 

remove the private information. We used the encod-

ed token to replace any information which may 

release private information such as name, phone 

number and so on.   

Second, after analyzing the data, we find that 

there is much rough data, due to either the error of 

transferring audio to text or meaningless sentences 

caused by the bad habits of oral communication. 

Furthermore, many people are hired as expert 

assisted roles to select high-quality data and make 

the text more formal. 

Slot information is required in specific domains. 

We manually extracted the slot as attachment in-

formation of dialogues.  The slot number is limited 

in one specific area, for example in the domain of 

weather querying there are only two slots, time and 

location. Table 1 gives the example of the final ver-

sion in booking hotel domain. 

 

 

Table 1: dialogue example in booking hotel 

domain. 

The content in braces is the corresponding Eng-

lish version for better understanding. The content in 

brackets is corresponding slots information. 0 

means the slot is empty at present.  In this example, 

the slots are room type, number of rooms, the data 

check in, stay time, customer name and phone 

number. 

3.3 Analysis  

As a result, we have got the final version corpus 

of 5 domains. The detailed statistics are 

summarized in this subsection.  

Table 2 gives the slot distribution in each domain. 

 

 

Table 2: slot distribution in each domain 

We can see that booking hotel domain has the 

most slots. Weather query and top up has only two 

slots. 

Figure 2 gives the dialogue distribution in each 

domain. 

Figure 2: The dialogue distribution in each do-

main 

From Figure 2, we know that booking hotel 

domain has the most dialogues, and weather query 

domain has the least dialogues. This distribution 

relates closely to the slot distribution. 

Figure 3 gives the sentence length distribution 

of each domain. 

q: 您要什么房间，要几间？ {What type room will you book, 

and how many rooms do you want?} [0] [0] [0] [0] [0] [0] 

a: 我想订三间总统套间。 { I'd like to reserve three presi-

dential suites } [0] [0] [0] [0] [0] [0] 

q: 住几天您？ { How long are you going to stay? } 

[总统套间] [三] [0] [0] [0] [0] 

a: 就住一天就行。 { one day is ok} 

[总统套间] [三] [0] [0] [0] [0] 

q: 您贵姓啊？   {would you like to offer you name ,sir?} 

[总统套间] [三] [0] [一天] [0] [0] 

U: 我的称呼是吴佳。 {My name is wujia} 

[总统套间] [三] [0] [一天] [0] [0] 

M: 什么时候来？ { When would you like to check in? } 

[总统套间] [三] [0] [一天] [吴佳] [0] 

U: 大概五月八号下午五点吧。 { At about five p.m. on May 

8th } 

[总统套间] [三] [0] [一天] [吴佳] [0] 

M: 你给我您的电话。 { sir, please tell my your phone number } 

[总统套间] [三] [五月八号下午五点] [一天] [吴佳] [0] 

U: 联系号码是 012321322。    {it’s 012321322 } 

 [总统套间] [三] [五月八号下午五点] [一天] [吴佳] [0] 

M: 好的，吴佳，为您预订了五月八号下午五点总统套间三间。
{ ok, sir, we reserve three presidential suites for you at five p.m. on 

May 8 } 

[总统套间] [三] [五月八号下午五点] [一天] [吴佳] [012321322] 

Domain slot num 

Booking 

restaurant 
Time/number of people/name  3 

Booking 

hotel 

Room type/number of rooms/time 

to check in/stay time/name/phone 

number  

6 

Weather 

query 
Time/location  2 

Ordering 

taxi 

Destination/departure/name/phone 

number  
5 

Top up Phone number/ Amount of money 2 
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Figure 3: The sentence length distribution 

From Figure 3, we know that the average 

length of sentences in each domain is similar. 

Figure 4 gives the Dialogue turn distribution in 

each domain. 

 

 

Figure 4: The Dialogue turn distribution 

From Figure 4, we can see booking hotel and 

ordering taxi needs more turns to finish the dia-

logue.  This distribution relates closely to the slot 

distribution. It is easy to understand that more 

slots, more turns required to obtain all infor-

mation. 

Figure 5 gives the word distribution in the 

sentences. 

Figure 5: The word distribution in sentence 

From Figure 5, we know that average length of 

sentences in each domain is similar. 

From the statistics, we can see that the distribu-

tion of our corpus is relatively stable. 

4 Method Based on the Corpus 

Based on the corpus, we develop a model for spo-

ken dialogue research in specific domains. The 

basic idea of the method is to introduce slot in-

formation in the corpus into the sequence-to-

sequence framework. 

After a query is given, the first slot is set as ze-

ro as there is no slot information at the beginning. 

Slot information is extracted at next turn, so the 

slot state is changed by fulfilling the correspond-

ing information. The dialogue system works grad-

ually like this and as a result, finish the dialogue 

when all the slot information received. 

Evaluation metrics for dialogue is still an open 

problem. At present, the popular metric is the 

turns that the model needs to fulfill all the slots 

and finish the process. The experiment result 

shows that combination with the created corpus, it 

requires almost the same turn as used in real life. 

However, there are still many open problems 

worthy researching. 

5 Conclusion 

In this paper, we introduce a high-quality and 

large corpus for spoken dialogue research in spe-

cific domains. The corpus consists of five differ-

ent domains and more than 140 thousand dia-

logues. All the data are created based on real life 

data. As our best knowledge, this is the largest 

Chinese spoken dialogue corpus, as well as the 

first one with rich slot information. We believe 

that the corpus will greatly support the spoken 

dialogue system research.   
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Abstract

We present the first study that evaluates
both speaker and listener identification for
direct speech in literary texts. Our ap-
proach consists of two steps: identification
of speakers and listeners near the quotes,
and dialogue chain segmentation. Evalua-
tion results show that this approach outper-
forms a rule-based approach that is state-
of-the-art on a corpus of literary texts.

1 Introduction

A literary work can be analysed in terms of
its conversational network, often encoded as a
graph whose nodes represent characters, and
whose edges indicate dialogue interactions be-
tween characters. Such a network has been
drawn for Hamlet (Moretti, 2011), Classical Greek
tragedies (Rydberg-Cox, 2011), as well as a set of
British novels (Elson et al., 2010).

To automatically construct these networks, it is
necessary to identify the speakers and listeners
of quoted speech. Past research on quote attri-
bution has mostly focused on speaker identifica-
tion (O’Keefe et al., 2012; He et al., 2013). In the
only previous study that attempts both speaker and
listener identification (Elson et al., 2010), there
was no formal evaluation on the listeners. Listener
identification can be expected to be challenging,
since they are more often implicit.

This paper presents the first evaluation on both
speaker and listener identification, with two main
contributions. First, we present a new model that
incorporates dialogue chain segmentation. We
show that it outperforms a rule-based approach
that is state-of-the-art on a corpus of literary texts.
Second, training data from the same author, or
even from the same literary genre, cannot be as-
sumed in a realistic scenario. We investigate the

amount of training data that is required for our
statistical model to outperform the rule-based ap-
proach.

2 Previous Work

Among rule-based approaches on speaker identi-
fication, most rely on speech verbs to locate the
speakers (Pouliquen et al., 2007; Glass and Ban-
gay, 2007; Liang et al., 2010; Ruppenhofer et al.,
2010).

For machine learning approaches, Elson and
McKeown (2010) treated the task as classifica-
tion, using features such as the distance between
quotes and speakers, the presence of punctuation
marks, etc. O’Keefe et al. (2012) reformulated the
task as a sequence labelling task. In the news do-
main, their statistical model outperformed a rule-
basd approach; in the literary domain, however,
the rule-based approach achieved the best perfor-
mance. This rule-based approach will be com-
pared with our proposed approach in our experi-
ments. Similar to our approach, He et al. (2013)
parsed the sentences near the quotation. Their
method, however, includes a manual preprocess-
ing step that extracts all name mentions in the text
and clusters them into character aliases, and so
cannot be directly compared with our approach,
which does not require preprocessing and thus can
be more easily applied to larger datasets.

3 Approach

Our task is to identify the speakers and listeners of
the quotes in a text. We count the system output as
correct if it identifies the specific text spans that
indicate the speakers and listeners of the quote.
When the text only implicitly identifies the speak-
ers and listeners, the mentions of these characters
that are closest to the quote are considered the gold
answer.
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We use a simple rule-based method to extract all
direct quotes. We then perform quote attribution
in a two-step process: speaker and listener identi-
fication from context, and dialogue chain segmen-
tation.

3.1 Speaker and listener identification from
context

The system first identifies the speakers and listen-
ers in the context around the quote. We extract
two sentences before and two sentences after each
quote for tagging, excluding the words within the
quote. We adopt a sequence labelling approach,
using a CRF model (Lafferty et al., 2001) to tag
each word as one of ‘speaker’, ‘listener’, or ‘nei-
ther’. For each word, we extract the following fea-
tures:

Word identity: The word itself.
POS: The POS tag is useful, for example, in

capturing the text spans that indicate possible en-
tities.

Head: The head of the word, extracted from the
dependency tree, can captue verbs that indicate di-
rect speech.

Dependency relation: The grammatical rela-
tion between the word and its head. As shown
by He et al. (2013), dependency relations of re-
ported speech verbs are useful in extracting speak-
ers, with ‘nsubj’ usually suggesting a speaker, and
‘nmod’ or ‘dobj’ favoring a listener.

Sentence distance: The location of the sentence
in relation to the quote (-1, -2, +1, or +2).

Paragraph distance: The number of paragraphs
that separate the word and the quote. This captures
the observation that a new paragraph usually sig-
nifies a change of speaker and listener.

Matching word in quote: A binary feature of
whether the word can be found within the quote.
As pointed out by He et al. (2013), the speaker
name is rarely found within the quote while the
reverse is true for the listener.

Initial word and POS: The first word in the sen-
tence and its POS tag are useful in capturing the
pattern of “[speech verb] [speaker]” that is often
found after a quote (e.g. “...” said Peter.).

3.2 Dialogue chain segmentation
In this step, we segment the quotes in a text into
dialogue chains. Each quote can be a continuation
of a dialogue, i.e., its speaker (listener) is the lis-
tener (speaker) of the preceding quote; otherwise,
it is the beginning of a new chain. As shown in

Table 1, we label each quote either as B(egin) or
C(ontinue).

Sentence Tag
(1) A centurion came to him, asking

for help: “...”
B

(2) Jesus said to him, “...” C
(3) But the centurion replied, “...” C
(4) When Jesus heard this he was

amazed and said to those who fol-
lowed him, “...”

B

Table 1: Quotes (1) to (3) form a dialogue chain;
(4) starts a new one.

Similar to the first step, we use a sequence
labelling approach with a CRF model (Lafferty
et al., 2001). The quotes in the whole document
are seen as one single sequence. For each quote,
we extract the following features:

Distance: The number of sentences separating
the current quote from the preceding one. The
closer the two quotes are, the more likely it is for
them to be in the same dialogue chain.

Speaker/Listener identity: Within a dialogue
chain, the speaker and listener of the nth quote
are the same as those in the (n + 2)th quote; their
identities are reversed, however, in the (n + 1)th

quote. To capture these patterns, we include eight
binary features that compare the predicted speak-
ers and listeners of the current quote with those of
the (n± 1)th quote and the (n± 2)th quotes.

Implicit: Two binary features — no extracted
speakers and listeners — capture the observation
that from the third quote in a dialogue chain, the
speakers and listeners can sometimes be omitted.

Pronoun: Two binary features — the extracted
speakers and listeners being pronouns — capture
the observation that from the third quote in a dia-
logue chain, the speakers and listeners can be re-
ferred to as pronouns.

After tagging (Table 1), the system fills in any
missing speakers and listeners. If two consecutive
quotes belong to the same chain, the system will
infer the speaker (listener) of one quote to be the
listener (speaker) of the other.

4 Baselines

4.1 Speaker and listener identification
Distance baseline. We re-implemented the rule-
based approach that was state-of-the-art for liter-
ary texts (O’Keefe et al., 2012), achieving the best
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performance on a re-annotated version of the El-
son et al. (2010) dataset. We take as entities all
pronouns and all words tagged as person and orga-
nization by the Stanford NER tagger (Finkel et al.,
2005). We compiled a list of quotative verbs by re-
trieving the verbs closest to the quotes in the train-
ing set.1

Dependency baseline (Dep). We parsed the
sentence that contains the quote, excluding the
words within the quote and replacing the trailing
comma, if any, with a full-stop. If a quotative verb
is modified by a word with the dependency rela-
tion ‘nsubj’, that word is extracted as the speaker;
if it is modified by a word with ‘dobj’ or ‘nmod’,
that word is extracted as the listener.

4.2 Dialogue chain segmentation

Elson et al. (2010) used the distance between two
quotes to determine whether they belong to the
same chain. We use the same feature to train a
CRF model for chain segmentation.

5 Data

We tested our approach on two datasets: the novel
Emma and the New Testament.

The Emma set was taken from the corpus of
19th-century British novels compiled by Elson and
McKeown (2010). Since the original annotations
did not annotate listeners and did not indicate the
text span of the speaker that is connected with
the quotation, we performed re-annotation on the
Emma portion of the corpus.2 This dataset con-
tains 737 quotes; 63% of the quotes belong to dia-
logue chains of length two or more. We performed
a four-fold cross validation on this set since each
fold cannot have too few dialogue chains for
meaningful evaluation on chain segmentation.

The New Testament (NT) set contains a total of
1628 quotes3; 43% of the quotes belong to dia-
logue chains of length two or more. We divided
the text into seven folds following a natural divi-
sion of the books.

1We require each verb to be attested at least two times in
the training set.

2Two annotators re-annotate the first 100 quotes. The
kappa was 0.89/0.83 for speakers/listeners. Most disagree-
ments involved conversations with three or more characters,
where the identity of the listener was often unclear. One of
the annotators completed the rest of the re-annotation.

3Please see Lee and Yeung (2016) for details of this
dataset. The paragraph distance feature was omitted since
the corpus did not contain information on paragraphs.

6 Experimental results

We used the Stanford parser (Manning et al., 2014)
for POS tagging and dependency parsing, and
CRF++ (Kudo, 2005) for training CRF models.

6.1 In-domain

As shown in Tables 2 and 3, for Emma,
our approach achieved an average accuracy of
52.46/28.46 for speakers/listeners. For the NT, the
average accuracies for speakers and listeners are
66.09 and 56.97.4 For both datasets, our approach
significantly outperformed5 both baselines.

Dataset→ Emma NT
↓Model no seg w/ seg no seg w/ seg
Distance 40.06 43.73 45.39 45.61
Dep 8.98 10.20 56.63 56.63
Proposed 42.11 52.46 66.05 66.09

Table 2: Speaker identification accuracy, be-
fore and after dialogue chain segmentation (Sec-
tion 3.2).

Dataset→ Emma NT
↓Model no seg w/ seg no seg w/ seg
Distance 6.95 13.62 24.91 26.92
Dep 5.31 6.53 25.29 29.83
Proposed 17.99 28.46 52.94 56.97

Table 3: Listener identification accuracy, be-
fore and after dialogue chain segmentation (Sec-
tion 3.2).

As shown in Table 4, our dialogue chain seg-
mentation achieved 89.8 precision and 78.3 recall
for Emma, and 90.2 precision and 89.5 recall for
the NT. It significantly improved6 the F-measure
over the distance baseline.

The segmentation step yielded a higher degree
of improvement in accuracy for Emma than for the
NT, due to differences in literary style. The system
was often able to extract speakers and listeners in
the NT from the context around the quote, and so
did not benefit much from dialogue chain bound-
ary. In novels such as Emma, however, the listen-
ers were often not specified in the context around

4Among utterances with no speaker/listener, the system
correctly output “no speaker” at 60% (out of 10) in Emma
and 29% (out of 7) in NT, and correctly output “no listener”
at 73% (out of 42) in Emma and 80% (out of 195) in NT.

5At p ≤ 0.001 by McNemar’s test for all cases.
6At p ≤ 0.001 by McNemar’s test.
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Figure 1: Accuracy of the proposed approach and distance baseline on training sets of different sizes for
Emma (left) and the New Testament (right).

the quote and the speakers were sometimes omit-
ted. This led to lower performance in the first iden-
tification step, which only considered the context
around the quote, but greater improvement with
the segmentation step.

Most errors involved speakers embedded within
a long description, where the act of speaking was
not explicitly stated. Consider “... and Harriet then
came running... which Miss Woodhouse hoped
very soon to compose.”, which serves as the de-
scription of a quote. Harriet’s role as the speaker
was only implied and could not be captured by
the system. Another source of error was the verb
“hear”, which reversed the usual pattern of the
subject being the speakers and the object being the
listeners. For example, in the sentence “They were
only hearing, ‘...”’, the system tagged the word
“they” as the speaker instead of as the listener.
Overall, listener identification is less accurate than
speaker, because listeners were less often explic-
itly stated. It is particularly challenging in single-
quote chains, where the preceding and following
quotes cannot provide hints.

Dataset→ Emma NT
↓Model P/R/F P/R/F
Elson et al. 91.2/54.2/67.9 90.3/66.4/76.5
Proposed 89.8/78.3/83.7 90.2/89.5/89.9

Table 4: Precision/recall/F-measure for our dia-
logue chain segmentation (Section 3.2), and that
of Elson et al. (2010).

6.2 Out-of-domain

One advantage of the distance-based baseline is
lesser reliance on in-domain training data. Indeed,
our statistical approach benefits from learning the
names of the frequent speakers and listeners, as

well as the speech-reporting style, from the same
text. In practice, however, one may not assume the
availability of a large amount of training data from
the same text or author, or even from the same lit-
erary genre. We therefore re-investigate the per-
formance of our approach when it has no access to
the character names, and when it has mismatched,
or limited in-domain training data.

Frequent speakers/listeners. To eliminate
knowledge of the frequent speakers and listen-
ers gained by our proposed model, we replaced
all words tagged as entities with “PERSON”. In
this setting, the speaker and listener identification
accuracy of our proposed approach decreased to
51.22/27.78 for Emma and 65.97/57.15 for the NT.
These results, however, are still significantly better
than both baselines.7

Limited training data. The accuracy dropped to
below 25% for all cases with mismatched training
data. When trained on the NT, the system failed
to capture speakers that appear after the quote
(e.g. “...” said her father.), a pattern common in
Emma but rare in the NT. Inversely, when trained
on Emma, the system could not recognize the fre-
quent NT pattern “[speaker] said to [listener]”.

As an alternative solution, we investigated how
much in-domain data would be needed for our
statistical model to outperform the distance-based
baseline. As shown in Figure 1, relatively little an-
notation effort would be sufficient: our model sig-
nificantly outperformed all baselines with a train-
ing set of 200 quotes for Emma, and a training set
of 20 quotes for the NT.8

7p ≤ 0.001 by McNemar’s test.
8p ≤ 0.001 by McNemar’s test for all cases.
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7 Conclusion

We have proposed a novel approach for quote at-
tribution that incorporates dialogue chain segmen-
tation. We report the first evaluation on listener
identification. For speaker identification, we show
that our approach outperforms the state-of-the-art
rule-based approach for literary texts (O’Keefe
et al., 2012). Further, we show that our results can
be generalized to out-of-domain literary texts with
a modest amount of training data annotation.
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Abstract

The psycholinguistic properties of words,
namely, word familiarity, age of acqui-
sition, concreteness, and imagery, have
been reported to be effective for educa-
tional natural language-processing tasks.
Previous studies on predicting the val-
ues of these properties rely on language-
dependent features. This paper is the
first to propose a practical language-
independent method for predicting such
values by using only a large raw corpus
in a language. Through experiments, our
method successfully predicted the values
of these properties in two languages. The
results for English were competitive with
the reported accuracy achieved using fea-
tures specific to English.

1 Introduction

The psycholinguistic properties of words, namely,
word familiarity, age of acquisition, concreteness,
and imagery, are measured real values of human
responses in cognitive experiments in which par-
ticipants are presented with the written or spo-
ken form of words (Coltheart, 1981). They are
not only important for psycholinguistics but for
natural language processing (NLP) because they
are effective features for educational applications
such as lexical simplification (Jauhar and Specia,
2012). In spite of their importance, dictionaries
describing them are rare and small. To enlarge
these dictionaries, previous methods have been
used to predict the values of these properties using
supervision from a small dictionary and features
from other language resources. The predicted val-
ues can be further used as features for other NLP
tasks and provide excellent results (Mohler et al.,
2014; Köper and Im Walde, 2016; Paetzold and

Specia, 2016).
However, all previous studies relied on

language-specific features; thus, their methods
cannot be applied to other languages. When
predicting the psycholinguistic properties, con-
sidering the word domains is quite effective. For
example, “bread” and “onion” have high concrete-
ness values of 622 and 632, respectively, while
those of “economy” and “finance” are low, i.e.,
284 and 371, respectively1. Evidently, capturing
word domains, such as “food” and “economics”,
is effective for roughly predicting the range of
values. To capture word domains, previous studies
used combinations of semantic features, such as
WordNet (Miller, 1995), and word frequencies
from corpora in various domains. Since both are
language-specific, previously proposed methods
are language-dependent.

In this study, we propose a simple but practical
language-independent method for predicting the
psycholinguistic properties of words. It involves
using only a large raw corpus of the target lan-
guage. Our key idea is two-fold. First, instead
of using the combination of semantic features and
word frequencies, we first decompose the raw cor-
pus by using latent Dirichlet allocation (LDA) and
use the probability of words given each topic to
capture the word domains. Second, we apply
a multi-task Gaussian process regression (GPR),
which enables the joint prediction of these proper-
ties. This captures the relations among the prop-
erties and can improve predictive accuracy. Our
experimental results are competitive with those in
which language-dependent features are used.

Our method is also useful with linear models
for analyzing the obtained prediction models. The

1The values are taken from (Coltheart, 1981), which en-
codes all properties within fixed ranges. The larger values
indicate the more concrete, or physical, what the word signi-
fies is.
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weight of each topic indicates how well the ob-
tained prediction models capture domains. This
characteristic is useful for error analysis and fur-
ther improving the prediction models.

2 Task Setting

2.1 Dataset

First, we briefly introduce the available psycholin-
guistic databases. The Machine Readable Dictio-
nary (MRC) psycholinguistic database (Coltheart,
1981) is one of the largest for English and also
used in psycholinguistic social studies (Schwartz
et al., 2013). The 27 psycholinguistic properties
of words in the database also contain easily ob-
tainable lexical properties2. By excluding these
properties, 4 of the 27 properties are considered
important for NLP applications: familiarity, age
of acquisition, concreteness, and imagery. Each
property is available for a different set of vocab-
ulary. Familiarity is the frequency with which a
word is seen, heard, or used daily and available
for 9,392 words. Age of acquisition is the age at
which a word is learned and available for 3,503
words. Concreteness is the degree of how pal-
pable the object to which the word refers is and
available for 8,228 words. Imagery is the intensity
with which a word arouses images and available
for 9,240 words.

These properties are measured through ques-
tionnaires given to adult native speakers of the lan-
guage. For Japanese, we can use a word familiar-
ity and imagery database for Japanese (Amano and
Kondo, 1998).

2.2 Formalization

Let T be the number of psycholinguistic proper-
ties, e.g., the MRC database has T = 4 properties.
Let V be the set of all the vocabulary. We have
supervision for some words in V . Let S ⊂ V be
the set of words with supervision. Then, we have
training data D = {(yv,xv)|v ∈ S}, in which
yv is a T -dimensional vector filled with the val-
ues of the T properties of word v, and x is a K-
dimensional feature vector whereK is the number
of features. Then, the goal of the task is, given
new word v′ ∈ V \ S, to predict the vector of its
properties, namely yv′ .

2The full list of the 27 properties can be found
in http://websites.psychology.uwa.edu.au/
school/MRCDatabase/uwa_mrc.htm

For x, the choice of features to use has
been extensively studied for predicting familiarity.
Tanaka-Ishii and Terada (2011) investigated the
relation between corpus frequency and familiarity
and found that high correlation can be achieved
using the logarithm of frequencies of various cor-
pora because each corpus is focused on different
domains. Unlike their study, we have only one
large raw corpus for each language.

3 Proposed Method

As mentioned above, the key idea of our method
is two-fold. First, we use LDA (Blei et al., 2003)
to calculate the p(word|topic) probability from a
large raw corpus. The number of topics K is a
hyper-parameter of LDA. This probability can be
regarded as (and used as) a substitute of word fre-
quencies from various corpora. Although we have
only one raw corpus, LDA enables us to use K
probabilities. These enriched features enable us to
effectively capture domains of words.

Second, we use multi-task GPR (Bonilla et al.,
2008) with which we can predict y jointly. Previ-
ous studies built a predictor for each element of y,
i.e., each property, independently. Joint prediction
can capture the relations among the psycholinguis-
tic properties. This enables us to take the values of
easy-to-predict properties into account when pre-
dicting the values of difficult-to-predict properties.
Thus, joint prediction can boost predictive accu-
racy.

4 Experiments

We conducted experiments on English and
Japanese. The proposed method requires only one
large raw corpus for each language. Wikipedia
(Wiki) can be used for this thanks to its avail-
ability in many languages. For comparison,
we used general corpora, i.e., British National
Corpus (BNC) by The BNC Consortium (2007)
for English, and BCCWJ (Maekawa, 2007) for
Japanese. In each language, we extracted the top
100,000 words in frequency on Wikipedia and ig-
nored other words in the experiment using gensim
3. For Japanese word segmentation and lemmati-
zation, we used (Kudo, 2005).

We used the datasets described in §2 as the psy-
cholinguistic database. For each property from the
word set of these candidates, we chose words that

3
https://radimrehurek.com/gensim/wiki.html
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Model Feature set Familiarity Age of Acquisition Concreteness Imagery
- - ρ r ρ r ρ r ρ r

FREQ(Wiki) 0.681 0.667 0.391 0.412 0.041 0.049 0.215 0.244
SVR-RBF LDA(Wiki) 0.814 0.804 0.750 0.754 0.766 0.760 0.737 0.726
SVR-RBF w2v(Wiki) 0.692 0.659 0.562 0.563 0.819 0.818 0.693 0.689
SVR-RBF All 0.838 0.821 0.774 0.776 0.823 0.820 0.762 0.752

Ridge LDA(Wiki) 0.836 0.820 0.763 0.759 0.773 0.766 0.741 0.722
Ridge w2v(Wiki) 0.660 0.635 0.550 0.547 0.833 0.830 0.702 0.697
Ridge All 0.849 0.823 0.770 0.772 0.843 0.837 0.767 0.757

GPR-RBF LDA(Wiki) 0.829 0.820 0.766 0.764 0.777 0.771 0.747 0.735
GPR-RBF w2v(Wiki) 0.683 0.653 0.557 0.555 0.827 0.826 0.692 0.687
GPR-RBF All 0.845 0.829 0.781 0.782 0.819 0.818 0.769 0.759
JGPR-RBF All 0.854 0.838 0.793 0.789 0.818 0.814 0.772 0.762

FREQ(BNC) 0.777 0.749 0.339 0.365 0.062 0.062 0.045 0.050
SVR-RBF LDA(BNC) 0.860 0.840 0.754 0.767 0.610 0.602 0.648 0.646
SVR-RBF w2v(BNC) 0.697 0.683 0.641 0.631 0.858 0.857 0.796 0.786
SVR-RBF All 0.874 0.860 0.807 0.809 0.862 0.859 0.817 0.807
GPR-RBF LDA(BNC) 0.855 0.836 0.757 0.770 0.601 0.589 0.648 0.646
GPR-RBF w2v(BNC) 0.698 0.687 0.657 0.650 0.850 0.846 0.785 0.777
GPR-RBF All 0.869 0.856 0.824 0.825 0.871 0.866 0.826 0.816
JGPR-RBF All 0.867 0.852 0.833 0.839 0.871 0.865 0.831 0.820
(Paetzold and Specia, 2016) 0.863 0.846 0.871 0.862 0.876 0.869 0.835 0.823

Table 1: Prediction Results of English. Larger values imply better predictive accuracy.

completely matched the spelling of those that ap-
pear in the database and used these words as the
vocabulary set. As a result, we obtained |V | =
1, 842 words for the MRC database 4.

From the 1, 842 words, we took 500 for the test
data. We used the other 1, 342 words for train-
ing and development, over which the parameters
of methods are tuned using 5-fold cross validation.

We compared the following feature sets.
FREQ(corpus name) is the log of word fre-
quency in the corpus name, and LDA(corpus
name) is the log of word probability given each
topic calculated by applying LDA to corpus name.
We used the gensim implementation and fixed
the number of topics to 150 for both English
and Japanese. For all 150 topics, we calcu-
lated log p(word|topic) and used all the 150 log-
probabilities as features. w2v(corpus name)
are word-embedding features obtained using the
Word2Vec toolkit (Mikolov et al., 2013) trained on
corpus name. We used the Word2Vec setting for

4The number of these target words was lower than that
given in Paetzold and Specia (2016) because 1) we only used
the words that had all four properties, and 2) many words
that share the same spelling are doubly registered for verbs
and nouns in the MRC database.

each property according to p. 438 of Paetzold and
Specia (2016). All is the concatenated features of
FREQ, LDA, and w2v.

We compared the following regression models5.
Two are linear models: support vector regression
(SVR) (Smola and Vapnik, 1997) with a linear ker-
nel and Ridge regression (Tikhonov, 1963), de-
noted as Ridge, a linear regression with penalties
(regularization) added to keep parameters from
taking extreme values. They have a weight for
each feature; thus, each feature’s importance can
be obtained from its weight. In contrast, meth-
ods using radial-basis function (RBF) kernels do
not provide weight vectors, via which we cannot
obtain each feature’s importance. However, we
used SVR-RBF, SVR with a radial-basis function
(RBF) kernel, GPR-RBF, GPR with an RBF ker-
nel, and JGPR-RBF, GPR with an RBF kernel
and joint prediction (§3) since these models can
take into account combinations of features using
the RBF kernels, which are useful for combining

5The results of SVR with a linear kernel and Ridge in
BNC were lower than the other models and were omitted
from Table 1 due to space limitations. We used scikit-learn
(http://scikit-learn.org/) to implement all mod-
els and will release them after acceptance.

332



both domain and semantic features.

4.1 Quantitative Results

For evaluation measures, as done by Paetzold and
Specia (2016), we used Pearson’s correlation co-
efficient (r) and Spearman’s rank correlation coef-
ficient (ρ) between the predicted and target proper-
ties of a word in the test set. Intuitively, the former
shows accurateness in predicting the values of the
target property, and the latter shows that of pre-
dicting the ranking of that property.

The experimental results are listed in Table 1.
The bold values are the largest in each column
in a section. When predicting familiarity and
age of acquisition, we can see that LDA consis-
tently outperformed w2v. This suggests that do-
mains are more informative than semantic features
for predicting these two properties. In contrast,
when predicting concreteness and imagery, w2v
performed better than LDA except when predict-
ing imagery with Wiki features. This suggests
that semantics is more important than domains
for predicting these. This matches our intuition
of psycholinguistic properties because familiarity
and age of acquisition mainly reflect the difficulty
of words, while concreteness and imagery have lit-
tle to do with difficulty and more to do with the
semantic aspects of words.

We can also see that BNC roughly performed
better than Wiki. This shows that BNC, a gen-
eral corpus, is better for predicting psycholinguis-
tic properties than Wikipedia. One possible expla-
nation for this phenomena could be that BNC is
manually tuned to be general and to include typi-
cal usage of the language, while Wikipedia, a col-
lection of user content, is noisy.

All performed consistently better than LDA and
w2v. Thanks to joint prediction, JGPR-RBF per-
formed better than GPR-RBF in almost all cases
and performed the best out of the all models in
most cases, especially when used for Wiki. This
suggests that joint prediction is robust against the
noise in Wikipedia. At the bottom of Table 1, we
cite the results by Paetzold and Specia (2016)6,

6Their results are not directly comparable to ours because
their test set used in the experiments was not known; thus,
different from ours. We are also interested in the differ-
ence of verbs and nouns with the same spelling. We also
re-implemented and applied their bootstrapping method to
our language-independent features. This re-implementation
slightly (below 0.01) outperformed the Ridge regression,
on which their method is based, but performed worse than
JGPR-RBF.

Model Feature set Familiarity Imagery
- - ρ r ρ r

FREQ(Wiki) 0.225 0.224 0.119 0.076
GPR-RBF LDA(Wiki) 0.512 0.492 0.554 0.643
GPR-RBF w2v(Wiki) 0.576 0.576 0.600 0.682
GPR-RBF All 0.607 0.610 0.650 0.727
JGPR-RBF All 0.609 0.612 0.650 0.727

FREQ(BCCWJ) 0.272 0.234 0.187 0.120
GPR-RBF LDA(BCCWJ) 0.477 0.485 0.517 0.539
GPR-RBF w2v(BCCWJ) 0.592 0.608 0.624 0.700
GPR-RBF All 0.620 0.623 0.662 0.727
JGPR-RBF All 0.626 0.624 0.659 0.727

Table 2: Prediction Results for Japanese

Weight Top words Interpretation
2.387 the, he, and, in, his, to,

of, was, as, at
General topic

1.851 food, rice, restaurant,
fruit, sugar, beer, milk,
meat, tea

Food

0.919 john, st, william, sir,
american, de, thomas,
bishop, henry, charles

Peoplefs names

Table 3: Top 3 highly weighted topics

who used language-dependent features. Our re-
sults were competitive with theirs, although our
method uses features obtained only from the raw
corpus, i.e., language independent.

4.1.1 Prediction Results for Japanese

In Japanese, only familiarity and imagery are
available (Amano and Kondo, 1998). The number
of words whose familiarity and imagery were an-
notated was 2, 475. Among those, we used 2, 030
words for training and development. A disjoint set
of 445 words were used for test.

For simplicity, we show the results of the best
two models, GPR-RBF and JGPR-RBF in Ta-
ble 2. We can first see that frequencies of Japanese
corpora have lower correlation values with famil-
iarity and imagery in Japanese compared with En-
glish. This implies that, overall, in this experi-
mental setting, Japanese psycholinguistic proper-
ties were more difficult to predict than those of
English. We discuss this reason in §5. Similar
to English, All consistently performed the best in
each corpus, and the general corpus (BCCWJ)
performed better than Wikipedia. We can also see
that JGPR-RBF outperformed GPR-RBF in al-
most all cases, presumably thanks to joint predic-
tion.
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4.2 Qualitative Results

Table 3 lists the top 3 topics highly weighted using
Ridge with LDA(Wiki) in Table 1 and words in
the topics when predicting word familiarity. The
most weighted topics are called “general” topics
and contain words that appear in most of the doc-
uments in the dataset. Since words that appear
in every document tend to have high frequency,
this result is also consistent with that by Tanaka-
Ishii and Terada (2011), in which word familiarity
roughly correlates with word frequencies.

The next weighted topics are those related to
food and peoplefs names. This also matches our
intuition of “familiarity” because we use these
words in daily life, and they usually do not have
negative connotations. In Table 3, stop words are
omitted from these topics’ top-word lists except
for the general topic.

5 Discussion

Frequency is a good estimator for difficulty-
related properties, namely familiarity and age of
acquisition. Specifically, familiarity was previ-
ously reported to be one (Tanaka-Ishii and Ter-
ada, 2011). Since p(word|topic) is the frequency
of words in the topic except for the normalizing
constant, it can naturally be a good estimator for
the properties for which frequency is a good es-
timator. A corpus is a collection of documents
in various domains, and the proportion of the do-
mains of the collected documents varies corpus to
corpus. By directly using p(word|topic) as fea-
tures, we can adjust the proportion of the domains
of the given corpus to the proportion to which
the target psycholinguistic property tends to cor-
relate. Also, p(word|topic) is practically easy to
use: preparing 150 different corpora to use their
frequencies is impractical, whereas preparing 150
different p(word|topic) probabilities is easy.

Removing the stop words before applying LDA
would be appropriate if we do not need to predict
psycholinguistic properties for stop words. How-
ever, both English and Japanese psycholinguistic
databases include the properties for words usually
considered as stop words. Thus, we included these
words when we ran LDA so that we could obtain
p(word—topic) for stop words.

English and Japanese correlation values differ
greatly. This difference may be explained by the
difference in the original psychological experi-
mental settings or the difference in writing sys-

tems for English and Japanese. We focused on pre-
dicting word properties when participants respond
for written language. The Japanese writing system
involves Chinese characters, in which many char-
acters are ideographic. This may have resulted in
the difference.

Our experimental results shown in Table 1 and
Table 2 indicate the predictive performance of
each model under a fixed training-data size. We
also conducted experiments on smaller training-
data sizes, for example, half the experiments in
§4. Overall, the JGPR-RBF produced the best or
competitive results when compared to other mod-
els for smaller sizes as well. For example, with
half the training size, JGPR-RBF performed the
best among the models listed in Table 1 for famil-
iarity and age of acquisition and both types of cor-
relation coefficients.

6 Conclusion
We proposed a language-independent method for
predicting the psycholinguistic-property values of
words. It involves using only a large raw corpus
for a language. To predict these properties, cap-
turing the word domains is important. We capture
them with word probability given each topic ob-
tained by applying LDA to the raw corpus. Jointly
predicting multiple properties also leads to better
prediction. Experiments showed that our method
improves predictive performance by joint predic-
tion and is competitive when language-dependent
features are used. When used with linear models,
our method provided interesting insights between
word familiarity and daily life, which can be used
for further error analysis.

Predicting psycholinguistic properties of words
has broad application: other than lexical simpli-
fication, which we mainly focused on, as men-
tioned in §1, we can use word familiarity and
age of acquisition as features indicating word
difficulty. Such features are valuable for the
vocabulary-prediction task in which learners’ vo-
cabulary knowledge is predicted (Ehara et al.,
2010, 2012, 2013, 2016). We focused on lexical
simplification as the direct application of predict-
ing the pscyholinguistic properties of words. Fu-
ture work includes leveraging confidence values
that GPR can produce for graph-based weakly su-
pervised learning, as in (Ehara et al., 2014).
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Abstract 

It is very costly and time consuming to 

find new biomarkers for specific dis-

eases in clinical laboratories. In this 

study, to find new biomarkers most 

closely related to Chronic Obstructive 

Pulmonary Disease (COPD), which is 

widely known as respiratory disease, 

biomarkers known to be associated 

with respiratory diseases and COPD 

itself were converted into word em-

bedding. And their similarities were 

measured. We used Word2Vec, Canon-

ical Correlation Analysis (CCA), and 

Global Vector (GloVe) for word em-

bedding. In order to replace the clini-

cal evaluation, the titles and abstracts 

of papers retrieved from Google 

Scholars were analyzed and quantified 

to estimate the performance of the 

word embedding models. 

1 Introduction 

Chronic Obstructive Pulmonary Disease (COPD) 

is the fourth leading cause of mortality in the 

world and the seventh in Korea. It is one of the 

most respiratory diseases in the elderly, and is 

known to be a very dangerous disease. Similar to 

asthma, COPD has symptoms of airway disorders 

such as dyspnea, cough, and sputum. COPD 

mainly exacerbates pulmonary function, leading 

to death. (Vestbo et al., 2013) 

Accordingly, research on bio-markers, which 

serve as an index for predicting the disease and 

detecting changes in the body, is underway (Ar-

onson et al., 2005). A biomarker is an index that 

can detect changes in the body using DNA, RNA, 

metabolites, proteins, and protein fragments. 

Therefore, many researchers are working hard to 

find new biomarkers that are deeply related to 

specific diseases. Recently there have been several 

attempts to extract such information from docu-

ments (Poon et al., 2014) (Poon et al., 2015). 

(Youn et al., 2016) tried to find biomarkers related 

to ovarian cancer by using word embeddings. The 

research is the base step of this paper.  

In this study, 26 respiratory-related biomarkers 

recommended by Chuncheon Kangwon National 

University Hospital1  were selected for the first 

time in order to search for bio-markers related to 

COPD. We also extracted 800,000 titles and ab-

stracts from Pubmed2 to construct word embed-

ding. Canonical Correlation Analysis (CCA) 

(Stratos et al., 2015), Word2vec (Mikolov et al., 

2013), and Global Vector (GloVe) (Pennington et 

al., 2014) were used as word embedding models. 

With these models, word-embeddings of COPD 

and respiratory bio-makers are acquired. The 

word embeddings of COPD and the bio-markers 

are mapped in two dimensions using t-SNE (t-

Distributed Stochastic Neighbor Embedding) 

(Maaten et al., 2008) and the result is visualized. 

The relationship between COPD and biomarkers 

are examined by measuring and comparing the 

similarity of COPD with biomarkers using cosine 

similarity. 

Clinical trials should follow to validate the 

methodology presented in this study. However, 

since this is very difficult in practice, we intend to 

test this indirectly by analyzing the results of 

Google Scholars3. In other words we analyzed the 

Google Scholars’ search results and compare the 

pairs with high scores to those with low scores to 

verify the validity of the proposed methodology. 

This paper is composed as follows. Section 2 

explains the biomarkers considered in this study. 

Section 3 explains the models used for word em-

bedding in this study. Section 4 explains the over-

                                                      
1 https://www.knuh.or.kr/eng/main/index.asp 
2 https://www.ncbi.nlm.nih.gov/pubmed/ 
3 https://scholar.google.co.kr/ 
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all flow of this study. Section 5 discusses the ex-

periment and its results. Finally, Chapter 6 dis-

cusses conclusions and future research. 

2 Bio-markers for COPD 

A biomarker is an index that can detect changes in 

the body using DNA, RNA, metabolites, proteins, 

and protein fragments. In addition, biomarkers can 

be used to effectively diagnose various diseases.  

The biomarkers listed in table 1 are known to 

be related to respiratory diseases and are included 

in the 26 markers recommended by Kangwon Na-

tional University Hospital. 

Surfactant, pulmonary-associated protein D, 

also known as SFTPD or SP-D (Lahti et al., 

2008), is a lung-related protein. In addition, SP-D 

plays an important role in lung immunity and is 

known to regulate the function of many immune 

cells. 

Clara Cell Secretory Protein (CC-16) 

(Broeckaert and Bernard, 2000) is known to be a 

protein distributed in the endocardium and the 

respiratory bronchus of the lungs and has im-

munomodulatory and anti-inflammatory effects. 

Interferon gamma-induced protein 10 (IP-10) 

(Dufour et al., 2002) is also known to be CXCL10 

or B10. It is involved in the Th1 immune response 

and is known to be increased in infectious diseas-

es including inflammation of the respiratory tract, 

immune disorders, and tumors. 

Interleukin 2 (IL-2) (Koreth et al., 2011) is an 

immunoreactive substance involved in anti-

inflammatory immune responses, macrophage 

function to damaged cells, and restoration of the 

original state. IL-2 plays a major role in the im-

mune system, and if production is reduced, im-

mune defense can be seriously compromised. 

In this study, 22 respiratory markers were also 

recommended and analyzed for their association 

with COPD. 

3 Word-embeddings 

Word-embedding is a technique that learns the 

vector representation of every word in a given 

Corpus. We can measure the similarity between 

several words, and perform vector computation 

with vectorized semantics to enable additional in-

ference. In this paper, we investigate the relation-

ship between COPD and its bio-markers using the 

following word-embedding models: CCA, 

Word2vec, and GloVe. 

3.1 CCA 

CCA (Hotelling and Harold, 1936) is a tech-

nique known by Hotelling (1936), which is a 

technique for examining the correlation of varia-

bles. CCA is a statistical method used to investi-

gate the relationship between two words, and it is 

a technique that simultaneously examines the cor-

relation between variables in a set and variables in 

another set. In other words, it is a useful tool to 

grasp the correlation of variable group (X, Y) and 

to grasp the relationship between two features 

(Jang et al., 2013). 

3.2 Word2vec 

Word2vec is a Google-released model in 2013. 

Word2vec has the premise that words with the 

same context have close meanings. It is also most 

commonly used to understand sentences in text. 

There are CBOW (Continuous Bag of Words) and 

Skip-grams in the learning method of the 

word2vec model. The CBOW method predicts the 

target word using the context that the surrounding 

word makes. On the other hand, skip-gram 

(Mikolov et al., 2013) predicts words that can 

come around in one word. In addition, Skip-grams 

are known to be more accurate in large datasets. 

Therefore, we use Skip-gram method in this pa-

per. 

3.3 GloVe 

GloVe (Pennington et al., 2014) stands for 

Global Vector, and it is a method of expressing a 

word as a vector using a non-local learning algo-

rithm. In addition, it is a hybrid model that con-

siders not only the global context but also the lo-

cal context of the word. 

Table 1 : Bio-marker 26 

Bio- 

marker 

SP-D, CC-16, IP-10, IL-2, Eotaxin-1, Leptin 

Adiponectin, Ghrelin, PAI-1, IL-10, LDL, PON-1 

SAA, C9, IGFBP-2, CD105, NF-kB, NSE 

CYFRA21-1, CEA, TRAIL, DR5, Angiostatin, 

Endostatin, Calprotectin, rbp 
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4 Methodology 

In this paper, about 800,000 papers are download-

ed from the PubMed site, and word embeddings 

are applied to only the title and abstract part of 

each paper. Since there are various expressions for 

each biomarker in the bio documents, in the pre-

processing process, called normalization, the cor-

pus is newly constructed by replacing these vari-

ous forms into a single form. To do this, various 

forms of markers, including COPD, must be con-

structed in dictionary form first. Three word em-

bedding models are used for this corpus to con-

struct two-, five-, ten-, and hundred-dimension 

lexical vectors. Among them, 100-dimensional 

vectors are reduced to two dimensions using t-

SNE and the result is mapped to a two-

dimensional graph. The t-SNE is used to directly 

look up biomarkers closely related to COPD 

through the visualization process. Also, the origi-

nal vectors that are not reduced are also analyzed 

to calculate the similarity with COPD. By calcu-

lating the similarity between the original vectors, 

we try to more precisely find the related markers. 

The process of analyzing the relationship with 

the last stage, Google Scholars, is for analyzing 

the validity of the methodology rather than ana-

lyzing the relationship between COPD and bi-

omarkers. Figure 1 shows this whole process. 

5 Experiment 

In this paper, we construct new corpus with nxml 

documents downloaded from PubMed site. As a 

result of extracting the nxml document, a total of 

807,821 papers were extracted, and the titles and 

abstracts were collected separately and used as a 

corpus for word embedding. More than two mil-

lion words are represented by word embedding. 

Table 2 shows the most similar words to COPD. 

 

 

Rank token similarity 

1 exacerbation 0.851586342 

2 spirometry 0.819786787 

3 obstructive 0.812012613 

4 asthma 0.803823590 

5 ipf 0.798491836 

6 aecopd 0.783644378 

7 bronchodilators 0.779349267 

8 asthmatics 0.774952054 

9 hyperinflation 0.752177000 

10 BHR 0.750948250 

 

A word ‘exacerbation’ may refer to an increase 

in the severity of a disease or its signs and symp-

toms4. ‘Spirometry’ is the most common of the 

pulmonary function tests5. And doctors may clas-

sify lung conditions as ‘obstructive’ lung disease 

or restrictive lung disease6.  

Among two millions word vectors, biomarkers 

related to pulmonary diseases such as metabolic 

syndrome and lung cancer are extracted separately 

to reveal their relationship with COPD. The mark-

ers listed in table 1 are recommended by Ka-

ngwon National University Hospital. 

Twenty six biomarkers are embedded in four 

cases such as 2-dimensional, 5-dimensional, 10-

dimensional, and 100-dimensional. In the case of 

a high-dimensional vector, the value of a certain 

element is excessively large, which may interfere 

with accurate similarity calculation. To solve this 

problem, a 100-dimensional vector value is re-

duced to two dimensions using t-SNE and the re-

sult is mapped to a two-dimensional space. [Fig-

ure 2] shows the results of visualizing two-

dimensional mapping of 100-dimensional vectors 

                                                      
4 http://www.medicinenet.com 
5 https://en.wikipedia.org/wiki/Spirometry 
6 http://www.webmd.com/lung/obstructive-and-restrictive-

lung-disease#1 

Table 2 The most similar words to 'COPD.' 

Figure 1  The whole process of proposed research 

339



 
 
 

   

embedded in CCA, word2vec, and GloVe. In fig-

ure 2, all but the COPD are biomarkers. 

As shown in figure 2, in the case of CCA and 

Word2vec, bio-markers are distributed evenly 

around COPD. However, in the case of GloVe, 

COPD is found to be far apart. However, in all 

three models, bio-markers located close to COPD 

are CC-16 and CEA. In addition, we can see that 

rbp, ghrelin, and trail are close to COPD on the t-

SNE.      

Then, the degree of similarity is calculated by 

applying the cosine similarity to the two-, five-, 

ten- or 100-dimensional vectors embedded in 

three ways. Here, it is assumed that the markers 

with high similarity values are more closely relat-

ed to COPD. Clinical trials must be conducted to 

verify the validity of this assumption. However, in 

reality, clinical trials are very difficult, so this 

study tries indirect verification through Google 

Scholars. 

Table 3 shows the results for all experiments 

with 5 markers of the highest similarities and 5 

markers of the lowest similarities through Google 

Scholars. For an indirect evaluation via Google 

Scholars, we first attempt to search for the key-

word “COPD marker_name” pairs. The titles and 

abstracts of the top 20 papers presented in the 

search results were analyzed and quantified. 

Where title_both is the average number of articles 

having both keywords in the titles and abs_both is 

the average number of articles having both key-

words in the abstracts. 

Table 3 shows how well each algorithm dis-

criminates between good markers and bad mark-

Table 4. Biomarkers with the highest similarities 

with COPD 

Word2Vec 

biomarker Similarity 
title_ 

both 

abs_ 

both 
words 

cc-16 0.57279 11 15 1 

eotaxin-1 0.48002 1 3 4 

sp-d 0.45937 7 8 2 

cyfra21-1 0.40179 0 4 8 

ip-10 0.35346 4 10 5 

average 4.6 8 4 

GloVe 

biomarker Similarity 
title_ 

both 

abs_ 

both 
words 

adiponectin 0.15436 11 17 1 

cea 0.14091 1 8 1 

pai-1 0.11407 1 5 1 

saa 0.10816 4 7 1 

leptin 0.10062 13 17 1 

average 6 10.8 1 

 

Table 3. The average number of articles having 

both COPD and the biomarker. ‘BEST’ means 

the most similar pairs and ‘WORST’ means the 

least similar pairs.  

algorithm dimension 

BEST WORST 

title_ 
both 

abs_ 
both 

title_ 
both 

abs_ 
both 

CCA 

2 3.8 7.6 5.2 7.4 

5 1.4 5.4 5.4 7.4 

10 0.4 3.6 3.2 6 

100 1.4 3.8 2.2 5.2 

t-SNE 0.2 2 3.6 7.2 

Word2vec 

2 4.4 7.8 3.4 4.6 

5 5.4 8.8 1.2 1.8 

10 6.8 9.8 3.2 5.6 

100 4.6 8 1 1.4 

t-SNE 2.6 6.2 3.8 7.2 

GloVe 

2 3.8 7.4 5.8 10.2 

5 0.6 4.2 4.6 8 

10 4 8.4 3.4 5.4 

100 6 10.8 1.2 2 

t-SNE 3.4 6.6 5 8.2 

Figure 2  Mapping results of COPD and biomarkers in two-dimensional space. 
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ers. In other words, the larger the difference be-

tween the values of BEST and WORST, the 

more favorable it is. As a result, the BEST mark-

er values of CCA were lower than those of the 

WORST markers. This shows that the CCA does 

not play a significant role in this problem. On the 

other hand, Word2vec is a very stable methodol-

ogy because all the BEST marker values show 

higher values than the WORST cases, unless the 

dimension is reduced by t-SNE. However, GloVe 

showed a stable appearance as the number of di-

mensions increased, while it didn’t in case of 2- 

and 5-dimension. In the 100 dimension, it 

showed a bigger difference than word2vec. 

Table 4 shows the similarities with the mark-

ers analyzed as having the highest correlation 

values with COPD in Wor2Vec 100 dimension 

and GloVe 100 dimension. It shows that cc-16 

recommended by Word2Vec and adiponectin 

and leptin recommended by GloVe have already 

undergone much research on COPD. On the oth-

er hand, Word2Vec's eotaxin-1 cyfra21-1 and 

GloVe's cea and saa have not. This provides a di-

rection for new clinical studies. In other words, 

among the markers with a high degree of similar-

ity, the markers that are searched with a low fre-

quency in the Google Scholar will be subject to 

various clinical studies in the future. And if you 

expand it further, it will help you to find new 

markers for specific diseases. 

In fact, it has been found that cyfra21-1, which 

has been shown to have a high similarity, not 

having much research interest so far, to COPD, 

was found to have a significant correlation with 

the phenotype of COPD in clinical trial. Current-

ly, Kangwon National University Hospital is 

conducting experiments to obtain more reliable 

clinical results.  

Finally, we compare the most closely related 

markers recommended by word2vec (100 dimen-

sion) to the score made by human researchers. 

Table 5 shows the rankings that markers recom-

mended by Word2Vec have been given by hu-

man researchers. For 26 markers, the rank corre-

lation coefficient value between word2vec and 

human is 0.44. 

Three clinical specialists participated in this 

experiment. These are professors who have been 

engaged in research for a long time in university 

hospitals, but the number of specialists involved 

should be increased. They are all respiratory 

medicine specialists, but they are not familiar 

with all biomarkers used in this research. There-

fore, the comparison with the specialists should 

be seen not only from the performance evalua-

tion of this study but also from the perspective of 

supplementing the specialists. 

6 Conclusion 

In this paper, we use word embedding to find 

markers that are closely related to COPD. For 

word embedding, we used CCA, Word2Vec, and 

GloVe. Experimental results show that 

Word2Vec and GloVe have the best performance 

when they are 100 dimensions. 

In the future, based on this research, we seek 

to find new markers that are closely related to 

specific diseases. To do this, it is necessary to 

construct a corpus that summarizes the various 

forms of expression that a disease or a marker 

has. Also, it is necessary to develop various pro-

cessing algorithms for expressions composed of 

words. In addition, we will conduct further re-

search on the value of similarity itself as well as 

the relative ranking of biomarkers. 

In this paper, the word embedding is per-

formed in a given corpus, and similarity is calcu-

lated by fixed embedding. Later, we will express 

this problem as deep neural network and develop 

a model that can learn and predict based on this. 
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Table 5. Comparison to Human Selection 

Rank 

(Word2vec) 
marker 

Rank 

(Human) 

1 CC-16 2 

2 Eotaxin-1 9 

3 SP-D 1 

4 Cyfra21-1 13 

5 IP-10 13 
 

Rank 

 (Human) 
marker 

Rank 

(Word2vec) 

1 SP-D 3 

2 CC-16 1 

3 Leptin 9 

4 Ghrelin 21 

5 PAI-1 14 
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Abstract

In grammatical error correction (GEC),
automatically evaluating system outputs
requires gold-standard references, which
must be created manually and thus tend
to be both expensive and limited in cover-
age. To address this problem, a reference-
less approach has recently emerged; how-
ever, previous reference-less metrics that
only consider the criterion of grammat-
icality, have not worked as well as
reference-based metrics. This study ex-
plores the potential of extending a prior
grammaticality-based method to estab-
lish a reference-less evaluation method
for GEC systems. Further, we empiri-
cally show that a reference-less metric that
combines fluency and meaning preserva-
tion with grammaticality provides a bet-
ter estimate of manual scores than that
of commonly used reference-based met-
rics. To our knowledge, this is the
first study that provides empirical evi-
dence that a reference-less metric can re-
place reference-based metrics in evaluat-
ing GEC systems.

1 Introduction

Grammatical error correction (GEC) has been an
active research area since a series of shared tasks
was launched at CoNLL (Ng et al., 2013, 2014).
The GEC mainly constitutes a generative task, i.e.,
a task that produces a grammatically correct sen-
tence from a given original sentence whereby mul-
tiple distinct outputs can be judged “correct” for
a single input. Therefore, automatically evaluat-
ing the performance is not straightforward and is
considered as an important issue as in the fields of
translation and summarization.

A common approach to automatically evaluat-
ing GEC systems involves reference-based eval-
uation, where gold-standard references are man-
ually created for a given test set of original
sentences and each system output is scored by
comparing it with corresponding gold-standard
references with some metrics (referenced-based
metric) (Dahlmeier and Ng, 2012; Felice and
Briscoe, 2015; Napoles et al., 2015), analogous to
BLEU (Papineni et al., 2002) in machine transla-
tion. Reference-based evaluation, however, has a
severe drawback. In GEC, multiple outputs can
be a right answer for a single input sentence. If
the gold-standard references at hand lack cover-
age, reference-based metrics may unfairly under-
estimate system performance. One way to cope
with this problem is to exhaustively collect poten-
tial corrections; however, this is not straightfor-
ward and can be of immense cost.

As an alternative approach to this problem,
Napoles et al. (2016) proposed a new method
that does not require gold-standard references (i.e.,
reference-less metric). Their idea is to evalu-
ate GEC system performance by assessing the
grammaticality of system outputs without gold-
standard references. This approach is advanta-
geous in that it does not require manual creation
of references. The results of the experiments re-
ported in (Napoles et al., 2016), however, reveal
that their reference-less metric cannot evaluate
GEC systems as well as a reference-based metric,
GLEU+ (Napoles et al., 2015).

Given the above, we explore the potential ca-
pabilities of reference-less evaluation by extend-
ing grammaticality-based method of Napoles et al.
(2016) with other assessment criteria. More
specifically, we consider the criteria of fluency and
meaning preservation as additions to grammatical-
ity and empirically show that a reference-less met-
ric that combining these three criteria can evaluate
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GEC systems better than reference-based metrics.
To our best knowledge, this is the first study that
provides such empirical evidence to show that a
reference-less metric can replace reference-based
metrics in evaluating GEC systems.

2 Reference-less GEC assessment

There are two key ideas behind our reference-
less approach to GEC assessment. First, we ex-
plore a range of criteria for assessing grammati-
cal corrections that are considered important in the
GEC literature and can be automated without ref-
erence data. Second, we identify a system that
combines the aforementioned criteria to provide
a better estimate of manual scores as compared
with reference-based metrics. Given these two
key ideas, we consider the following three crite-
ria: grammaticality, fluency, and meaning preser-
vation.

Grammaticality The criterion of grammatical-
ity in the metric defined by Napoles et al. (2016)
is modeled on the linguistic-feature-based model
originally proposed by Heilman et al. (2014). We
also use a similar method. More specifically, for
a hypothesis h, the grammaticality score SG(h) is
determined by a logistic regression with linguis-
tic features, including the number of misspellings,
language model scores, out-of-vocabulary counts,
and PCFG and link grammar features. We ex-
tend this model by incorporating the number of er-
rors detected by the Language Tool1. Further, we
trained our model using the GUG dataset (Heil-
man et al., 2014) and the implementation provided
by Napoles et al. (2016).2 In addition, we used Gi-
gaword (Parker et al., 2011) and TOEFL11 (Blan-
chard et al., 2013) to train the language model.
The resulting grammaticality model achieved an
accuracy of 78.9%, slightly higher than the orig-
inal model (77.2%), in the binary prediction of
grammaticality on the GUG dataset.

Fluency The importance of fluency in GEC
has been shown by Sakaguchi et al. (2016) and
Napoles et al. (2017), however there are no eval-
uation metrics that consider fluency. Fluency can
be captured by statistical language modeling (Lau
et al., 2015). More specifically, for a hypothesis h,

1https://languagetool.org
2https://github.com/cnap/

grammaticality-metrics/tree/master/
heilman-et-al

fluency score SF(h) is calculated as follows:3

SF(h) =
logPm(h)− logPu(h)

|h| , (1)

where |h| denotes the sentence length, Pm(h) de-
notes the probability of the sentence given by
a language model, and Pu(h) denotes the uni-
gram probability of the sentence. In our study,
we adopted Recurrent Neural Network Language
Models implemented via faster-rnnlm.4 Further,
we used 10 million sentences from the British
National Corpus (BNC Consortium, 2007) and
Wikipedia. Given these datasets, we found the flu-
ency scored by our model to have a correlation co-
efficient (Pearson’s r) of 0.395 with acceptability
scored by humans in the same setting described by
Lau et al. (2015).

Meaning preservation In GEC, the meaning of
original sentences should be preserved. As an ex-
ample, consider sentence (1a) below being revised
to form sentence (1b).

(1) a. It is unfair to release a law only point to
the genetic disorder. (original)

b. It is unfair to pass a law. (revised)

Sentence (1b) is grammatically correct, but does
not preserve the meaning of sentence (1a), and
thus sentence (1b) should be considered as inap-
propriate. To assess how much of the meaning of
an original sentence is preserved in a revision, one
can consider the use of an evaluation metric de-
vised in the MT field. In this study, we adopt ME-
TEOR (Denkowski and Lavie, 2014) because it fo-
cuses on semantic similarity much more so than
other common metrics, such as BLEU. Meaning
score SM(h, s) for input of a source sentence s and
a hypothesis h is calculated as follows:

SM(h, s) =
P ·R

t · P + (1− t) ·R, (2)

where P = m(hc,sc)
|hc| andR = m(hc,sc)

|sc| . hc denotes
content words in the hypothesis h, sc denotes con-
tent words in the source sentence s, and m(hc, sc)
denotes the number of matched content words be-
tween the output and the original sentence, and

3In many cases SF(h) is more than 0 and less than 1.
When it is less than 0, SF(h) = 0, and when it is more than
1, SF(h) = 1

4https://github.com/yandex/
faster-rnnlm
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is calculated considering inflection, synonyms and
misspellings5. Note that we use t = 0.85, which
is a default value provided of METEOR.

The above three criteria are combined as fol-
lows:

Score(h, s) = αSG(h) + βSF(h) + γSM(h, s),
(3)

where the ranges of SG, SF, and SM are [0, 1] and
α + β + γ = 1. We choose these weights empiri-
cally with a development dataset.

3 Experiments

We conducted two experiments to investigate
the extent to which our reference-less metric is
close to human evaluation compared with baseline
reference-based metrics. We used two commonly
used reference-based metrics M2 (Dahlmeier and
Ng, 2012) and GLEU+ (Sakaguchi et al., 2016;
Napoles et al., 2016) (A modified version of
GLEU (Napoles et al., 2015)).

3.1 Automatic ranking of GEC systems

We first compare the proposed reference-less met-
ric with respect to how closely each metric corre-
lates with human ratings.

For this experiment, we used the CoNLL-2014
Shared Task (CoNLL) dataset (Ng et al., 2014).
The CoNLL dataset is a collection of the out-
puts produced by the 12 participant GEC sys-
tems submitted to the CoNLL-2014 Shared Task,
where the 12 GEC systems’ outputs to each in-
put student sentence are ranked by multiple human
raters (Grundkiewicz et al., 2015). An advantage
of using this dataset is that it includes an exten-
sive set of references for each input student sen-
tence: two references originally provided in the
CoNLL-2014 Shared Task, eight references pro-
vided by Bryant and Ng (2015), and eight refer-
ences provided by Sakaguchi et al. (2016). In the
experiment, we used all the 18 references for the
baseline reference-based metrics in order to bring
out the maximal potential of those metrics.

For tuning the weights, α, β and γ, of our
metric, we used another distinct dataset, the
JHU FLuency-Extended GUG (henceforth, JF-
LEG) dataset (Napoles et al., 2017). This dataset

5In order to handle misspellings, we first ran a spell
checker on a given input sentence to obtain candidate correc-
tions and then put them into METEOR to find the maximum
score.

is a collection of tuples of an input student sen-
tence, four GEC system outputs, and a human rat-
ing. We selected weights with the highest corre-
lation on the JFLEG dataset, obtaining α = 0.07,
β = 0.83, and γ = 0.10. Note that these op-
timized weights should not be interpreted as the
relative importance of the subcomponents because
outputs of those subcomponents differ in variance.

For testing, following the experiments reported
in (Napoles et al., 2016), the 12 system outputs for
each input student sentence were scored with each
metric, and next for each metric, the 12 systems
were ranked according to their averaged scores.
Each metric’s ranking was then compared to the
human ranking of Grundkiewicz et al. (2015, Ta-
ble 3c6) to compute the correlation coefficients,
Spearman’s ρ and Pearson’s r.

The results are shown in Table 1. Many inter-
esting findings can be drawn. The grammaticality
metric alone, which corresponds to (Napoles et al.,
2016), outperformed M2 but did not perform as
well as GLEU+. The meaning preservation met-
ric exhibited poor correlation with human ranking;
however, when combining meaning preservation
with fluency, the prediction capability boosted,
prevailing over GLEU+. We believe this result
makes good sense because the meaning preserva-
tion metric, i.e. METEOR, relies mostly on shal-
low similarity (although it partially considers para-
phrases) and tends to prefer system outputs with
fewer corrections; nevertheless, it plays a signifi-
cant role when balanced with fluency. Combining
all the three subcomponents even further improved
Spearman’s ρ (ρ = 0.874), significantly outper-
forming both M2 and GLEU+. To our knowl-
edge, this is the first study that provides empiri-
cal evidence that a reference-less metric can corre-
late better with human ratings compared with the
state-of-the-art reference-based metrics in evaluat-
ing GEC systems.

3.2 Minimal edits vs. fluent edits

According to recent work by Sakaguchi et al.
(2016), the aspect of fluency is potentially even
further important than ever considered in the GEC
literature. We expect that this emphasis on fluency
might bring further advantages to reference-less
metrics as opposed to reference-based metrics.

6We used the TrueSkill ranking simply because (i) we
wanted to compare our results with those reported in Napoles
et al. (2016), where only TrueSkill was used, and (ii) system
outputs in the JFLEG are also ranked with TrueSkill.
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Metric Spearman’s ρ Pearson’s r
M2 0.648 0.632
GLEU+ 0.857 0.843
Grammar 0.835 0.759
Meaning -0.192 0.198
Fluency 0.819 0.864
Grammar+Meaning 0.813 0.794
Meaning+Fluency 0.868 0.876
Fluency+Grammar 0.819 0.864
Combination (proposed) 0.874 0.878

Table 1: Correlation between human and metric
rankings.

In their recent work, Sakaguchi et al. (2016)
created an interesting dataset by asking four hu-
man editors to produce one minimal edit (mini-
mal grammatical error corrections) and one flu-
ent edit (extended corrections with maximal flu-
ency) for each original student sentence in the
aforementioned CoNLL dataset (corresponding to
the “eight references provided by Sakaguchi et al.
(2016)” referred to in 3.1). Using this dataset, Sak-
aguchi et al. showed that human raters clearly pre-
fer fluency edits to minimal edits.

An intriguing question here is whether our
reference-less metric (the combination of gram-
maticality, fluency and meaning-preservation) is
indeed capable of preferring fluent edits to mini-
mal edits despite that fluent edits are less similar
to their original sentences than minimal edits. We
therefore conducted a supplemental experiment as
follows.

We chose two editors out of the four editors em-
ployed for Sakaguchi et al. (2016)’s dataset and
extracted the four edits by these two editors (Edi-
tor A and Editor B) for each original student sen-
tence, fluent edits by Editor A (Flu-A), minimal
edits by Editor A (Min-A), fluent edits by Editor
B (Flu-B), minimal edits by Editor B (Min-B), as
the test set. We then applied our metric and the
two baseline metrics to this test set to rank the four
sets of edits, where the reference-based metrics
used the remaining references (the 14 references
for each original sentence).

The results are shown in Table 2. While the pro-
posed metric (Combination) consistently prefers
fluent edits, the reference-based metrics seriously
underestimate fluent edits. GLEU+ consistently
preferred the minimal edits. This is somewhat an
expected result because the majority of the ref-
erence data consists of “minimal edits” reflecting
the nature of the GEC task and GLEU+ tends to
lean towards the majority of the references. One

rank
Combination
(proposed) M2 GLEU+

1 Flu-A (0.865) Min-B (0.641) Min-B (0.628)
2 Flu-B (0.854) Flu-A (0.634) Flu-B (0.607)
3 Min-B (0.848) Flu-B (0.626) Min-A (0.606)
4 Min-A (0.844) Min-A (0.590) Flu-A (0.563)

Table 2: Rankings of the four reference sets with
each metric. Scores assigned by the GEC metrics
are shown in parentheses.

Sentence Comb. M2 GLEU+
From this scope, social
media has shortened our
distance. (minimal)

0.541 1.00 0.575

From this perspective, so-
cial media has made the
world smaller. (fluent)

0.688 0.277 0.251

Table 3: An example that the reference-less metric
works well and the sentence-level scores by GEC
metrics.

straightforward way to cope with this problem is
to collect as many diverse fluent edits as possible,
which would be prohibitively costly though. M2

may not suffer the same problem; however, as re-
vealed by our first experiment, M2 can be far less
appropriate as a metric for GEC assessment com-
pared with GLEU+ (see Table 1). In contrast, the
proposed reference-less approach has good poten-
tial for this issue. Table 3 shows an example where
the proposed metric preferred a fluent edit but the
reference-based metrics preferred a minimal edit.
The reference-based metrics gave low scores to the
fluent edit because the human references did not
cover the correction “made the world smaller”.

4 Discussion and Conclusions

In this paper, we have presented a reference-less
approach to automatic assessment of GEC sys-
tems and have empirically shown that combin-
ing the three criteria of grammaticality, fluency,
and meaning preservation can boost the corre-
lation with human ratings. To our best knowl-
edge, the paper has provided the first empirical ev-
idence supporting the hypothesis that a reference-
less metric can outperform and thus potentially re-
place the state-of-the-art reference-based metrics
in this research field.

Our error analysis has revealed that the pro-
posed metric still has room for improvement. One
obvious point of improvement is around meaning
preservation. The present choice for this compo-
nent, METEOR, does not allow us to take nearly
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synonymous phrases into account. For exam-
ple, METEOR wrongly votes for an original sen-
tence our family and relatives grew us up against
a correctly revised sentence our family and rela-
tives brought us up. Recent advances in compu-
tational modeling of sentence similarity (He and
Lin, 2016; Rychalska et al., 2016, etc.) should be
worthwhile to incorporated.

It has also turned out that the present flu-
ency metric is undesirably affected by misspelled
words. As in Equation 1, the unigram probabil-
ity regularizes the sentence probability so that the
score of fluency will not be underestimated by rare
words. However, with misspelled words, the nor-
malization works excessively as they are treated
as rare words. This newly provides an interesting
issue of how to estimate the fluency of student sen-
tences.

Another direction for improvement is to explore
methods for combining grammaticality, fluency
and meaning preservation. For example, the or-
acle combination7 of the three components exhib-
ited a significantly high correlation with the hu-
man ranking (ρ = 0.951, r = 0.923). This also
indicates further room for improvement.
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Abstract

Automatic analysis of curriculum vi-
tae (CVs) of applicants is of tremen-
dous importance in recruitment scenar-
ios. The semi-structuredness of CVs,
however, makes CV processing a chal-
lenging task. We propose a solution to-
wards transforming CVs to follow a uni-
fied structure, thereby, paving ways for
smoother CV analysis. The problem of
restructuring is posed as a section rela-
beling problem, where each section of
a given CV gets reassigned to a prede-
fined label. Our relabeling method re-
lies on semantic relatedness computed be-
tween section header, content and labels,
based on phrase-embeddings learned from
a large pool of CVs. We follow differ-
ent heuristics to measure semantic relat-
edness. Our best heuristic achieves an
F-score of 93.17% on a test dataset with
gold-standard labels obtained using man-
ual annotation.

1 Introduction

Automatic processing of curriculum vitae (CVs) is
important in multiple real-life scenarios. This in-
cludes analyzing, organizing and deriving action-
able business intelligence from CVs. For corpo-
rates, such processing is interesting in scenarios
such as hiring applicants as employees, promot-
ing and transitioning employees to new roles etc.
For individuals, it is possible to add value by de-
signing CV improvement and organization tools,
enabling them to create more effective CVs spe-
cific to their career objectives as well as main-
tain the CVs easily over time. Hence, it is im-
portant to transform CVs to follow a unified struc-
ture, thereby, paving ways for smoother and more

effective manual/automated CV analysis.
The semi-structuredness of CVs, with the di-

versity that different CVs exhibit, however, makes
CV processing a challenging task. For example, a
first CV could have sections personal details, edu-
cation, technical skills, project experience, man-
agerial skills, others and a second CV, equiva-
lent to the first one, could have sections about
me, career objective, work experience, academic
background, proficiency, professional interests, in
that order. Note that, some sections are equiva-
lent (e.g., personal details and about me) in the
two CVs, some sections are simply absent in some
CVs (e.g., any equivalent of others that is present
in the first CV, is missing in the second CV) and
some sections in one CV is a composition of mul-
tiple sections in another CV (e.g., proficiency in
the second CV is a combination of technical skills
and managerial skills of the first). In real-life, the
variations are high, and the solutions available to-
day are far from perfect. Clearly, the problem at
hand requires attention.

Multiple industrial solutions, such as Text Ker-
nel1, Burning Glass2 and Sovren3, have attempted
to solve the problem at hand, and are offered as
commercial products. Several researchers have
also investigated the problem. Yu et al. (2005)
proposed a hybrid (multipass) information extrac-
tion model to assign labels to block of CVs.
Subsequent works, such as Chuang et al. (2009)
and Maheshwari et al. (2010), also used multi-
pass approaches, and feature-based machine learn-
ing techniques. Kopparapu (2010) suggested a
knowledge-based approach, using section-specific
keywords and n-grams. Tosik et al. (2015) found
word embeddings to be more effective compared
to word types and other features for CRF mod-

1https://www.textkernel.com
2http://burning-glass.com
3https://www.sovren.com
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els. Singh et al. (2010) and Marjit et al. (2012),
amongst others, also proposed different solutions.

We use a phrase-embedding based approach to
identify and label sections, as well as investigate
the usefulness of traditional language resources
such as WordNet (Miller, 1995) and ConceptNet
(Liu and Singh, 2004). Empirically, our approach
significantly outperforms other approaches.

2 Central Idea

As discussed earlier, CVs generally do not follow
any predefined structure, and hence it would be
hard to propose a deterministic (rule-based) solu-
tion for parsing and categorizing the sections of
CV. This necessitates the application of statisti-
cal classification to map each section of the CV
to section-labels chosen from an exhaustive list
of predefined labels. Now, applying supervised
classification for this task would require a large
amount of manually labeled training data which
is extremely time consuming. Our approach, on
the other hand, is based on unsupervised learning
where each label is chosen based on the semantic
relatedness between the label and the section con-
tent (in terms of section-header and section-body).
For example, a section titled “Academic qualifica-
tions” could be semantically closer to a predefined
label “Education” than “Skills”; the section would
thus be categorized under “Education”. We pro-
pose two schemes for obtaining the semantic re-
latedness between section headers, bodies and the
predefined labels (discussed in Section 3.2).

2.1 Scheme 1: Exhaustive Comparison

In the first scheme, we perform an exhaustive sim-
ilarity comparison of all the words that appear in
the given section of the test CV, with the label set.
In this scheme, for each section extracted from the
CVs, content words from the section headers and
bodies are extracted and combined. A lexical sim-
ilarity measure is computed, between each label
in the label-set and each word extracted from the
section. The average lexical similarity score for
each label, with all the words in the section, is then
computed. The label with the highest average sim-
ilarity score is selected as the winner label. The in-
tuition behind this scheme is that, labels that share
maximum lexical similarity with section have the
maximum semantic relatedness with the section,
hence, most appropriate.

Formally, let L = {l1, l2, ..., ln} be the set

of available labels. Let W = {w1, w2, ..., wm}
be the set of words present in a given section.
Let σ(wi, lj) represent the semantic similarity of
word wi with the label lj . The average similarity
λ(lj ,W ) of label lj with the set of words W is
computed as:

λ(lj ,W ) =

m∑
i=1

σ(wi, lj)

|W | (1)

The label selected as the winner, Λ(L,W ), is:

Λ(L,W ) = ∀(j)max(λ(lj ,W )) (2)

For computing semantic similarity σ, we use
WordNet (Miller, 1995) path similarity (Leacock
and Chodorow, 1998) and Wu-Palmer similarity
(Wu and Palmer, 1994) and ConceptNet (Liu and
Singh, 2004; Havasi et al., 2007) based similar-
ity (Spagnola and Lagoze, 2011). The systems
variants for these three similarity measures are,
henceforth, referred to as PATH, WUP, CONCEPT.
As expected, WordNet and ConceptNet offer lim-
ited coverage, resulting in many of the similarity
scores as 0. We therefore propose another variant
(referred to as EMBEDDING) where lexical simi-
larity is the cosine similarity between the embed-
dings of the two input words. The word embed-
dings are learned using the training data consist-
ing of 1179 CVs (detailed in Section 3.1) using
the skip-gram approach (Mikolov et al., 2013a,b),
implemented with the help of gensim package in
python (Řehůřek and Sojka, 2010). The embed-
ding dimension, min count, and window size were
empirically set to 100, 5 and 4 respectively, and
the vocabulary size turned out to be 7970.

2.2 Scheme 2: MultiEmbedding
In the second scheme, we employ MULTIEM-
BEDDING, a representative word-cluster similarity
based approach. Here, instead of directly com-
paring the words appearing in the test data, we
do the following. First, content words from sec-
tion header and body are extracted and combined
to form the set of words W = {w1, w2, ..., wm},
as discussed earlier. Their embeddings ε(W ) =
{ε(w1), ε(w2), ..., ε(wm)} are then extracted. The
embeddings are averaged, to find the average em-
bedding of the section, as:

E(W ) =

m∑
i=1

ε(wi)

|W | (3)
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#CVs #Sections #Sections
#CV s

Train 1179 6085 5.2
Test 130 747 5.7

Table 1: Dataset statistics

We then extract the top M words, W ′, from
the training-data vocabulary, based on the co-
sine similarity between the averaged embedding
E(W ′) and the vocabulary words W . Intu-
itively, these words act as the representative clus-
ter of words, semantically most similar to the
section content. The embeddings of these top
M words in the vocabulary are then obtained as
ε(W ′) = {ε(w1′), ε(w2′), ..., ε(wm′)} and aver-
aged in a manner similar to Equation 3, to obtain
E(W’). Then, for each label lj ∈ L, the cosine sim-
ilarity of lj and the averaged embedding E(W ′) is
calculated. The winner label is the one that shows
up the maximum cosine similarity.

2.3 Split Section Approach

One of the main drawbacks of the schemes pro-
posed is that they do not treat section headers
and body-content separately. In practice, how-
ever, section headers can sometimes play a cru-
cial role in determining the category that the sec-
tion should belong to. This motivated us to pro-
pose other set of variants, in which section header
and body-content are treated as two separate enti-
ties. The steps in the schemes proposed are car-
ried independently on header and body-content.
After lexical similarity with labels for both body
and header are computed separately, the win-
ner label is selected through voting. This idea
lead to 5 more model variants such as SPLIT-
PATH, SPLITWUP, SPLITCONCEPT, SPLITEM-
BEDDING, SPLITMULTIEMBEDDING.

We also implemented other variants such as: (a)
averaging embeddings of words in the test data
and then comparing the cosine similarity between
the averaged resultant embedding with label em-
beddings (b) getting the topM words using Word-
Net and ConceptNet similarities. But these meth-
ods did not perform well, hence, results are not
reported for these methods.

3 Experimental Setup

3.1 Dataset Creation and Preprocessing
Since, there is no publicly available standard CV
dataset, we randomly pulled out 1309 number
of CVs by requesting the recruitment division
of a multinational organization (anonymized in
this version). Since CVs can come up with dif-
ferent file formats (such as pdf, html etc.),
we converted every CV to docx format using
the abiword application4, thereby preserving
meta information about sections. The docx files
are then processed using the docx package in
python to separate out section headers and bod-
ies for each CV. Textual noise in the form of non-
Unicode characters and escape characters are then
removed. Table 1 presents a detailed statistics
about the number of CVs and number sections
thus obtained.

3.2 Defining Labels
Our task intends to eventually help in analysis of
CV by categorizing them, making it necessary for
us to define a label-set that ensures decent cov-
erage while maintaining a proper level of gran-
ularity. If the labels are too coarse or too fine,
it will considerably increase the effort of analyz-
ing the CVs and our task will be ineffective. We,
thus, carefully chose 30 labels from the Text
Kernel5 platform, which provides a consider-
able coverage while balancing the granularity. The
labels are shared in the supplementary material. In
future, we plan to include important multi-word
labels in our label set.

3.3 Test Data Annotation
To evaluate our methods against ground truth, we
employed two software professionals (with ac-
ceptable working proficiency in English) to an-
notate the sections in the test data. The inter-
annotator agreement between the annotators turns
out to be 669 out of the 747 sections (89.56%),
with 78 non-agreements. We manually inspect all
the cases of non-agreement, and find that these
are very similar. Some examples of such confu-
sion pairs are skills vs. interests, training vs. in-
ternship, etc. In order to resolve, in a label pre-
processing step, we randomly choose one of the
non-agreeing two labels and assign the chosen la-
bel to the test instances, before we perform ground

4https://www.abisource.com
5https://www.textkernel.com
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truth validation. The labels provided by the anno-
tators are compared with the output generated by
our system, to obtain precision, recall, accuracy
and F-score measures.

4 Results and Insights

We present the results and insights obtained from
the experiments in this section.

4.1 Results

Figure 1: Variation of accuracy with M, the num-
ber of representative words chosen

From Table 2, we observe that the SPLITEM-
BEDDING method, which is the embodiment of
Scheme 1 (given in Section 2.1) where σ(wi, lj),
the semantic similarity of word wi with the label
lj , is computed using embedding, yields the high-
est precision across all the methods. However,
SPLITMULTIEMBEDDING, a variant of Scheme 2
(given in Section 2.2) where the embeddings of
section header and body are independently com-
puted, and a weighted combination of the embed-
dings is used to retrieve the representative words
of the section to compare with the embeddings
of the labels, delivers the highest recall and F-
score values, as well as, the highest overall ac-
curacy. Thus, the SPLITMULTIEMBEDDING ap-
proach with M = 3 empirically turns out to be
the most effective approach. Overall, 4 of the ap-
proaches deliver strong performances (F-score >
80%): SPLITMULTIEMBEDDING, SPLITEMBED-
DING, SPLITPATH and SPLITWUP.

Figure 1 shows the impact of varying M, on
the system accuracy, for the MULTIEMBEDDING

and SPLITMULTIEMBEDDING approaches. It is
evident from the figure that for SPLITMULTIEM-
BEDDING, the most effective value is M = 3,
while for SPLITEMBEDDING the value is M = 5.
Beyond these values of M , too many words get
chosen, which in turn confuses the system.

4.2 Error Analysis
We investigate the errors that our system makes,
by comparing the section headers we obtain, with
ground truth. Table 3 captures a random sample
of the classifications made by our system. Note
that, CVs that contain Personal sections (includ-
ing name, email and other details inside the sec-
tion), have always been classified with 100% accu-
racy. This also applies for CVs that have separate
section headers for identification, such as Name,
Email etc. On the other hand, for sections that are
intuitively more complex, show some (meaning-
ful) confusions across classes. For example, one
would naturally assume Activities to have seman-
tic overlaps with Skill, and similarly Work with
Internship, and Project with Publications, among
others. A few confusions are more intriguing, such
as Project with Country (1 instance), and Edu-
cation with City (1 instance). These confusions
are rare although existent, showing the effective-
ness of our system in general though there are per-
haps some corner cases that can potentially be im-
proved in the future.

5 Discussion

One aspect to note is that the approaches where
the CV section header and body content are split,
and the embeddings are subsequently combined
in a weighted manner, outperform the approaches
where the section header and body are given equal
weightage. This conforms to the intuition that sec-
tion headers bear a higher significance, compared
to words that tend to appear in section bodies.

Further, we observe that the word embed-
ding based approaches consistently and signifi-
cantly outperform the WordNet and ConceptNet
based approaches. While WordNet and Concept-
Net are valuable lexical resources on their own,
but clearly a predefined knowledge representation
proves to be inadequate to capture the intricacies
that CVs tend to present in real life. This high-
lights (a) the inherent challenge in dealing with the
semi-structured and heterogeneous data that CVs
present to computational systems, as well as (b)
the importance of learning the lexical characteris-
tics from the core application domain.

6 Conclusion

In this paper, we posed the restructuring of CVs
as a section relabeling problem. We proposed a
methodology to reassign a predefined label to each
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Approach Precision Recall F-Score Accuracy

PATH 79.224 50.870 61.96 50.870
SPLITPATH 92.367 83.936 87.95 83.936
WUP 48.838 30.656 37.67 30.656
SPLITWUP 92.223 83.936 87.88 83.936
CONCEPT 58.241 43.507 49.81 43.507
SPLITCONCEPT 77.054 72.155 74.52 72.155
EMBEDDING 79.277 30.522 44.07 30.522
SPLITEMBEDDING 95.029 86.613 90.63 86.613
MULTIEMBEDDING (M = 3) 77.183 38.688 51.54 38.688
SPLITMULTIEMBEDDING (M = 3) 94.687 91.700 93.17 91.700

Table 2: Results for relabeling task for multiple approaches, numbers are shown in %

Ground Truth Total Correct List of Confusions

PROJECT 110 99 Publication: 8, Training: 1, Activities: 1, Country: 1
EDUCATION 102 101 City: 1
ACTIVITIES 36 28 Skill: 3, Interest: 1, Work: 1, Hobby: 1, Publication: 1, Country: 1
PUBLICATION 30 26 Reference: 4
WORK 32 23 Inernship: 5, Reference: 2, Interest: 2
SKILL 87 84 Interest: 1, Education: 1, Objective: 1
PERSONAL 61 61 —
NAME 57 57 —
EMAIL 9 9 —

Table 3: Confusion matrix, showing some randomly chosen ground truth classes from actual CV section
headers, and our system predictions in the form of <incorrect class: incorrect classification count of our
system for that class>

section of given CVs, learning phrase embeddings
from a pool of training CVs, and exploring several
heuristics to compute the semantic relatedness be-
tween section headers, section contents and avail-
able labels. Our best heuristic achieves an F-score
of 93.17% on a test dataset, with gold-standard la-
bels obtained using manual annotation. Our sys-
tem is useful in practical scenarios such as appli-
cant management for recruitments, employee ca-
reer management, and automated CV creation and
maintenance for individuals.
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Abstract

In this work we study the challenging
task of automatically constructing essays
for Chinese college entrance examination
where the topic is specified in advance.
We explore a sentence extraction frame-
work based on diversified lexical chains to
capture coherence and richness. Experi-
mental analysis shows the effectiveness of
our approach and reveals the importance
of information richness in essay writing.

1 Introduction

Chinese National Higher Education Entrance Ex-
amination, a.k.a. Gaokao (“高考”) in Chinese,
has a similar format to the American SAT, except
that it lasts more than twice as long. The nine-
hour test is offered just once a year and is the
sole determinant for admission to virtually all Chi-
nese colleges and universities. It emphasizes sev-
eral subjects including math and science, but also
measures knowledge of written Chinese and En-
glish. It includes various types of questions such
as multiple-choice questions, short-answer ques-
tions and essays. In this work, we focus on the
Chinese essay writing questions, typically in the
format of writing a topically rich but coherent es-
say when specified a topical word or title. De-
veloping a system that can construct essays in the
context of exams is not for mimicking or surpass-
ing human writing, but to provide analytical as-
sistance for students and high school teachers to
improve essay writing. The task is challenging
as it requires analyzing of the given topic and the
ability to organize coherent descriptions in sen-
tences and paragraphs, while the content should
cover rich aspects and discussions but still con-
forms to the given topic. As a preliminary study
we only explore sentence extraction to get a sense

of how well automatic approaches could achieve
when evaluated by professional evaluators.

We explore an approach based on lexical chains,
i.e., sequences of words containing a series of con-
ceptually related words in a discourse. Lexical
chains could be useful to assist analyzing topical
coherence and we will show their effectiveness in
essay construction. For a given topic, we first re-
trieve a few topically relevant documents, from
which the lexical chains will be built. Each lexical
chain corresponds to a subtopic. We would like to
have each subtopic representative, while the over-
all subtopics are diverse enough to cover as many
topically related aspects as possible. We leverage
a diversified ranking algorithm to calculate the im-
portance weights for different lexical chains, then
form the essay by selecting and organizing sen-
tences to cover the important chains.

In this paper we provide a focused study on a
specific topic. Our contributions can be summa-
rized as follows:

• To the best of our knowledge, we are the first
study Chinese essay generation for Chinese
college entrance exams. We utilize sentence
extraction as a viable step towards essay gen-
eration for exams.

• Considering the nature of the problem, we
propose a framework based on diversified se-
lection of lexical chains, to cover rich and di-
verse aspects of the given topical word.

• Manual evaluation from experienced high
school teachers shows the feasibility for au-
tomatic essay generation, as well as the ef-
fectiveness and the potential of our approach,
revealing the importance of information rich-
ness and diversity for essay writing in the
context of Chinese college entrance exams.
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2 Approach

In this preliminary study, we directly use sen-
tences from a large source corpus to construct the
final essay. This can be treated as a viable inter-
mediate step towards full generation. We design a
framework that consists of article retrieval, lexical
chain construction, sentence extraction and infor-
mation ordering. Note that in this study the spec-
ified topic for essay writing is in the form of one
single topical word while our approach relies on
vectorial representations. Nevertheless, our solu-
tion can naturally generalize to sentential inputs,
since we could use sentence embedding models
(e.g. RNNs, skip-thought vectors) to get a vec-
torized representaion.

2.1 Article Retrieval

In this study we find that a simple retrieval model
based on latent semantic analysis (Deerwester
et al., 1990, LSA) works relatively well. Specif-
ically, we get semantic vector representations for
each document and the given topical word by
performing singular value decomposition on the
term-document matrix, where each element cor-
responds to the tf-idf value for a particular word
in the document. Articles with the highest simi-
larity scores with the given topic word will be re-
trieved for the next steps. We also tried an even
simpler approach to directly use averaged word
vectors to represent a document and search for the
documents that lead to the largest cosine similarity
values with the given topical word. This approach
turns out to prefer shorter articles and yields less
accurate performance compared with LSA.

2.2 Building Lexical Chains

The main task studied in this paper is to construct
an essay for a specified topic word. A lexical
chain (Morris and Hirst, 1991) is a sequence of
words that consists of a series of conceptually re-
lated words in a discourse. A lexical chain can
be used to model topical contexts as well as text
coherence. In our study, we adapt the calculation
method used by Barzilay and Elhadad (1999) for
our purpose. Due to the shortage of high-coverage
thesaurus, we utilize vector semantics to capture
lexical relationships, and find that pairwise sim-
ilarities defined by word vectors can be used to
build reliable lexical chains while being more flex-
ible.

We treat each retrieved article as a list of words.

For the purpose of this study, we only consider ad-
jectives and nouns when constructing the chains.
Since in Chinese articles, most frequently used ad-
verbs (such as “那么”-so) and verbs (such as “成
为”-becomes, “有”-exist) are used for syntactic in-
tegrity and do not contain topically related infor-
mation.

Given an article, we take out each word one
by one and check whether and where it should be
placed. If this word has not been included in any
chain, we treat it as a candidate and traverse all
current chains to calculate the similarity between
the candidate and the chain. The candidate word
will be attached to the chain with the highest sim-
ilarity value if it surpasses a threshold. Here the
similarity between a candidate word w and a chain
C is defined as the similarity between w and the
last word in C. 1

2.3 Importance Estimation for Chains

Not all of the constructed lexical chains should be
used for further processing, as some may not cover
important aspects of the given topic. There could
be many ways for estimating the importance of
different lexical chains. In this work we model
the problem using graph-based ranking, treating
each candidate chain as a node in a graph. The
edge weight is assigned to be pairwise similar-
ity between two chains C1 and C2, defined as
cos( 1

#C1

∑
w∈C1

vec(w), ), i.e. the similarity be-
tween their average word vectors.

In order to cover more aspects about the topic
and to avoid redundancy, we would like to as-
sign high important scores on more diverse chains.
Therefore we utilize DivRank (Mei et al., 2010), a
well-known diversified ranking algorithm, for cal-
culating the ranking scores for different chains.
Specifically, we utilize the pointwise variant of Di-
vRank. At time T , the transition probability from
node u to node v is defined as follows:

pT (u, v) = (1− λ)p∗(v) + λ
p0(u, v)pT (v)

DT (u)
(1)

where p∗(v) is a distribution which represents
the prior preference of visiting vertex v, p0(u, v)
is the initialized transition matrix estimated from
a regular time-homogenous random walk, and

1We find a more straightforward definition
maxt∈C sim(w, t) less effective as it encourages a rich-
gets-richer effect which leads to long chains but incoherent
thematic meanings.
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DT (u) =
∑

v∈V p0(u, v)pT (v) is a normaliz-
ing factor for the second term. The weights for
each node are initialized to be the cosine sim-
ilarity between the corresponding chain and the
topic, which can in some sense reflect the prior
relevance. After the algorithm converges, i.e.
pT (v) ≈ pT−1(u)pT−1(u, v), we can select the
top-ranking chains as subtopics for essay con-
struction according to the values of pT (v).

2.4 Sentence Selection
We now have our subtopics, i.e. important lexical
chains, prepared. The next step is to select sen-
tences to cover those subtopics. For each candi-
date sentence, we use the average vector of nouns
and adjectives as its vectorial representation, de-
noted as s. Let c and t be the average word vector
of the current lexical chain and the vector of the
topical word, respectively. We define the weight
for sentence s to be a linear combination of chain
similarity and topical word similarity:

weight(s) =
cos(s, t) + ρ · cos(s, c)

1 + ρ
(2)

We empirically set the ratio parameter ρ to be 0.8
and observe that the selected sentences can cover
the subtopic well while being coherent with the
topical word.

An essay in Chinese college entrance exams
normally has a length between 800 and 1,200 Chi-
nese characters. The most typical essays contain
around 1,000 characters. We find that taking seven
top-ranking subtopics (chains) can lead to a good
coverage of the given topic, and selecting four sen-
tences for each subtopic to form a paragraph will
make the overall length just around 1,000. There-
fore we limit the numbers for subtopic and sen-
tence selection as such.

2.5 Sentence Ordering
After selecting sentences for each subtopic, we
need to order them to form paragraphs and or-
der the paragraphs to construct the full essay.
A straightforward way is to greedily select ele-
ments based on similarity between each candi-
date and the previously selected sentence or para-
graph. Preliminary experiments suggest that most
elements share high similarity values due to our
selection criteria in previous steps, causing sim-
ple greedy selection strategy to fail. Therefore, we
consider a different method: ordering sentences
and paragraphs according to its position in the

original article. The position of each candidate
can be represented as a rational number, dividing
the current position number by the total number
of sentences in that paragraph. We find readabil-
ity within a paragraph largely increased after such
strategy for sentence ordering. The intuition is that
sentences in the front or at the end typically con-
tain more general discussion while sentences in
the middle tend to describe specific details or ex-
pansive contents. For paragraph ordering, we take
a similar approach by calculating relative positions
in the original document.

3 Experimental Study

3.1 Settings

3.1.1 Data
Since we study approaches based on sentence ex-
traction in this preliminary work, We collected a
source corpus that contains 800 articles in Chi-
nese, with the overall size around 800,000 Chinese
characters. The source corpus consists of essays
written by various authors, discussing relatively
diverse topics. 2

Since the similarity calculations in our frame-
work involves vectorial representations for each
word, we trained 300 dimensional GloVe vectors
(Pennington et al., 2014) on the Chinese Giga-
word corpus (Graff and Chen, 2005). We used the
Stanford Chinese Segmenter for word segmenta-
tion (Tseng et al., 2005).

For evaluation, 10 topics which have once ap-
peared in previous Chinese college entrance ex-
ams will be provided for all the experimented
essay construction systems. We have manually
checked that there indeed exists several sentences
in the source corpus that are relevant to the given
topic. A good system should detect such sentences
and use them to generate the essay that well re-
sponds to the specified topic.

3.1.2 Evaluation
Given a topical word, every student will write a
completely different essay. The diversity of possi-
ble essays makes automatic evaluation metrics that
count on content overlaps impossible since sys-
tem outputs can then only be compared with rather
limited references. Therefore we leave proper de-
sign of automatic metrics as future work and only

2To promote related experimental and educational studies,
we have attached the corpus in the supplementary materials
which could be found in the ACL Anthology.
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perform manual evaluation in this study.
We conduct manual ratings on a few important

metrics (in a 1-10 rating system, the higher the bet-
ter) in generic generation systems that also should
be emphasized in this study, including

• Topical consistency (const.): on how much
is the output consistent with the given topic.

• Overall readability (read.): overall read-
ability of the essay in terms of text coherence.

• Content diversity (div.): whether the essay
covering multiple aspects of the topic or just
repeating the same argument.

For the purpose of this study, we also evalu-
ate the output essays using the evaluation criteria
for the Chinese college entrance exams. The to-
tal rating score is 60 points, assigned for the basic
level and the advanced level respectively. The ba-
sic level (40 points in total) considers whether the
most basic requirements have been fulfilled, such
as whether the essay conforms to the given topic,
describing with structural integrity and using cor-
rect punctuation. The advanced level (20 points in
total) measures how much depth, richness, literary
grace and novelty there exist in the content of the
essay. We ask 10 high school teachers who are ex-
perienced in such essay evaluation settings to con-
duct manual scoring. Note that in evaluations of
the exams, the above points will not be strictly as-
signed one by one, only an overall score will be
seen. We conform with this scoring approach in
this study.

3.1.3 Baselines

To verify the effectiveness of our proposed ap-
proach, we compare with two baseline systems:
The system (Baseline1) that utilizes topically re-
lated words and clusters rather than our pro-
posed diversified lexical chains for subtopic rep-
resentation, and a more straightforward baseline
(Baseline2) that select sentences which have the
most similar vectorial representations with the
given topical word. The former baseline can be
treated as a reimplementation of the very recent
Chinese essay generating system proposed by Qin
et al. (2015). All systems are evaluated on the
given 10 topics, producing 30 essays in total.

3.2 Results
Table 1 lists the manual rating scores (average and
standard deviation 3 of the scores from the 10 high
school teachers) for the outputs from different sys-
tems. The differences between systems are statis-
tically significant in Bonferroni adjusted pairwise-
t testing with p < 0.01. We can see that our
proposed framework outperforms the baseline sys-
tems in all evaluation criteria. We also provide the
example outputs in the appendix.

Baseline1 Baseline2 Proposed
Basic (40) 29.42±4.43 32.75±1.84 34.82±1.50
Adv (20) 11.65±2.53 13.1±1.79 14.97±1.23
Score (60) 41.07±6.22 45.85±3.51 49.78±2.65
const. (10) 5.38±0.98 6.47±0.84 6.90±0.76
read. (10) 5.23±0.81 6.27±0.75 6.78±0.68
div. (10) 5.15±0.74 5.8±0.87 6.92±0.75

Table 1: Evaluation results for different systems.
Each cell contains the average and standard devia-
tion of the ten scores assigned to an output.

3.3 Discussion
Here we provide some qualitative analysis for our
use of lexical chains and diversified importance
ranking. Given the topic word “挫折”(setback),
we can find 40 chains in total. the top-ranking
chains from diversified ranking are displayed in
Figure 1a, along with the top-ranking subchains
produced by the PageRank algorithm (Page et al.,
1999) in Figure 1b. We can observe that chains in
(1a) contain direct explanations as well as conse-
quential attitudes and related association of words,
while most chains in (1b) only cover the literal
meaning of the word “挫折”(setback), without ex-
tensions in depth.

We also made some statistics to make sure
that all systems are not directly using the original
source documents. All systems produced essays
using sentences from multiple articles between 9
and 21, with the overlapping proportion for single
source document no more than 15%. This is in-
tuitively a side evidence on that if a student wants
to write a good essay, he or she may have to read
a lot of good materials for preparation of expres-
sions, wording choices as well as ideas.

4 Related Work

To the best of our knowledge, there exist few
studies on automatically challenging the Chinese

3The standard deviation reflects the variance of different
evaluators on each output, therefore also reflects agreements.
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曲折(intricate) - 坎坷(bumpy) - 漫长(long-term) - 艰辛(hardship) - 历程(progress)   
勇敢(brave) - 毅力(determination) - 勇气(courage) - 坚强(adamancy) - 坚韧(tenacity) 
     - 自信(confident) - 信心(confidence)  
意志(willpower) - 斗志(fighting will) - 顽强(indomitable) - 艰难(tough) - 困苦(tribulation)   
可怕(dreadful) - 悲剧(tragedy) - 灾难(disaster) - 灾害(calamity) - 严峻(rigorous) 
     - 因素(factors)   
特殊(special) - 困难(difficulty) - 困境(straits) - 低谷(trough)   
人生(life) - 理想(cause) - 精神(spirit) - 理念(ethic) - 思维(thinking) -观念(concept)   
态度(attitude) - 理性(rational) - 冷静(calm) - 理智(wise)  

(a)

曲折(intricate) - 坎坷(bumpy) - 漫长(long-term) - 艰辛(hardship) - 历程(progress)   
可怕(dreadful) - 悲剧(tragedy) - 灾难(disaster) - 灾害(calamity) - 严峻(rigorous) 
     - 因素(factors)   
特殊(extraordinary) - 困难(difficulty) - 困境(straits) - 低谷(trough)   
意志(willpower) - 斗志(fighting will) - 顽强(indomitable) - 艰难(tough) - 困苦(tribulation)   
痛苦(suffering) - 悲伤(sorrow) - 伤痛(pain) - 痛楚(agony)    
悲哀(grieve) - 难过(sad) - 失望(disappointed) - 绝望(despair) - 无助(helpless) 
     - 孤独(loneliness)   
茫然(at a loss) - 迷茫(confused) - 困惑(puzzled) - 尴尬(embarrassed) 

(b)

Figure 1: Lexical chains formulated by (a) DivRank and (b) PageRank

college entrance tests. One recent work focuses
on multiple choice questions in that context (Guo
et al., 2017).

The approach of selecting sentence for con-
structing essays share similar methodological na-
ture with extractive summarization, where clas-
sic graph-based ranking has been shown useful
(Erkan and Radev, 2004). Diversified selection
could further improve information coverage (Mei
et al., 2010; Lin and Bilmes, 2011; Hong et al.,
2014). Note that the goal of essay writing is dif-
ferent with summarization. The task in this study
is to generate a rich but coherent article, and ev-
ery student or system could write a very different
essay, while the goal of summarization is to con-
dense documents, in which case the output results
should be similar in content, covering the same
important facts.

The closest study with the main theme of this
paper is perhaps the recent work by Qin et al.
(2015) on essay generation, which directly utilizes
words as subtopic representations rather than our
proposed usage of diversified lexical chains.

5 Conclusion and Future Work

In this paper, we study the challenging task of es-
say construction for Chinese college entrance ex-
ams, propose a framework based on diversified
lexical chains and show its effectiveness.

Our framework is simple in nature and is by
no means perfect. For example, structural co-
herence is not explicitly modeled in our method
since lexical chains could only capture topical co-
herence. We leave more elaborated strategies for
content planning as future work. Also, we would
like to extend the framework for more difficult ti-
tles or topics by exploring proper vectorial repre-
sentations, and to collect manual data for super-
vised learning. Methods beyond sentence extrac-
tion should also be explored to utilize more elabo-
rative syntactic and discursive structures.
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Abstract

While language conveys meaning largely
symbolically, actual communication acts
typically contain iconic elements as well:
People gesture while they speak, or
may even draw sketches while explaining
something. Image retrieval prima facie
seems like a task that could profit from
combined symbolic and iconic reference,
but it is typically set up to work either from
language only, or via (iconic) sketches
with no verbal contribution. Using a
model of grounded language semantics
and a model of sketch-to-image mapping,
we show that adding even very reduced
iconic information to a verbal image de-
scription improves recall. Verbal descrip-
tions paired with fully detailed sketches
still perform better than these sketches
alone. We see these results as support-
ing the assumption that natural user inter-
faces should respond to multimodal input,
where possible, rather than just language
alone.

1 Introduction

In natural interactions, descriptions are typically
multimodal: Someone explaining a route might
point at visible landmarks while talking, or ges-
ture them into the air, or may sketch a route on a
piece of paper, if they have one handy (Emmorey
et al., 2000; Tversky et al., 2009).

Especially descriptions of visual objects or sit-
uations can be supported by the iconic mode of
reference provided by gestures or sketches, that is,
reference via similarity rather than via symbolic
convention (Pierce, 1867; Kendon, 1980; McNeill,
1992; Beattie and Shovelton, 1999). A technical
task that is a direct, but controlled model of this is

Elephant, trunk
coiled towards
mouth, facing right

Figure 1: A photograph; a verbal description of its
content; and a sketch.

the task of image retrieval, that is, the task of re-
trieving one out of many photographs, based on a
description of it.1 In current work, these descrip-
tions are typically ‘monomodal’, either purely ver-
bal descriptions (Schuster et al., 2015; Hu et al.,
2016),2 or via hand-drawn sketches (Sangkloy
et al., 2016; Qian et al., 2016; Yu et al., 2016).

In this work, we were interested in combin-
ing these modalities for image retrieval. We col-
lected verbal descriptions of images (as shown in
Figure 1), where the images were taken from an
existing collection that provides for each image
a matching sketch (Sangkloy et al., 2016). We
trained “words-as-classifiers” models (Kenning-
ton and Schlangen, 2015; Schlangen et al., 2016)
on the verbal descriptions to match these with im-
ages, and used the “triplet network” introduced
by Sangkloy et al. (2016) to extract embeddings
for the sketches. These models provide compari-
son scores for descriptions and candidate images,
and can be combined into a joint score for a mul-
timodal description (Section 3). We experiment
with reduced sketches containing only a certain
amount of the strokes from the full sketch, and

1Note that we use strict retrieval here, where a single,
known image is to be retrieved, rather than an arbitrary one
that fits a general description.

2As implemented and in commercial use on popular inter-
net search engines.

361



Figure 2: Example of the crowd-worker task. Provide a description that identifies the left-most image
within this set: [the elephant] facing right, trunk coiled toward mouth

show that adding even very reduced iconic infor-
mation to the verbal image description improves
recall (Section 4). Verbal descriptions paired with
fully detailed sketches still perform better than
these sketches alone. Using reduced sketches al-
lows us to quantify redundancy between modali-
ties, and it also makes it possible to explore how
information becomes available incrementally, as
sketch and utterance progress. We see our results
as supporting the claim that natural user interfaces
should respond to multimodal input—sketches, or,
going beyond that, iconic gestures—, where pos-
sible, rather than just language alone.

2 Data

Collecting verbal descriptions of images The
starting point is a collection of 10,805 real-life
photographs taken from ImageNet (Russakovsky
et al., 2015), as selected by the Sketchy corpus of
sketches (see next section; we sampled from all
categories). We collected a verbal description for
each photograph from English speakers using the
Crowdflower service.3 Workers were asked to list
attributes of the target object so that another per-
son would be able distinguish the described pho-
tograph from 6 distractors from the same image
category. (See example in Figure 2.) Using at-
tributes such as orientation, colour or shape was
suggested, however, workers were encouraged to
list any attribute values that might help, separating
them with commas. As the image category was al-
ready known, workers were only asked to provide
attributes.

To evaluate the quality of the descriptions, we
randomly selected 100 descriptions and conducted
an image selection task. A different set of workers
was presented with 7 images in the same category,
one target and 6 distractors. Workers correctly se-
lected 71% of the photographs, which shows that
some of the collected verbal descriptions did not
refer unambiguously.

3http://www.crowdflower.com

In total, we collected 10,805 object descriptions
(100,620 tokens altogether). After spell checking,
the vocabulary size is 4,982 (type/token ratio of
0.5). On average, each object was annotated with
3 attributes, while each attribute on average spans
over 4.6 words. There were 29,234 different types
of (potentially multi-word) attributes. To reduce
this variability and ease the learning (described be-
low), we devised a rule-based normalisation that
mapped constructions such as “facing to the left”,
“facing left”, “looking to the left” to the same at-
tribute type (facing-left), leaving us with 18,673
different attribute types.

The Sketchy Corpus We profited from the
availability of a dataset that pairs individual im-
ages (from ImageNet, using 100 images each
from 125 different categories) with sketch repre-
sentations of their content, the sketchy database
(Sangkloy et al., 2016). These sketches were
drawn from memory, but were validated to rep-
resent specifically the given image and not just its
semantic category. Figure 1 above gave an exam-
ple of such a sketch.

The sketches are stored as SVG files containing
the start and end times of strokes, which allowed
us to construct reduced versions containing only
the first n% of strokes. Figure 3 shows some ex-
amples of such reductions. This gives us a rough
approximation to an importance ordering of de-
tails in the sketch, under the assumption that the
most salient features of the image might be drawn
first. (We will further explore this assumption in
future work.)

In the experiments reported below, we follow
the training/test split used by Sangkloy et al.
(2016). As we used the pre-trained sketch-image
retrieval model from the Sketchy Database, we
follow the train-test split setup of the corpus. In
total, there are 9,734 unique photographs in our
training set, and 1,071 photographs and 5,371
sketches in the test set (that is, for most images
there are 5 different sketches). That is, there are
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5371 sketch/photograph ensembles in our image
retrieval evaluations. Chance level recall of the
image retrieval task @K=1 is 0.093% (@K=10:
0.93%).

3 Models

The retrieval combines separate word/image and
sketch/image models, which will be described
here.

Grounding verbal descriptions to images To
judge how well a verbal description fits with a
photograph, we trained logistic regression classi-
fiers for all category words and attribute types (fol-
lowing the “words-as-classifiers” (WAC) approach,
(Kennington and Schlangen, 2015; Schlangen
et al., 2016)).4 The classifiers take a feature rep-
resentation of an image (extracted by the convo-
lutional neural-network described below) and pro-
duce for each word an “appropriateness score”. To
train for example the classifier for the word “ele-
phant”, we selected all photographs which were
annotated with the category word “elephant” as
positive training examples, then randomly selected
the same amount of photographs that are not anno-
tated as elephant as negative examples. (Similarly
for the attribute types.) We trained classifiers for
words or (normalised) attribute types which oc-
curred more than 10 times in the corpus.

Given an image description D :
wa1 , · · · , wan , wc, where wai indicates an at-
tribute word, and wc indicates a category word,
we compute a score for a given photograph P and
using the word/image classifiers sw(·) as follows:

sD(D,P) = swc(P)×
n∑

i=1

swai
(P) (1)

(That is, attribute contributions are combined
additively and then multiplicatively with the cat-
egory. Attributes for which no classifier could be
trained were left out of the composition.)

Comparing Sketches with Images For the
comparison of the sketches with the images, and
the extraction of image features, we used the
“tripled network” model devised and trained by
(Sangkloy et al., 2016). This model is composed
of two GoogLeNet networks (Szegedy et al.,
2015), one for sketches and one for images. It

4Using `2 regularisation, liblinear optimizer, regularisa-
tion strength 1.0.

is trained with a ranking loss function, with in-
put tuples of the form (S, I+, I-) corresponding to
a sketch, a matching image and a non-matching
image. As a result, the network has a set of pa-
rameters for the sketch-network and a set of pa-
rameters for the photo-network. It learns a joint
1024 dimensional embedding space of sketches
and photographs. The vector distance between a
sketch and an image indicates their visual similar-
ity (please refer to the original paper for more de-
tails for model structures). We used the reciprocal
of the distance as the score to measure the fitness
between a sketch and a photograph:

ssk(S,P) = d(S,P)−1 (2)

where P indicates the feature vector of the pho-
tograph, derived with the image network, while S
indicates the feature vector of the sketch, derived
with the sketch network.

Multimodal Fusion We adopt a late fusion ap-
proach, and combine the scores as follows:

ssk+cat+att = ssk(P,S)× sd(P,d) (3)

4 Results

We evaluate the performance of verbal descrip-
tions alone, and verbal descriptions with vari-
ous levels of sketch detail added, with the results
shown in Table 1, and procedures explained in the
following.

Metric Following the convention of image re-
trieval tasks evaluation, we measure the photo-
graph retrieval performances by average recall
@K. For a given photo query, recall @ K is 1 if
the corresponding photograph is among the top K
retrieved results and 0 otherwise. We average over
all test queries to produce average recalls. We re-
port the average recall @K=1 and @K=10.

Mono-modal descriptions First of all, we eval-
uated the image retrieval performance only with
verbal descriptions. Using just attributes (att), we
achieve an average recall (@1) of 0.03, which is
not surprising, given that attributes such as “fac-
ing left” can potentially describe many images.
Giving the category alone (cat) gives an average
recall of 0.12 (@1) and 0.9 (@10), respectively.
This shows that the category classifiers perform
well in detecting the right category (there are 8.57
images on average from each category in the test
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Sketch Detail 10% 30% 50% 70% 90% 100%
Recall @1 @10 @1 @10 @1 @10 @1 @10 @1 @10 @1 @10

sk 0.01 0.06 0.07 0.27 0.17 0.55 0.25 0.70 0.31 0.79 0.35 0.84
att 0.03 0.23 0.03 0.23 0.03 0.23 0.03 0.23 0.03 0.23 0.03 0.23
cat 0.12 0.90 0.12 0.90 0.12 0.90 0.12 0.90 0.12 0.90 0.12 0.90

cat+att 0.14 0.83 0.14 0.83 0.14 0.83 0.14 0.83 0.14 0.83 0.14 0.83
sk+att 0.03 0.16 0.09 0.39 0.20 0.64 0.28 0.76 0.33 0.83 0.37 0.87
sk+cat 0.12 0.76 0.20 0.85 0.28 0.92 0.34 0.94 0.38 0.96 0.41 0.96

sk+cat+att 0.15 0.81 0.21 0.87 0.30 0.92 0.35 0.94 0.38 0.95 0.41 0.96

Table 1: Average recall at K=1 and10, at different levels of sketch detail. Highest number in column in
bold. Numbers for language-only conditions do not change with level of sketch detail.

set). Combining cat and att improves performance
somewhat @1, but even has a negative impact
@10, indicating that the attributes can “override”
the category and push images that are appropriate
for the attributes, but not the category, into the top
10.

We also show results for the sketches alone, at
various levels of detail of the sketch. (E.g., “10%”
only contains the first 10% of strokes, etc. The
100% condition is the one reported by (Sangkloy
et al., 2016), our results are within 0.01 of the ones
reported there.)

cat+att 30% sk+ 30% sk 100% sk

cat+att

chicken, can

see head only,

head is mainly

red skin

Rank=1 Rank=1 Rank=27 Rank=1

camel, light

brown, laying

down, head on

right, has

blanket to ride
on

Rank=3 Rank=1 Rank=29 Rank=1

butterfly,

facing left,

white

Rank=3 Rank=1 Rank=32 Rank=1

Figure 3: Retrieval with verbal description only
(1st column), verbal description plus 30% sketch
(2nd column), 30% sketch (3rd column) and 100%
sketch (4th column).

Multimodal descriptions As Table 1 (first col-
umn) shows, combining even the very reduced
sketch information at a 10% detail level improves
results @1 compared to language-only (if only
marginally). The improvement increases with
the level of sketch detail, and reaches at 70%
sketch detail a level at which the multimodal en-
semble performs as well as the full sketch (0.35
@1), improving 0.16 points over the language-
only baseline. The fullest combination (full utter-
ance, 100% sketch) improves over the full sketch
by 0.06 points (0.41 vs. 0.35).

Figure 3 shows some selected examples with
sketches at various detail settings.

5 Conclusions

This paper introduced a corpus of natural language
attribute descriptions of images taken from a cor-
pus that paired these images with sketches. We
showed that a model of grounded word meaning
trained on these data can be combined with an ex-
isting model of sketch/image relation, where the
combination improves retrieval performance rela-
tive to the separate models. Specifically, the model
profited even from small amounts of iconic infor-
mation (sketches reduced to 30% of their strokes).
We draw from these results the tentative conclu-
sion that it can be advantageous to add modali-
ties other than language (and hence allow refer-
ence other than through symbols, namely through
iconic similarity relations) for certain tasks.

In future work, we plan to directly train a joint
model that directly processes language and iconic
input. Our ultimate goal is to allow gestural iconic
input, which can be expected to also provide only
a reduced level of detail, in a setting where real-
world locations (rather than images of objects) are
to be described. How comparable this is to the
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reduced sketches used here is an exciting question
to explore next.

We have made the image descriptions of the
corpus publicly available in Bielefeld University
PUB system (Han and Schlangen, 2017). The
code of the image retrieval models is available
on GitHub https://github.com/TINGH/
multimodal-object-description
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Abstract

We propose a neural encoder-decoder
model with reinforcement learning (NRL)
for grammatical error correction (GEC).
Unlike conventional maximum likelihood
estimation (MLE), the model directly opti-
mizes towards an objective that considers
a sentence-level, task-specific evaluation
metric, avoiding the exposure bias issue in
MLE. We demonstrate that NRL outper-
forms MLE both in human and automated
evaluation metrics, achieving the state-of-
the-art on a fluency-oriented GEC corpus.

1 Introduction

Research in automated Grammatical Error Correc-
tion (GEC) has expanded from token-level, closed
class corrections (e.g., determiners, prepositions,
verb forms) to phrase-level, open class issues that
consider fluency (e.g., content word choice, id-
iomatic collocation, word order, etc.).

The expanded goals of GEC have led to new
proposed models deriving from techniques in
data-driven machine translation, including phrase-
based MT (PBMT) (Felice et al., 2014; Chollam-
patt et al., 2016; Junczys-Dowmunt and Grund-
kiewicz, 2016) and neural encoder-decoder mod-
els (Yuan and Briscoe, 2016). Napoles et al.
(2017) recently showed that a neural encoder-
decoder can outperform PBMT on a fluency-
oriented GEC data and metric.

We investigate training methodologies in the
neural encoder-decoder for GEC. To train the neu-
ral encoder-decoder models, maximum likelihood
estimation (MLE) has been used, where the ob-
jective is to maximize the (log) likelihood of the
parameters for a given training data.

As Ranzato et al. (2015) indicates, however,
MLE has drawbacks. The MLE objective is based

Algorithm 1: Reinforcement learning for neu-
ral encoder-decoder model.
Input: Pairs of source (X) and target (Y )
Output: Model parameter θ̂

1 initialize(θ̂)
2 for (x, y) ∈ (X,Y ) do
3 (ŷ1, ...ŷk), (p(ŷ1), ...p(ŷk)) = sample(x, k, θ̂)
4 p(ŷ) = normalize(p(ŷ))
5 r̄(ŷ) = 0 // expected reward

6 for ŷi ∈ ŷ do
7 r̄(ŷ)+ = p(ŷi) · score(ŷi, y)
8 backprop(θ̂, r̄) // policy gradient ∂

∂θ̂

9 return θ̂

on word-level accuracy against the reference, and
the model is not exposed to the predicted out-
put during training (exposure bias). This becomes
problematic, because once the model fails to pre-
dict a correct word, it falls off the right track and
does not come back to it easily.

To address the issues, we employ a neural
encoder-decoder GEC model with a reinforcement
learning approach in which we directly optimize
the model toward our final objective (i.e., evalua-
tion metric). The objective of the neural reinforce-
ment learning model (NRL) is to maximize the ex-
pected reward on the training data. The model up-
dates the parameters through back-propagation ac-
cording to the reward from predicted outputs. The
high-level description of the training procedure is
shown in Algorithm 1, and more details are elab-
orated in §2. To our knowledge, this is the first
attempt to employ reinforcement learning for di-
rectly optimizing the encoder-decoder model for
GEC task.

We run GEC experiments on a fluency-oriented
GEC corpus (§3), demonstrating that NRL outper-
forms the MLE baseline both in human and auto-
mated evaluation metrics.
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2 Model and Optimization

We use the attentional neural encoder-decoder
model (Bahdanau et al., 2014) as a basis for both
NRL and MLE. The model takes (possibly un-
grammatical) source sentences x ∈ X as an in-
put, and predicts grammatical and fluent output
sentences y ∈ Y according to the model param-
eter θ. The model consists of two sub-modules,
encoder and decoder. The encoder transforms x
into a sequence of vector representations (hidden
states) using a bidirectional gated recurrent neural
network (GRU) (Chung et al., 2014). The decoder
predicts a word yt at a time, using previous token
yt−1 and linear combination of encoder informa-
tion as attention.

2.1 Maximum Likelihood Estimation
Maximum Likelihood Estimation training (MLE)
is a standard optimization method for encoder-
decoder models. In MLE, the objective is to maxi-
mize the log likelihood of the correct sequence for
a given sequence for the entire training data.

L(θ) =
∑
〈X,Y 〉

T∑
t=1

log p(yt|x, yt−1
1 ; θ) (1)

The gradient of L(θ) is as follows:

∂L(θ)
∂θ

=
∑
〈X,Y 〉

T∑
t=1

∇p(yt|x, yt−1
1 ; θ)

p(yt|x, yt−1
1 ; θ)

(2)

One drawback of MLE is the exposure bias
(Ranzato et al., 2015). The decoder predicts a
word conditioned on the correct word sequence
(yt−1

1 ) during training, whereas it does with the
predicted word sequence (ŷt−1

1 ) at test time.
Namely, the model is not exposed to the predicted
words in training time. This is problematic, be-
cause once the model fails to predict a correct
word at test time, it falls off the right track and
does not come back to it easily. Furthermore, in
most sentence generation tasks, the MLE objec-
tive does not necessarily correlate with our final
evaluation metrics, such as BLEU (Papineni et al.,
2002) in machine translation and ROUGE (Lin,
2004) in summarization. This is because MLE op-
timizes word level predictions at each time step
instead of evaluating sentences as a whole.

GEC is no exception. It depends on sentence-
level evaluation that considers grammaticality and
fluency. For this purpose, it is natural to use GLEU
(Napoles et al., 2015), which has been used as a

fluency-oriented GEC metric. We explain more
details of this metric in §2.3.

2.2 Neural Reinforcement Learning
To address the issues in MLE, we directly op-
timize the neural encoder-decoder model toward
our final objective for GEC using reinforcement
learning. In reinforcement learning, agents aim to
maximize expected rewards by taking actions and
updating the policy under a given state. In the neu-
ral encoder-decoder model, we treat the encoder-
decoder as an agent which predicts a word from
a fixed vocabulary at each time step (the action),
given the hidden states of the neural encoder-
decoder representation. The key difference from
MLE is that the reward is not restricted to token-
level accuracy. Namely, any arbitrary metric is ap-
plicable as the reward.1

Since we use GLEU as the final evaluation met-
ric, the objective of NRL is to maximize the ex-
pected GLEU by learning the model parameter.

J(θ) = E[r(ŷ, y)]

=
∑

ŷ∈S(x)

p(ŷ|x; θ)r(ŷ, y) (3)

where S(x) is a sampling function that produces k
samples ŷ1, ...ŷk, p(ŷ|x; θ) is a probability of the
output sentence, and r(ŷ, y) is the reward for ŷk
given a reference set y. As described in Algorithm
1, given a pair of source sentence and the reference
(x, y), NRL takes k sample outputs ŷ1, ... ŷk and
their probabilities p(ŷ1), ... p(ŷk) (line 3).2 Then,
the expected reward is computed by multiplying
the probability and metric score for each sample
ŷi (line 7).

In the encoder-decoder model, the parameters
θ are updated through back-propagation and the
number of parameter updates is determined by the
partial derivative of J(θ), called the policy gradi-
ent (Williams, 1992; Sutton et al., 1999) in rein-
forcement learning:

∂J(θ)
∂θ

= αE [∇ log p(ŷ){r(ŷ, y)− b}] (4)

where α is a learning rate and b is an arbitrary
baseline reward to reduce the variance. The sam-
ple mean reward is often used for b (Williams,
1992), and we follow it in NRL.

It is reasonable to compare NRL to minimum
risk training (MRT) (Shen et al., 2016). In fact,

1The reward is given at the end of the decoder output (i.e.,
delayed reward).

2We sampled sentences from softmax distribution.
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mean chars # sents.
Corpus # sents. per sent. edited
NUCLE 57k 115 38%
FCE 34k 74 62%
Lang-8 1M 56 35%

Table 1: Statistics of training corpora

NRL with a negative expected reward can be re-
garded as MRT. The gradient of MRT objective is
a special case of policy gradient in NRL. We show
mathematical details about the relevance between
NRL and MRT in the supplemental material (Ap-
pendix A).

2.3 Reward in Grammatical Error
Correction

To capture fluency as well as grammaticality in
evaluation on such references, we use GLEU as
the reward. We have shown GLEU to be more
strongly preferred than other GEC metrics by na-
tive speakers (Sakaguchi et al., 2016). Similar to
BLEU in machine translation, GLEU computes
n-gram precision between the system hypothesis
(H) and the reference (R). In GLEU, however, n-
grams in source (S) are also considered. The pre-
cision is penalized when the n-gram inH overlaps
with the source and not with the reference.

GLEU = BP · exp

(
4∑

n=1

1
n

log p′n

)

p′n =
N(H,R)− [N(H,S)−N(H,S,R)]

N(H)

BP =

{
1 if h > r

exp(1− r/h) if h ≤ r
whereN(A,B,C, ...) is the number of overlapped
n-grams among the sets, and BP brevity penalty
is compute based on token length in the system
hypothesis (h) and the reference (r).

3 Experiments

Data For training the models (MLE and NRL),
we use the following corpora: the NUS Cor-
pus of Learner English (NUCLE) (Dahlmeier
et al., 2013), the Cambridge Learner Corpus First
Certificate English (FCE) (Yannakoudakis et al.,
2011), and the Lang-8 Corpus of learner English
(Tajiri et al., 2012). The basic statistics are shown
in Table 1.3 We exclude some unreasonable edits
(comments by editors, incomplete sentences such

3All the datasets are publicly available, for purposes of
reproducibility. For more details about each dataset, refer to
Sakaguchi et al. (2017).

Models Methods # sents. (corpora)
CAMB14 Hybrid 155k

(rule + PBMT) (NUCLE, FCE, in-house)
AMU PBMT + 2.3M

GEC-feat. (NUCLE, Lang8)
NUS PBMT + 2.1M

Neural feat. (NUCLE, Lang8)
CAMB16 enc-dec (MLE) + 1.96M

unk alignment (non-public CLC)
MLE/NRL enc-dec 720k

(MLE/NRL) (NUCLE, Lang8, FCE)

Table 2: Summary of baselines, MLE and NRL models.

as URLs, etc.) using regular expressions and set-
ting a maximum token edit distance within 50% of
the original length. We also ignore sentences that
are longer than 50 tokens or sentences where more
than 5% of tokens are out-of-vocabulary (the vo-
cabulary size is 35k). In total, we use 720k pairs
of sentences for training (21k from NUCLE, 32k
from FCE, and 667k from Lang-8). Spelling er-
rors are corrected in preprocessing with the En-
chant open-source spell checking library.4

Hyperparameters For both MLE and NRL, we
set the vocabulary size to be 35k for both source
and target. Words are represented by a vector with
512 dimensions. Maximum output token length is
50. The size of hidden layer units is 1,000. Gra-
dients are clipped at 1, and beam size during de-
coding is 5. We regularize the GRU layer with a
dropout probability of 0.2.

For MLE we use mini-batches of size 40, and
the ADAM optimizer with a learning rate of 10−4.
We train the encoder-decoder with MLE for 900k
updates, selecting the best model according to the
development set evaluation.

For NRL we set the sample size to be 20. We
use the SGD optimizer with a learning rate of
10−4. For the baseline reward, we use aver-
age of sampled reward following Williams (1992).
The sentence GLEU score is used as the reward
r(ŷ, y). Following a similar (but not the same)
strategy of the Mixed Incremental Cross-Entropy
Reinforce (MIXER) algorithm (Ranzato et al.,
2015), we initialize the model by MLE for 600k
updates, followed by another 600k updates using
NRL, and select the best model according to the
development set evaluation. Our NRL is imple-
mented by extending the Nematus toolkit (Sen-
nrich et al., 2017).5

4https://github.com/AbiWord/enchant
5NRL code is available at https://github.com/

keisks/nematus/tree/nrl-gleu
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dev set test set
Models Human GLEU Human GLEU
Original -1.072 38.21 -0.760 40.54
AMU -0.405 41.74 -0.168 44.85
CAMB14 -0.160 42.81 -0.225 46.04
NUS -0.131 46.27 -0.249 50.13
CAMB16 -0.117 47.20 -0.164 52.05
MLE -0.052 48.24 -0.110 52.75
NRL 0.169 49.82 0.111 53.98
Reference 1.769 55.26 1.565 62.37

Table 3: Human (TrueSkill) and GLEU evaluation of system
outputs on the development and test set.

Baselines In addition to our MLE baseline, we
compare four leading GEC systems. All the sys-
tems are based on SMT, but they take different
approaches. The first model, proposed by Felice
et al. (2014), uses a combination of a rule-based
system and PBMT with language model reranking
(referring as CAMB14). Junczys-Dowmunt and
Grundkiewicz (2016) proposed a PBMT model
that incorporates linguistic and GEC-oriented
sparse features (AMU). Another PBMT model,
proposed by Chollampatt et al. (2016), is inte-
grated with neural contextual features (NUS). Fi-
nally, Yuan and Briscoe (2016) proposed a neu-
ral encoder-decoder model with MLE training
(CAMB16). This model is similar to our MLE
model, but CAMB16 additionally trains an unsu-
pervised alignment model to handle spelling er-
rors as well as unknown words, and it uses 1.96M
sentence pairs extracted from the non-public Cam-
bridge Learner Corpus (CLC). The summary of
baselines is shown in Table 2.6

Evaluation For evaluation, we use the JFLEG
corpus (Heilman et al., 2014; Napoles et al., 2017),
which consists of 1501 sentences (754: dev, 747:
test) with four fluency-oriented references.

In addition to the automated metric (GLEU), we
run a human evaluation using Amazon Mechani-
cal Turk (MTurk). We randomly select 200 sen-
tences each from the dev and test set. For each
sentence, two turkers are repeatedly asked to rank
five systems randomly selected from all eight: the
four baseline models, MLE, NRL, one randomly
selected human correction, and the original sen-
tence. We infer the evaluation scores by compar-
ing pairwise rankings with the TrueSkill algorithm
(Herbrich et al., 2006; Sakaguchi et al., 2014).

6The four baselines are not tuned toward the same dev set
as MLE and NRL. Also, they use different training set (Table
2). We compare them just for reference.

Models Precision Recall M2 (F0.5)
AMU 69.95 18.81 45.32
CAMB14 65.09 22.84 47.51
NUS 69.59 29.19 54.50
CAMB16 64.35 32.26 53.67
MLE 66.00 34.62 55.87
NRL 65.93 37.28 57.15

Table 4: M2 (F0.5) scores on the dev set.

Models Precision Recall M2 (F0.5)
AMU 69.39 20.79 47.29
CAMB14 63.52 23.44 47.33
NUS 68.08 32.30 55.73
CAMB16 65.66 35.93 56.34
MLE 65.19 37.66 56.88
NRL 65.80 40.96 58.68

Table 5: M2 (F0.5) scores on the test set.

NRL > MLE NRL = MLE NRL < MLE
Dev 33% 45% 22%
Test 30% 57% 13%

Table 6: Ratio of pairwise (preference) judgments between
NRL and MLE. NRL >MLE: NRL correction is preferred
over MLE. NRL <MLE: MLE is preferred over NRL. NRL
=MLE: NRL and MLE are tied.

Results Table 3 shows the human evaluation by
TrueSkill and automated metric (GLEU). In both
dev and test set, NRL outperforms MLE and other
baselines in both the human and automatic evalua-
tions. Human evaluation and GLEU scores corre-
late highly, corroborating the reliability of GLEU.
With respect to inter-annotator agreement, Spear-
man’s rank correlation between Turkers is 55.6 for
the dev set and 49.2 for the test set. The correla-
tions are sufficiently high to show the agreement
between Turkers, considering the low chance level
(i.e., ranking five randomly selected systems con-
sistently between two Turkers).

Table 4 and 5 show the M2 (F0.5) scores
(Dahlmeier and Ng, 2012), which compute
phrase-level edits between the system hypothe-
sis and source and compare them with the ora-
cle edits. Although this metric has several draw-
backs such as underestimation of system perfor-
mance and indiscrimination between “no change”
and “wrong edits” (Felice et al., 2014), we see that
the correlation between the M2 scores and human
evaluation is still high in the result.

Finally, Table 6 shows the percentages of pref-
erence in the pairwise comparisons between NRL
and MLE. In both the dev and test sets, around
30% of NRL corrections are preferred over MLE
and approximately 50% are tied.
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Orig. but found that successful people use the people money and use there idea for a way to success .
Ref. But it was found that successful people use other people ’s money and use their ideas as a way to success .
MLE But found that successful people use the people money and use it for a way to success .
NRL But found that successful people use the people ’s money and use their idea for a way to success .

Orig. Fish firming uses the lots of special products such as fish meal .
Ref. Fish firming uses a lot of special products such as fish meal .
MLE Fish contains a lot of special products such as fish meals .
NRL Fish shops use the lots of special products such as fish meal .

Table 7: Example outputs by MLE and NRL

Analysis Table 7 presents example outputs from
MLE and NRL. In the first example, both MLE
and NRL successfully corrected the homophone
error (there vs. their), but MLE changed the mean-
ing of the original sentence by replacing their idea
to it. Meanwhile, NRL made the sentence more
grammatical by adding a possessive ’s. The sec-
ond example demonstrates challenging issues for
future work in GEC. The correction by MLE looks
fairly fluent as well as grammatical, but it is se-
mantically nonsense. The correction by NRL is
also fairly fluent and makes sense, but the meaning
has been changed too much. For further improve-
ment, better GEC models that are aware of the
context or possess world knowledge are needed.

4 Conclusions
We have presented a neural encoder-decoder
model with reinforcement learning for GEC. To
alleviate the MLE issues (exposure bias and token-
level optimization), NRL learns the policy (model
parameters) by directly optimizing toward the fi-
nal objective by treating the final objective as
the reward for the encoder-decoder agent. Using
a GEC-specific metric, GLEU, we have demon-
strated that NRL outperforms the MLE baseline
on the fluency-oriented GEC corpus both in hu-
man and automated evaluation metrics. As a sup-
plement, we have explained the relevance between
minimum risk training (MRT) and NRL, claiming
that MRT is a special case of NRL.
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A Minimum Risk Training and Policy
Gradient in Reinforcement Learning

We explain the relevance between minimum risk
training (MRT) (Shen et al., 2016) and neural re-
inforcement learning (NRL) for training neural
encoder-decoder models. We describe the detailed
derivation of gradient in MRT, and show that MRT
is a special case of NRL.

As introduced in §2, the model takes ungram-
matical source sentences x ∈ X as an input, and
predicts grammatical and fluent output sentences
y ∈ Y . The objective function in NRL and MRT
are written as follows.

J(θ) = E[r(ŷ, y)] (5)

R(θ) =
∑

(X,Y )

E[∆(ŷ, y)] (6)

where r(ŷ, y) is the reward and ∆(ŷ, y) is the risk
for an output (ŷ).

For the sake of simplicity, we consider expected
loss in MRT for a single training pair:

R̃(θ) = E[∆(ŷ, y)]

=
∑

ŷ∈S(x)

q(ŷ|x; θ, α)∆(ŷ, y) (7)

where

q(ŷ|x; θ, α) =
p(ŷ|x; θ)α∑

ŷ′∈S(x) p(ŷ′|x; θ)α
(8)

S(x) is a sampling function that produces k sam-
ples ŷ1, ...ŷk, and α is a smoothing parameter for
the samples (Och, 2003). Although the direction
to optimize (i.e., minimizing or maximizing) is
different, we see the similarity between J(θ) and
R̃(θ) in the sense that they both optimize models
directly towards evaluation metrics.

The partial derivative of R̃(θ) with respect to
the model parameter θ is derived as follows.

∂R̃(θ)
∂θ

=
∂

∂θ

∑
ŷ∈S(x)

q(ŷ|x; θ, α)∆(ŷ, y)

=
∑

ŷ∈S(x)

∆(ŷ, y)
∂

∂θ
q(ŷ|x; θ, α) (9)

We need ∂
∂θq(ŷ|x; θ, α) in (9). For space ef-

ficiency, we use q(ŷ) as q(ŷ|x; θ, α) and p(ŷ) as
p(ŷ|x; θ) below.

∂

∂θ
q(ŷ) =

∂q(ŷ)
∂p(ŷ)

∂p(ŷ)
∂θ

(∵ chain rule)

=
∂q(ŷ)
∂p(ŷ)

∇p(ŷ) (10)

For ∂q(ŷ)
∂p(ŷ) , by applying the quotient rule to (8),

∂q(ŷ)
∂p(ŷ)

=
{∑ŷ′ p(ŷ′)α} ∂

∂p(ŷ)p(ŷ)α − p(ŷ)α ∂
∂p(ŷ)

∑
ŷ′ p(ŷ′)α

{∑ŷ′ p(ŷ′)α}2

=
αp(ŷ)α−1∑
ŷ′ p(ŷ′)α

− αp(ŷ)αp(ŷ)α−1

{∑ŷ′ p(ŷ′)α}2

= α
p(ŷ)α−1∑
ŷ′ p(ŷ′)α

{
1− p(ŷ)α∑

ŷ′ p(ŷ′)α

}

= α
p(ŷ)α∑
ŷ′ p(ŷ′)α

1
p(ŷ)

{
1− p(ŷ)α∑

ŷ′ p(ŷ′)α

}
(11)

Thus, from (10) and (11), (9) is

∂R̃(θ)
∂θ

=
∑

ŷ∈S(x)

∆(ŷ, y)∇p(ŷ)

[
α

p(ŷ)α∑
ŷ′ p(ŷ′)α

1
p(ŷ)

{
1− p(ŷ)α∑

ŷ′ p(ŷ′)α

}]

= αE
[
∇p(ŷ) · 1

p(ŷ)
{∆(ŷ, y)− E [∆(ŷ, y)]}

]
= αE [∇ log p(ŷ) {∆(ŷ, y)− E [∆(ŷ, y)]}]

(12)
According to the policy gradient theorem for

REINFORCE (Williams, 1992; Sutton et al.,
1999), the partial derivative of (5) is given as fol-
lows:

∂J(θ)
∂θ

= α̃E [∇ log p(ŷ){r(ŷ, y)− b}] (13)

where α̃ is a learning rate7 and b is arbitrary base-
line reward to reduce the variance of gradients.
Finally, we see that the gradient of MRT (12) is
a special case of policy gradient in REINFORCE
(13) with b = E [∆(ŷ, y)]. It is also interesting to
see that the smoothing parameter αworks as a part
of learning rate (α̃) in NRL.

7In this appendix, we use α̃ to distinguish it from smooth-
ing parameter α in MRT.
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Abstract
This paper describes a coreference res-
olution system for math problem text.
Case frame dictionaries and a math tax-
onomy are utilized for supplying domain
knowledge. The system deals with var-
ious anaphoric phenomena beyond well-
studied entity coreferences.

1 Introduction

There is a growing interest in the natural language
processing of mathematical problem text (e.g.,
Mitra and Baral, 2016; Upadhyay et al., 2016;
Matsuzaki et al., 2017) because it serves as a pro-
totypical example of a natural language interface
for intelligent systems. In this paper, we describe
a coreference resolution system for math problem
text. In order to solve a math problem, all the
anaphoric expressions including those referring to
a proposition, as well as those referring to an en-
tity, must be correctly analyzed. Although much
research has been done on coreference resolution
for texts such as newspaper, few researches have
been done on math problems text.

Previous studies mainly focused on the relation
between pronouns or definite noun phrases and
their antecedents, and the resolution of zero (i.e.,
omitted) arguments of verbs. For instance, Iida et
al. (2016) investigated zero anaphoric resolution
on news text in Japanese and they considered only
the zero arguments of a predicate.

On the other hand, in math problems, the ar-
guments of unsaturated nouns are often omit-
ted. This phenomenon is called bridging anaphora
(Clark, 1975). For instance, in the following pas-
sage:� �

There is a right triangle ABC with ̸ C = 90◦.
Let the length of the hypotenuse (of ϕ) be c.� �

the argument of “hypotenuse” is omitted and

has to be identified as “triangle ABC”. There
are studies that focus on such phenomena in
Japanese (Sasano and Kurohashi, 2009) and En-
glish (Gerber and Chai, 2010). Our task includes
theirs, but we need to consider issues peculiar
to math problems. For example, we need to be
stricter in detecting a zero pronoun, as in:� �

x2 = 1 has a positive solution ∗(of ϕ).� �
One may be tempted to posit the existence of a
zero argument of “a positive solution” that refers
to “x2 = 1”. The principle of compositionality
suggests that “a positive solution of x2 = 1” has
“1” as its denotation, but “x2 = 1 has 1” does
not make sense. That is, we must not supply the
“omitted” argument to “a solution” in this sen-
tence to derive a correct semantic representation,
e.g., ∃x(x2 = 1 ∧ x > 0). No previous work, in-
cluding Iida et al’s, has dealt with such “syntacti-
cally determined” zero arguments as far as we are
aware of. It is partly because most previous work
has focused on the resolution of zero arguments of
a predicate and there is no Japanese predicate that
syntactically determines the antecedent of its zero
argument.

Table 1 shows the types and the numbers of
anaphoric expressions in math problems. For the
survey, we randomly chose 100 problems from
the entrance exam problems of seven top-ranked
national universities in Japan from 1990 to 2014
(EEP) and 88 problems from the national stan-
dardized test for university admission in the even
years from 1998 to 2014 (NST).

Table 1 reveals that there are few cases where
(definite) common nouns are used anaphorically.
One reason is that a symbol is often assigned to an
entity as soon as it is introduced in a problem, such
as in: “Let C be the circle that is ...” and the entity
is thereafter referred to by the symbol but not by
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Table 1: Type of Anaphoric Expression

Type Example
Count

NST EEP

Demonstrative
Pronoun

sore “it”, 　　　
sorera “they”

3 2

Determiner
kono “this”, 　
korerano “these”

28 14

Zero pronoun as argu-
ment of unsaturated noun

(ϕ-no) hankei
“radius (of ϕ)”

121 61

Common Noun
houteishiki 　
“(the) equation”

1 5

Conditional Demonstrative
konotoki 　　　
“for this case”

57 33

Others
ippou “one”,
tahou “the other”

29 16

a definite noun. On the other hand, the number of
occurrences of zero pronouns is very large. How-
ever, in 69% of them, the antecedents are syntac-
tically determined. We need to discern them from
the others so that heuristics-based antecedent de-
termination is not applied to them. We can also see
there are many conditional demonstratives, which
refer not to entities but to propositions. There are
several previous works that address them, such as
Bejan and Harabagiu (2014), but it is much less
studied compared to entity coreference resolution.

In the rest of the paper, we describe our corefer-
ence resolution system (§2) and provide some ex-
perimental results (§3). We then explain typical
remaining errors (§4).

2 Methods

Our system handles four types of anaphoric ex-
pressions: pronouns, demonstrative determiner +
nouns, zero pronouns, and conditional demonstra-
tives. The first two types are analyzed according
to a basic processing flow (§2.1). Zero pronouns
are handled by slightly modifying the basic flow
(§2.2). Conditional demonstratives are processed
differently than the others since they refer to a
proposition but not to an entity (§2.3).

2.1 Basic Processing Flow

An overview of the coreference resolution system
is shown in Fig. 1. The input is a math problem in
which math expressions are encoded in MathML1.
The system first tags each math expression with
a label indicating its semantic type based on the
syntactic pattern of the MathML expression. The
semantic types are categories of mathematical ob-
jects such as “integer”, “real number”, “circle”,
“ellipse”, etc. We currently have 543 semantic

1https://www.w3.org/TR/MathML3/

ProblemText

Identify	Antecedent

Give	Semantic	Type	
to	Math	Expression	

Output

Detect
Anaphor	Expression

Estimate	Semantic	Type	of		
Anaphor	Expression

Figure 1: Overview of System

types. The distribution is very long-tailed and we
observed only 106 of these types in the experiment
presented in the current paper. For example, if the
math expression is △ABC, a label “triangle” is
given. If the math expression is y = 2x, three la-
bels, “function”, “equation”, and “line”, are given.

Next, anaphoric expressions are detected by a
regular expression and the semantic types and the
number of their antecedents are determined. If a
noun appears immediately after a demonstrative
such as in “this function”, the semantic type is de-
termined by the noun. Otherwise, it is determined
using a case frame dictionary. For example, in the
case of “it intersects with the circle”, we know the
semantic type of “it” is a type of “Shape” by the
case frame of the predicate “intersect”.

The antecedents are then identified among the
nouns, math expressions, and symbols that match
the semantic type and are closest to the anaphoric
expression. When a plural anaphoric expression
includes a specific number (e.g., “these two trian-
gles”), we identify as many antecedents as speci-
fied in all the preceding context from the closest
to the anaphor. In contrast, for a plural anaphora
including no specific number (e.g.,“these trian-
gles”), if we consider all the candidates in all
the preceding context, there would be many false-
positives. We thus need to limit the range of
the context in which we identify the antecedents.
Based on observation, we chose the window of
two sentences as the range.

The case frame dictionary includes two sub-
dictionaries, one for verbs and the other for un-
saturated nouns. The verb case frame dictionary
consists of 1858 frames and the unsaturated noun
dictionary consists of 195 frames. They specify
the semantic type and the number of arguments
(sg: singular or pl: plural). An excerpt of each
is shown in Fig. 2. The first example means “a
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(Shape,sg-ga）（Point,sg-o) tooru
[Shape-NOM Point-ACC pass]
(Vec,sg-to) (Vec,sg-ga) chokkou-suru
[Vec-COM Vec-NOM perpendicular]

(Circle,sg-no) hankei
[Circle,sg-GEN radius]
(Integer,pl-no) kobaisu
[Integer,pl-GEN common multiple]

Figure 2: Case Frame Dictionary (top: verbs, bot-
tom: unsaturated nouns)

 
 

Bounded area Line or Curve 

Circle Polygon Line Curve 

Shape 

Figure 3: Math Taxonomy

planar figure passes through a point”, for instance.
We also use a math taxonomy to test if the type

of an antecedent candidate is compatible with an
anaphoric expression. A small part of the math
taxonomy is shown in Fig. 3. The number of nodes
of the taxonomy is 130.

2.2 Zero Pronoun
Processing of zero pronouns is almost the same as
the basic processing flow. However, the detection
of anaphoric expressions and the determination of
their semantic types and plurality are done differ-
ently. In the detection of anaphoric expressions,
firstly all the words in the dictionary of unsaturated
nouns are extracted from a problem. The system
judges that there is a zero argument of an unsatu-
rated noun if none of the following conditions are
met:

1. There is an overt genitive argument of the
unsaturated noun that matches the semantic
type of the argument (e.g., radius of a circle)

2. The unsaturated noun is in a relative clause
and the noun modified by the relative clause
matches the semantic type of the argument of
the unsaturated noun

3. The unsaturated noun is an argument of a
prescribed set of predicates, such as motsu
“have” and toru “take”.

Case 2 and 3 exclude the cases where the an-
tecedent of the zero argument is syntactically de-
termined. A typical example of case 2 is hankei-
ga 3-no en “a circle whose radius is 3”. In En-

glish, the relativizer “whose” specifies the geni-
tive relation between “circle” and “radius” but in
Japanese no such grammatical relations are speci-
fied by the (zero) relativizer. Therefore, the detec-
tion rule becomes complicated. Case 3 excludes
the cases such as “f(x) = 0 has a real solution (of
ϕ)”, where the coreferential relation is controlled
by the head verb (e.g., “has”) and hence the reso-
lution is done in syntactic/semantic parsing stage.

Next, the semantic type and the number of the
antecedent(s) are determined using the case frame
dictionary. For example, when the unsaturated
noun is “initial term (of ϕ)”, the type of the zero
argument is assumed to be “number sequence” and
the number is singular.

2.3 Conditional Demonstrative

In math problems, coreferential expressions such
as “for this case”, “in case of (1)”, and “the follow-
ing condition” refer to propositions. We call them
conditional demonstratives in this paper. Our sys-
tem handles three types of such expressions as de-
scribed below.

First type is kono/sono-toki “for this/that case”.
There are two usages of it. One indicates that all
the previous conditions given in a problem are ef-
fective, and the other refers to a specific proposi-
tion, as in:� �

1. There is△ABC with AB = BC = CA = 1.
Kono-toki, △ABC-no menseki-o motomeyo.
For this case △ABC-GEN area-ACC calculate.

For this case, calculate the area of△ABC.
2. f(x)-no saidaichi-to sono-toki-no x-o

f(x)-GEN maximum-and for that case x-ACC
motomeyo.
find.

Find the maximum value of f(x) and the value of x that

gives the maximum� �
The underlined part, Kono-toki “for this case”,

in the problem 1 indicates all the conditions given
so far for △ABC have to be taken into consider-
ation in solving it. As the English translation sug-
gests, Kono-toki (and Sono-toki) in this usage can
be omitted without changing the meaning of the
problem. On the other hand, the underlined part
Sono-toki “for that case” in the problem 2 points
to a specific condition “f(x) becomes maximum”
and cannot be omitted. We discriminate these two
cases using regular expression patterns and rewrite
the conditional demonstrative in the latter usage
with the proposition it refers to (underlined in the
example below):
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� �
f(x)-no saidaichi-to f(x)-ga saidai-ni
f(x)-GEN maximum-COM f(x)-NOM maximum
naru toki-no x-o motomeyo.
become when x-ACC find.

Find the maximum value of f(x) and the value of x that

gives the maximum� �
To identify what is referred to by a phrase such

as “in the case of (1)”, we have to extract a propo-
sition or a condition from the sub-problem desig-
nated by the problem number. To that end, we seek
for a key phrase in the sub-problem that typically
marks such a proposition. For example, P-youna
“such that P”, P-tame-no “so that P”, P-toki “when
P” and P-to-suru “assume that P” (P : proposition)
are such key phrases. We rewrite the referring ex-
pression with the proposition identified by the key
phrase as in:� �

(1)
::::::
f(x)-no

::::::::::
saidaichi-ga

:::::
3-ni

::::
naru you-ni a-o

sadameyo.
(1) Determine the value of a so that

::
the

::::::::
maximum

::::
value

::
of

::::
f(x)

::
is

:
3.

(2) (1)-no baai-ni f(x)-no saisyouchi-o motomeyo.
(2) In the case of (1), find the minimum value of f(x).
After rewriting (2)
(2) f(x)-no saidaichi-ga 3-ni naru-toki f(x)-no
saisyouchi-o motomeyo.
(2) When the maximum value of f(x) is 3, find the
minimum value of f(x).� �
For a referring expression such as tsugino-

shiki/joken “the following formula/condition”, the
referents are searched from the succeeding con-
text. Specifically, the sentence or math expres-
sion just after the sentence including “the follow-
ing condition” is identified as the referent and the
referring expression is rewritten as follows:� �

Tsugi-no houteishiki-o mitasu △ABC-o kangaeru :
sin A = sin B

Consider △ABC which satisfies the following
equation : sin A = sin B

After rewriting
sin A = sin B-o mitasu△ABC-o kangaeru.
Consider△ABC which satisfies sin A = sin B� �

3 Evaluation

We evaluated the system performance using three
data sets. The first is 20 mock tests of Japanese
national standardized test for university admis-
sion (MockNST) that consists of 74 problems.
MockNST was also used for the system test while
the development; hence it is a closed test data. The

Table 2: Accuracy of Zero Pronoun Detection
Precision Recall F1

MockNST 74% (32/43) 84% (32/38) 79%
MockUT 89% (8/9) 100% (8/8) 93%

Table 3: Accuracy of antecedent identification
Demons-
trative

Zero
Pronoun

Condi-
tional

Total

MockNST 12/20 31/32 3/5 46/57 (81%)
MockUT 2/3 6/8 2/4 10/15 (67%)

second is 20 mock tests of the entrance exam of
the University of Tokyo (MockUT) that consists of
41 problems. MockUT was kept unseen while the
system development. We additionally used EEP
data (see §1) for the evaluation of the resolution of
conditional demonstratives.

Table 2 shows the accuracy of zero pronoun de-
tection. The low precision means that unneces-
sary zero pronoun detection was performed. There
were in total twelve such cases on MockNST and
MockUT. Two thirds of them were due to an error
in syntactic dependency analysis, which resulted
in a failure in the recognition of the construction
that determines the zero arguments of the unsatu-
rated noun syntactically (§2.2). Table 3 shows the
accuracy of the identification of antecedents.

Table 4 presents the accuracy at the problem
level (i.e., perfect match) on MockUT. Approxi-
mately one third of the problems in MockUT in-
clude at least one coreference. About half of them
could be completely resolved.

We also evaluated the accuracy of the resolution
of conditional demonstratives on the 100 problems
of EEP data set because conditional demonstra-
tives were not frequently used in MockUT. In EEP,
ten problems required coreference resolution of
conditional demonstratives. Table 5 provides the
details.

4 Remaining Problems

We found three types of frequent errors in the out-
put of the current system. The first is due to an
error in the dependency analysis, such as in:� �

x4 − ax − a = 0-ga, kyojiku-jou-no fukusosuu-o
kai-ni motsu youna jissuu a-o subete motomeyo.
Find all real numbers a such that x4−ax−a = 0
has a solution on the imaginary axis of the complex
plane.� �

In this problem, the dependency parser selected
motomeyo “find” as the head of “x2−ax−a = 0”
but it should be motsu “has”. Due to this error,
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Table 4: Evaluation at Problem level
#Coreferences %Problems Correct

≥ 1 32% (13/41) 54% (7/13)
None 68% (28/41) —

Table 5: Evaluation of Conditional Demonstrative
“for this case” “in case of (1)” Total

Accuracy 8/8 1/2 9/10 (90%)

the system cannot detect the pattern X-ga Y-o kai-
ni motsu “X has a solution in Y” and unnecessary
zero anaphora resolution was done.

The second is due to a kind of polymorphism in
the natural language:� �
△ABC-no menseki-o S(a)-de arawasu-toki
kono-kansuu-no gurafu-o kake.
Letting S(a) be the area of △ABC, draw the
graph of this function.� �
In this problem, S(a) is first defined as a real

number (area) but later referred to as a function.
Due to this type mismatch, antecedent detection
for kono-kansuu “this function” was failed.

The third is due to a failure in the recognition of
the plurality of the zero pronoun.� �

En O-to houbutsusen C-ga ten P (
√

3, 0)-o
kyouyuu-shi, sarani P -ni okeru (ϕ-no) sessen-ga
icchi-siteiru.
Circle O and parabola C share the point P (

√
3, 0)

and the tangent lines (of ϕ) at P coincide.� �
In this problem, a zero argument of sessen “tan-
gent line” was successfully detected but it was
wrongly interpreted as singular while it actually
refers to “O and C”. Thus only C was identi-
fied as the antecedent. This is because there is no
morphological indication of the number of a noun
(such as -s in English) in Japanese. To solve this
problem, we could utilize the case frame of icchi-
suru “coincide”, which specifies a plural noun
phrase as its subject. By this, we know sessen
“tangent line(s)” actually signifies more than one
entities and so is its zero argument.

5 Conclusion

This paper described a coreference resolution sys-
tem for math problem text. The system deals with
various anaphoric phenomena such as conditional
demonstratives referring to propositions and syn-
tactically controlled zero arguments. Evaluation
showed the accuracy of the coreference resolution
at the problem level was 54%. Our future work in-
cludes accurate recognition of the plurality of the

zero pronouns and fixing the error of the depen-
dency analysis.
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Abstract

We propose a novel method that exploits
visual information of ideograms and lo-
gograms in analyzing Japanese review
documents. Our method first converts font
images of Japanese characters into charac-
ter embeddings using convolutional neural
networks. It then constructs document em-
beddings from the character embeddings
based on Hierarchical Attention Networks,
which represent the documents based on
attention mechanisms from a character
level to a sentence level. The document
embeddings are finally used to predict the
labels of documents. Our method pro-
vides a way to exploit visual features of
characters in languages with ideograms
and logograms. In the experiments, our
method achieved an accuracy compara-
ble to a character embedding-based model
while our method has much fewer param-
eters since it does not need to keep embed-
dings of thousands of characters.

1 Introduction

Some languages like Japanese and Chinese have
ideograms and logograms that are characters rep-
resenting words or phrases by themselves. In these
languages, such kinds of characters usually have
the same visual (surface) components (radicals)
when they have similar semantic or phonetic fea-
tures. Figure 1 illustrates three Japanese Kanji
characters related to fish. These Kanji characters
share the same visual components unlike English
characters or words. This kind of shared com-
ponents often appears in the Kanji characters as
shown in Table 1. Most natural languages meth-
ods, however, ignore the visual information since
they often treat texts as sequences of symbolic val-

鮭
salmon

鯖
mackerel

魚 fish

鯨
whale

Figure 1: Kanji characters relevant to fish and their
sharing components (radicals)

Component Kanji characters
食 (eat) 飯 (food),飲 (drink),餐 (meal)
土 (soil) 地 (earth),場 (field),坂 (slope)

Table 1: Kanji characters with shared components

ues like integer indices. They therefore lose signif-
icant useful information in processing texts in such
languages. Furthermore, these languages usually
contain many kinds of characters. For example, a
typical Japanese character set JIS X 0213 contains
11,233 different characters including Hiraganas,
Katakanas, and Kanjis. This large number of char-
acters often makes it difficult to apply recent char-
acter embedding models to such languages, and
this fact prompts us to reduce the number of pa-
rameters used to store information for characters.

We propose a novel method to analyze Japanese
review documents with exploiting the visual in-
formation of ideograms and logograms. Our
method extends character-based Hierarchical At-
tention Networks (HAN) (Yang et al., 2016) by in-
corporating visual information of characters. The
method first builds character embeddings from
their font images and then feeds them as inputs
into the character-based HAN.

Our main contribution is to show the usability
of font images as potential character representa-
tion not to use them as additional information but
to substitute for integer indices. Our method rep-
resents documents without the need for external
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character dictionaries like radical dictionaries and
without depending on the characters such as Hi-
raganas, Katakanas, and Kanjis. Additionally, we
show our method can simplify a baseline model
with reducing the number of parameters by adopt-
ing a convolutional neural network (CNN) to ex-
tract character features from font images.

2 Baseline model

Our method is based on a review classification
model named Hierarchical Attention Networks
(HAN) (Yang et al., 2016). We employ this
method since this is one of the state-of-the-art
methods in sentiment classification on English
datasets of Yelp, IMDB, Yahoo Answer, and Ama-
zon reviews, and we aim to evaluate the visual
information on the state-of-the-art model. The
HAN model is composed of bidirectional Recur-
rent Neural Networks of Gated Recurrent Units
(GRU-RNNs). The RNNs are stacked hierarchi-
cally from a word level to a sentence level. The
model encodes a sequence of lower-level embed-
dings to an upper-level embedding in a bottom up
manner with attention mechanisms. For example,
a sentence embedding is calculated from the word
embeddings in a sentence, and a document embed-
ding is calculated from the sentence embeddings
in a document. The attentions are calculated using
the outputs of lower-level RNNs and then applied
to the outputs to calculate the embedding of each
upper-level element as follows:

hi = tanh(Wwli + bw)

u =
∑

i

αihi, αi =
exp(h>i c)∑
i exp(h>i c)

(1)

where li is the embedding of a i-th lower-level el-
ement in a sequence and u is the embedding of an
upper-level element. Ww, bw and c are parame-
ters to be tuned during training. c also provides a
way to investigate the grounds of predictions with
attention mechanisms. This hierarchical architec-
ture allows to suppress the effects of gradient van-
ishing when RNNs are applied to long sequences.

3 Proposed method

We propose a novel model that utilizes visual font
image information of characters to represent char-
acters. Using font images for Japanese has several
merits compared with symbolic features of char-
acters. First, font images are available to any char-
acters unlike some character-specific features that

RNN

RNN

Sentences

Words

Document

Sentiment labels

"夕食は新巻き鮭でした。",
"部屋も快適でした。"

⋮
⋮ ⋮

RNN

⋮

Characters

"夕食は新巻き鮭でした。
部屋も快適でした。"

"新", "巻", "き", "鮭"

"夕食", "は", "新巻き鮭", "でし", "た"

Vector:

CNN

Font images

...

Figure 2: Proposed model for a review document
“夕食は新巻き鮭でした。部屋も快適でした。”
“The dinner was a lightly salted salmon. The room
was comfortable too.”

need to be treated differently. For instance, radi-
cals are specific to Kanjis, and dictionaries are re-
quired to extract such features. Second, we should
be able to find proper font images for characters
in some way most of the time. That is because
most datasets are composed of documents writ-
ten on some computers and people should not use
characters that do not have proper font images as
they cannot be rendered on their systems. Third,
we can reduce the number of parameters.

We convert each font image into its correspond-
ing character embedding with CNN and incor-
porate them into a character-based HAN model,
which is a straight-forward extension of the HAN
model with character-level RNNs1.

Font images are extracted as fixed-size images,
and they are used statically throughout training
and evaluation. All the pixel values in the font im-
ages, which are originally with a range of [0, 255)
of integers, are normalized into real values with a
range of [0, 1). The CNN consists of five convo-
lutional layers interleaved by pooling layers2. We

1Yang et al. (2016) mentioned the possibility of character-
based HAN in their paper, but they did not evaluate it.

2We empirically chose this number of layers. We also
tried to use VGG (Simonyan and Zisserman, 2015) with
Xavier initialization (Glorot and Bengio, 2010) to convert

379



stack the character-based HAN on the top of the
CNN to hierarchically structure documents from
characters to words, sentences, and documents.
The final document embeddings are passed to soft-
max functions through a hidden layer to predict
sentiment labels. Since our task consists of mul-
tiple classification tasks, we prepare an individual
softmax function for each classification task in the
output layer with sharing the hidden layer.

4 Experiments

4.1 Dataset
We used 320,000 reviews in the dataset of Rakuten
Travel review3. We split them into training, devel-
opment, and test data with 300,000, 10,000, and
10,000 reviews respectively. The task is multi-
category sentiment classification; the task con-
sists of 6-class (0 (no rating) and 1 (bad) to 5
(good)) sentiment classifications for seven cate-
gories (location, room, food, bath, service, facil-
ity, and overall). All documents were normalized
by NFKC Unicode normalization and then by a
Japanese text normalizer neologdn4. The doc-
uments were segmented into sentences by a regu-
lar expression, and every sentence was segmented
into words by a Japanese morphological analyzer
MeCab (Kudo et al., 2004).

Character and word vocabularies were con-
structed from those appeared more than nine times
in training and development datasets5. As a result,
we chose 2,709 characters from 3,630 characters.
We employed the IPA Gothic TrueType font6 to
represent characters.

4.2 Experimental settings
We compared our font-based model with the
character-based HAN. We used Python and Ten-
sorFlow to implement the models, and ran them on
an NVidia GeForce GTX TITAN X. We reimple-
mented the HAN model from scratch and extended
it to implement our model.

We optimized all the models by Adam with
suggested parameters on the paper (Kingma and
Ba, 2015). We employed mini-batch training and

font images without pre-training, but it did not work well
even after many training epochs.

3http://www.nii.ac.jp/dsc/idr/en/
rakuten/rakuten.html

4https://github.com/ikegami-yukino/
neologdn

5We empirically chose this threshold. We got lower score
when we used all the characters.

6http://ipafont.ipa.go.jp/

batch sizes were fixed to 16. For the character-
based HAN, character, word, sentence and docu-
ment embedding sizes were set to 100, 150, 100
and 50 respectively. Note that the embedding
sizes for the inputs of upper layer (RNN or hid-
den layer) were doubled before they were fed to
the upper layer since GRU-RNNs were bidirec-
tional and embeddings of outputs from lower for-
ward and backward RNNs were concatenated. For
example, the size of the last hidden layer was set
to 100. We tuned the other hyper-parameters in a
greedy strategy. As for regularization, we applied
L2 regularization with a scale of 1e-8 and did not
use dropout. The model was updated in 66,348
times.

As for our font-based model, the font images
were represented as 2-dimensional matrices of
64×64 single-channel images with 8-bit depth.
Each hidden image from each pooling layer in the
CNN part of our model had 32 channels. The re-
sulting hidden images were 2x2 32-channel im-
ages, which were then flatten as character em-
beddings before they were fed to the RNN that
converted character embeddings into word embed-
dings. The sizes of word, sentence, and document
embeddings were set to 150, 100 and 50 respec-
tively. We updated the model in 206,230 times
from scratch without any regularization or any pre-
training of the CNN.

4.3 Results

We show the numbers of parameters for charac-
ter embeddings in Table 2. This table shows that
our model needs less parameters than the charac-
ter embedding-based model since the number of
parameters in our model does not depend on the
number of character types. This table indicates
that character-based HAN can keep only 374 char-
acters with the similar model size to ours.

The accuracies of the models on the Rakuten
Travel dataset are shown in Table 3. We show the
results with an embeddings-based classification
method by Toyama et al. (2016) for reference. As
the table shows, the plain HAN works better than
the existing method and our method achieved an
accuracy comparable to a plain HAN. The result
indicates two insights. First, our model extracted
character features successfully from font images
in spite of the complexity of images, deep CNN
architecture and less parameters, and the font im-
ages can be an alternative for symbolic character
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Method #parameters
character-based HAN 270,900

Our method 37,312

Table 2: Comparison of the numbers of parameters
related to character embeddings

Method Accuracy (%)
Toyama et al. (2016) 50.2
character-based HAN 53.4

Our method 53.3

Table 3: Accuracies of methods on the Rakuten
Travel dataset

indices in representing characters. Second, the
use of font images to represent characters is rea-
sonable for the multi-category sentiment classifi-
cation.

5 Related work

Many deep learning models have been proposed
for sentiment classification and have achieved the
state-of-the-art performance. These models grasp
and utilize dynamics in natural languages, such as
negation and emphasis relations among words and
sentences. Yang et al. (2016) proposed Hierarchi-
cal Attention Networks (HAN), which are com-
posed of hierarchically stacked RNNs, and each
RNN captures dynamics of words or sentences.
Our model extends this model by incorporating vi-
sual information of characters.

Some shallow models are still comparable with
the deep learning models. FastText (Joulin et al.,
2016) employs a multi-layer perceptron, which
constructs a hidden document embedding from
unigram and bigram embeddings and classifies the
document using the document embedding. Our
CNN model can be used to incorporate visual fea-
tures of characters into these models.

The most similar work to ours is the work by
Costa-juss et al. (2017) since they used font im-
ages in their method, although their target task is
not review classification but neural machine trans-
lation. They initialized embeddings with bitmap
fonts, and they achieved a better BLEU score than
a baseline method without bitmap fonts of Chi-
nese characters. They, however, did not directly
incorporated the font images into their models un-
like ours and they used the font information as ad-
ditional information, so the parameters were in-
creased by using font images in their model.

Several other related work has exploited pro-
cessing the character components, mostly radi-
cals, in Japanese (Yencken and Baldwin, 2008)
and Chinese (Jin et al., 2012; Lepage, 2014; Shi
et al., 2015; Li et al., 2015; Dong et al., 2016).
Sun et al. (2014) proposed radical-enhanced Chi-
nese character embeddings for word segmentation
in Chinese. They utilized radical information of
Chinese characters using a radical-mapping dic-
tionary. Their model consists of two models for
words segmentation and radical prediction with
sharing parameters of character embeddings. They
incorporate the radical information into charac-
ter embeddings by this radical prediction. Their
method was tailored for Chinese where all the
characters have radicals as character components.
Some kinds of Japanese characters like Hiraganas
and Katakanas are syllabograms that do not rep-
resent words, so their method is not directly ap-
plicable to Japanese. Also, most of the existing
work depends on dictionaries. Our method mod-
els the visual character information directly, so our
method is applicable to Chinese or any other lan-
guages without any dictionary.

6 Conclusion

We proposed a method for a multi-category sen-
timent classification that exploits font images as
potential representation of documents. The exper-
imental results showed that our method performs
as well as the plain character-based HAN on a
dataset of Rakuten Travel reviews with reducing
the number of parameters. The results suggest that
our method can utilize visual features of font im-
ages successfully to represent characters and such
visual information works well for multi-category
sentiment classification.

As future work, we would like to investigate the
better modeling of the font images by incorporat-
ing an attention mechanism to represent the loca-
tions of font images. This will enable us to inves-
tigate how our model works on the task by check-
ing whether the visual attentions are paid on char-
acter components like radicals in Kanji characters.
We would also like to compare and/or combine our
method with its variants with more symbolic char-
acter features like radial information from Kanji
dictionaries. That should help existing methods to
run on test datasets with the existence of unknown
characters since our method does depend not on
artificial hand-crafted features of characters ex-
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tracted from dictionaries that may lack some rare
characters but only on visual information of char-
acters.
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Abstract

We show how to adapt bilingual word em-
beddings (BWE’s) to bootstrap a cross-
lingual name-entity recognition (NER)
system in a language with no labeled data.
We assume a setting where we are given
a comparable corpus with NER labels for
the source language only; our goal is to
build a NER model for the target lan-
guage. The proposed multi-task model
jointly trains bilingual word embeddings
while optimizing a NER objective. This
creates word embeddings that are both
shared between languages and fine-tuned
for the NER task. As a proof of concept,
we demonstrate this model on English-to-
Chinese transfer using Wikipedia.

1 Introduction

Cross-lingual transfer is an important technique
for building natural language processing (NLP)
systems for low-resource languages, where la-
beled examples are scarce. The main idea is to
transfer labels or models from high-resource lan-
guages. Representative techniques include (a) pro-
jecting labels (or information derived from labels)
across parallel corpora (Yarowsky et al., 2011;
Das and Petrov, 2011; Che et al., 2013; Zhang
et al., 2016), and (b) training universal models us-
ing unlexicalized features (McDonald et al., 2011;
Täckström et al., 2012; Zirikly and Hagiwara,
2015) or bilingual word embeddings (Xiao and
Guo, 2014; Gouws and Søgaard, 2015).

Here, we focus on the bilingual word embed-
ding (BWE) approach. In particular, we are in-
terested in leveraging recent advances in learn-
ing BWE from comparable corpora (Hermann and

∗This research was majorly conducted when the author
was at Johns Hopkins University.
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Figure 1: Our multi-task framework, which trains
bilingual word embeddings from comparable cor-
pora while optimizing an NER objective on the
high-resource language. The NER part of the
model is then tested on a low-resource language.

Blunsom, 2014; Vulic and Moens, 2015; Gouws
and Søgaard, 2015). A comparable corpus is a col-
lection of document pairs written in different lan-
guages but talking about the same topic (e.g. in-
terconnected Wikipedia articles). The advantage
of comparable corpora is that they may be more
easily acquired in the language and domain of in-
terest. However, cross-lingual transfer on compa-
rable corpora is more difficult than on parallel cor-
pora, due to the difficulty in finding high-quality
word translation equivalences.

Our contributions are two-fold: First, we inves-
tigate cross-lingual transfer on an NER task, and
found that pre-trained BWE’s do not necessarily
help out-of-the-box. This corroborates results in
the monolingual setting, where it is widely rec-
ognized that training task-specific embeddings is
helpful for the downstream tasks like NER (Peng
and Dredze, 2015; Ma and Hovy, 2016).

Second, we propose a multi-task learning
framework that utilizes comparable corpora to
jointly train BWE’s and the downstream NER task
(Figure 1). We experimented with a Wikipedia
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corpus, training a NER model from labeled En-
glish articles (high-resource) and testing it on Chi-
nese articles (low-resource)1. The challenge with
training task-specific embeddings in cross-lingual
transfer is that the task in which we have labels
(English NER) is not equivalent to the task we care
about (Chinese NER). Despite this, we demon-
strate improvements on NER F-scores with our
multi-task model.

2 The Multi-task Framework

Assumptions : We assume two resources: First
is a comparable corpus where S (”source”) refers
to the high-resource language and T (”target”)
refers to the low-resource language. The compa-
rable corpus is denoted as C = {(c(S)

i , c(T )
i ) | i ∈

[1,M ]}, where each (c(S)
i , c(T )

i ) is a tuple of com-
parable documents written in S and T , and M is
the size (total number of tuples) of C.

We also assume a labeled NER corpus on the
high-resource language, which may be disjoint
from C. Let X(S) = {x(S)

i | i ∈ [1, N (S)]} and
Y (S) = {y(S)

i | i ∈ [1, N (S)]} together form the
NER training examples of S, where each y(S)

i is
the gold tag sequence of sentence x(S)

i , and N (S)

is the number of training examples.

Training : Given X(S) and Y (S) and
C the training objective (loss) L is:

α Ln
X(S),Y (S)

(V,Λ) + (1− α)Lm
C

(V,Θ) (1)

Ln is the loss for training the NER tagger in
S, Lm is the loss for training the BWE’s, and
α ∈ [0, 1] is coefficient for balancing these two
losses. Λ, V and Θ are the model parameters,
where Λ is Ln-specific parameter, Θ is the Lm-
specific parameter and V is the d×v-shape BWE’s
that shared are by both Ln and Lm. v is the size
of the joint vocabulary V and V is formed by con-
catenating2 the vocabulary of S and T , d is the
dimension of the word embedding. Figure 1 gives
a visualization of the framework.

Evaluation : At test time, given X(T ) – the raw
sentences of T , we evaluate the F1 score of Ȳ (T )

predicted by the trained model {V∗,Λ∗} against
the true label Y (T ). Note that this model is trained

1Chinese can be considered a high-resource language for
NER, but we use it as a proof-of-concept and do not use any
existing Chinese resources.

2Same word in different languages is treated separately.

on NER labels in S only, so it is imperative for the
learned BWE’s to map S and T words with the
same NER label into nearby spaces.

Our framework (Equation 1) is flexible to differ-
ent definitions of Ln and Lm objectives. Below,
we describe a specific instantiation that fits well
with cross-lingual NER.

2.1 Design of Ln

Given the labeled training data X(S), Y (S) of S,
we optimize the conditional log-likelihood as Ln
(superscripts S are suppressed for readability):

Ln
X,Y

(V,Λ) =
1
N

N∑
i=1

log pV,Λ(yi | xi) (2)

pV,Λ(y | x) is the conditional probability of y
given x parameterized by V and Λ such that

pV,Λ(y | x) =
exp(sV,Λ(x,y))∑

y′∈Y exp(sV,Λ(x,y′))
(3)

. sV,Λ(. . . ) is a score function of a sentence and
its possible NER-tag sequence. Y is the set of all
possible NER-tag sequences.

Unigram Model : Given a sentence x ∈ X with
length l and its label y ∈ Y , the score function of
unigram model is simply:

sV,Λ(x,y) =
∑

t∈[1,l]

V[xt]> ·W [yt] + b[yt] (4)

where Λ def= {W, b}, W is a d × n-shape matrix
that maps the word vector V[xt] into the NER-tag
space, n is the number of NER-tag types, which is
7 as will be explained in §3.1. b is the bias vector
with size n. The reason why we call this model
unigram is it only looks at the word itself without
its context.3

2.2 Design of Lm

Here we adopt the method of Vulic and Moens
(2015), which is the only mechanism for training
on comparable documents as far as we know: First
we transform C into a pseudo-bilingual corpora C′
by a stochastic merging process of two documents
as shown in Alg. 1. The idea is to mix together
the two documents in different languages into a
single document (where S and T words are inter-
spersed), then apply a standard monolingual word
embedding algorithm.

3Besides unigram, we also tried LSTM+CRF (Lample
et al., 2016) for longer context. Despite good results in mono-
lingual NER, it did poorly in our cross-lingual experiments.
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Algorithm 1 Stochastic merging of two docu-
ments, where len(c) returns the number of tokens
of document c, c[i] is the ith token of document c.

Input: Comparable Document: c(S), c(T )

Output: Pseudo-bilingual Document: c
1: c← []; i1 ← 0; i2 ← 0
2: r ← len(c(S))

len(c(S))+len(c(T ))

3: while i1 < len(c(S)) and i2 < len(c(T )) do
4: p ∼ Uniform[0, 1]
5: if i2 == len(c(T )) or p < r then
6: c. append(c(S)[i1])
7: i1 ← i1 + 1
8: else
9: c. append(c(T )[i2])

10: i2 ← i2 + 1
return c

We use the standard skip-gram objective
(Mikolov et al., 2013) by considering each
pseudo-bilingual document as a single sentence.
Lm
C

(V,Θ) is given by:

mean
c∈C′

mean
t∈[1,len(c)]

∑
−w≤j≤w

j 6=0

log pV,Θ(ct+j |ct) (5)

, where w is the word window, ct is the tth token
of c. pV,Θ(. . . ) is the standard context probability
parameterized by V and Θ such that

pV,Θ(cO|cI) =
V[cI ]> ·V′[cO]∑

c′O∈V V[cI ]> ·V′[c′O]
(6)

Θ def= {V′}, where V′ is the context embedding
with size d × v. In the implementation, we use
negative sampling to save the computation, since
we desire using a large vocabulary to handle as
many words as possible for cross-lingual transfer.

2.3 Optimization
Full Joint (FJ) Training : First optimize Ln by
updating V and Λ. Then optimize Lm by updating
V, Θ. Repeat.

Half-fixed Joint (HFJ) Training : Same as FJ
Training, except in the Lm optimization step, the
English word embeddings are fixed and only the
Chinese word embeddings are updated. The mo-
tivation is to anchor the English embeddings to fit
the NER objective Ln, and encourage the Chinese
embedding (of comparable documents) to move
towards this anchor.

Inspired by Lample et al. (2016), for both ap-
proaches, words with frequency 1 in the NER data
are replaced by OOV with probability 0.5 to so
that embedding OOV could be optimized.

3 Experiments

3.1 Data

We use the EN-ZH portion of the Wikipedia Com-
parable Corpora4. For experiment purposes, we
sampled 19K document pairs5 as our comparable
corpora C. The NER labeled data on English (S)
is obtained by collecting the first paragraph of
each English document in C as X(S), and labeling
it with Stanford NER tagger (Finkel et al., 2005)
to generate Y (S).6

For the NER test data in Chinese (T ), we sep-
arately sampled 1K documents and collected the
first sentence as X(T ). We ran automatic word
segmentation7 and manually labeled X(T ) to gen-
erate Y (T ). The English side of these 1K tuple
is treated as held-out data for tuning NER hyper-
parameters, and is labeled with the same Stanford
NER tagger. We use the BIO tagging scheme for
3 basic named-entity types (“LOC” for location,
“ORG” for organization and “PER” for person),
so the output space is 7 tags. The data statistics
are shown in Table 1. The size of BWE’s is about
1M with 514K being Chinese words.

C X(S) X(T )

#Document Tuple 19K - -
#Sentence 1.8M 45K 1K
#Token 24M 994K 20K

Table 1: Data statistics.

3.2 Results

We compare our multi-task model with FJ and HFJ
alternate training8 against a baseline where BWE’s

4http://linguatools.org/tools/corpora/
wikipedia-comparable-corpora/

5We started from 20K pairs in totall, then we first sampled
out 1K from the Chinese side for the final evaluation and left
19K for training. We consider it as a reasonable number com-
pared to Vulic and Moens (2015), which used 14K pairs for
Spanish-English and 19K for Italian-English.

6We treat these automatic NER tags as ”gold” labels to
simulate a scenario where we want cross-lingual transfer on
T to do at least as well as on S. But naturally our model can
also use human annotations if available.

7https://github.com/fxsjy/jieba
8For training the BWE’s, we borrow the same hyperpa-

rameters as Vulic and Moens (2015) – learning rate of 0.025,

385



d Baseline HFJ FJ
64 6.54 13.5 7.01
128 14.95 20.27 17.14
256 13.69 24.29 16.53
512 21.23 17.7 20.14

Table 2: The F1 scores on the Chinese held-out
data averaged over multiple restarts. d is the di-
mension of the BWE’s. All the BWE’s are ini-
tialized by the output of Vulic and Moens (2015)
trained on C. “Baseline” fixes the BWE’s and only
trains Λ, “HFJ” and “FJ” are proposed joint train-
ing methods described in §2.3

are pre-trained on C, then held fixed when train-
ing a NER tagger. This baseline corresponds to a
two-step procedure where word embeddings pre-
trained on comparable corpora is used as features
when training an NER.9

Table 2 shows the F1 scores. We observe the
joint training methods (HFJ & FJ) outperform the
baseline method with embedding size 64, 128, and
256. For example, for d = 256, HFJ achieves
an F1 score of 24%, compared to the baseline of
13%, implying that jointly tuning the embedding
on both comparable corpora and NER objectives
(HFJ) is better than fine-tuning only NER objec-
tive after training on comparable corpora (base-
line). Further, HFJ results are better than FJ, im-
plying when optimizing Lm, it is better to tune the
Chinese embedding toward an anchored English
embedding, rather than allow both to be updated.

We note that the trend is different for d = 512:
it might be that as the NER model grows larger,
there is a risk of overfitting10 the English NER
data and losing generality on Chinese NER. We
observe similar trends when we replaced the uni-

negative sampling with 25 samples and subsampling rate of
value 1e-4. The dropout rate of 0.3 is decided by the best
F1 score of the language-specific NER tagger on the English
held-out data. The coefficient α for balancing two Ln and
Lm should presumably be chosen by tuning on the labelled
data for Chinese, which is not available in our setting. So we
heuristically set it to 0.5 by assuming they are equally help-
ful. Our fully unsupervised setting has no NER training data
available on the Chinese side for tuning. To prevent the train-
ing from overfitting to the English data, we heuristically early
stop after 10000 pairs of alternating updates of Lm and Ln.

9Another possible baseline is using only Ln for training,
this will not work because Ln only consists of English data,
so the Chinese embeddings will stay random when English
embedding are optimized, resulting random outputs on the
Chinese side.

10When training with d = 512, the F1 on training data is
consistently > 60 for the last epochs, which is about 50 with
d = 256.

gram model with a LSTM+CRF (see §2.1) in Ln.
This degraded results for all systems, e.g. with
d = 256, “Baseline” F1 dropped from 13.69 to
6.07, and “FJ” dropped from 16.53 to 8.62.

It is interesting to see the impact of joint train-
ing on BWE’s. In Table 3, given a Chinese query,
we show the most similar words in English re-
turned by computing the Euclidean distance be-
tween BWE’s (d = 256). While both pre-trained
and jointly-trained BWE’s retrieve correct English
translations, jointly-trained BWE’s retrieves more
words with the same NER type. For example,
“Spanish”, and “Greek” – the adjective forms of
“Spain” and “Greece”, rank highly with the pre-
trained BWE’s due to semantic similarity. But
these may degrade NER since these adjectives are
not labeled ”LOC”. Our multi-task model miti-
gates this confusion.

4 Conclusion & Future Work

We show how a multi-task learning approach can
help adapt bilingual word embeddings (BWE’s)
to improve cross-lingual transfer. Joint train-
ing of BWE’s encourages the BWE’s to be task-
specific, and outperforms the baseline of using
pre-trained BWE’s. We showed promising re-
sults on the challenging task of cross-lingual NER
on comparable corpora, where the target language
has no labels. Future work will aim to improve
the absolute F1 scores by combining limited la-
bels in the low-resource languages, via exploiting
document structure in Wikipedia (Richman and
Schone, 2008; Steinberger et al., 2011; Tsai et al.,
2016; Ni and Florian, 2016; Pan et al., 2017).
While we only focus on the most difficult case
where the source language and target languages
are not in the same family, and a bilingual dictio-
nary is not available in this paper, it is interesting
to study how this technique could be applied when
the different levels of supervision are available on
various language pairs in the future.
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Query Type Top 8 results in English
NBA
NBA

ORG
NBA, rebounds, Knicks, Lakers, Lewiston-Porter, 76ers, guard-forward, Celtics
NBA, Lakers, Gervin, rebounds, Celtics, Cavaliers, Knicks, All-Defensive

西班牙
Spain

LOC
Spain, Spanish, Nogueruelas, Rosanes, Mazarete, Ólvega, Marquesado, Montija
Spain, Rosanes, Cenicientos, Madrid, Sorita, Alcahozo, Nogueruelas, Villaralto

希腊
Greece

LOC
Greece, Greek, Achaia, annalistic, heroized, Gigantomachy, Hecabe, river-god
Hachadoor, Greece, Demoorjian, Safranbolu, Scicli, Holasovice, Sighisoara, Litomysl

卡卡
Kaka

PER
Kakashi, Moure, Uzumaki, cosplayed, Uchiha, humanizing, Yens, hilarious
Kakashi, Kaka, Moure, Nedved, Suazo, Batistuta, Uzumaki, Quagliarella

Table 3: Top similar words in the English given a Chinese query. “Type” is the gold named-entity type
of the query. For each query, the upper row is calculated with the baseline BWE’s, and the lower row is
calculated with HFJ BWE’s. The words with the same type as the query are bold-faced, and we observe
more of these cases with HFJ.
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Abstract

In dialogue systems, conveying under-
standing results of user utterances is im-
portant because it enables users to feel un-
derstood by the system. However, it is not
clear what types of understanding results
should be conveyed to users; some utter-
ances may be offensive and some may be
too commonsensical. In this paper, we ex-
plored the effect of conveying understand-
ing results of user utterances in a chat-
oriented dialogue system by an experiment
using human subjects. As a result, we
found that only certain types of under-
standing results, such as those related to
a user’s permanent state, are effective to
improve user satisfaction. This paper clar-
ifies the types of understanding results that
can be safely uttered by a system.

1 Introduction

Current dialogue systems often convey the un-
derstanding results of user utterances for confir-
mation and for showing understanding. Task-
oriented dialogue systems repeat information pro-
vided by users by using understanding results of
user utterances to confirm the content of user ut-
terances (Litman and Silliman, 2004; Raux et al.,
2005). Chat-oriented dialogue systems also need
to confirm the content of user utterances and to
show understanding so that the systems can be
more affective.

However, some of the understanding results
should not be conveyed to users. For instance,
some utterances (e.g. “You are stubborn.”) may
be offensive and some (e.g. “It is summer.”) may
be too commonsensical. To create a dialogue sys-
tem which conveys one’s understanding results,

we need to know what types of the results can be
used as system utterances.

In this paper, focusing on chat-oriented dia-
logue systems, we investigate the effects of con-
veying understanding results of user utterances.
Specifically, we investigate the types of results that
can be conveyed to users without lowering user
satisfaction. For this purpose, we first prepared
various types of understanding results. Then, by
a subjective experiment, we examined their indi-
vidual effects on user satisfaction. Note that, in
this paper, we focus on the effects of system utter-
ances that convey understanding results “as they
are”; that is, utterances are literally the same as
understanding results.

As a result of the experiment, we found that
user’s temporary states during dialogue should not
be conveyed and user’s permanent states and infor-
mation irrelevant to users themselves can be con-
veyed safely as system utterances. Our results are
useful for creating a dialogue system that conveys
understanding results.

2 Data of Understanding Results

For our investigation, we need to prepare under-
standing results categorized by their types. For
this purpose, we use a corpus of PerceivedInfo col-
lected in our previous work (Mitsuda et al., 2017).
In this corpus, user utterances in chat-oriented dia-
logue are associated with the information that can
be perceived/inferred by humans from these ut-
terances. Such information is called Perceived-
Info (perceived information).

Figure 1 shows an example of a chat-oriented
dialogue and their PerceivedInfo in the corpus. As
stimuli for collecting PerceivedInfo, a Japanese
chat-oriented dialogue corpus (Higashinaka et al.,
2014) was used. PerceivedInfo was written by
multiple annotators using natural sentences with
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: utterance

: Hello, nice to meet you!

: Nice to meet you too.

: I feel autumn coming, how about you?

: I think so too.

: The cicadas have gotten quiet recently.

...

: Do you go anywhere interesting in autumn?

: I'll visit Mt. Fuji if I feel up to it.

...

: Let's talk about this next time.

: Okay.

doesn't mind going a long way.

drives a car.

is active.

likes going on pleasure trips.

likes mountains.

likes Mt. Fuji.

likes autumn leaves around Mt. Fuji.

likes the outdoors.

lives in Kanto prefecture.

lives near Mt. Fuji.

would like to be surprised.

Mt. Fuji is famous for autumn leaves.

Perceived information for Chat-oriented dialogue

Figure 1: Example of chat-oriented dialogue and perceived information in PerceivedInfo corpus. A and
B correspond to speakers.

Level 1 Level 2 Level 3 Description Example

Thought
(55.1%)

Thought
(35.8%)

Belief self (30.7%) Speaker’s belief for him/herself A likes watching TV.
Belief other (5.1%) Speaker’s belief toward listener A agrees with B.

Desire
(19.3%)

Desire (9.9%) Speaker’s desire relative to him/herself A wants to talk about Mt. Fuji.
Request (9.4%) Speaker’s request to listener A wants to be praised by B.

Fact
(44.9%)

A’s fact
(37.9%)

Attribute (20.2%) User-modeling information of speaker A is married., A can drink.
Behavior (14.4%) Speaker’s action A drives a car., A is thinking.
Circumstance (3.3%) Background around speaker A is close with friends.

Other fact
(7.0%)

Certain fact (3.9%) Certain fact irrelevant to speaker Mt. Fuji is famous for red leaves.
Uncertain fact (3.1%) Uncertain fact irrelevant to speaker A rice crop may fail.

Table 1: Classification of perceived information used for investigation. A and B correspond to speakers.

regard to each utterance in the dialogue.
Table 1 shows the classification of Perceived-

Info created in our previous work. These types
were determined by manual clustering. The clas-
sification was evaluated by inter-annotator agree-
ment among three annotators using 3,000 in-
stances of PerceivedInfo with “Level 3” types.
Fleiss’ κ showed substantial agreement (0.69), in-
dicating the validity of the classification.

In this work, we use the PerceivedInfo in this
corpus as understanding results and investigate the
effects of system utterances that convey Perceived-
Info. We also investigate how the effects are dif-
ferent depending on the types of PerceivedInfo in
the classification.

3 Experiment

Using PerceivedInfo, we evaluated the effects of
system utterances conveying the understanding re-
sults in an experiment. Below, we explain the pro-
cedure to create the utterances for the experiment
and how we evaluate them.

Figure 2 shows the flow of preparation and eval-
uation. We first select pairs of PerceivedInfo and
a user utterance used for writing that Perceived-
Info from the corpus. The writers rewrite or refer

Create system utterances (by 2 writers)

Sample PerceivedInfo (with utterance)

UtterancePerceivedInfo

PerceivedInfo

Evaluation scores

Evaluate utterances (by 3 raters)

PerceivedInfo corpus

Automatic

Repetition Human

Figure 2: Preparation and evaluation of system ut-
terances

to the PerceivedInfo and utterance to create sys-
tem utterances. Finally, raters evaluate them by
questionnaire, giving a score to each utterance.

3.1 Types of System Utterances

Table 2 shows the four types of system utter-
ances prepared for evaluation. Utterances from
PerceivedInfo are compared with those of three
other types; namely, “Automatic,” “Repetition,”
and “Human.” “PerceivedInfo” is described be-
low.
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System utterance Description Example
PerceivedInfo Confirmation of perceived information You are active, aren’t you?
Automatic Response generated by a chat-oriented dialogue system Do you work at Mt. Fuji?
Repetition Repetition of user utterance in tag question form You will visit Mt. Fuji, won’t you?
Human Response created by writer using keyword in user utterance Mt. Fuji is a good place, isn’t it?

Table 2: Types of system utterances prepared for evaluation. “Example” column shows system utterance
when user utterance is “I’ll visit Mt. Fuji if I feel up to it.” (utterance U13 in Figure 1).

PerceivedInfo This utterance simply conveys
PerceivedInfo in the form of confirmation.
The utterance ends with a tag question form
to confirm the content of PerceivedInfo.
Rewriting PerceivedInfo is done manually.
The symbols A and B that indicate speakers
are changed to “You” or “I”.

3.2 Types of Utterances for Comparison
We prepared three other types of system utterances
for comparison. “Automatic” emulates the utter-
ance of a chat-oriented dialogue system that is cur-
rently available. “Repetition” represents a simple
repetition of the content of a user utterance. “Hu-
man” is an utterance conceived by human.

Automatic This utterance is an automatic re-
sponse from a chat-oriented dialogue system
that generates an utterance on the basis of
keywords extracted from user utterances. To
prepare responses, we use a Japanese chat-
oriented dialogue system by NTT DOCOMO
(Onishi and Yoshimura, 2014).

Repetition This utterance is a repetition of a pred-
icate argument structure in a user utterance
(Higashinaka et al., 2014). It ends with a
tag question form (in Japanese, “desu ne”) to
show that the system understands the content
of a user utterance. The utterance is manually
created by extracting and rewriting a predi-
cate argument structure from the user utter-
ance.

Human This utterance is a human-level utterance
(i.e., upper bound). We prepare it by hav-
ing writers manually write an appropriate re-
sponse to a keyword in the user utterance.
Writers are instructed to select their favorite
keyword in the utterance and use it to create
a response that would satisfy users.

3.3 Preparation and Evaluation of
Utterances

To clarify the difference of effects caused by
the types of PerceivedInfo, we randomly selected

approximately the same number of Perceived-
Info from each type in “Level 3” shown in Table 1.
In total, we prepared 500 instances of Perceived-
Info; that is, 500 PerceivedInfo and user utterances
associated with PerceivedInfo.

Using the 500 PerceivedInfo and utterances,
“PerceivedInfo” and “Repetition” were written by
a single writer and two versions of “Human” were
written by two writers (Writer1 and Writer2) in-
dependently. We evaluated both utterances of
“Human” written by the writers, because the qual-
ity of “Human” may depend on the writer. “Auto-
matic” were generated from the chat-oriented di-
alogue system by NTT DOCOMO using the ut-
terance as an input to the system. Following this
experimental set-up, we prepared five types of ut-
terances (including two versions of “Human”) for
each pair of PerceivedInfo and a user utterance,
totalling 2,500 utterances, for evaluation.

To evaluate how each utterance is usable as a
system utterance in dialogue, we annotated “natu-
ralness” to the utterances. Raters were instructed
to evaluate how natural the response was in the
chat-oriented dialogue and to annotate an abso-
lute score for each utterance in one of seven grades
from one (very unnatural) to seven (very natural).
They evaluated the five types of utterances at the
same time. They could see not only a user utter-
ance and system utterance but also the context be-
fore the user utterance. Three raters worked inde-
pendently.

3.4 Results of Subjective Evaluation
Table 3 shows the results of the evaluation, where
the average scores annotated by three raters to the
five types of utterances are listed. The results
show that “Human by Writer1” and “Human by
Writer2” were ranked the highest by all raters,
with “Automatic” ranked as the lowest. The or-
der of the evaluated scores tended to be consistent
in all raters (“Human by Writer1,” “Human by
Writer2,” “Repetition,” “PerceivedInfo,” and “Au-
tomatic”). Spearman’s rank correlation coefficient
between two annotators averages at 0.56. “Per-
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System utterance Rater1 Rater2 Rater3 Average
PerceivedInfo 2.7 3.1 3.1 3.0
Automatic 2.1 2.3 2.2 2.2
Repetition 3.7 4.0 4.6 4.1
Human by Writer1 4.5 5.4 5.5 5.1
Human by Writer2 4.5 5.1 5.5 5.0

Table 3: Naturalness scores of system utterances
annotated by three raters

ceivedInfo” was evaluated as being more natural
than “Automatic,” but less natural than “Repeti-
tion.”

From this result, we can say that using only Per-
ceivedInfo as system utterances is not an effective
method. However, since there may be a differ-
ence among the types of PerceivedInfo, we further
investigated the evaluation scores in each type of
PerceivedInfo.

Figure 3 shows the averaged naturalness scores
annotated for each type of “PerceivedInfo.” The
scores were clearly divided into three ranges: 1–
2, 2–4, and 4–5, and defined as Low-rate type,
Mid-rate type, and High-rate type, respectively.
We investigated what PerceivedInfo exist in each
type and the reasons for their high or low rating.
For reference, we list examples and scores of Per-
ceivedInfo in each type in Table 4.

Low-rate type An utterance in the Low-rate
type mainly refers to user’s temporary states,
such as thoughts, emotion, or behavior during
dialogue (e.g., “You want me to agree, don’t
you?”). Even an utterance that includes a
positive expression (e.g., “You like me, don’t
you?”) tends to be evaluated as unnatural.
This can be partly explained by the polite-
ness theory (Brown and Levinson, 1987). Ut-
terances in the Low-rate type that mention a
user’s temporary state would create the need
for the user to explain. Thus, a user’s nega-
tive face, the desire to be left free to act as he
or she chooses, can be threatened.

Mid-rate type An utterance in the Mid-rate
type generally refers to user’s permanent
states, such as favorites, experience, or pro-
files (e.g., “You like cool cars, don’t you?”).
Such an utterance tends to be evaluated as
natural as “Repetition.” However, an utter-
ance including a negative expression (e.g.,
“You are stubborn, aren’t you?”) or a part
of profiles (e.g. “You are a woman, aren’t
you?”) tends to be evaluated as unnatural.

1 2 3 4 5 6 7

Uncertain fact

Certain fact

Behavior

Circumstance

Belief self

Attribute

Desire

Belief other

Request

Naturalness score

Low-rate type

High-rate
type

Mid-rate type

Figure 3: Naturalness scores of system utterances
conveying perceived information on each type in
Table 1

This means that a mention of something neg-
ative or private about the user is not a good
option. This can also be explained by the po-
liteness theory as a violation of a user’s pos-
itive face; that is a desire to keep self-image
approved.

High-rate type An utterance in the High-rate
type generally refers to the content that does
not directly relate to users, such as general
facts (e.g., “A trip abroad is expensive, isn’t
it?”). Many utterances are evaluated as more
natural than “Repetition” and as natural as
“Human.” This may be because the utter-
ances in the High-rate type do not threaten
a user’s face because the content of the utter-
ances has no direct relation to users.

From the experiment, we found that utterances
created from specific types of PerceivedInfo are
evaluated as more natural than others. Our results
conform to the politeness theory and further pro-
vide quantitative evaluation of utterances that con-
vey PerceivedInfo. One interesting thing is that
the violation of the negative face has more im-
pact on the naturalness when compared to that of
the positive face. It is of great interest that, al-
though much PerceivedInfo occurs during a dia-
logue, only a part of it can be uttered.

Although further investigation is needed, our re-
sults are useful for providing a guideline for cre-
ating system utterances that convey understanding
results.
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Rate PerceivedInfo Worst utterance Score Best utterance Score

Low

Request
You want me to agree, don’t you? 1.0 (1,1,1) You want to talk about China, don’t you? 2.0 (1,2,3)
You want to talk, don’t you? 1.0 (1,1,1) You want me to go to a gym, don’t you? 1.7 (1,3,1)
You want me to know about you, don’t you? 1.0 (1,1,1) You want to talk ordinarily, don’t you? 1.7 (1,3,1)

Belief other
You trust me, don’t you? 1.0 (1,1,1) You agree with me, don’t you? 2.7 (3,3,2)
You like me, don’t you? 1.0 (1,1,1) You are interested in my topic, aren’t you? 2.3 (3,3,1)
You misunderstand me, don’t you? 1.0 (1,1,1) My impression is changing, isn’t it? 2.0 (3,2,1)

Desire
You want to change the topic, don’t you? 1.0 (1,1,1) You long for nomadic life, don’t you? 4.7 (5,2,7)
You want to boast of your partner, don’t you? 1.0 (1,1,1) You want to go to Germany, don’t you? 4.3 (4,4,5)
You want to sympathize with me, don’t you? 1.0 (1,1,1) You want to live in cool place, don’t you? 4.3 (4,5,4)

Mid

Attribute
You are a woman, aren’t you? 1.0 (1,1,1) You are sociable, aren’t you? 6.3 (5,7,7)
You are easygoing, aren’t you? 1.0 (1,1,1) You are willing to go out, aren’t you? 6.3 (5,7,7)
You are weak, aren’t you? 1.0 (1,1,1) You are kind, aren’t you? 5.7 (3,7,7)

Belief self
You are boastful, aren’t you? 1.0 (1,1,1) You like cool cars, don’t you? 6.3 (5,7,7)
You are a little embarrassed, aren’t you? 1.3 (1,2,1) You like Mt. Fuji, don’t you? 6.0 (5,6,7)
You are uninterested in agriculture, aren’t you? 1.7 (1,3,1) You like the outdoors, don’t you? 5.3 (5,4,7)

Circumstance
There is a computer in your home, isn’t there? 1.7 (2,2,1) You belong to the soccer team, don’t you? 6.0 (5,6,7)
You live on your husband’s earnings, don’t you? 1.7 (2,2,1) It is sunny around you, isn’t it? 5.3 (3,6,7)
Your parents are well, aren’t they? 2.0 (2,3,1) Your relatives like celebrations, don’t they? 5.0 (4,4,7)

Behavior
You think about what to say, don’t you? 1.3 (2,1,1) You went out this summer, didn’t you? 5.3 (3,6,7)
You show me interests, don’t you? 1.3 (1,2,1) You lost your appetite due to how the food looks. 5.3 (4,5,7)
You think what to say next,don’t you? 1.3 (2,1,1) You drink herb tee, don’t you? 5.0 (2,7,6)

High

Certain fact
It is September, isn’t it? 3.0 (3,5,1) Wheels are expensive, aren’t they? 6.7 (7,6,7)
Bikes have various price ranges, don’t they? 3.3 (3,3,4) It is humid, isn’t it? 6.3 (7,5,7)
Road bikes and bicycles are different, aren’t they? 3.7 (3,4,4) Curved handlebars are special, aren’t they? 6.3 (6,6,7)

Uncertain fact
Using computers takes a lot of time, doesn’t it? 2.0 (1,4,1) A trip abroad is expensive, isn’t they? 6.7 (7,6,7)
That is a bad restaurant, isn’t it? 3.3 (2,3,5) Nagatomo showed great activity, didn’t he? 6.3 (7,5,7)
Muscle pain arises the next day, doesn’t it? 3.7 (4,4,3) Germany is safe, isn’t it? 6.3 (6,5,7)

Table 4: Best and worst three utterances conveying perceived information on each type in Table 1.
“Score” column shows average score and each score annotated by three raters.

4 Related Work

Although there has been no studies that explored
the effect of utterances conveying system’s under-
standing results to users, there have been several
that have explored what linguistic behavior can be
used or how to utter contents in dialogue systems
from the viewpoints of social aspects (especially
on the politeness theory).

For example, Gupta et al. constructed a task-
oriented dialogue system in the cooking domain
in which utterance generation is performed on the
basis of the politeness theory (Gupta et al., 2007).
Wang et al. estimated the politeness of each ut-
terance in a task-oriented dialogue system by us-
ing various features, such as insults or criticisms
(Wang et al., 2012). Danescu et al. constructed a
corpus in which politeness is annotated in online
community data and constructed a model for es-
timating politeness using linguistic features, such
as gratitude expressions or positive and negative
lexicons (Danescu-Niculescu-Mizil et al., 2013).

5 Conclusion

In this paper, we investigated what types of under-
standing results can be used as system utterances.
Using the corpus of PerceivedInfo (perceived in-
formation), we manually created and evaluated
the utterances that convey PerceivedInfo. We
found that certain types of PerceivedInfo, espe-
cially those related to a user’s permanent state and

information irrelevant to users themselves, are us-
able.

For future work, we want to construct a dia-
logue system that conveys the understanding re-
sults in the way we proposed. For this purpose,
we need to create an automatic estimator of Per-
ceivedInfo. In this work, we used the understand-
ing results as they were; however, we can cre-
ate various system utterances from PerceivedInfo,
and, in such a case, other types of Perceived-
Info can be effectively used. We want to further
pursue how we can make use of PerceivedInfo in
dialogue systems.
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Abstract

Contrastive opinion mining is essential
in identifying, extracting and organising
opinions from user generated texts. Most
existing studies separate input data into re-
spective collections. In addition, the rela-
tionships between the topics extracted and
the sentences in the corpus which express
the topics are opaque, hindering our un-
derstanding of the opinions expressed in
the corpus. We propose a novel unified
latent variable model (contraLDA) which
addresses the above matters. Experimen-
tal results show the effectiveness of our
model in mining contrasted opinions, out-
performing our baselines.

1 Introduction

Recent text mining applications have uncovered
public opinions and social trends. This is par-
tially driven by large corpora of opinionated doc-
uments in the web. Contrastive opinion mining
is the discovery of opposing opinions and senti-
ments held by individuals or groups about a given
topic. The usefulness of contrastive opinion min-
ing spans across many applications such as discov-
ering the public’s stand on major socio-political
events (Fang et al., 2012), observing heated de-
bates over controversial issues (Lippi and Tor-
roni, 2016), and product review sites (Lerman and
McDonald, 2009). Considering the volume of re-
views, it is highly desirable to acquire an overview
of the major viewpoints from large amounts of text
data automatically, allowing one to convert data
into actionable knowledge for timely decision-
making.

Recently, there have been some studies on min-
ing contrastive viewpoints or opinions from text
(Paul and Girju, 2009; Fang et al., 2012; Elahi and

Monachesi, 2012; Gutiérrez et al., 2016). How-
ever, these studies assume that input data are sep-
arated into different collections beforehand, e.g.,
news articles from CNN vs. those from Fox News
about the same set of events. While this assump-
tion might hold for some practical scenarios, one
quite often needs to analyse contrastive opin-
ions contained in a single collection such as an
open-ended discussion about government policy
or commercial products in order to understand the
viewpoints and their connections across the col-
lection.

In addition, it is natural that debates on some
topics are more prominent, indicating the impor-
tance of the topic. Therefore, being able to un-
derstand the prominence of a topic and the levels
of contrastive sentiment will help one to prioritise
actions. Finally, existing models generally inter-
pret contrastive opinions solely in terms of the ex-
tracted topic words, which are not adequate to help
us accurately understand the opinions presented in
the corpus since the topic words only express shal-
low semantics. Understanding the dependency be-
tween the sentences in the corpus and the topic of
discussion would be illuminating. The representa-
tive sentences also help to clarify the coherence of
the extracted topics.

In this paper, we address the aforementioned
issues by proposing a novel unified latent vari-
able model (contraLDA) for mining contrastive
opinion from text collections. The proposed
model contributes the following: (1) automati-
cally discovers contrastive opinion from both sin-
gle and multiple text collections; (2) quantifies
the strength of opinion contrastiveness towards the
topic of interest, which could allow one to swiftly
flag issues that require immediate attention; and
(3) adopts the sentence extraction approach in
(Barawi et al., 2017) to extract relevant sentences
related to topics, making sentiment-bearing top-
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ics clearer to users. Experimental results show
that our model outperforms several baseline mod-
els in terms of extracting coherent and distinc-
tive sentiment-bearing topics which express con-
trastive opinions. The topic relevant sentences ex-
tracted by our approach further help us effectively
understand and interpret sentiment-bearing topics.

2 Methodology

T×L
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Figure 1: The contraLDA Model.

We propose a model called contraLDA which
offers a unified framework for mining contrastive
opinions from text, where the source of text could
be either a single collection or multiple collec-
tion of text. The graphical model of contraLDA
is shown in Figure 1. Given a collection of docu-
ments D, assume that D can be divided in to C
classes: D = {Dc}Cc=1 with Dc documents per
class, each document d in class c is a sequence of
Nd words, each word in the document is an item
from a vocabulary with V distinct terms, and c is
the class index. Also assuming that L and T are
the total number of sentiment labels and topics,
respectively, the complete procedure for generat-
ing a word wn in contraLDA is as follows: first,
one draws a topic z from the class-constrained
topic distribution θcd. Following that, one draws
a sentiment label l from the topic specific, class-
constrained sentiment distribution πcd,z . Finally,
one draws a word from the per-corpus word distri-
bution ϕz,l conditioned on both topic z and senti-
ment label l. Note that documents of all collections
share the same ϕ, and we can fully keep track of
which collection a document belongs to based on
its class index c. It is also important to note that
the number of classes C plays a key role in con-
trolling the operation mode of contraLDA. That is
when C = 1, contraLDA is essentially modelling

a single collection of text without any class mem-
bership information. In the scenario where C > 1,
contraLDA will be switching to model multiple
collections of text, e.g., documents annotated with
class labels, or articles from New York Times and
Xinhua News about the same set of events. We
summarise the generative process of contraLDA
as follows:

• For each topic z ∈ {1, · · · , T}
– For each sentiment label l ∈ {1, · · · , S}
∗ Draw ϕz,l ∼ Dir(βz,l).

• For each document d ∈D
– choose a distribution θc

d ∼ Dir(εc
z ·α).

– For each sentiment label l under document d,
∗ Choose a distribution πc

d,z ∼ Dir(εc
l · γ).

– For each word n ∈ {1, · · · , Nc
d} in document d

∗ Choose a topic zn ∼ Mult(θc
d),

∗ Choose a sentiment label ln ∼
Mult(πc

d,zn
),

∗ Choose a word wn ∼ Mult(ϕzn,ln
).

2.1 Incorporating Supervised Information.
The contraLDA model can be trained flexibly de-
pending on the type of supervision information
available. Specifically, if there are only labelled
features available (e.g., sentiment lexicon, or topic
seed words), our model will incorporate the la-
belled features to constrain the Dirichlet prior of
topic-word distributions, which essentially plays a
role in governing the model inference. If there is
fully labelled data available, e.g., labelled docu-
ments, our model will account for the full super-
vision from document labels during the generative
process, where each document can associate with
a single class label or multiple class labels. How-
ever, if the dataset contains both labelled and un-
labelled data, our model will account for the avail-
able labels during the generative process as well as
incorporate the labelled features as above to con-
strain the Dirichlet prior.

When labelled data is available, contraLDA in-
corporates supervised information by constraining
that a training document can only be generated
from the topic set with class labels correspond-
ing to the document’s observed label set. This is
achieved by introducing a dependency link from
the document label matrix ε to the Dirichlet pri-
ors α and γ. Suppose a corpus has three topi-
cal labels denoted by Z = {z1, z2, z3} and for
each label zk there are two sentiment labels de-
noted by l = {l1, l2}. Given observed label matrix
εc = {εcz, εcl } = {(1, 0, 1), (1, 0)}which indicates
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that d is associated with topic labels z1, z3 as well
as sentiment label l1, we can encode the label in-
formation into contraLDA as

αcd = εcz ·α (1)

γcd = εcl · γ (2)

This ensures that d can only be generated from
topics associated with observed class labels from
ε. If there are no labelled documents available,
contraLDA will incorporate labelled features from
λ (e.g., sentiment lexicons) for constraining the
Dirichlet priors β using the same strategy de-
scribed in (Lin and He, 2009; Lin et al., 2012a).

2.2 Inference.
From the contraLDA graphical model depicted in
Figure 1, we can write the joint distribution of all
observed and hidden variables which can be fac-
tored into three terms:

P (w, z, l|α,β,γ, c) =
P (w|z, l,β)P (l|z,γ, c)P (z|α, c) (3)

The main objective of inference in contraLDA
is then to find a set of model parameters that
can best explain the observed data, namely, the
class-constrained topic proportion θc, the class-
constrained topic label specific sentiment propor-
tion πc, and the per-corpus word distribution ϕ.
To compute these target distributions, we need to
calculate the posterior distribution of the model.
As the posterior is intractable, we use a collapsed
Gibbs sampler to approximate the posterior based
on the full conditional distribution for each word
token in position t. By evaluating the model joint
distribution in Eq. 3, we can yield the full condi-
tional distribution as follows

P (zt = k, lt = j|w, z−t, l−t,α,β,γ, c) ∝
N−tk,j,wt

+ βk,j,i

N−tk,j +
∑

i βk,j,i
· N−td,k + αcd,k

N−td +
∑

k α
c
d,k

· N
−t
d,k,j + γcd,k,j

N−td,k +
∑

j γ
c
d,k,j

. (4)

where the superscript −t denotes a quantity that
excludes data from tth position,Nk,j,w is the num-
ber of times word w appeared in topic k with sen-
timent label j, Nk,j is the number of times words
are assigned to topic k and sentiment label j, Nd,k

is the number of times topic k is assigned to some
word tokens in document d,Nd is the total number
of words in document d, Nd,k,j is the number of
times a word from document d is associated with
topic k and sentiment label j.

Using Eq. 4, we can obtain sampling as-
signments for contraLDA model, based on
which model parameters can be estimated as
ϕk,j,i = Nk,j,i+βk,j,i

Nk,j+
∑

i βk,j,i
, θcd,k,j =

Nd,k+αc
k,j

Nd+
∑

k α
c
d,k

and πcd,k =
Nd,k,j+γ

c
d,k,j

Nd,k+
∑

j γ
c
d,k,j

.

2.3 Modelling the associations between
sentiment-bearing topics and sentences.

Our model adopts a computational mechanism
(Barawi et al., 2017) that can uncover the as-
sociation between an opinionated (or sentiment-
bearing) topic and the underlying sentences of a
corpus. First, we preserve the sentential structure
of each document during the corpus preprocessing
step (see §3 for more details). Second, modelling
topic-sentence relevance is essentially equivalent
to calculating the probability of a sentence given
a sentiment-bearing topic p(sent|z, l). The poste-
rior inference of our model, based on Gibbs sam-
pling, can recover the hidden sentiment label and
topic label assignments for each word in the cor-
pus. Such label-word assignment information pro-
vides a means for re-assembling the relevance be-
tween a word and a sentiment-bearing topic. By
leveraging the sentential structure information and
gathering the label assignment statistics for each
word of a sentence, we can derive the probability
of a sentence given a sentiment-bearing topic as

p(sent|z, l) =
p(z, l|sent) · p(sent)

p(z, l)
∝ p(z, l|sent) · p(sent) (5)

where

p(z, l|sent) =

∑
w,z′,l′ ϕz′,l′,w∑
w∈sentϕz′,l′,w

, (6)

p(sent) =
∑
z

∑
l

∏
w∈sent

ϕz,l,w. (7)

Also p(l, z) is discounted as it is a constant
when comparing sentential labels for the same
sentiment-bearing topic. The extracted sentences
for each sentiment-bearing topic are ranked based
on their probability scores.
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3 Experimental Setup

Dataset. We evaluate the performance of our
model1 for contrastive opinion mining on the El
Capitan dataset2 (Ibeke et al., 2016) which con-
sists of reviews manually annotated (with 18 topic
labels and 3 sentiment labels in total) for vari-
ous opinion mining tasks. The dataset consists of
2,232 customer reviews, with topic and sentiment
annotations at both the review and sentence lev-
els. For the sentiment labels, we only concentrate
on positive and negative sentiment labels with the
2.3% of neutral reviews being ignored, since the
aim of this study is to mine contrastive opinion
from text. The dataset has 10,348 sentences with
an average length of 17.3 words.
Preprocessing. We preprocessed the experimen-
tal dataset by first performing automatic sentence
segmentation3 in order to preserve the sentential
structure information of each document. We then
remove punctuation, numbers, non-alphabet char-
acters, stop words, lowercase all words, and per-
form stemming.

4 Experimental Results

Topic coherence. We first quantitatively mea-
sure the coherence of the extracted topics by our
model and compare the results with a number
of baselines, namely, LDA (Blei et al., 2003),
ccLDA (Paul and Girju, 2009), TAM (Paul and
Girju, 2010), and VODUM (Thonet et al., 2016).
We employ normalised pointwise mutual infor-
mation (NPMI) (Bouma, 2009) which outper-
forms other metrics in measuring topic coher-
ence (Newman et al., 2010; Aletras and Stevenson,
2013). We run our model and the baseline mod-
els with two sentiment labels (i.e., positive and
negative), and vary the topic number setting T ∈
{5, 10, 20, 30, 40, 50}, setting β = 0.01 (Steyvers
and Griffiths, 2007) and α = 0.1. Our model learns
α directly from data using maximum-likelihood
estimation (Lin et al., 2012b).

As can be seen from Figure 2a, there is a gen-
eral pattern for all tested models, where the co-
herence score of the extracted topics decreases as
a larger number of topics K being modelled. This
is inline with the observations of (Mimno et al.,

1While our model can be applied to both single and mul-
tiple data collections, due to page limits, we only show the
experimental results on a single dataset.

2https://github.com/eibeke/El-Capitan-Dataset
3http://www.nltk.org/

2011; Gutiérrez et al., 2016), who discovered that
as the number of topics increases, lower-likelihood
topics tend to be more incoherent, resulting in
lower coherence score for topics. In terms of indi-
vidual models, our model consistently achieves a
higher coherent score than all baseline models. For
instance, when compared with the best baseline
VODUM, our model gives over 8% averaged im-
provement. This demonstrates the capability of the
proposed contraLDA in extracting coherent and
meaningful topics.
Analysis of opinion contrastiveness. We fur-
ther study the problem of quantifying the strength
of opinion contrastiveness towards the topic of in-
terest, which allows one to swiftly flag topics or
issues that require immediate attention. We ap-
proach this by computing the prominence score
for each sentiment-bearing topic extracted by con-
traLDA given a corpus c using

P (z, l|c) =
1
|D|

D∑
d=1

P (l|z, d)P (z|d)

=
1
|D|

D∑
d=1

θd,z · πd,z,l, (8)

where D is the total number of documents in the
corpus. Thus the prominence for topic z in a cor-
pus can be derived as

P (z) =
∑
l

P (z, l). (9)

Figure 2b shows some contrastive opinion topic
pairs ordered by their prominence in the corpus.
Modelling topic prominence and sentiment con-
trastiveness provides a quick overview of the no-
table topics and the sentiments towards them. We
can easily identify that the most heated topics are
update and performance. In terms of opinion
contrastiveness, we see that Speed received quite
balanced positive and negative sentiment magni-
tude. Performance and Update are skewed
towards the negative sentiment, indicating that a
majority of customers experienced a performance
drop after upgrading to El Capitan.
Contrastive opinion topic analysis. In this ex-
periment, we qualitatively evaluate our model in
the task of discovering contrastive opinions.

The top panel of Table 1 shows contrastive
opinion topic pairs extracted by our model. Note
that Performance, Office and Yosemite
are label information from the El Capitan
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Figure 2: Topic coherence analysis using NPMI (a); Analysis of topic prominence and sentiment con-
trastiveness (b). NB: blue bar indicates the overall prominence of contrastive topic pair; green bar indi-
cates the strength of a positive sentiment topic, and red bar for negative sentiment topic.

Performance Office Yosemite
+ - + - + -

work crash offic offic yosemit yosemit
run work microsoft use work upgrad

perform time compat work time destroy
faster app quick microsoft downgrade slow
app use fine ms restor work

smooth slow work crash issu mac
new mac updat issu instal bad
pro open upgrad word machin problem

macbook freez new excel macbook maverick
better just didn appl revert appl

Performance + So much better than before, and apps run faster too.
Performance - Computer slows down dramatically, programs freeze.

Office + Office 2016 opens quickly with no issues.
Office - Update:Office apps tend to crash after the update!

Yosemite + So I downgraded back to Yosemite and - hey presto!
Yosemite - My 2010 iMac was destroyed by Yosemite.

Table 1: Contrastive opinion topic examples and
the top rated sentence for each topic.

dataset. A topic pair, e.g., (Performance+,
Performance-), expresses contrastive opin-
ions towards the same topic Performance,
with ‘+’ and ‘-’ indicating the topic sentiment
orientation. For instance, the two topics under
Performance+ suggests that some people feel
the system performs better and app runs faster,
whereas Performance- seems to show highly
contrastive opinion that people have bad experi-
ence after upgrade, e.g., app crashes or freezes,
mac becomes slow. However, it is still impossible
to accurately interpret the extracted topics solely
based on its multinomial distribution, especially
when one is unfamiliar with the topic domain. We
bridge this gap by extracting the most relevant sen-
tences for a given topic, which can greatly facili-
tate sentiment-bearing topic interpretation (as de-
scribed in § 2.3).

The bottom panel of Table 1 shows the extracted
top sentences (ranked based on Eq. 5) for each

topic. For instance, the extracted top sentences
for the Office topic show that some customers
recorded an improvement with their office app
(e.g., “Office 2016 opens quickly with no issues”),
while others are unhappy with the office app (e.g.,
“Update: Office apps tend to crash after the up-
date”). We see that the top sentences can effec-
tively bridge the gap between the topic word distri-
butions and the opinion encoded within the topic,
and hence can greatly help facilitate sentiment-
bearing topic understanding and interpretation.

5 Conclusion

We presented the contraLDA model which de-
tects contrastive opinions both in single and mul-
tiple data collections, and determines the senti-
ments of the extracted opinions. Our model effec-
tively mines coherent topics and contrastive opin-
ions from text. Experimental results show that our
model outperforms baselines in extracting coher-
ent topics. In addition, we presented a mechanism
for extracting sentences from corpus that are rele-
vant to sentiment-bearing topics, which helps un-
derstanding and interpretation of the topics dis-
covered. We plan to further investigate our ap-
proach on datasets from more domains.
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Abstract

Complex word identification (CWI) is an
important task in text accessibility. How-
ever, due to the scarcity of CWI datasets,
previous studies have only addressed this
problem on Wikipedia sentences and have
solely taken into account the needs of
non-native English speakers. We collect
a new CWI dataset (CWIG3G2) cover-
ing three text genres (NEWS, WIKINEWS,
and WIKIPEDIA) annotated by both na-
tive and non-native English speakers. Un-
like previous datasets, we cover single
words, as well as complex phrases, and
present them for judgment in a paragraph
context. We present the first study on
cross-genre and cross-group CWI, show-
ing measurable influences in native lan-
guage and genre types.

1 Introduction

Complex word identification (CWI) is a sub-task
of lexical simplification (LS), which identifies dif-
ficult words or phrases in a text. Lexically and
semantically complex words and phrases can pose
difficulties to text understanding for many people,
e.g. non-native speakers (Petersen and Ostendorf,
2007; Aluı́sio et al., 2008), children (De Belder
and Moens, 2010), and people with various cog-
nitive or reading impairments (Feng et al., 2009;
Rello et al., 2013; Saggion et al., 2015). It has
been shown that people with dyslexia read faster
and understand texts better when short and fre-
quent words are used (Rello et al., 2013), whilst
the non-native English speakers need to be famil-
iar with about 95% of text vocabulary for a ba-
sic text comprehension (Nation, 2001), and even
98% of text vocabulary for enjoying (unsimpli-
fied) leisure texts (Hirsh and Nation, 1992).

Many published guidelines cover recommen-
dations of how to write texts which are easy-
to-understand for various target populations, e.g.
(Mencap, 2002; PlainLanguage, 2011; Freyhoff
et al., 1998). However, manual production of texts
from scratch for each target population separately
cannot keep up with the amount of information
which should be accessible for everyone. There-
fore, many systems for automatic lexical simplifi-
cation (LS) of texts have been proposed. LS sys-
tems take as input a text of a certain level of diffi-
culty and output a text in a simplified form with-
out changing its meaning. Most LS systems have
the functionality of replacing potentially complex
words with synonyms or related words that are
easier to understand and yet still fit into context.
Some of these systems treat all content words in a
text as potentially difficult words, e.g. (Horn et al.,
2014; Glavaš and Štajner, 2015). Other systems
try to detect complex words first and then perform
the replacement with simpler words, e.g. (Paetzold
and Specia, 2016b), which seems to significantly
improve the results (Paetzold and Specia, 2015).

Most LS systems focus on simplifying news ar-
ticles (Aluı́sio et al., 2008; Carroll et al., 1999;
Saggion et al., 2015; Glavaš and Štajner, 2015).
However, only small amounts of newswire texts
are available that contain annotations for manual
simplifications. Most LS systems rely on sen-
tence alignments between English Wikipedia and
English Simple Wikipedia (Coster and Kauchak,
2011). Thus, existing CWI datasets cover mostly
the Wikipedia Genre (Shardlow, 2013; Horn et al.,
2014; Paetzold and Specia, 2016a).

We collect a new CWI dataset (CWIG3G2)
covering three genres: professionally written
news articles, amateurishly written news articles
(WikiNews), and Wikipedia articles. Then, we
test whether or not the complex word (CW) an-
notations collected on one genre can be used for
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predicting CWs on another genre and also explore
if the native and non-native user groups share the
same lexical-semantic simplification needs.

2 Related Work

Previous datasets relied on Simple Wikipedia and
edit histories as a ‘gold standard’ annotation of
CWs, despite the fact that the use of Simple
Wikipedia as a ‘gold standard’ for text simplifi-
cation has been disputed (Amancio and Specia,
2014; Xu et al., 2015). Currently, the largest CWI
dataset is the SemEval-2016 (Task 11) dataset
(Paetzold and Specia, 2016a). It consists of 9,200
sentences collected from previous datasets (Shard-
low, 2013; Horn et al., 2014; Kauchak, 2013). For
the creation of the SemEval-2016 CWI dataset, an-
notators were asked to annotate (only) one word
within a given sentence as complex or not. In
the training set (200 sentences), each target word
was annotated by 20 people, whilst in the test set
(9,000 sentences) each target word was annotated
by a single annotator from a pool of 400 annota-
tors. The goal of the shared task was to predict
the complexity of a word for a non-native speaker
based on the annotations of a larger group of non-
native speakers. This introduced strong biases and
inconsistencies in the test set, resulting in very low
F-scores across all systems (Paetzold and Specia,
2016a; Wróbel, 2016).

The systems of the SemEval-2016 shared task
were ranked based on their F-scores (the standard
F1-measure) and the newly introduced G-scores
(the harmonic mean between accuracy and recall).
When performing a Spearman correlation between
F-score and G-scores considering all systems of
the SemEval-2016 task, we obtain a reasonable
correlation value of 0.69. However, considering
the correlation between the 10 best G-scoring sys-
tems a negative correlation of -0.34 is achieved.
A similar trend is obtained for the 10 best F-
scoring systems resulting in a correlation score of
-0.74. The best system with respect to the G-score
(77.4%), but at the cost of F-score being as low
as 24.60%, uses a combination of threshold-based,
lexicon-based and machine learning approaches
with minimalistic voting techniques (Paetzold and
Specia, 2016a). The highest scoring system with
respect to the F-score (35.30%), which obtained
a G-score of 60.80%, uses threshold-based docu-
ment frequencies on Simple Wikipedia (Wróbel,
2016). Focusing on the standard F1-score as the

main evaluation measure in our experiments, we
replicate this system on a recent Simple Wikipedia
dump, and consider it as our baseline system.

There are very few works on non-English CWI;
the only dataset we are aware of, containing an-
notations for English, German and Spanish, is de-
scribed in our previous paper (Yimam et al., 2017).

3 Collection of the New CWI Dataset

We collect complex word and phrase annotations
(sequences of words, up to maximum 50 charac-
ters), using the Amazon Mechanical Turk (MTurk)
crowdsourcing platform, from native and non-
native English speakers. We ask participants if
they are native or non-native English speakers, and
collect proficiency levels (beginner, intermediate,
advanced) for non-native speakers.
Data Selection: CWIG3G2 comprises of texts
from three different genres: professionally writ-
ten news, WikiNews (news written by amateurs),
and Wikipedia articles. For the NEWS dataset,
we used 100 news stories from the EMM News-
Brief compiled by Glavaš and Štajner (2013)
for their event-centered simplification task. For
the WikiNews, we collected 42 articles from the
Wikipedia news. To resemble the existing CW
resources (Shardlow, 2013; Paetzold and Specia,
2016a; Kauchak, 2013), we collected 500 sen-
tences from Wikipedia.
Annotation Procedure: Using MTurk, we create
paragraph-level HIT (Human Intelligence Task).
In order to control the annotation process, we do
not allow users to select words like determiners,
numbers and phrases of more than 50 characters in
length. To encourage annotators to carefully read
the text and to only highlight complex words, we
offer a bonus that doubles the original reward if at
least half of their selections match selections from
other workers. To discourage arbitrarily larger an-
notations, we limit the maximum number of se-
lections that annotators can highlight to 10. If an
annotator cannot find any complex word, we ask
them to provide a comment. The collection is be-
ing conducted until we find at least 10 native and
10 non-native annotators per HIT. Figure 1 shows
the instruction given to the workers with exam-
ple sentences where possible complex phrases are
highlighted in yellow.
Differences to Previous CWI Datasets: Our an-
notation procedure differs from others in several
ways. First, we did not limit our task on collecting
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Figure 1: Complex word identification instruction with examples.

Dataset
All Native Non-native

Both
Sing. Mult. Sing. Mult. Sing. Mult.

NEWS 8.10 91.90 13.87 86.13 14.47 85.53 70.47
WIKINEWS 10.16 89.84 16.15 83.85 17.15 82.85 76.75
WIKIPEDIA 8.92 91.08 15.06 84.94 15.94 84.06 77.06

Table 1: Distributions of selected CPs (in %) across all annotators (All), native and non-native annotators,
and CPs selected by at least one native and one non-native annotator (Both). The Sing. column stands
for annotations selected by only one annotator while the Mult. column stands for annotations selected by
at least two annotators.

complex words in isolation, but we also allowed
marking multi-word expressions and sequences of
words as complex. This allowed for collecting
a richer dataset (of complex words and phrases).
Secondly, to make the process closer to a real-
world application, we showed longer text passages
(5–10 sentences) and asked the annotators to mark
10 complex words or phrases at the most. The
former allows to take into account larger contexts
both during the annotation and later during feature
extraction in classification experiments, while the
latter shaped our task slightly different than in pre-
vious CWI datasets. By not preselecting the target
words (as it was the case in collection of the pre-
vious CWI datasets), we did not bias and limit se-
lections of the human annotators. Finally, we have
created balanced annotations from 10 native and
10 non-native speakers.

4 Analysis of Collected Annotations

A total of 183 workers (134 native and 49 non-
native) participated in the annotation task and a
total of 76,785 complex phrase (CP) annotations
have been collected from all genres, out of which
10,006 are unique CPs. In total, 30 workers have
been participated on each HIT where on average
15 assignments are completed by native and non-
native speakers. We have selected only the top 10
assignments per HIT for each group (native and
non-native), after sorting them based on the work-

ers inter-annotator agreement scores, to build the
balanced datasets used in this study. The balanced
datasets comprise a total of 62,991 CPs.

Around 90% of CPs have been selected by at
least two annotators (see Table 1). However, when
we separate the selections made by native and non-
native speakers, we see that: (1) the percentage
of multiple selected CPs by native speakers and
non-native speakers decreases; (2) the percentage
of multiply selected CPs by non-native speakers is
always lower (83%–85%) than the percentage of
multiply selected CPs by native speakers (84%–
86%), regardless of the text genre; and (3) the per-
centage of CPs selected by at least one native and
one non-native annotator is lower for the NEWS

genre (70%) than for the WIKINEWS and WIKE-
PEDIA genres (77%).

From these results, we can see that there is
a quantifiable difference in the annotation agree-
ments by the native and non-native speakers. The
low IAA between native and non-native speakers
(column Both) indicates that the lexical simplifica-
tion needs might be different for those two groups.

5 Classification Experiments

We developed a binary classification CWI system,
with performances comparable to the state-of-the-
art results of the SemEval-2016 shared task.
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5.1 Features

We use four different categories of features.
Frequency and length features: Due to the com-
mon use of these features in selecting the most
simple lexical substitution candidate (Bott et al.,
2012; Glavaš and Štajner, 2015), we use three
length features: the number of vowels (vow), syl-
lables (syl), and characters (len) and three fre-
quency features: the frequency of the word in Sim-
ple Wikipedia (sim), the frequency of the word in
the paragraph (of HIT) (wfp), and the frequency
of the word in the Google Web 1T 5-Grams (wbt).
Syntactic features: Based on the work of
Davoodi and Kosseim (2016), the part of speech
(POS) tag influences the complexity of the word.
We used POS tags (pos) predicted by the Stanford
POS tagger (Toutanova et al., 2003).
Word embeddings features: Following the work
of Glavaš and Štajner (2015), as well as Paetzold
and Specia (2016b), we train a word2vec model
(Mikolov et al., 2013) using English Wikipedia
and the AQUAINT corpus of English news texts
(Graff, 2002). We train 200-dimensional embed-
dings using skip-gram training and a window size
of 5. We use the word2vec representations of CPs
as a feature (emb), and also compute the cosine
similarities between the vector representations of
CP and the paragraph (cosP ) and the sentence
which contains it (cosS). The paragraph and sen-
tence representations are computed by averaging
the vector representations of the content words.
Topic Features: We use topic features that are ex-
tracted based on an LDA (Blei et al., 2003) model
that was trained on English Wikipedia using 100
topics. The first feature is the topic distribution
of the word (lda). The second feature captures
the topic-relatedness for a word within its context.
For this we compute the cosine similarity between
the word-topic vector and the sentence (ldcS) and
paragraph (ldcP ) vector.

5.2 Experimental setups

We use different machine learning algorithms
from the scikit-learn machine learning framework.
In this paper, we report only the results of the best
classifiers based on NearestCentroid (NC).

We produce six new datasets (three different
genres times two different groups of annotators)
using the balanced datasets. We first partition the
balanced datasets of each genre into training, de-
velopment and test (80:10:10) sets, while ensur-

System G-score F-score
Our system 75.51 35.44
Best (G-score) system 77.40 24.60
Best (F-score) system 60.80 35.50

Table 2: Results on the SemEval-2016 shared task.

Dataset
F-score G-score

Our BL Our BL
NEWS 70.86 59.72 80.16 69.87
WIKINEWS 66.67 58.62 73.16 66.65
WIKIPEDIA 71.14 67.20 71.85 67.47

(a) Native datasets

Dataset
F-score G-score

Our BL Our BL
NEWS 66.30 58.75 74.78 67.79
WIKINEWS 68.13 59.13 75.96 67.97
WIKIPEDIA 70.34 62.28 74.49 67.01

(b) Non-native datasets

Table 3: Results of our CWI system (Our) and the
baseline system (BL) on our six new datasets.

ing that we do not having the same sentences in
training, development and test sets. The best per-
forming feature set, consisting of pos, len, sim,
wfp, vow, and cos, is used to build our CWI sys-
tems. We discuss the results of different experi-
mental setups using these best features in Section
6. We have combined the training and develop-
ment sets for the final experiments. The baseline
is based on frequency thresholds using the Simple
English Wikipedia as a corpus (Wróbel, 2016).

6 Results and Discussion

Results for different combinations of datasets, in-
cluding baselines, cross-genre, cross-group and
cross-group-genre, are shown in Tables 2–6.
Shared Task Results (Table 2): On the shared
task dataset, our system reaches almost the same
F-score (35.44) as the best F-scored system
(35.30), but at the same time achieves a signifi-
cantly better G-score (75.51) than the same system
(60.80). On CWIG3G2 datasets, the F-scores are
significantly higher than on the shared task dataset
both for the baseline and NC-classifier (Table 3).
This is probably due to the unbalanced distribu-
tion of complex words in the shared task training
and test sets or the fact that their test set instances
were annotated by a single annotator only.
Within-group-genre Results (Table 3): Our sys-
tem outperforms the baseline for all datasets. Even
if non-native annotators have marked more com-
plex phrases than the native annotators, the CWI
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Training on
Testing on

NEWS WIKINEWS WIKIPEDIA

NEWS 70.86 66.48 71.43
WIKINEWS 67.41 66.67 68.35
WIKIPEDIA 64.24 64.18 71.14

(a) Native datasets

Training on
Testing on

NEWS WIKINEWS WIKIPEDIA

NEWS 66.30 70.79 69.15
WIKINEWS 66.43 68.13 69.70
WIKIPEDIA 66.97 68.29 70.34

(b) Non-native datasets

Table 4: Results of the cross-genre experiments.

Test
Training on native Training on non-native

Native Non-Native Native Non-native
NEWS 70.86 67.10 69.85 66.30
WIKINEWS 66.67 64.51 65.58 68.13
WIKIPEDIA 71.14 64.85 72.95 70.34

Table 5: Results of the cross-group experiments.

system performs well on the native datasets, ex-
cept for the case of WIKINEWS dataset. The
drop in the F-scores of the NEWS and WIKIPEDIA

systems when moving from native to non-native
datasets, could probably be attributed to a slightly
lower inter-annotator agreement among non-
native than native annotators.

Cross-genre Results (Table 4): When applying
the CWI system on the NEWS test set and train-
ing it with the other genres, we observe perfor-
mance drops for the native group and performance
improvements for the non-native group. For the
WIKINEWS test set, there is a slight decrease in
performance when the CWI systems are trained
with NEWS and WIKIPEDIA datasets of the native
groups while there is an increase in performance
when the CWI system is trained on the non-native
groups. For the WIKIPEDIA genre test set, there
is a drop in performance when the CWI system is
trained on both NEWS and WIKINEWS genres of
the non-native groups while there is an increase
in performance when the CWI system is trained
on the NEWS training set and decrease for the
WIKINEWS training set of the native groups.

Cross-group Results (Table 5): When training
our CWI systems on the datasets annotated by the
native speakers, we obtain significantly higher F-
scores when testing on the datasets annotated by
the same group (native speakers), as it was ex-
pected. In the case of training on the datasets an-
notated by the non-native speakers, however, the
results are the opposite of what we expected; we

Training on
Testing on

NEWS WIKINEWS WIKIPEDIA

NEWS 67.10 68.53 68.22
WIKINEWS 63.74 64.51 64.03
WIKIPEDIA 61.72 63.17 64.85

(a) Using NATIVE training sets and NON-NATIVE test sets

Training on
Testing on

NEWS WIKINEWS WIKIPEDIA

NEWS 69.85 65.93 71.17
WIKINEWS 68.64 65.58 70.29
WIKIPEDIA 68.80 66.58 72.95
(b) Using NON-NATIVE training sets and NATIVE test sets

Table 6: Cross-genre and cross-group results.

obtain significantly higher F-scores when testing
on the datasets annotated by the other group (na-
tive speakers). These results imply that the inter-
annotator agreement (IAA) on the test set might
impact the results more than the type of the anno-
tator group does (Table 1 shows much higher IAA
among native than non-native English speakers,
which holds both for the training and test datasets).
Cross-group-genre Results (Table 6): Similar to
the the cross-group experiments, the best results
are achieved when tested on the datasets annotated
by native speakers, indicating once again that the
F-score is highly influenced by the inter-annotator
agreement on the test set.

7 Conclusions

To enable building of generalisable and more re-
liable CWI systems, we collected new complex
phrase identification datasets (CWIG3G2) across
three text genres, annotated both by native and
non-native English speakers.1 The analysis of
our crowdsourced data showed that native speak-
ers have higher inter-annotator agreement than the
non-native speakers regardless of the text genre.

We built CWI systems comparable to the state
of the art and showed that predicting the CWs for
native speakers is an easier task than predicting
the CWs for non-native speakers. Furthermore, we
showed that within-genre CWI indeed leads to bet-
ter classification performances, albeit with a small
margin over cross-genre CWI. Finally, we showed
that CWI systems trained on native datasets can be
used to predict CWs for non-native speakers and
vice versa. For future CWI tasks, we recommend
to take language proficiency levels into account.

1Datasets available at: https://lt.informatik.
uni-hamburg.de/resources/data/
complex-word-identification-dataset.html
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Abstract

We propose a novel, data-driven, and
stylistically consistent dialog response-
generation system. To create a user-
friendly system, it is crucial to make gen-
erated responses not only appropriate but
also stylistically consistent. For leaning
both the properties effectively, our pro-
posed framework has two training stages
inspired by transfer learning. First, we
train the model to generate appropriate re-
sponses, and then we ensure that the re-
sponses have a specific style. Experimen-
tal results demonstrate that the proposed
method produces stylistically consistent
responses while maintaining the appropri-
ateness of the responses learned in a gen-
eral domain.

1 Introduction

Dialog response-generation (DRG) systems have
been studied extensively over the decades. In the
recent years, there is a growing interest in a data-
driven DRG system leveraging a large amount of
conversational texts in social networking services
(SNSs) such as Twitter. One successful approach
is to train a neural sequence-to-sequence model
(seq2seq) (Sutskever et al., 2014) on conversations
from SNS, where the seq2seq learns a mapping
from a user utterance to the appropriate response
with recurrent neural networks (RNNs) (Shang et
al., 2015; Li et al., 2016; Serban et al., 2017).

The prior data-driven approach, however, suf-
fers a major drawback. Since a wide variety of
users, ranging from young to old, and from fe-
male to male, participates in an SNS, the learned
responses are not guaranteed to be stylistically
consistent (e.g. in terms of politeness). For ex-
ample, we show actual responses generated by

1a) User: Sìkao (konnichiha . / Hello.)
1b) System:  ÂÇC⌫DcqDgDSFj

(kyou mo genki ippai de iko u na . /
Yo, man! How ya doing today?)

2a) User:  ÂoÍgY
(kyou ha yuki desu . / It is snowing today.)

2b) System: ÍMcfãìgYK
(yuki ga hu tte iru n desu ka . / Is it? )

3a) User: “DgY ( samui desu . / It’s cold.)
3b) System: àWàWKídjDgBR~Yè��

(yoshi yoshi , te wo tsunai de age masu wa . /
Oh, dear. I’m gonna hold your lovely hands.)

Table 1: Example of stylistically inconsistent re-
sponses generated by a vanilla seq2seq trained on
our Twitter dialog corpus.

a vanilla seq2seq-based DRG system trained on
Twitter conversations in Table 1. The responses
have inconsistent style as if the system had multi-
ple personalities; the responses are friendly (1b),
polite (2b), or feminine (3b). To create a user-
friendly DRG system, it is crucial to generate re-
sponses that are stylistically consistent.

This paper proposes a novel, data-driven, and
stylistically consistent DRG model. A vanilla
seq2seq cannot generate stylistically consistent re-
sponses without training on a large amount of
stylistically consistent dialog responses, which is
prohibitively costly. To address this issue, we ap-
ply transfer learning, namely transferring knowl-
edge about response generation in a general do-
main into the task of stylistically consistent re-
sponse generation.

In the literature, little attention has been paid
to the stylistic consistency of the generated re-
sponses. There are some previous attempts on
transforming a style of dialog utterances into a
specified one (Walker et al., 2012; Miyazaki et al.,
2015). Their approaches assume that original ut-
terances are given by a separate independent sys-
tem and need some manual annotations. Li et al.
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(2016) aim for response generation with a consis-
tent “persona” by conditioning a seq2seq on a spe-
cific Twitter user ID embedding. However, their
work focuses on the consistency in the content of
the generated responses and they did not directly
evaluate the stylistic consistency of their system.

This is the first study that focuses on building a
stylistically consistent end-to-end and data-driven
DRG model and empirically evaluates the stylis-
tic consistency of generated responses in single-
turn dialogs. Our experiments demonstrate that
the proposed method produces stylistically consis-
tent responses while maintaining the appropriate-
ness of responses learned from a general domain.

2 Related Work

The literature includes some prior studies that aim
for transforming a style of dialog utterances into a
specified one (Walker et al., 2012; Miyazaki et al.,
2015). Walker et al. (2012) extract rules represent-
ing characters from their annotated movie subtitle
corpora. Miyazaki et al. (2015) propose a method
of converting utterances using rewriting rules au-
tomatically derived from a Twitter corpus. These
approaches have a fundamental problem to need
some manual annotations, which is a main issue to
be solved in this work. We propose an end-to-end
and data-driven framework which addresses both
response generation and stylistic transformation.

Transfer learning is a machine learning tech-
nique effective for many NLP tasks (Pan and Yang,
2010), which effectively trains a machine learning
model by transferring knowledge about a general
domain into a target domain. By applying transfer
learning to a stylistically consistent DRG system,
once we build a DRG system without stylistic con-
sistency, it is easy to change its style by adding a
small stylistically consistent corpus.

3 Generating Stylistically Consistent
Responses with Transfer Learning

Given an utterance style, our goal is to create a
DRG system that can keep producing utterances
with the specified style. Inspired by the success of
the data-driven approach, one can prepare a cor-
pus of conversations for every possible style and
feed it to a seq2seq. However, in order to obtain
a stylistically consistent DRG system through a
vanilla seq2seq, this method requires millions of
training instances for each target style, which is
prohibitively expensive.

seq2seqseq2seq

Dialog	corpus Style	corpus

!" #$ ∖ #&$

#$

utterance
pairs

transfer

��
����
���
	���

��
�������	�	�����
������	�	�

vocabulary

#$ #&$
���������

�����

Figure 1: Overview of our framework. Trans
shares the same vocabulary in dialog and style
training. Trans+alt alters a vocabulary to consider
expressions specific in a style corpus.

3.1 General Framework

To address this issue, we propose a novel two-
staged training framework for building a stylisti-
cally consistent response-generation model, as de-
picted in Figure 1. The core idea is as follows. A
stylistically consistent response generation model
has to learn at least three aspects of responses:
content, fluency and style. We hypothesize that
learning the content and fluency requires a large
amount of training instances, whereas learning the
style requires far less training instances. Inspired
by transfer learning, our training strategy is di-
vided into two steps (henceforth, dialog training
and style training). We thus assume two types
of corpora as training data: (i) dialog corpus, a
large conversational corpus without stylistic con-
sistency, and (ii) style corpus, a small conversa-
tional corpus with stylistic consistency.

In our experiments, we used single-turn dialog
(i.e. utterance pairs) as training data. However,
the proposed framework is applicable to multi-turn
dialog as long as we have a response-generation
model.

First, in dialog training, we train a seq2seq re-
sponse generation model on a dialog corpus to
learn the content and fluency of responses, namely
how to generate responses without taking into ac-
count stylistic consistency. Seq2seq (Sutskever et
al., 2014) is an RNN-based approach effective for
response generation (Shang et al., 2015; Li et al.,
2016; Serban et al., 2017). A typical seq2seq has
a vocabulary of a limited size (e.g., tens of thou-
sands) to speed up the training process, reduce the
computational memory usage and prevent overfit-
ting. Following a typical practice in seq2seq, we
use the top Nd most frequent words in a dialog
corpus as the seq2seq vocabulary (henceforth, Vd)
and convert the other infrequent words into a spe-
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cial symbol UNK.
Second, in style training, we use a style cor-

pus to fine-tune the seq2seq that is already trained
with a dialog corpus to ensure that the generated
responses are stylistically consistent. The model
inherits all the model parameters (i.e. word em-
beddings and weight matrices in the RNNs) and
the seq2seq vocabulary (henceforth, Vs) from dia-
log training.

Note that obtaining a large-scale dialog corpus
is relatively easy. For example, one can simply use
the whole Twitter conversations as a dialog corpus.
As for a style corpus, one can extract utterances
made by a specific character from a movie script
as in (Walker et al., 2012). One advantage of our
framework is that once a large-scale dialog corpus
is obtained and dialog training is done, it is easy to
change its style by adding a small style corpus.

3.2 Vocabulary in Transferred Model
When applying transfer learning to a seq2seq, cre-
ating a vocabulary for style training is not a trivial
job. In our experiments, we explore two strate-
gies. In Trans, our first strategy, we simply use
the same vocabulary for dialog training and style
training (i.e. Vs = Vd). However, this may not
be a good strategy, because the top Nd most fre-
quent words in a dialog corpus do not necessarily
include words that are potentially useful for gen-
erating stylistically consistent responses.

To remedy this, in Trans+alt, our second strat-
egy, we alter the seq2seq vocabulary Vs that
is used for dialog training before style training
(henceforth, vocabulary alternation). Let Ws be
a set of the top Ns most frequent words which are
only included in a style corpus, and V̂d be a set of
the top Ns most infrequent words in Vd. Instead of
simply setting Vs = Vd, we set Vs = Vd \ V̂d [Ws

(i.e. the top Nd �Ns most frequent words in a di-
alog corpus plus the Ns most frequent words in a
style corpus). Intuitively, we basically employ Vd

as Vs, but replace infrequent words from the dialog
corpus with frequent words in the style corpus.

4 Experiments

4.1 Setups
Datasets A summary of our corpora is shown
in Table 2. The dialog corpus contains approxi-
mately 3.7 M Japanese utterance pairs extracted
from tweet-reply chains on Twitter.1 The style

1Noisy sentences (e.g., URLs) are filtered out.

Utterance pairs Vocabulary Overlap (%)
Dialog corpus 3,688,162 591,880 -
Tetsuko corpus 12,564 12,102 7,230 (59.7)

Oja corpus 1,476 2,137 1,532 (71.7)

Table 2: Dialog corpus and style corpora used in
our experiments. ‘Overlap’ represents the num-
ber of overlap words between a dialog corpus and
style corpus.

Model
Transfer
learning

Dialog
corpus

Style
corpus

Vocabulary
alternation

Base X
Mix X X X

Trans X X X
Trans+alt X X X X

Table 3: Four models for our experiments

corpus contains pairs of utterances extracted from
subtitles of a Japanese TV show. We prepare
two instances of style corpus: (i) Tetsuko cor-
pus, where all the responses are made by Tetusko
Kuroyanagi, an elderly, polite, and female TV
personality, and (ii) Oja corpus, where all the
responses are made by Ojarumaru, a five-year-
old kids’ cartoon character who uses classical
Japanese expressions (e.g., see Appendix A, Ta-
ble 5). We use 95 % of the corpora for training
and 5 % for validation.
Baselines We prepare two baseline models with-
out transfer learning: (i) Base, a vanilla seq2seq
trained on the dialog corpus only, and (ii) Mix, a
vanilla seq2seq trained on the mixture of a dialog
corpus and style corpus, where Mix is applied to
the vocabulary alternation as well as Trans+alt.
We summarize the baseline models and proposed
models in Table 3.
Settings All the four models use the following
settings. The seq2seq encoder and decoder are
two-layer LSTMs with 2048 units using 1024-
dimensional word embeddings. The vocabulary
size (Nd) is 25, 000. We train the models us-
ing Adam (Kingma and Ba, 2015) with mini-batch
size 64 and performed early stopping for perplex-
ity using the validation data. For the vocabulary
alternation in Mix and Trans+alt, we use Ns =
1, 000 for Tetsuko corpus and Ns = 500 for Oja
corpus.2

4.2 Evaluation Method

Conventionally, DRG systems are evaluated
through reference-based evaluation (e.g. BLEU

2We decide the values of Ns with reference to Table 2.
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Style Base Mix Trans Trans+alt

Tetsuko AR 49.0 50.0 53.0 60.0†B,†M

SC 19.5 22.5 30.5‡B,†M 34.0‡B,‡M

Oja AR 50.0 46.5 49.0 57.0‡B,‡M,†T

SC 2.5 26.5 72.0‡B,‡M 82.5‡B,‡M,†T

Table 4: Results of human evaluation. AR and SC
denotes the appropriateness of response and stylis-
tic consistency, respectively. Superscripts †B,†M,†T

(and ‡B,‡M,‡T) indicate the statistical significance
against Base, Mix and Trans (sign test, p < 0.05
for †, p < 0.01 for ‡), respectively.

(Papineni et al., 2002; Sordoni et al., 2015; Li et
al., 2016)) or subjective human evaluation (Walker
et al., 2012; Vinyals and Le, 2015; Shang et al.,
2015). We employ human evaluation, because hu-
man evaluation captures more stylistic consistency
than reference-based evaluation, and word-overlap
similarity metrics such as BLEU correlates weakly
with human judgments (Liu et al., 2016).

For query utterances, we randomly extract 50
sentences from Twitter. There is no overlap be-
tween these query utterances, and the training and
validation data. Each model generates four re-
sponses from one query utterance by beam sam-
pling (beam width 3) using four different random
seeds. Therefore, the total number of responses
generated by one model is 200.

We use Yahoo! Crowd Sourcing3 for human
evaluation. Given (i) a query utterance Q, (ii) the
response R generated by a model, and (iii) a style
description S that the model are trying to gener-
ate with, the workers are independently asked to
answer the following two questions:

• Whether R is a grammatically and semanti-
cally appropriate response to Q.

• Whether the style of R matches S.

Note that the workers were given only a style de-
scription S with several example utterances but not
the specific name of individual target character.
Each response is judged by five workers, who do
not know which model generated each response.
The final answer is determined by majority vote.

4.3 Results

Table 4 shows the percentage of responses judged
as ‘appropriate response’ (AR) and ‘stylistically

3https://crowdsourcing.yahoo.co.jp/

consistent’ (SC).4 Base indicates that the dialog
corpus’s style only matches 19.5% in Tetsuko cor-
pus and 2.5% in Oja corpus. Trans and Trans+alt,
the proposed transfer learning frameworks, suc-
cessfully generate more stylistically consistent re-
sponses while maintaining the appropriateness of
generated responses learned from a dialog corpus
(Base v.s. Trans, Trans+alt). In addition, trans-
fer learning is more effective than simply mix-
ing a dialog corpus and style corpus (Mix v.s.
Trans+alt). Recall that the difference between
Mix and Trans+alt is whether transfer learning
is applied, namely the two models are trained on
the same corpora and seq2seq vocabulary. Fur-
thermore, the vocabulary alternation in style train-
ing (see Sec. 3.2) helps to make the generated re-
sponses more stylistically consistent (Trans v.s.
Trans+alt). Overall, the improvement on Oja cor-
pus is more salient than that on Tetsuko corpus.
We attribute this to the fact that Tetsuko corpus is
closer to the original dialog corpus.

Moreover, Trans+alt improves the appropriate-
ness of the responses. On both style corpora,
Trans+alt achieves the best result among the four
models. Table 6 in Appendix B and Table 7 in
Appendix C show actual responses generated by
Trans+alt. By analyzing the generated responses,
we find that inappropriate responses such as dull
responses (e.g., I don’t know) and Internet slangs
are relatively fewer, even though we did not make
any special treatment. We attribute this to the fact
that Trans+alt is additionally trained on less noisy
real conversations (i.e., TV subtitles) with a bet-
ter vocabulary, where new frequent words in a less
noisy style corpus are pushed.

The overall results support our assumption that
style training requires far less training data than
dialog training (see Sec. 3.1). We speculate
that styles of utterances are characterized by a
smaller variety of lexical choices such as sentence-
final auxiliary expressions and personal pronouns.
For Japanese, in fact, it is shown that sentence-
final auxiliary expressions are an important fac-
tor for changing the character of a dialog system
(Miyazaki et al., 2015).

4The percentage of judgments agreed by the workers,
where the number of votes to yes or no is more than 3, is
72.4 (AR) and 70.1 (SC) on Tetsuko corpus, and 68.0 (AR)
and 82.0 (SC) on Oja corpus.
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5 Conclusion

We have presented a novel end-to-end framework
to build a stylistically consistent dialog response-
generation system, leveraging transfer learning.
We have demonstrated that we are able to pro-
duce stylistically consistent responses by transfer
learning while maintaining the appropriateness of
responses learned from a general domain. The
proposed framework allows us to train a response
generation model on a large-scale, and easily-
obtainable dialog corpus without stylistic consis-
tency and then on a small-scale stylistically con-
sistent corpus. This is the first work to focus on
creating a stylistically consistent end-to-end DRG
system and evaluating stylistic consistency in neu-
ral dialog response generation studies.

In future work, we plan to improve style train-
ing so that it can learn only the style of responses.
We will assign a weight indicating the degree of
stylistic peculiarity to each word in a style corpus,
which controls the aggressiveness of style train-
ing. Another future work includes exploring an
effective way of creating a style corpus, e.g. auto-
matically collecting polite utterances from a large
Twitter corpus with a filter, or generating stylisti-
cally consistent responses with a smaller or even
no specific style corpus.
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Abstract

We describe a data-driven approach for au-
tomatically explaining new, non-standard
English expressions in a given sentence,
building on a large dataset that includes
15 years of crowdsourced examples from
UrbanDictionary.com. Unlike prior stud-
ies that focus on matching keywords from
a slang dictionary, we investigate the pos-
sibility of learning a neural sequence-to-
sequence model that generates explana-
tions of unseen non-standard English ex-
pressions given context. We propose a
dual encoder approach—a word-level en-
coder learns the representation of context,
and a second character-level encoder to
learn the hidden representation of the tar-
get non-standard expression. Our model
can produce reasonable definitions of new
non-standard English expressions given
their context with certain confidence.

1 Introduction

In the past two decades, the majority of NLP re-
search focused on developing tools for the Stan-
dard English on newswire data. However, the non-
standard part of the language is not well-studied
in the community, even though it becomes more
and more important in the era of social media.
While we agree that one must take a cautious ap-
proach to automatic generation of non-standard
language (Hickman, 2013), but for many practical
purposes, it is also of crucial importance for ma-
chines to be able to understand and explain this
important subversion of the language.

In the NLP community, using dictionaries of
non-standard language as an external knowledge
source is useful for many tasks. For example, Bur-
foot and Baldwin (2009) consult the slang defini-

Figure 1: An example Tweet with a non-standard
English expression. Our model aims at automati-
cally explaining any newly emerged, non-standard
expressions (generating the blue box).

tions from Wiktionary to detect satirical news ar-
ticles. Wang and McKeown (2010) show that us-
ing a slang dictionary of 5K terms can help detect-
ing vandalism of Wikipedia edits. Han and Bald-
win (2011) make use of the same slang dictionary,
and achieve the best performance by combining
the dictionary lookup approach with word simi-
larity and context for Twitter and SMS text nor-
malization. However, using a 5K slang dictionary
may suffer from the coverage issue, since slang
is evolving rapidly in the social media age1. Re-
cently, Thanapon Noraset (2016) shows that it is
possible to use word embeddings to generate plau-
sible definitions. Nonetheless, one weakness is
that definition of a word may change within dif-
ferent contexts.

In contrast, we take a more radical approach:
we aim at building a general purpose sequence-to-
sequence neural network model (Sutskever et al.,
2014) to explain any non-standard English expres-
sion, which can be used in many NLP and social
media applications. More specifically, given a sen-
tence that includes a non-standard English expres-
sion, we aim at automatically generating the trans-
lation of the target expression. Previously, this
is not possible because the resources of labeled

1For example, more than 2K entries are submitted daily to
Urban Dictionary (Kolt and Lazier, 2009), the largest online
slang resource.
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non-standard expressions are not available. In this
paper, we collect a large corpus of 15 years of
crowdsourced examples, and formulate the task as
a sequence-to-sequence generation problem. Us-
ing a word-level model, we show that it is pos-
sible to build a general purpose non-standard En-
glish words and phrases explainer using neural se-
quence learning techniques. To summarize our
contributions:

• We present a large, publicly available corpus
of non-standard English words and phrases,
including 15 years of definitions and exam-
ples for each entry via crowdsourcing;

• We present a hybrid word-character
sequence-to-sequence model that directly
explains unseen non-standard expressions
from social media;

• Our novel dual encoder LSTM model outper-
forms a standard attentive LSTM baseline,
and it is capable of generative plausible ex-
planation for unseen non-standard words and
phrases.

In the next section, we outline related work on
non-standard expressions and social media text
processing. We will then introduce our dual en-
coder based attentive sequence-to-sequence model
for explaining non-standard expressions in Sec-
tion 3. Experimental results are shown in Sec-
tion 4. And finally, we conclude in Section 5.

2 Related Work

The study of non-standard language is of inter-
ests to many researchers in the social media and
NLP communities. For example, Eisenstein et
al. (2010) propose a latent variable model to study
the lexical variation of the language on Twitter,
where many regional slang words are discovered.
Zappavigna (2012) identifies the Internet slang as
an important component in the discourse of Twit-
ter and social media. Gouws et al. (2011) provide
a contextual analysis of how social media users
shorten their messages. Notably, a study on Tweet
normalization (Han and Baldwin, 2011) finds that,
even when using a small slang dictionary of 5K
words, Slang makes up 12% of the ill-formed
words in a Twitter corpus of 449 posts. In the
NLP community, slang dictionary is widely used
in many tasks and applications (Burfoot and Bald-
win, 2009; Wang and McKeown, 2010; Rosenthal

and McKeown, 2011). However, we argue that us-
ing a small, fixed-size dictionary approach may
be suboptimal: it suffers from the low coverage
problem, and to keep the dictionary up to date,
maintaining such dictionary is also expensive and
time-consuming. To the best of our knowledge,
our work is the first to build a general purpose ma-
chine learning model for explaining non-standard
English terms, using a large crowdsourced dataset.

3 Our Approach

3.1 Sequence-to-Sequence Model
Since our goal is to automatically generate expla-
nations for any non-standard English expressions,
we select sequence-to-sequence models with at-
tention mechanisms as our fundamental frame-
work (Bahdanau et al., 2014), which can pro-
duce abstractive explanations, and assign different
weights to different parts of a sentence. To model
both the context words and the non-standard ex-
pression, we propose a hybrid word-character dual
encoder. An overview of our model is shown in
Figure 2.

3.2 Context Encoder
Our context encoder is basically a recurrent
neural network with long-short term memory
(LSTM) (Hochreiter and Schmidhuber, 1997).
LSTM consists of input gates, forget gates and
output gates, together with hidden units as its in-
ternal memory. Here, i controls the impact of new
input, while f is a forget gate, and o is an output
gate. C̃t is the candidate new value. h is the hidden
state, and m is the cell memory state. “�” means
element-wise vector product. The definition of the
gates, memory, and hidden state is:

it = σ(Wi[xt, ht−1])

ft = σ(Wf [xt, ht−1])

ot = σ(Wo[xt, ht−1])

C̃t = tanh(Wc[xt, ht−1])

mt = mt−1 � ft + it � C̃t

ht = mt � ot

At each step, RNN is given a vector as input,
changes its hidden states and produces outputs
from its last layer. Hidden states and outputs are
stored and later passed to a decoder, which pro-
duces final outputs based on hidden states, outputs,
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Figure 2: Dual Encoder Structure. Top left: a
word-level LSTM encoder for modeling context.
Bottom left: a character-level LSTM encoder for
modeling target non-standard expression. Right:
an LSTM decoder for generating explanations.

and the decoder’s own parameters.The context en-
coder learns and encodes sentence-level informa-
tion for the decoder to generate explanations.

3.3 Attention Mechanism
The idea of designing an attention mechanism is
to select key focuses in the sentence. More specif-
ically, we would like to pay attention to specific
parts of encoder outputs and states. We follow a
recent study (Vinyals et al., 2015) to setup an at-
tention mechanism. We have a separate LSTM for
decoding.

Here we briefly explain the method. When the
decoder starts its decoding process, it has all hid-
den units from the encoder, denoted as (h1..hT1).
Also we denote the hidden state of the decoder
as (d1..dT2). T1 and T2 are input and output
lengths. At each time step, the model computes
new weighted hidden states based on encoder
states and three learnable components: v, W ′1 and
W ′2.

ut
i = vT tanh(W ′1hi +W ′2dt)

at
i = softmax(ut

i)

d′t =
T1∑
i=1

at
ihi

Here a denotes the attention weights. ut has length
T1. After the model computes d′t, it concatenates
d′t and dt as new hidden states used for prediction
and next update.

3.4 Dual Encoder Structure
Given a single context encoder, it is challenging
for any decoder to generate explanation in the in-
stance. The reason is that there could be multi-
ple non-standard expressions in the sentence, and

it confuses the decoder on which one it should ex-
plain. In practice, the user can often pin point to
the exact expression she or he does not know, so in
this work, we design a second encoder to learn the
representation of the target non-standard expres-
sion.

Since our goal is to explain any non-standard
English words and phrases, we consider a
character-level encoder for this purpose. This sec-
ond encoder reads the embedding vector of each
character at each time step, and produces an out-
put vector, and hidden states. Our dual encoder
model linearly combines the hidden states of the
character-level target expression encoder with the
hidden states of the word-level encoder with the
following equation:

hnew = h1W1 + h2W2 +B

Here, h1 is the context representation, and h2 is
the target expression representation. The Bias
B and the combination weights W1 and W2 are
learnable.

4 Experiment

4.1 Dataset
We collect the non-standard English corpus2 from
Urban Dictionary (UD)3—the largest online slang
dictionary, where terms, definitions and examples
are submitted by the crowd. UD is made a reliable
resource, due to the quality control of its publish-
ing procedure. To prevent vandalism, a user must
have a Facebook or Gmail account, and when each
user submits an entry, the UD editors will vote
“Publish” or “Don’t Publish” (Lloyd, 2011). Each
editor is also distinguished by IP addresses, and
HTTP cookies are used to prevent each editor from
cheating. In recent years, United States Federal
government has consulted UD for the definition of
“murk” in a threat case (Jackson, 2011), whereas
UD is also referred in a financial restitution case in
Wisconsin (Kaufman, 2013), as well as determin-
ing appropriate license plates in Las Vegas (Davis,
2011).

A total of 421K entries (words and phrases)
from the period of 1999-2014 are collected. Each
entry includes a list of candidate definitions and
examples, as well as the surface form of the target

2We have released the dataset for research usage. The
dataset is available at: http://www.cs.ucsb.edu/
˜william/data/slang_ijcnlp.zip

3www.urbandictionary.com
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Instance: “dude taht roflcopter was pretty loltas-
tic!!1!”
Target: loltastic
Reference: something funnyishly fantastic.
Generated Explanation (Single): a really cool ,
amazing , and good looking .
Generated Explanation (Dual): a word that is
extremely awesome .

Instance: “danny is so jelouse of my work!”
Target: jelouse
Reference: how unintelligent people who think
they are better than someone spells ”jealous”.
Generated Explanation (Single): your friend ’ s
way of saying ”
Generated Explanation (Dual): a word used to
describe a situation , or a person who is a com-
plete idiot .

Instance: “that sir right there, is being quite
adoucheous”
Target: adoucheous
Reference: a person acting in a conformative
manner that causes social upset and violence.
Generated Explanation (Single): when a male is
being a male and a male .
Generated Explanation (Dual): the act of being
a douchebag .

Figure 3: Some generated explanations from our
system.

term. Using the UD API, we can pinpoint the to-
ken positions of the words/phrases, and obtain the
ground truth labels for tagging.

Our training and testing data use all the exam-
ples in an entry (a non-standard expression). We
randomly select 371,028 entries for training, re-
sulting in 907,624 sequence pairs of instance and
reference explanation. The test set includes 50,000
entries, and 61,330 sentences. Note that all testing
target non-standard expressions, instances and ex-
amples do not overlap with those in the training
dataset.

4.2 Experimental Settings

Our implementation is based on Tensorflow4. For
input embeddings, we randomly initialize the
word vectors. We use stochastic gradient descent
with adaptive learning rate to optimize the cross
entropy function. We use BLEU scores (Papineni
et al., 2002) for the evaluation.

4.3 Quantitative and Qualitative Results

Quantitative experimental results are showed in
Table 1. Here we compare the performance of
our proposed large dual encoder model to a single

4www.tensorflow.org

Model (w. attention) hidden units B1 B2
single encoder 1024 21.06 2.1
small dual encoder 512 21.84 2.2
large dual encoder 1024 24.58 2.37
full char-level model 256 21.13 1.8

Table 1: BLEU scores for explaining non-standard
English words and phrases in test dataset.

context encoder, word-level attentive sequence-to-
sequence, as well as a full character-level context
encoder model. We use 256 hidden units for this
full character-level, because it is the largest setting
that fits our Titan X Pascale GPU. Character-level
model has longer sequence, which becomes one of
its shortages compared with word-level model.

We see that the single encoder and full character
level context models do not offer the best empiri-
cal performances on this dataset. Our novel dual
encoder method, which combines the strengths
of word-level and character-level sequence-to-
sequence models, obtained the best performance.

For qualitative analysis, we provide some gen-
erated explanations in Figure 3. For example, the
first target non-standard expression is the word
“loltastic”, which is a combination of the words
“lol” and “fantastic”. To explain this composite
non-standard expression, a character-level encoder
is needed. The generated explanation from our
dual encoder approach clearly makes more sense
than the single decoder result.

Overall, dual encoder can explain words with
more confidence partly because it knows which
words it needs to explain, especially for sentences
containing multiple non-standard English words
and phrases. Our model can also accurately ex-
plain many known acronyms. We also notice
that LSTM cells outperform gated recurrent units
(GRUs) (Cho et al., 2014), and attention mecha-
nism improves the performance.

5 Conclusion

In this paper, we introduce a new task of learning
to explain newly emerged, non-standard English
words and phrases. To do this, we collected 15-
year of UrbanDictionary data, and designed a dual
encoder attentive sequence-to-sequence model to
learn the hidden context representation and the
hidden non-standard expression embedding. We
showed that combining word-level and character-
level models improved the performance for this
task
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Abstract

We propose a submodular function-based
summarization system which integrates
three important measures namely impor-
tance, coverage, and non-redundancy to
detect the important sentences for the sum-
mary. We design monotone and submod-
ular functions which allow us to apply an
efficient and scalable greedy algorithm to
obtain informative and well-covered sum-
maries. In addition, we integrate two
abstraction-based methods namely sen-
tence compression and merging for gener-
ating an abstractive sentence set. We de-
sign our summarization models for both
generic and query-focused summarization.
Experimental results on DUC-2004 and
DUC-2007 datasets show that our generic
and query-focused summarizers have out-
performed the state-of-the-art summariza-
tion systems in terms of ROUGE-1 and
ROUGE-2 recall and F-measure.

1 Introduction

Existing multi-document summarization tech-
niques mainly fall into two categories: extrac-
tive and abstractive. Extractive approach selects
important source sentences to cover the overall
concepts of the document set (Erkan and Radev,
2004; Lin and Bilmes, 2010; Boudin et al., 2015;
Parveen and Strube, 2015; Parveen et al., 2015;
Cheng and Lapata, 2016; Nallapati et al., 2017).
This method is very popular because of its sim-
plicity and speed. But it mostly generates less con-
densed summaries with redundant information.
On the other hand, abstractive summarization is
a way of natural language generation and using
this approach, it is possible to produce human-like
summaries (Rush et al., 2015; Chopra et al., 2016;

Wang and Ling, 2016). It requires deep language
understanding. Though this technique is complex
and less popular than the extractive approach, it
is possible to produce more informative and fluent
summary. For generating abstractive summaries,
researchers often try to modify the candidate sen-
tences by either shortening and compressing it
(Knight and Marcu, 2000; Berg-Kirkpatrick et al.,
2011; Filippova et al., 2015) or by merging several
sentences which is called sentence fusion (Barzi-
lay and McKeown, 2005; Cheung and Penn, 2014;
Bing et al., 2015).

In this paper, we divide the whole task of sum-
marization in two main phases: document shrink-
ing and summarization. In the first phase, we ap-
ply sentence compression and merging to produce
concise and new candidate sentences for the sum-
mary. In the second phase, we represent sum-
marization as a submodular function maximiza-
tion problem under budgeted constraints. While
generating summaries, our system considers three
important measures namely importance, coverage,
and non-redundancy to ensure summary quality.
We design three submodular functions for each
these measures. The importance property of the
summary considers how much relevant informa-
tion present in a summary. The coverage measure
ranks the sentences based on the fact of how rep-
resentative they are of the document cluster. The
third objective function is designed for measur-
ing non-redundancy of the summaries. This met-
ric assigns a score to a sentence based on how
many distinct concepts it contains and how dis-
similar it is with the other summary sentences. We
design the summarization model for both generic
and query-focused summarization. Finally, a mod-
ified greedy algorithm is applied which obtains
near optimal summaries guaranteed to be within
(1− 1/

√
e) of the optimal solution.
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2 Related Work

Most of the research on document summarization
are extractive which principally based on two im-
portant objectives, namely maximizing the rele-
vance and minimizing the redundancy (Carbonell
and Goldstein, 1998; Erkan and Radev, 2004). Be-
sides, formulation of summarization as a maxi-
mum coverage problem with knapsack constraint
(MCKP) (Takamura and Okumura, 2009; Morita
et al., 2011) have been used. Recently, summa-
rization has also been considered as a submodu-
lar function maximization (Lin and Bilmes, 2010,
2011; Dasgupta et al., 2013) where greedy algo-
rithms were adopted to achieve near optimal sum-
maries. However, the main drawback of all the ex-
tractive approaches is that they can not avoid the
inclusion of insignificant information which de-
grades the summary quality.

On the other hand, the abstractive approach
in a multi-document setting aims at generating
summaries by deeply understanding the contents
of the document set and rewriting the most rel-
evant information in natural language. Two re-
cent abstractive techniques are most commonly
used to accomplish the task: sentence compres-
sion (Knight and Marcu, 2000) and sentence fu-
sion (Barzilay and McKeown, 2005). In the re-
cent years, sentence compression is jointly used
with the extractive system to improve summary
quality (Berg-Kirkpatrick et al., 2011; Martins and
Smith, 2009). In addition, sentence fusion-based
models have also been proposed where sentence
fragments from multiple sentences are combined
to cover more information in a concise manner
(Barzilay and McKeown, 2005; Filippova et al.,
2015; Ganesan et al., 2010; Thadani and McKe-
own, 2013; Cheung and Penn, 2014; Bing et al.,
2015).

3 Document Shrinking

In this phase, we used sentence compression and
sentence merging to prepare a better and more
concise document set before approaching the ac-
tual summarization task.

3.1 Sentence Compression
Sentence compression is a technique of shorten-
ing sentences which can be used with the extrac-
tive system to improve summary quality. Consider
the following example sentence as a candidate sen-
tence of the summary:

“According to a newspaper report, a total of
4,299 political opponents died or disappeared dur-
ing Pinochet’s term.”

In this sentence, we can see the part shown
in the italic font is not carrying much signifi-
cance and can be removed. We removed these
sort of insignificant sub-parts of sentences follow-
ing Berg-Kirkpatrick et al., (2011)’s compression
technique.

In addition, we removed the sub-clauses related
to the reporting verbs from sentences following
(Chali and Uddin, 2016), like in the following ex-
ample sentence:

Cambodian parties agreed to a Coalition gov-
ernment led by Hun Sen, the official said.

We considered mostly used reporting verbs such
as said, told, reported, and announced to find out
subclause. It is known that the sentence which
contains a reporting verb is always the ‘root’ of the
dependency tree. Following this rule, we traversed
the tree to find out the subclause related to the re-
porting verb and removed it from the sentence.

3.2 Sentence Merging

Sentence merging is a technique to create a more
informative sentence by merging the information
from different source sentences. According to
Bing et al., (2015), human summary writers usu-
ally merge the important facts in different verb
phrases (VPs) about the same entity into a sin-
gle sentence. Based on this assumption, we de-
sign a sentence merging technique. While Bing et
al., (2015), took phrases as the basic linguistic unit
and merge phrases to produce a summary, we take
sentences as the basic linguistic units and merge
them to generate new sentences for the summary.
For example, the following sentences: (1) Cam-
bodian prime minister Hun Sen has ruled through
violence, (2) Hun Sen threatened to eliminate op-
ponents can be merged as (3) Hun Sen has ruled
through violence and threatened to eliminate op-
ponents. For merging two sentences, we identify
the sentences which start with a coreferent subject
in order to preserve the gramaticality of the newly
generated sentence, which is a key challenge in ab-
stractive summarization.

Our system first applies Stanford Coreference
Resolution engine (Lee et al., 2013) on each sen-
tence of a document. From this step, we obtain
a set of clusters containing the noun phrases that
refer to the same entity in a document. A new sen-
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tence is generated from two sentences if they share
a coreferent NP as the subject but have different
VPs. We picked the sentences closest to each other
for merging and produced the new sentences. The
natural order of the sentences has thus been pre-
served.

After this phase, we obtain a cluster of doc-
uments containing concise sentences. Now, this
document set is the input of our document sum-
marization phase.

4 Document Summarization

We consider text summarization as a budgeted
submodular function maximization problem sim-
ilar to the recent works of (Lin and Bilmes, 2011),
but our proposed monotone submodular objective
function is significantly different from their work,
which is discussed in this section.

4.1 Problem Definition

Suppose U be the finite set of all textual-units
(sentence) in the documents. Our task of summa-
rization is to select a subset S ⊆ U that maximizes
the submodular function. Since there is a length
constraint in standard summarization tasks (e.g.,
DUC1 evaluations), we consider the problem as a
submodular function maximization with budgeted
constraints:

max
S⊆U

{
f(S) :

∑
i∈S costi ≤ Bmax

}
(1)

where, costi is the non-negative cost of selecting
the textual-unit i and Bmax is the budget. The
value of Bmax could be the number of words or
bytes in the summary. f(S) is the submodular ob-
jective function that scores the summary quality.

4.1.1 Generic Summarization
We design a monotone submodular objective func-
tion composed of three important objectives for
document summarization. These objectives are
responsible for measuring summary’s importance,
coverage and non-redundancy property. The pro-
posed objective function is:

f(S) = αr(S) + βc(S) + Λh(S) (2)

where, r(S) measures summary’s importance
quality, c(S) measures summary’s coverage qual-
ity, h(S) measures summary’s non-redundancy

1http://www-nlpir.nist.gov/projects/duc/index.html

quality and α, β, and Λ are non-negative trade-off
coefficients which can be tuned empirically2.

As we know, the linear combination of the sub-
modular functions is submodular (Lin and Bilmes,
2011) and all the proposed subparts of our objec-
tive function are submodular, the function f(S) is
also submodular.

One of the basic requirements of a good sum-
mary is that it should contain the most impor-
tant information across multiple documents. To
model this property, we introduce a new mono-
tone nondecreasing submodular function based on
the atomic concept. In our definition, atomic con-
cepts are the atomic terms that bear significance in
a sentence. Our system, therefore, considers only
verbs, named-entities, and adjectives as atomic
concepts (excluding the stop words). Our pro-
posed submodular function is:

r(S) =
N∑
i=1

1
pos(Si)

Ωi.λSi (3)

where, λSi ∈ {0, 1}, λSi = 1 if sentence Si is in
the summary, otherwise λSi = 0. Ωi is the impor-
tance score of sentence Si and pos(Si) denotes the
position of sentence Si in the document.

We consider the relevance of the summary as
the summation of the importance scores of the
sentences in it. First, we utilize the Markov ran-
dom walk model used by (Hong and Nenkova,
2014; Mihalcea and Tarau, 2004) to score each
concept from the document set. Then we score
every sentence based on the weight of the con-
stituent words in the sentence. We only decrease
the weight of the constituent concepts when it
appears in multiple sentences in the summary.
While sentence similarity-based approaches (Lin
and Bilmes, 2011) do not consider the individual
word’s importance to model the importance prop-
erty, our proposed submodular function is based
on the atomic concept and this model encourages
coverage of most of the important concepts across
the documents.

A good summary has the capability to cover
most of the important aspects of a document set.
To formulate this, we consider a submodular ob-
jective function which utilizes the following ‘sen-
tence similarity-based approach’ based on “facil-

2The values for the coefficients are 1.0, 1.0 and 5.0 for α,
β, and Λ respectively, as found empirically using DUC-2003
development set during the experiments.
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ity location objective” (Cornuejols et al., 1977).

d(S) =
∑
i∈V

maxj∈Ssim(i, j) (4)

where, sim(i, j) denotes the deep semantic sen-
tence similarity between sentence i and j. For
measuring the similarity between sentences, we
used the Word2Vec sentence similarity measure
(Mikolov et al., 2013). We first remove all the
stop words3 which do not add much meaning to
the sentence and then run Word2Vec4 on the words
in both sentences. We calculate the average vector
for all words in both sentences and use cosine sim-
ilarity between vectors to find the semantic simi-
larity between sentences. Finally, following equa-
tion (4), a sentence’s eligibility to be included in
the summary depends on how similar it is with all
the other sentences in the document cluster.

Minimizing redundant information in the sum-
mary is handled by the following submodular
function:

h(S) =
∑

Ck∈η(S)

σ(Ck)−
∑

i,j∈S,i6=j
sim(i, j) (5)

where, sim(i, j) is the deep semantic sentence
similarity between summary sentence i and j,
σ(Ck) is the weight of k-th concept term, and
η(S) is the set of all distinct terms in the summary.

The first part of the function h(S) is based
on atomic-concept which scores the summary by
measuring the weighted sum of the unique con-
cept terms in the summary. In the second part,
we penalize the summary redundancy by measur-
ing semantic similarity among the summary sen-
tences. Finally, our task is to maximize the pro-
posed submodular function f(S) to produce a rel-
evant, well-covered, and non-redundant summary
using the modified greedy algorithm for submod-
ular function (Lin and Bilmes, 2010).

The reason behind choosing this algorithm is
that a solution is guaranteed to be within a constant
factor (1−1/

√
e) of the optimal solution when the

objective function is monotone submodular. Since
the scoring function f(s) of our proposed summa-
rizer is non-decreasing monotone submodular, we
thus use the following greedy algorithm to obtain
the near optimal solution.

3http://jmlr.org/papers/volume5/lewis04a/a11-smart-
stop-list/english.stop

4https://code.google.com/archive/p/word2vec/

Algorithm 1 A Greedy algorithm for maximizing
the objective function
Require: A minimization LP in standard form.
Ensure: Integral solution, IR1 to the LP.

1: S ← ∅,M ← {1, ..., N}
2: while M 6= 0 do
3: q ← argmaxp∈M

f(S∪{p})−f(S)
(cp)r

4: if
∑
j∈S Cj + Cq ≤ Bmax and f(S ∪

{q})− f(S) ≥ 0 then
5: S ← S ∪ {q}
6: end if
7: M ←M \ {q}
8: end while
9: t∗ ← argmaxt∈{1,...,N},ct≤Bmax

f({t})
10: if f(t∗) > f(S) then
11: return t∗
12: else return S
13: end if

4.2 Query-focused Summarization

For the query-focused summarization phase, we
propose the following objective function:

f(S) = αr(S) + Υq(S) + Λh(S) (6)

where, r(S) measures summary’s importance
quality, q(S) measures summary’s query rele-
vance quality, h(S) measures summary’s non-
redundancy quality and α, Υ, and Λ are non-
negative trade-off coefficients which can be tuned
empirically5.
We keep the importance and non-redundancy re-
ward function similar to the generic summarizer
described in the previous section. In addition, we
design a query relevance objective function which
considers the two important aspects: (1) how re-
lated summary sentences are with the query?, and
(2) how much query dependent information is cov-
ered in the summary?

q(S) = ψ.
∑
j∈S

Sim(q, sj) + θ.nj,q (7)

where, Sim(i, j) is the similarity between sum-
mary sentence j and query q, here similarity
means the cosine similarity of the average word
vectors obtained from Word2Vec (Mikolov et al.,
2013) for the query and the summary sentence.
nj,q is the number of query terms present in the

5The values for the coefficients are 1.0, 10.0, and 5.0 for
α, Υ, and Λ respectively, as found empirically using the de-
velopment set DUC-2006 during the experiments.
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summary sentence j. ψ, and θ are non-negative
trade-off coefficients which have been tuned em-
pirically during the experiments6.

5 Experiments
To evaluate our generic and query-focused sum-
maries, we use DUC-2004 and DUC-2007
datasets, respectively. We perform some basic pre-
processing on all the documents such as tokeniza-
tion, part-of-speech tagging and document coref-
erence resolution using Stanford CoreNLP (Man-
ning et al., 2014). We also use Porter’s stem-
mer (Porter, 1999) for stemming all the words and
remove all the stop words from the smart stop
words list7. For query-focused summarization, we
use word vectors from Word2Vec (Mikolov et al.,
2013) which allows us to obtain better similarity
scores between the sentences and the queries. We
evaluate our system generated summaries using
the automatic evaluation toolkit ROUGE version
1.5.5 (Lin, 2004).

We compare the results of our systems (i.e.,
document shrinking + summarization or document
summarization + shrinking) with other state-of-
the-art generic summarization methods. The com-
parison is shown in Table 1 where we report the
values of ROUGE-1 recall and F-1 measure8 of
different approaches. From the table, we can see
that our generic multi-document summarizer (doc-
ument shrinking + summarization) significantly
outperforms those systems in all measures. This
result suggests the effectiveness of sentence com-
pression and merging phase in our system. It also
shows the effectiveness of using semantic similar-
ity measures to select important sentences in the
summary. Moreover, our system also uses a sepa-
rate redundancy function which also helps to gen-
erate summaries with less redundancy compared
to the systems which only concentrate on sum-
mary’s coverage and relevance. These results also
confirm that the proposed strategy can improve
summary quality.

We compare our query-focused summarizer
with other state-of-the-art query summarization
methods. Table 2 shows the comparison in terms

6The values for the query relevance coefficients are 4.0
and 2.0 for ψ and θ respectively, as found empirically using
the development set DUC-2006 during the experiments.

7http://jmlr.org/papers/volume5/lewis04a/a11-smart-
stop-list/english.stop

8ROUGE runtime arguments for DUC-2004: ROUGE -a
-c 95 -b 665 -m -n 4 -w 1.2

Systems R-1 F-1
Best system in DUC-04 (peer 65) 0.3828 0.3794
(Takamura and Okumura, 2009) 0.385 -
(Lin and Bilmes, 2011) 0.3935 0.389
(McDonald, 2007) 0.362 0.338
(Wang et al., 2009) 0.3907 -
Document Shrinking + Summarization 0.4127 0.4133
Document Summarization + Shrinking 0.3874 0.3882

Table 1: Results on DUC-2004 Datasets

Systems R-2 F-2
Best system in DUC-07 (peer 15) 0.1245 0.1229
(Lin and Bilmes, 2011) 0.1238 0.1233
(Toutanova et al., 2007) 0.1189 0.1189
(Haghighi and Vanderwende, 2009) 0.118 -
Document Shrinking + Summarization 0.1258 0.1264
Document Summarization + Shrinking 0.1133 0.1149

Table 2: Results on DUC-2007 Datasets

of ROUGE scores9 between our system and the
best performing systems. From the table, we can
say that our query-focused multi-document sum-
marizer (document shrinking + summarization)
outperforms the best-known systems in DUC-
2007. It is notable that the best system in DUC-
2007 takes the topic title as a query and uses Ya-
hoo search engine to get a ranked set of retrieved
documents which were used later to calculate the
query relevance score (Pingali et al., 2007). How-
ever, our system is totally unsupervised and does
not use any external source for the summary gen-
eration.

6 Conclusion
In this paper, we proposed a new summarization
framework using different submodular functions
with deep semantic features and abstraction-based
methods. Abstraction-based methods help the sys-
tem to obtain concise and more informative can-
didate summary sentences. We selected the best
sentences for the summary by maximizing the sub-
modular objective function. The empirical results
show that our generic and query-focused summa-
rization model outperform the state-of-the-art sys-
tems.
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9ROUGE runtime arguments for DUC-2007: ROUGE -n
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Abstract

Relations are expressed in many domains
such as newswire, weblogs and phone
conversations. Trained on a source do-
main, a relation extractor’s performance
degrades when applied to target domains
other than the source. A common yet
labor-intensive method for domain adap-
tation is to construct a target-domain-
specific labeled dataset for adapting the
extractor. In response, we present an unsu-
pervised domain adaptation method which
only requires labels from the source do-
main. Our method is a joint model consist-
ing of a CNN-based relation classifier and
a domain-adversarial classifier. The two
components are optimized jointly to learn
a domain-independent representation for
prediction on the target domain. Our
model outperforms the state-of-the-art on
all three test domains of ACE 2005.

1 Introduction

Relation Extraction (RE) captures the semantic
relation between two entities within a sentence,
such as the Located relation between e1 and e2
in the sentence: “in the <e2>West Bank</e2>,
a <e1>passenger </e1>was wounded when an
Israeli bus came under fire.” The same relation
might be expressed differently across diverse doc-
uments, topics and genres. We often observed that
a relation extractor’s performance degrades when
applied to a domain other than the domain it is
trained on.

A simple method for domain adaptation
(Blitzer et al., 2006; Daume, 2007; Jing and Zhai,
2007) is to construct a labeled dataset for the tar-
get domain, and then adjust a trained model with
it. This is inefficient for relations - annotation is

laborious to obtain, not to mention that relation
mentions are sparse in the text. Take ACE 2004 as
an example, Personal/Social relations appear only
once on average per document. Such a method
will not scale to the open-ended set of possible do-
mains.

Among the features (Zhou et al., 2005) used for
relation extraction, shortest dependency path can
be applied cross-domain while argument-specific
features (e.g., entity types, lexical forms) are likely
to be more domain-specific. We hypothesize that
it is possible to learn both domain-invariant and
domain-specific representations with neural net-
works, and use the domain-invariant representa-
tion for many new domains.

In this paper, we propose to use a Do-
main Adversarial Neural Network (DANN)
(Ganin and Lempitsky, 2015; Ajakan et al., 2014)
to learn a domain-invariant representation for
relations. Our contributions are twofold:

• We propose a novel domain adaptation ap-
proach for relation extraction that learns
cross-domain features by itself and that re-
quires no labels in targets.

• Experiments on the ACE domains show that
our approach improves on the state-of-the-art
across all domains.

In the rest of the paper, we will first briefly sum-
marize related work, then describe the model (Sec-
tion 3). We will present experimental results and
conclusion at the end.

2 Related Work

There has been a lot of research on domain
adaptation in natural language processing
(Blitzer et al., 2006; Daume, 2007; Jing and Zhai,
2007; Glorot et al., 2011; Ajakan et al., 2014;
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Ganin and Lempitsky, 2015). Most of the ex-
isting domain adaptation methods are based
on discrete feature representations and linear
classifiers. There is also recent work on do-
main adaptation for relation extraction including
feature-based systems (Nguyen and Grishman,
2014; Nguyen et al., 2014) and kernel-
based system (Plank and Moschitti, 2013).
Nguyen and Grishman (2014) and Nguyen et al.
(2014) both require a few labels in the target
domain. Our proposed method can perform
domain adaptation without target labels.

Some other methods also do not have such re-
quirement. Plank and Moschitti (2013) designed
the semantic syntactic tree kernel (SSTK) to learn
cross-domain patterns. Nguyen et al. (2015b) con-
structed a case study comparing feature-based
methods and kernel-based models. They presented
some effective features and kernels (e.g. word
embedding).We share the same intuition of find-
ing those cross-domain features, but our work dif-
fers from such previous work in that they manually
designed those features and kernels while we au-
tomatically learn cross-domain features from un-
labeled target-domain examples with neural net-
works. To our best knowledge, this is the first
work on neural networks for domain adaptation of
relation extraction.

3 Model

We formulate the relation extraction task as a
classification problem over all entity pairs (re-
lation candidates) in a sentence. The overall
structure of the model is shown in Figure 1.
The model will first convert a relation candidate
into a fixed-length matrix, then uses a single-
layer Convolutional Neural Network (CNN) with
dropout to learn its hidden representation repr.
On top of repr, it uses two decoders: a fully-
connected layer with dropout for predicting the re-
lation type (Zeng et al., 2014) (Section 3.1), and
another decoder with domain adversarial neural
network(Ganin and Lempitsky, 2015) to predict
its domain. The additional domain-adversarial de-
coder is used to enforce the feature layer to be
domain-invariant (Section 3.2).

3.1 CNN-based Encoder-Decoder Model for
Relations

Each sentence is truncated or padded to a fixed
length (ls) of tokens. Each token of the text is then

Figure 1: Model architecture

represented as the concatenation of its word em-
bedding, its position embedding and its entity type
embedding. They form the input layer:

Word embedding: We use pre-trained word
embedding from word2vec (Mikolov et al., 2013).
The size of the embedding is |V | · dw, where |V |
is the vocabulary size, and dw is the embedding
dimension.

Position embedding: For each token, we look
up its two position embeddings from the two posi-
tion embedding tables (randomly initialized) with
its relative distances to the two arguments, respec-
tively. The final embedding is the concatenation
of the two. The size of one embedding table is
(2 · ls −1) ·dp, where ls is the sentence length, and
dp is the embedding dimension.

Entity type embedding: For each token, we
look up its entity-type embedding from the entity-
type embedding table. Tokens outside the two en-
tity spans will be randomly initialized to the same
non-entity vector. Tokens within the two argu-
ments will be converted to the vector of the ar-
gument’s entity type. The size of the embedding
table is (|E| + 1) ∗ de, where |E| is the number of
entity types, and de is the embedding dimension.

Chunk embedding: Similar to entity type, we
have chunk embedding according to each token’s
chunk type. The size of embedding table is (|C|+
1) ∗ dc, where |C| is the number of chunk types,
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and dc is the embedding dimension.
On dep path embedding: For each token, we

have a vector to indicate whether the token is on
the dependency path between the two entities. The
vector size is dd.

The input layer is a matrix with size (dw + 2 ·
dp + de + dc + dd) · ls. A standard convolution
layer with variable window sizes (feature maps)
is applied on this, following by max-pooling and
dropout. Each filter with the same window size
has the same filter size. The output is the feature
representation layer (repr) of size df · |W |, where
df is the filter size, and |W | is the size of the set
of window sizes. We add fully connected layers
to this feature representation with softmax to pre-
dict the relation type. The model is similar to that
in (Nguyen and Grishman, 2016), but with fewer
features.

3.2 Domain Adversarial Neural Network
How does domain adaptation work without any
labeled examples for the target domain? Follow-
ing Ganin and Lempitsky (2015) and Ajakan et al.
(2014), we use DANN to learn a representation
that is more general across domains and eliminat-
ing source-only distinctive features that are easily
learned with labeled source data.

It learns domain invariant features by jointly
optimizing the underlying feature layer from the
main learning task and the domain label predic-
tor. In this case, the main learning task is the re-
lation type prediction in Section 3.1. The domain
label predictor is a binary classifier that discrimi-
nates whether the example is from source or target.
The domain classifier consists of the gradient re-
versal layer (GRL) and a few fully connected lay-
ers. The GRL is defined as an identity function
with reversed gradient for backpropagation. For
input layer x:

GRL(x) = x, d
dxGRL(x) = −I

where I is the identity matrix.
We use a binary cross-entropy loss for the do-

main classifier:

Ldomain =
Ns+Nt∑

i=0
{dilog(d̂i) + (1− di)log(1−

d̂i)}
where diǫ{0, 1} is the domain label

{source, target}, and Ns, Nt stand for the
number of examples in source and target.

The loss of the whole model is the linear com-
bination of the task loss and the domain loss:

L = Lrelation + λ · Ldomain

where λ is the adaptation weight, and Lrelation

is the loss of the relation classifier.
During the training, half of the examples comes

from the source and half of them comes from
the target in a single batch. Only examples from
source have relation labels, while both source and
target examples have domain labels. As the result,
the source part is used to calculate the relation loss
Lrelation. The whole batch is used to calculate the
domain loss Ldomain

We choose the feature representation layer
(repr) from the relation model (Section 3.1) as the
input to GRL. During the training, while the pa-
rameters of the relation and domain decoders are
both optimized to minimize their errors, the param-
eters of repr are optimized to minimize the loss of
the relation decoder and to maximize (due to GRL)
the loss of the domain classifier. The latter en-
courages domain-invariant features to emerge for
domain adaptation.

In feature-based models, lexicon-level features
are often domain-specific such as a person’s name.
e.g. word-level features that contain Obama and
US can be indicators for employment relation. It
is true in many news articles, but not in general.
Instead of manually deciding whether to use the
feature or not, we can use DANN to read the target
domain text to make the decision depending on the
domain.

4 Experiements

4.1 Dataset

We use the ACE 2005 dataset to evaluate domain
adaptation by dividing its articles from its six gen-
res into respective domains: broadcast conversa-
tion (bc), broadcast news (bn), telephone conver-
sation (cts), newswire (nw), usenet (un) and we-
blogs (wl). Previous work (Gormley et al., 2015;
Nguyen and Grishman, 2016) uses newswire (bn
& nw) as the training set, half of bc as the devel-
opment set, the other half of bc, cts and wl as the
test sets. We use the same data split. Our model re-
quires unlabeled target domain instances. To meet
this requirement and avoid train-on-test, we also
split cts and wl when adapting to them. For all
three test domains, we use half of the dataset as
the development set, and the other half as the test
set (Table 1). We use the same training set and the
same preprocessing. This results in 43,497 entity
pairs for training. We also use the same label set
which is expanded by creating two relation types
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for each asymmetric relation.

Split bc† wl cts
train nw & bn nw & bn nw & bn
dev half of bc half of wl half of cts
test half of bc half of wl half of cts

Table 1: Data split for the experiments. †This data
split is the same as several previous work

4.2 Configuration and Hyperparameters

We use word embedding pre-trained on newswire
with 300 dimensions from word2vec (Mikolov et
al. 2013). We fix the word embeddings during
the training because tuning did not show improve-
ment. We follow Nguyen and Grishman (2016) to
set the hyperparameters for CNN: the embedding
sizes (Section 3.1) de, dp, dd, dc, dd, = 50, the max
sentence length ls = 50, the set of filter window
sizes W = 2, 3, 4, 5, the number of filters for each
window size df = 150, and the dropout rate to be
0.5. We use one fully connected layer with 300 di-
mensions for the relation decoder before the soft-
max layer. We only use a softmax layer for domain
decoder. The learning rate is 0.001. We halve the
learning rate every two epoches. We use Adam as
the optimization method. The adaptation weight
is tuned to be 0.1 using the dev set. For all scores,
we run experiments 10 times and take the average.

4.3 Evaluation

Method bc wl cts avg
Gormley 2015 61.90 N/A N/A N/A
Nguyen 2016 63.26 N/A N/A N/A
CNN 64.44 54.58 57.02 58.64
CNN + DANN 65.16 55.55 57.19 59.30

Table 2: Adaptation to the bc domain. F1 scores
are reported on test sets with same splits. p-value
< 0.01 for bc CNN vs. CNN+DANN.

Our baseline CNN model achieved compa-
rable performance to the state-of-the-art rela-
tion extraction methods (Table 2). Compared
to (Gormley et al., 2015; Nguyen and Grishman,
2016), our baseline model already obtained higher
score on bc. They also reported higher scores
by ensemble with other models (feature-based or
multiple neural net models) which is not directly
comparable to a single model. Essentially, our

model can also serve as one of the base models
in the ensemble.

We trained DANN to read the development set
of bc to adapt to this domain. Although the gain
seems to be small, the improvement is statistically
significant (p-value < 0.01). We ran an instance-
based sign test on the combination of the output
of 10 experiments. We have 10 observations of
each instance in the original dataset. we treat them
as different examples when calculating the signif-
icance. While DANN improves bc significantly,
we also want to find out how it works on other do-
mains. In the original split used by previous work,
wl and cts do not have dev and test split. We,
therefore, created the data split by ourselves and
compare the results to our own baseline model.
We observe similar improvement on wl, but not
on cts. By doing some feature engineering on the
embedding layer, we found that the Chunk em-
bedding and On dep path embedding improves the
cts a lot. The model obtains 52.96 (without) and
57.02 (with) these embeddings. With DANN, it
obtains 53.74 (+0.78) and 57.19 (+0.17). The ef-
fective hand-designed cross-domain features from
the embedding layer could make the room for im-
provement smaller.

Given a group of documents, our approach is
to let the DANN read more unlabeled documents
from the same domain and train the relation de-
coder along with it. Then, we obtain a better
model for this domain. This also means that we
will have to train different models for different do-
mains. Ideally, we would like to have a model
that can work on all domains at the same time.
To test this, we try to adapt to the three domains
in the dataset at the same time. Under this set-
ting, DANN reads unlabeled data from all three
domains along with the supervised relation model.
As the result (Table 3), the model tends to learn
something in between. It performs better on bc
and wl, but worse on cts. It is not very surprising
since DANN will force the representation layer to
be domain-invariant. To really lift the performance
of all the domains with a single model, the model
needs to capture some domain-specific representa-
tion as well. This would be hard to achieve without
labels from the target domains, but still an interest-
ing direction to investigate. Under the current sit-
uation, it would be better to train separate models
that are adapted to each domain.
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Method bc wl cts avg
CNN 64.33 54.58 57.02 58.64
+ DANN (all) 64.94 55.17 56.08 58.73
+ DANN (each) 65.16 55.55 57.19 59.30

Table 3: F1 scores on adaptation to all three do-
mains at the same time and adaptation to each do-
main individually.

5 Conclusion

Our model successfully obtains improvement on
all three test domains of relations at ACE 2005. It
uses a domain adversarial neural network to learn
cross-domain features. It does not require hand-
crafted features for domain adaptation. It can be
a useful tool for relation extraction since labeled
data is always hard to acquire.
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Abstract

We explore the application of a Deep
Structured Similarity Model (DSSM) to
ranking in lexical simplification. Our re-
sults show that the DSSM can effectively
capture fine-grained features to perform
semantic matching when ranking substitu-
tion candidates, outperforming the state-
of-the-art on two standard datasets used
for the task.

1 Introduction

Lexical simplification is the task of automatically
rewriting a text by substituting words or phrases
with simpler variants, while retaining its mean-
ing and grammaticality. The goal is to make the
text easier to understand for children, language
learners, people with cognitive disabilities and
even machines. Approaches to lexical simplifica-
tion generally follow a standard pipeline consist-
ing of two main steps: generation and ranking.
In the generation step, a set of possible substi-
tutions for the target word is commonly created
by querying semantic databases such as Word-
net (Devlin and Tait, 1998), learning substitution
rules from sentence-aligned parallel corpora of
complex-simple texts (Horn et al., 2014; Paetzold
and Specia, 2017), and learning word embeddings
from a large corpora to obtain similar words of
the complex word (Glavaš and Štajner, 2015; Kim
et al., 2016; Paetzold and Specia, 2016a, 2017). In
the ranking step, features that discriminate a sub-
stitution candidate from other substitution candi-
dates are leveraged and the candidates are ranked
with respect to their simplicity and contextual fit-
ness.

∗This research was conducted while the first author was
a Post Doctoral Fellow at the City University of Hong Kong.

The ranking step is challenging because the sub-
stitution candidates usually have similar meaning
to the target word, and thus share similar con-
text features. State-of-the-art approaches to rank-
ing in lexical simplification exploit supervised ma-
chine learning-based methods that rely mostly on
surface features, such as word frequency, word
length and n-gram probability, for training the
model (Horn et al., 2014; Bingel and Søgaard,
2016; Paetzold and Specia, 2016a, 2017). More-
over, deep architectures are not explored in these
models. Surface features and shallow architec-
tures might not be able to explore the features
at different levels of abstractions that capture nu-
ances that discriminate the candidates.

In this paper, we propose to use a Deep Struc-
tured Similarity Model (DSSM) (Huang et al.,
2013) to rank substitution candidates. The DSSM
exploits a deep architecture by using a deep neu-
ral network (DNN), that can effectively capture
contextual features to perform semantic match-
ing between two sentences. It has been success-
fully applied to several natural language process-
ing (NLP) tasks, such as machine translation (Gao
et al., 2014), web search ranking (Huang et al.,
2013; Shen et al., 2014; Liu et al., 2015), question
answering (Yih et al., 2014), and image captioning
(Fang et al., 2015). To the best of our knowledge,
this is the first time this model is applied to lex-
ical simplification. We adapt the original DSSM
architecture and objective function to our specific
task. Our evaluation on two standard datasets for
lexical simplification shows that this method out-
performs state-of-the-art approaches that use su-
pervised machine learning-based methods.

2 Method

2.1 Task Definition
We focus on the ranking step of the standard lexi-
cal simplification pipeline. Given a dataset of tar-
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get words, their sentential contexts and substitu-
tion candidates for the target words, the goal is to
train a model that accurately ranks the candidates
based on their simplicity and semantic matching.

For generating substitution candidates, we uti-
lize the method proposed by Paetzold and Spe-
cia (2017), which was recently shown to be
the state-of-art method for generating substitution
candidates. They exploit a hybrid substitution
generation approach where candidates are first ex-
tracted from 550,644 simple-complex aligned sen-
tences from the Newsela corpus (Xu et al., 2015).
Then, these candidates are complemented with
candidates generated with a retrofitted word em-
bedding model. The word embedding model is
retrofitted over WordNet’s synonym pairs (for de-
tails, please refer to Paetzold and Specia (2017)).

For ranking substitution candidates, we use a
DSSM, which we elaborate in the next section.

2.2 DSSM for Ranking Substitution
Candidates

T

H

Wt

X: Bag-of-Words Input

Word Hashing

Nonlinear Projection

Relevance measured by
cosine similarity

Posterior probability
computed by softmax

S1

H

Ws

R(T, S1)

P (S1|T )

S2

H

Ws

R(T, S2)

P (S2|T )

1

Figure 1: Architecture of the Deep Structured
Similarity Model (DSSM): The input X (either
a target word or a substitute candidate and their
sentential contexts, T and S, respectively) is first
represented as a bag of words, then hashed into
letter 3-grams H . Non-linear projection Wt gen-
erates the semantic representation of T and non-
linear projection W s constructs the semantic rep-
resentation of S. Finally, the cosine similarity is
adopted to measure the relevance between the T
and S. At last, the posterior probabilities over all
candidates are computed.

Compared to other latent semantic models, such
as Latent Semantic Analysis (Deerwester et al.,
1990) and its extensions, Deep Structured Simi-
larity Model (also called Deep Semantic Similar-
ity Model) or DSSM (Huang et al., 2013) can cap-

ture fine-grained local and global contextual fea-
tures more effectively. The DSSM is trained by
optimizing a similarity-driven objective, by pro-
jecting the whole sentence to a continuous seman-
tic space. In addition, it is is built upon characters
(rather than words) for scalability and generaliz-
ability (He, 2016). Figure 1 shows the architec-
ture of the model used in this work. It consists of
a typical DNN with a word hashing layer, a non-
linear projection layer, and an output layer. Each
component is described in the following:
Word Hashing Layer: the input is first mapped
from a high-dimentional one-hot word vector into
a low-dimentional letter-trigram space (with the
dimentionality as low as 5k), a method called word
hashing (Huang et al., 2013). For example, the
word cat is hashed as the bag of letter trigram #-c-
a, c-a-t, a-t-#, where # is a boundary symbol (Liu
et al., 2015). The word hashing helps the model
generalize better for out-of-vocabulary words and
for spelling variants of the same word (Liu et al.,
2015).
Nonlinear Projection Layer: This layers maps
the substitution candidate and the target word in
their sentential contexts, S and T respectively,
which are represented as letter tri-grams, into d-
dimension semantic representations, SSq and TSq

respectively:

l = tanh(Wx) (1)

where the nonlinear activation tanh is defined as:
tanh(z) = 1−e−2z

1+e−2z .
Output Layer: This layer computes the semantic
relevance score between S and T as:

R(T, S) = cosine(TSq , SSq) =
TSq

T
SSq∥∥TSq

∥∥∥∥SSq
∥∥
(2)

2.3 Features for DSSM

As baseline features, we use the same n-gram
probability features as in Paetzold and Specia
(2017), who also employ a neural network to
rank substitution candidates. As in Paetzold and
Specia (2017), the features were extracted us-
ing the SubIMDB corpus (Paetzold and Specia,
2015). We also experiment with additional fea-
tures that have been reported as useful in this
task. For each target word and a substitution
candidate word we also compute: cosine similar-
ity, word length, and alignment probability in the
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sentence-aligned Normal-Simple Wikipedia cor-
pus (Kauchak, 2013). The cosine similarity fea-
ture is computed using the SubIMDB corpus.

2.4 Implementation Details and Training
Procedure of the DSSM

Following previous works that used supervised
machine learning for ranking in lexical simplifi-
cation (Horn et al., 2014; Paetzold and Specia,
2017), we train the DSSM using the LexMTurk
dataset (Horn et al., 2014), which contains 500
instances composed of a sentence, a target word
and substitution candidates ranked by simplicity
(Paetzold and Specia, 2017). In order to learn the
parameters W t and W s (Figure 1) of the DSSM,
we use the standard backpropagation algorithm
(Rumelhart et al., 1988). The objective used in
this paper follows the pair-wise learning-to-rank
paradigm outlined in (Burges et al., 2005).

Given a target word and its sentential context
T , we obtain a list of candidates L. We set differ-
ent positive values to the candidates based on their
simplicity rankings. E.g., if the list of the candi-
dates is ordered by simplificity as, L = {A+ >
B+ > C+}, the labels are first constructed as
L = {yA+ = 3, yB+ = 2, yC+ = 1}. The val-
ues are then normalized by dividing by the max-
imum value in the list: L = {yA+ = 1, yB+ =
0.667, yC+ = 0.333}. If the target word was not
originally in L, we add it with label 0. This en-
ables the model to reflect the label information in
the similarity scores. We minimize the Bayesian
expected loss as:

∑L
l=1 `(Sl, T ), where `(Sl, T ) is

defined as:

−{yllnP (Sl|T )+(1−yl)ln(1−P (Sl|T ))} (3)

Note that P (Sl|T ) is computed as:

P (Sl|T ) =
exp(γR(Sl, T ))∑

Si∈L exp(γR(Si, T ))
(4)

here, γ is a tuning factor.
We used 5-cross validation approach to se-

lect hyper-parameters, such as number of hid-
den nodes. We set the gamma factor as 10 as
per Huang et al. (2013). The selected hyper-
parameters were used to train the model in the
whole LexMTurk dataset. We employ early-
stopping and select the model whose change of the
average loss in each epoch was smaller than 1.0e-
3. Since the training data is small (only 500 sam-
ples) we use a smaller number of hidden nodes,

d = 32, in the nonlinear projection layer and adopt
a higher dropout rate (0.4). The model is opti-
mized using Adam (Kingma and Ba, 2014) with
the learning rate fixed at 0.001, and is trained for
30 epochs. The mini-batch is set to 16 during
training.

3 Experiments

3.1 Datasets and Evaluation Metrics
To evaluate the proposed model, we conduct ex-
periments on two common datasets for lexical
simplification: BenchLS (Paetzold and Specia,
2016b), which contains 929 instances, and NN-
SEval (Paetzold and Specia, 2016a), which con-
tains 239 instances. Each instance is composed of
a sentence, a target word, and a set of gold candi-
dates ranked by simplicity (Paetzold and Specia,
2017). Since both datasets contain instances from
the LexMturk dataset (Horn et al., 2014), which
we use for training the DNN, we remove the over-
lap instances between training and test datasets 1.
We finally obtain 429 remaining instances in the
BenchLS dataset, and 78 instances in the NNEval
dataset, which are used in our evaluation.

We adopt the same evaluation metrics featured
in Glavaš and Štajner (2015) and Horn et al.
(2014): 1) precision: ratio of correct simplifica-
tions out of all the simplifications made by the sys-
tem; 2) accuracy: ratio of correct simplifications
out of all words that should have been simplified;
and 3) changed: ratio of target words changed by
the system.

3.2 Baselines
We compared the proposed model (DSSM Rank-
ing) to two state-of-the-art approaches to rank-
ing in lexical simplification that exploit supervised
machine learning-based methods. The first base-
line is the Neural Substitution Ranking (NSR) ap-
proach described in (Paetzold and Specia, 2017),
which employs a multi-layer perceptron neural
network. We reimplement their model as part
of the LEXenstein toolkit (Paetzold and Specia,
2015). The network has 3 hidden layers with
8 nodes each. Unlike the proposed model, they
treat ranking in lexical simplification as a stan-
dard classification problem. The second base-
line is SVMrank (Joachims, 2006) (linear kernel

1Running on the original test datasets leads our system to
obtain higher results than the ones reported here. Therefore,
in order to avoid bias, we removed the overlap instances from
both test datasets.
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Substitution Candidates Ranking Features BenchLS NNSEval
Prec. Acc. Changed Prec. Acc. Changed

NSR n-gram probs. 0.313 0.233 0.743 0.153 0.102 0.666
SVMrank n-gram probs. 0.354 0.261 0.736 0.166 0.102 0.615

DSSM Ranking n-gram probs. 0.337 0.284 0.841 0.216 0.166 0.769
DSSM Ranking all 0.375 0.319 0.850 0.306 0.243 0.794
Selection Step Features BenchLS NNSEval

+ Substitution Candidates Ranking Prec. Acc. Changed Prec. Acc. Changed
NSR n-gram probs. 0.304 0.214 0.703 0.204 0.102 0.500

SVMrank n-gram probs. 0.357 0.263 0.736 0.187 0.115 0.615
DSSM Ranking n-gram probs. 0.355 0.286 0.806 0.259 0.179 0.692
DSSM Ranking all 0.383 0.328 0.857 0.333 0.269 0.807

Table 1: Substitution candidates ranking results. n-gram probs. denotes the n-gram probability features
described in Paetzold and Specia (2017), and all denotes all features described in Section 2.3. All values
marked in bold are significantly higher compared to the best baseline, SVMrank, measured by t-test at
p-value of 0.05.

with default parameters) for ranking substitution
candidates, similar to the method described in
(Horn et al., 2014). All the three models employ
the n-gram probability features extracted from the
SubIMDB corpus (Paetzold and Specia, 2015), as
described in (Paetzold and Specia, 2017), and are
trained using the LexMTurk dataset.

3.3 Results

The top part of table 1 (Substitution Candidates
Ranking) summarizes the results of all three sys-
tems. Overall, both SVMrank and DSSM Ranking
outperform the NSR Baseline. The DSSM Rank-
ing performs comparably to SVMrank when using
only n-gram probabilities as features, and consis-
tently leverages all features described in Section
2.3, outperforming all systems in accuracy, pre-
cision and changed ratio. We experimented with
adding all features described in Section 2.3 to the
baselines as well, however, we obtained no im-
provements compared to using only n-gram prob-
ability features.

We also tried running all ranking systems on se-
lected candidates that best replace the target word
in the input sentence. We follow the Unsupervised
Boundary Ranking Substitution Selection method
described in Paetzold and Specia (2017), which
ranks candidates according to how well they fit the
context of the target word, and discards 50% of
the worst ranking candidates. The bottom part of
the table 1 (Selection Step + Substitution Candi-
dates Ranking) summarizes the results of all rank-
ing systems after performing the selection step on
generated substitution candidates. We obtain sim-
ilar tendency in the results, with the DSSM Rank-
ing outperforming both baselines. The results in-
dicate the advantage of using a deep architecture,

and of building a semantic representation of the
whole sentence on top of the characters. To il-
lustrate by examples, Table 2 lists the top can-
didate ranked by the systems for different input
sentences. In the examples, the DSSM Ranking
correctly ranked a substitute for the target word,
while the two baselines either left the target word
unchanged, or ranked an incorrect substitute.

Input = ”things continued on an informal, personal ba-
sis, by phone, I [ remained ] close friends with two of
them, but Izzat al Gazawi died last year.”
NSR informal
SVMrank cozy
DSSM Ranking casual
Input = ”perhaps the effect of West Nile Virus is suf-
ficient to extinguish endemic birds already severely
stressed by habitat losses.”
NSR severely
SVMrank severely
DSSM Ranking seriously

Table 2: Top candidate ranked by the systems
for different input sentences. The word in bold is
the word to be simplified. The word highlighted
denotes a correct answer.
4 Conclusions

We presented an effective method for ranking in
lexical simplification. We explored the application
of a DSSM that builds a semantic representation
of the whole sentence on top of characters. The
DSSM can effectively capture fine-grained fea-
tures to perform semantic matching when ranking
substitution candidates, outperforming state-of-art
approaches that use supervised machine learning
to ranking in lexical simplification. For future
work, we plan to examine and incorporate a larger
feature set to the DSSM, as well as try other
DSSM architectures, such as the Convolutional
DSSM (C-DSSM) (Shen et al., 2014).
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Abstract

This paper explores the idea of robot ed-
itors, automated proofreaders that enable
journalists to improve the quality of their
articles. We propose a novel neural model
of multi-task learning that both gener-
ates proofread sentences and predicts the
editing operations required to rewrite the
source sentences and create the proofread
ones. The model is trained using logs of
the revisions made professional editors re-
vising draft newspaper articles written by
journalists. Experiments demonstrate the
effectiveness of our multi-task learning ap-
proach and the potential value of using re-
vision logs for this task.

1 Introduction

There is growing research interest in automatic
sentence generation (Vinyals et al., 2015; Rush
et al., 2015; Sordoni et al., 2015). Coincidentally
(or inevitably), media companies have increas-
ingly attempted to create robot journalists that can
automatically generate content, mostly using data
from limited domains (e.g., earthquakes, sports
and stockmarkets) (Clerwall, 2014; Carlson, 2015;
Dorr, 2016). In this paper, we explore the idea of
robot editors, i.e., automated proofreaders that en-
able journalists to improve the quality of their ar-
ticles.

The most closely related field to the topic of this
paper is grammatical error correction (Dale and
Kilgarriff, 2011; Dale et al., 2012; Ng et al., 2013,
2014). However, this task handles only gram-
matical errors, whereas proofreading encompasses
a variety of tasks:grammatical error correction
(GEC), spell checks, simplification, fact check-
ing, standardization, compression, paraphrasing,
etc. Another task, the automated evaluation of sci-

entific writing shared task (Daudaravicius et al.,
2016), has the goal of automatically evaluating
scientific writing. The focus of this shared task
was the binary classification problem of detecting
sentences that need improvement. Although the
corpus used contained qualitative improvements,
the shared task did not tackle high-quality sen-
tence generation.

This paper investigates the task of proofread
sentence generation (PSG) using logs of the revi-
sions made by professional editors to draft news-
paper articles written by journalists. The goal of
this research is to explore a computational model
for improving text quality. To this end, we pro-
pose a novel multi-task learning approach that
both generates proofread sentences and predicts
the editing operations involved in rewriting the
source sentences to create the proofread ones.

The contributions of this research are three-
folds: (i) This is the first study to explore an en-
coderdecoder architecture for PSG. (ii) We show
that our proposed multi-task learning method can
outperform a state-of-the-art baseline method for
GEC. (iii) We also examine the benefits and issues
of using revision logs for PSG.

2 Method

Given a source sentence (sequence of words)
x1, · · · , xm, this study addresses the task of gener-
ating the proofread sentence y1, · · · , yn, where m
and n denote the number of words in the source
and proofread sentences, respectively. Usually,
proofreading does not change the content of the
input text significantly, and changes only small
parts of the text. Thus, detecting source sentence
spans that require revision is an important PSG
sub-task. This paper explores a multi-task learn-
ing approach that both generates proofread sen-
tences and predicts the editing operations required.
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Figure 1: Overview of the neural network model for generating proofread sentences and predicting
editing operations via multi-task learning. Boxes labeled ‘emb’ denote word embeddings.

Inspired by work on multi-task learning in neu-
ral networks, we implement multi-task learning as
an end-to-end neural network with a shared source
sentence encoder (Figure 1). The network gener-
ates proofread sentences and predicts editing op-
erations.Although these two tasks solve the same
problem, we believe that these two neural network
models focus on different aspects of the data. The
generation model considers the source sentence as
a whole ( although it may also include an attention
mechanism), whereas the prediction model looks
at the local contexts of words in order to correct
functional word usage, incorrect spellings, and so
on. This is why we have designed the proposed
method using a multi-task learning approach.

2.1 Generating proofread sentences using an
encoderdecoder model with attention

Following recent work on GEC (Yuan and
Briscoe, 2016), we use an encoder-decoder model
with global attention (Luong et al., 2015) to gen-
erate proofread sentences. We use bi-directional
Long Short-Term Memory (LSTM) to encode the
source sentences. LSTMs recurrently compute
the memory and hidden vectors at time step s ∈
{1, · · · ,m} using those at time step s− 1 or s+1
and the word xs in the source sentence, as follows:

[
−→
h s;−→c s] =

−−−−→
LSTM(xs, [

−→
h s−1;−→c s−1]), (1)

[
←−
h s;←−c s] =

←−−−−
LSTM(xs, [

←−
h s+1;←−c s+1]). (2)

Here, cs and hs represent the memory and hidden
vectors, respectively, at time step s. The encoder

output is a concatenation of the hidden vectors:

h̃s = [
−→
h s;
←−
h s]. (3)

The decoder computes the memory and hidden
vectors at time step t ∈ {1, · · · , n} using those
at time step t − 1 and the (predicted) word wt as
follows:

[ht; ct] =
−−−−→
LSTM(wt, [ht−1; ct−1]). (4)

Here, we set h0 =
←−
h 1 and c0 = 01. For t > 1, we

feed the yt−1 predicted at the previous time step
back as the input word wt of the decoder.

The decoder predicts the word yt at time step t
using a softmax layer on top of the vector h̄t with
an integrated attention mechanism:

log p(y|x) =
t∑

n=1

log p(yt|y<t,x), (5)

p(yt|y<t,x) = softmax(Woh̄t), (6)

h̄t = tanh(Wr[vt; ht]), (7)

vt =
∑

s

αt(s)h̃s, (8)

αt(s) =
exp(hᵀ

t Wah̃s)∑
s′ exp(hᵀ

tWah̃s′)
. (9)

Here, vt represents a vector computed by the at-
tention mechanism at time step t, and αt(s) is an
attention score computed at decoding time step t
by looking at the source word at encoding time
step s.

1The reason for using
←−
h 1 instead of h̃1 is to speed up

training by reducing the dimensionality of the vectors in the
decoder.
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2.2 Editing-operation prediction as a
sequential labeling task

In addition to performing sentence revision, we
propose to simultaneously undertake an addi-
tional task: editing-operation prediction. For-
mally, given a source sentence x1, · · · , xm, this
task predicts the sequence of editing operations
z1, · · · , zm required to obtain the revised sentence
y1, · · · , yn, where each editing operation zi keeps
(K), deletes (D), inserts (I), or replaces (R) the
word xi. This task resembles grammatical error
detection.

As explained in Section 3.1, the revision logs do
not provide supervised training data for the edit-
ing operations, only pairs of source and proof-
read sentences. We therefore created pseudo su-
pervised training data by running the diff pro-
gram on the word sequences of the source and
proofread sentences. There are cases where multi-
ple sequences of primitive editing-operations can
be derived from a pair of sentences. The perfor-
mance may be improved if the best operation se-
quence. However, we leave this direction out of
scope of this paper. To obtain an editing-operation
sequence that was the same length as the source
sentence (m), we labeled I labels to the words im-
mediately following the positions where the actual
insert operations were required.

We reuse the vector h̃s for word xs in the source
sentence (Equation 3) to predict zs:

log p(z|x) =
m∑

s=1

log p(zs|z<s,x), (10)

p(zs|z<s,x) = softmax(Wl tanh(h̃i)). (11)

Liu and Liu (2016) proposed a grammatical er-
ror detection method that considers intra-attention.
We also explored this approach by replacing the
softmax function in Equation 11 with the follow-
ing one:

p(zs|z<s,x) = softmax(Wlūt) (12)

ūt = tanh(Ws[xt; ut]) (13)

us =
∑

i

βs(i)h̃s (14)

βs(i) =
exp(h̃ᵀ

sh̃i)∑
i′ exp(h̃ᵀ

sh̃i′)
(15)

Here, us represents a vector computed by the at-
tention mechanism at time step s, and βs(i) is an
attention score computed at time step s by looking
at the source word at time step i ∈ {1, · · · ,m}.

Dataset # changed # unchanged # total
Train 710,540 1,317,260 2,027,800
Validation 63,062 96,938 160,000
Test 458 642 1,100

Table 1: The Numbers of instances in each dataset.

2.3 Training
Given a training dataset D, we minimize the fol-
lowing multi-task learning loss function:

−
∑

(x,y,z)∈D
{log p(y|x) + log p(z|x)} . (16)

We also consider a loss function that weights the
sub-task loss (Zhang et al., 2014):

−
∑

(x,y,z)∈D
{log p(y|x) + λ log p(z|x)} . (17)

Here, λ (0 ≤ λ ≤ 1) denotes the weight given
to the editing-operation prediction errors, learned
through gradient descent. In contrast to conven-
tional multi-task learning, which maximizes per-
formance for all tasks, our primary goal is to opti-
mize the main task which is why we have created a
loss function that weights the sub-task differently.

3 Experiments

3.1 Dataset

We used a corpus of Japanese newspaper arti-
cles where professional editors at a media com-
pany had rewritten draft articles (written by jour-
nalists) to create proofread (published) (Ta-
mori et al., 2017). The dataset consists of
2,209,249 sentence pairs in total: 810,227 pairs
were changed during the revision process, and
1,399,022 pairs were left unchanged. To focus on
revisions within sentence boundaries, we excluded
revisions involving sentence splitting or merging.
This dataset reflects the real work done by the
company to improve the quality of its newspaper
articles. The revisions came in a variety of forms,
from syntactic changes, such as GEC and spelling
normalization to content-level changes, such as
elaboration and fact checking. Table 1 shows the
number of instances in the training, validation, and
test sets.

We split the sentences into words using Sen-
tencePiece2 to efficiently reduce the vocabulary

2https://github.com/google/sentencepiece
SentencePiece is an unsupervised text tokenizer.
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Dataset Model GLEU Prec Recall F0.5(M2) WER BLEU
Gen 70.14 * * * 24.90 74.02

All pairs Gen + Pred 70.47 * * * 24.23 75.37
Gen + Pred Attn 70.68 * * * 23.90 74.48
Gen + Pred Attn + W 70.57 * * * 37.24 54.76
Gen 67.74 22.27 6.12 14.23 36.74 64.23

Changed pairs Gen + Pred 68.10 23.14 5.59 13.37 35.67 66.29
Gen + Pred Attn 68.63 24.89 6.28 14.84 35.55 65.31
Gen + Pred Attn + W 67.01 36.59 13.30 26.59 48.91 45.82
Gen 86.72 * * * 16.47 82.69

Unchanged pairs Gen + Pred 87.34 * * * 15.51 83.33
Gen + Pred Attn 87.44 * * * 16.17 82.51
Gen + Pred Attn + W 87.27 * * * 28.94 62.66

Table 2: Performance of the proposed and baseline methods. The asterisks ‘*’ indicate performance
values that are unavailable because the precision and recall for unchanged pairs are always 0 and 100.

size. We used proofread sentences (published
newspaper articles) to train SentencePiece. Vo-
cabulary sizes for the input and output layers were
32,661 and 32,630, respectively. Our model can
be trained without unknown words.

3.2 Experimental setup
The batch size was set to 100 and, improve com-
putational efficiency, each batch consisted of sen-
tences of the same length. The dimensionality of
the distributed representations (word embeddings
and hidden states) to was 300. The model parame-
ters were trained using Adam. Following Jozefow-
icz et al. (2015), forget gate bias was initialized to
1.0, and the other gate biases were initialized to
0. In addition, we used dropout (at a rate of 0.2)
for the LSTMs. Breadth-first search was used for
decoding, with a beam width of 10 (Yuan, 2017).

Six measures were utilized to evalu-
ate the performance of the PSG model:
GLEU (Napoles et al., 2015)3, precision, re-
call, M2 score (Dahlmeier and Ng, 2012), Word
Error Rate (WER) (Jurafsky and Martin, 2008),
and BLEU (Papineni et al., 2002). These measures
are often used in GEC and machine translation
research. Note that the precision, recall, and
M2 score measures excluded words appearing
in both the source and proofread sentences from
evaluation (Dahlmeier and Ng, 2012).

3.3 Results
Table 2 shows the performance of the proposed
method according to the above metrics. Two vari-

3The hyperparameter λ of GLEU was set to 1.

ants of the proposed method were used: “Gen
+ Pred” used Equation 11 (without the atten-
tion mechanism for predicting edit operations),
whereas “Gen + Pred Attn” used Equation 12
(with the attention mechanism), and “Gen + Pred
Attn + W” used Equations 12 and 17 (weighting
the sub-task losses). For comparison, we also re-
port the performance of a baseline method “Gen”
used only an encoder-decoder model (described in
Section 2.1) without multi-task learning.

The multi-task learning models outperformed
the baseline encoder-decoder model for all met-
rics. The use of intra-attention for predicting
editing-operations was also effective, except for
the BLEU metric and the WER for unchanged
pairs. Unlike BLEU, GLEU includes a mecha-
nism for penalizing incorrect ‘reluctant’ revisions
(copying words from the source sentences) and
rewarding correct ‘aggressive’ revision (adding
words that do not appear in the source sentences).
We can therefore infer that “Gen + Pred with Attn”
model was more aggressive in changing words in
the source sentences than “Gen + Pred” model.

The table also shows the models’ performances
for changed/unchanged sentence pairs. As ex-
pected, the performance metrics for unchanged
pairs are higher than those for changed pairs. The
low recall values for changed pairs indicate that it
is difficult to predict words that do not appear in
the source sentences.

However, we can see that weighting sub-task
losses improved precision, recall, and M2 score
performance. We believe that active proofread-
ing performance improved because of not over-
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learning the sub-task. That said, the other met-
rics decreased because the model made changes in
many places where no editing was required.

3.4 Discussion

In this section, we discuss issues with the pre-
sented method and dataset. The presented method
was not good at inserting words, particularly when
the editor had appended new information to the
sentence, as in the following example.

• Source: Soon it will have been six months
since the law was established.

• Proofread: On the 19th, it will have been
six months since the law was established last
September.

It is difficult for a computational model to in-
sert the phrases “on the 19th” and “last Septem-
ber”. We found that 132 of the 366 changed pairs
(28.8%) in the test set included new information.
Although this kind of editing improves the quality
of the article, it is unrealistic to handle this situa-
tion using an encoder-decoder model. It may be
useful to separate these pairs from the dataset in
future.

We also observed instances in which editors
merged pieces of information from multiple sen-
tences, particularly so as to yield more concise
sentences, as in the following example.

• Source: A meeting where people who heve
lost their families to cancer discuss ... .There
are ten members in their 30s to 70s who have
lost their families to cancer.

• Proofread: A meeting where people who
have lost their families to cancer discuss ...
.There are ten members in their 30s to 70s.

As a result, it may be worth exploring not only
discarding instances where additional information
has been added to the proofread sentences but also
building a model that considers other sentences
appearing near the source sentence.

We also noticed cases where the sentences out-
put by the model provide good revisions but did
not match to the reference sentences, such as the
following.

• Source: The reserve players tackle it franti-
cally so they won’t miss the chance.

• Proofread: The reserve players tackle it fran-
tically so as not to miss the opportunity.

• System output: The reserve players tackle it
frantically so as not to miss the chance.

As has often been discussed in the literature on
machine translation, summarization, and GEC, es-
tablishing a good evaluation metric is an ongoing
research issue.

4 Conclusion

In this paper, we have presented a novel multi-task
learning approach for combined PGS and editing-
operation prediction. Experimental results show
that our approach was able to outperform the base-
line for all metrics. The experiments also show
that newspaper article revision logs can provide
promising supervised training data for the model.
We plan to continue exploring ways of creating
good-quality articles in the future.
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Abstract

The automation of tasks in community
question answering (cQA) is dominated
by machine learning approaches, whose
performance is often limited by the num-
ber of training examples. Starting from
a neural sequence learning approach with
attention, we explore the impact of two
data augmentation techniques on question
ranking performance: a method that swaps
reference questions with their paraphrases,
and training on examples automatically se-
lected from external datasets. Both meth-
ods are shown to lead to substantial gains
in accuracy over a strong baseline. Fur-
ther improvements are obtained by chang-
ing the model architecture to mirror the
structure seen in the data.

1 Introduction

Community question answering (cQA) is an in-
formation seeking paradigm in which users ask
questions and contribute answers on a dedicated
website that facilitates quality-based ranking and
retrieval of contributed content. The questions
posted on a QA website range from very general
(e.g. Yahoo! Answers), to topic-specific, such as
programming languages (e.g. Stack Overflow) or
relevant for a geographical area (e.g. Qatar Liv-
ing). An important task in cQA is that of ques-
tion retrieval, wherein questions that have already
been answered on the website are ranked with re-
spect to how well their answers match the infor-
mation need expressed in a new question. Nu-
merous approaches to question retrieval, question
ranking, or question-question similarity have been
proposed over the last decade, of which (Xue et al.,
2008; Bernhard and Gurevych, 2008; Duan et al.,
2008; Cao et al., 2009; Wang et al., 2009; Bunescu

and Huang, 2010; Zhou et al., 2011) are just a
few. Very recently, question-question similarity
has received renewed interest as a subtask in the
SemEval cQA evaluation exercise (Nakov et al.,
2016). In this paper, we approach question rank-
ing in a context where the input is restricted to
the question text and describe data augmentation
methods and RNN architectures that are empiri-
cally shown to improve ranking performance. We
expect these ideas to also benefit more comprehen-
sive approaches, such as the SemEval cQA exer-
cise, which exploit answers and comments associ-
ated with previously answered questions.

2 Ranking Model with Attention

Following the notation of Bunescu and Huang
(2010), we use

〈
Qi � Qj |Qr

〉
to denote that

the answer to question Qi is expected to be more
useful than the answer to Qj in terms of satis-
fying the information need expressed in Qr. If〈
Qi � Qj |Qr

〉
, then the question ranking system

is expected to rank Qi higher than Qj , through a
scoring function s(Qr, Q) that is trained to capture
how relevant Q is to Qr. Training and evaluating
the scoring function requires a dataset of ranking
triples

〈
Qi � Qj |Qr

〉
. Ranking triples are usually

introduced implicitly by annotating questions into
3 major categories: paraphrases (P), useful (U),
and neutral (N ). A paraphrasing questionQp ∈ P
is semantically equivalent with or very close to
the reference question. A question Qu ∈ U is
deemed useful or relevant if its answer is expected
to overlap in information content with the answer
of the reference question, whereas the answer of
a neutral or irrelevant question Qn ∈ N should
be irrelevant for the reference question. Corre-
spondingly, the following relations are assumed
to hold: 〈Qp � Qu|Qr〉, i.e. a paraphrasing
question is more useful than a useful question;

442



Figure 1: Neural sequence learning with attention (SLA) model for question ranking.

〈Qu � Qn|Qr〉, i.e. a useful question is more
useful than a neutral question; and by transitiv-
ity 〈Qp � Qn|Qr〉. The resulting triples can be
used for training and evaluating the scoring func-
tion s(Qr, Q) using a ranking objective, which is
the approach taken in this paper. An alternative is
to use a binary classification objective by consid-
ering only two categories of questions, e.g. rele-
vant (P ∪ U) and irrelevant (N ), as was done in
SemEval. However, by ignoring the difference in
utility between paraphrases and useful questions
during training, a binary classification approach is
likely to underperform a ranking approach that is
trained on all the ranking triples implied by the
original 3 categories of questions.

To compute the ranking function s(Qr, Q), we
use neural sequence learning with attention (SLA),
as illustrated in Figure 1. Neural networks with
attention have been successful used in a wide va-
riety of tasks, ranging from image classification
and dynamic visual control (Mnih et al., 2014), to
machine translation (Bahdanau et al., 2015) and
image caption generation (Xu et al., 2015). Very
recently, the SLA approach was used for semantic
entailment (Rocktschel et al., 2015) and cQA tasks
(Mohtarami et al., 2016), although still with an ob-
jective (e.g., cross entropy) aimed at classification.
The questions Qr and Q are processed sequen-
tially, using for each a separate RNN with gated
recurrent units (GRU) (Cho et al., 2014). Follow-
ing the notation of Bahdanau et al. (2015), the
states st corresponding to positions t in question
Q are computed recursively as follows:

st = (1− zt) ◦ st−1 + zt ◦ ŝt (1)
ŝt = tanh(Wxt + U(rt ◦ st−1) + [Cct])

rt = σ(Wrxt + Urst−1 + [Crct])

zt = σ(Wzxt + Uzst−1 + [Czct])

The states ht for the reference question Qr are
computed using the same equations, but with dif-
ferent parameters and without the attention terms
shown between brackets. The initial state h0 = 0,
whereas s0 = tanh(Wshm) is computed as a nor-
malized linear transformation of the last state hm.
Words are mapped to their word2vec embeddings
xt, pre-trained on Google News (Mikolov et al.,
2013). States st require a context vector ct, to be
computed with the attention model below:

ct =

m∑
j=1

αtj ∗ hj , where αtj =
exp(etj)∑m

k=1 exp(etk)
(2)

etj = a(st−1, hj) = vT
a tanh(Wast−1 + Uahj)

The score s(Qr, Q) = vT sn is computed as a
linear combination of the RNN state correspond-
ing to the last word in Q. Given a set of train-
ing triples

〈
Qi, Qj |Qr

〉
, the model parameters are

trained to optimize the margin-based ranking cri-
terion shown in Equation 3.

J(θ) =
∑

Qi>Qj |Qr

max {0, γ − s(Qr, Qi) + s(Qr, Qj)} (3)

3 Data Augmentation

Supervised ML approaches are often limited by
the number of available training examples. Us-
ing the SLA approach described in Section 2, we
explore the impact of two data augmentation tech-
niques for question ranking: a novel method that
swaps reference questions with their paraphrases,
and training on examples from external datasets.

3.1 Question Swapping

Since paraphrases are semantically equivalent
with or very close to the reference questions, dur-
ing training we swap each paraphrase question
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with the reference question, and generate addi-
tional ranking triples of the type 〈Qr � Qu|Qp〉,
〈Qu � Qn|Qp〉, and 〈Qr � Qn|Qp〉. We empha-
size that question swapping is done only for the
groups of questions used for training; the develop-
ment and test triples are kept the same. Paraphrase
questions are seldom entirely equivalent with the
reference question. Consequently, when question
swapping is used to augment the training exam-
ples, it will inevitably introduce some noise.

3.2 External Datasets

Another approach to increasing the size of the
training set is by adding examples from other
datasets. Table 1 shows the datasets used in the
experiments in this paper, together with statis-
tics such as the number of questions groups and
the total number of questions in each category.
The DRLM dataset was introduced by Zhang et
al. (2016) and, like Complex, contains questions
posted on Yahoo! Answers. However it does not
contain paraphrases and thus cannot benefit from
question swapping. The SemEval dataset (Nakov
et al., 2016) was created from questions posted on
the Qatar Living forum and has a different distri-
bution and structure. In particular, a question has
two fields: a body containing the actual question
and a subject. The body field often contains multi-
ple sentences. In the experiments reported in Sec-

Dataset Groups P U N Triples
Complex 60 89 730 714 9979
Simple 60 134 778 621 10436
SemEval 387 372 1148 2333 7247

– Train 267 232 841 1581 4984
– Devel 50 59 155 285 1002
– Test 70 81 152 467 1261

DRLM 1478 0 6434 7747 27111

Table 1: Datasets & Statistics.

tion 4, DRLM is used as an external dataset for
training Complex and SemEval question ranking
models.

3.2.1 Weighted External Data
External triples can be very different from target
triples in terms of vocabulary, syntactic structure,
or length. As such, considering external triples
as being equally important as target triples dur-
ing training can be detrimental to the target per-
formance. To alleviate this effect, we introduce
a tunable weight hyperparameter α ∈ [0, 1] such
that target triples get a weight of α in the objective

function, whereas external triples are assigned a
weight of 1 − α, both normalized by the number
of training triples in the target (T ) and external (E)
datasets, respectively.

J(θ) =
α

|T |JT (θ) +
(1− α)

|E| JE(θ) (4)

The overall objective function is shown in Equa-
tion 4, where JT and JE are defined using the
margin-based ranking criterion from Equation 3
on the corresponding dataset.

3.2.2 Selection with Language Models
To further alleviate the potential detrimental ef-
fects due to possibly significant lexical and syntac-
tic differences between external and target triples,
we train a character-aware neural language model
(LM) (Kim et al., 2016) on the set of questions
from the target question groups used for training
and rank all external questions in ascending or-
der, based on the perplexity computed by the tar-
get LM. We introduce a tunable proportion hy-
perparameter γ and select to add only the γ|T |
triples that can be obtained from the top ranked
external questions. This procedure enables the se-
lection of triples with external questions that are
most LM-similar with the target training ques-
tions, akin to the approach proposed by Moore and
Lewis (2010) for selecting external text segments
for training language models. LM-based data aug-
mentation was also shown to benefit domain adap-
tation for tasks such as temporal expression recog-
nition (Kolomiyets et al., 2011) and semantic role
labeling (Ngoc Do et al., 2015).

4 Experimental Evaluation

We evaluate the baseline SLA approach on
the Simple and Complex datasets introduced in
(Bunescu and Huang, 2010) and compare against
their SVM approach which uses a number of man-
ually engineered features, such as similarities be-
tween focus words (tagged by another SVM),
similarities between main verbs, and matchings
between dependency graphs anchored at focus
words. The 60 groups of questions in each dataset
are partitioned into 12 folds and at each cross-
validation iteration 10 folds are used for training,
1 for development and 1 for testing. This is re-
peated 12 times such that each fold gets to be
used for testing, and the results are pooled over all
folds. The SLA model is trained with AdaDelta
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using minibatches of size 256, and regularized us-
ing early stopping on the validation fold. Table 2
shows the triple-level accuracies i.e. the percent-
age of ranking triples

〈
Qi � Qj |Qr

〉
for which

s(Qr, Qi) > s(Qr, Qj). The results show that the

Complex Simple
SVM SLA SVM SLA
82.5 85.6 82.1 85.8

Table 2: SLA baseline accuracy vs. SVM.

SLA model is a strong baseline, as it outperforms
the SVM approach of Bunescu and Huang (2010)
that uses explicit syntactic and focus information.

Dataset Triples Accuracy
Complex 9979 85.6

+ swaps 23296 86.5
SemEval 4984 87.6

+ swaps 8606 89.1

Table 3: Accuracy, w/ or w/o swaps in training.

Table 3 shows the impact of question swapping
on the Complex and SemEval datasets, following
the official training vs. test split for SemEval. Ta-
ble 4 shows the impact of adding the entire exter-
nal dataset DRLM to the Complex and SemEval
training examples, with and without swaps. Due
to the time consuming nature of cross-validation,
for the Complex dataset we chose to test only on
1 fold, using 10 folds as training and 1 fold as
validation. Since 10 training folds amount to 50
groups of questions, we call it Complex50. We
also evaluated the impact of adding examples from
Simple when training on Complex. The test and
validation datasets are never augmented with ex-
amples generated from swaps or external datasets.
External examples helped substantially on Com-
plex, which benefited from DRLM more than from
Simple, likely because DRLM’s question groups
are many and diverse, whereas Simple contains
the same groups as Complex, but with different
questions selected as reference. Combining the
two augmentation methods resulted in further im-
provements for Complex.

However, using all DRLM examples hurt Se-
mEval performance, which was not surprising
given the substantial difference between SemEval
and DRLM questions. Consequently, we ran an
additional evaluation in which we combined the
weighted scheme from Section 3.2.1 with the LM-
based selection from Section 3.2.2. To tune the

Dataset Triples Accuracy
Complex50 8387 80.9

+ Simple 17084 86.8
+ DRLM 35498 88.9
+ swaps 19278 84.6
+ Simple + swaps 43891 87.3
+ DRLM + swaps 46389 92.1

SemEval 4984 87.6
+ DRLM 32137 86.2
+ swaps 8606 89.1

Table 4: Accuracy on Complex and SemEval, w/
and w/o training on external examples or swaps.

weight α and the proportion γ we used grid search
on the development data, where α was selected
from {0.50, 0.70, 0.85, 1.0} and γ was selected
from consecutive powers of 2 starting from 0.5
until the proportion exhausted all external triples.
Table 5 shows the result of using weighted and
LM-selected external triples, on both small (10
groups for Complex, 50 groups for SemEval) and
big (all 50 groups for Complex, all 267 groups for
SemEval) target datasets. The results now show

Dataset Triples Accuracy
Complex10 1562 73.1

+ DRLM (α = 0.85, γ = 16) 26554 87.8
Complex50 8387 80.9

+ DRLM (α = 0.70, γ = 2) 25161 85.7
SemEval50 845 80.2

+ DRLM (α = 0.50, γ = 32) 27885 85.6
SemEval267 4984 87.6

+ DRLM (α = 0.85, γ = 0.5) 7490 88.0

Table 5: Results w/ and w/o training on weighted
external triples using LM-based selection.

consistent improvements from using external data
on both Complex and SemEval, with more marked
improvements when the target dataset is small.

4.1 Multiple Sequence Structures
So far, the SemEval experiments used only the
question body (Body). To also use the subject,
one could simply concatenate the subject and the
body (Body + Subj) and apply the same SLA ar-
chitecture from Figure 1. However, as shown in
Table 6, this actually hurt performance, likely be-
cause the system did not know where the question
body started in each input sequence. To capture
the SemEval question structure, we experimented
with the architecture shown in Figure 2, in which
different RNNs are used for the subject and the
body (Body & Subj). Given that subjects are sup-
posed to be short, we implemented attention only
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Figure 2: Subject-Body RNN architecture.

for the body sequence. In a second version, the
output from the reference subject is concatenated
to the output from the reference body, and used to
initialize the RNN for the body of the second ques-
tion (Body || Subj). The results in Table 6 show
that the new architecture improves accuracy sub-
stantially, especially the second version with con-
catenated outputs.

Body Body + Subj Body & Subj Body || Subj
87.6 87.3 91.8 92.7

Table 6: SemEval accuracy, using Body & Subj.

5 Conclusion and Future Work

We explored data augmentation methods and RNN
architectures that were shown to improve question
ranking performance. We expect these ideas to
benefit more comprehensive approaches that also
exploit answers and comments associated with
previously answered questions, as was done in the
SemEval cQA evaluation exercise (Nakov et al.,
2016). The number and breadth of some experi-
ments were limited by the available computational
power, which we hope to address in future work.
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Abstract

What can you do with multiple noisy ver-
sions of the same text? We present a
method which generates a single consen-
sus between multi-parallel corpora. By
maximizing a function of linguistic fea-
tures between word pairs, we jointly learn
a single corpus-wide multiway alignment:
a consensus between 27 versions of the
English Bible. We additionally produce
English paraphrases, word-level distribu-
tions of tags, and consensus dependency
parses. Our method is language indepen-
dent and applicable to any multi-parallel
corpora. Given the Bible’s unique role as
alignable bitext for over 800 of the world’s
languages, this consensus alignment and
resulting resources offer value for multilin-
gual annotation projection, and also shed
potential insights into the Bible itself.

1 Introduction

Noisy or heterogeneous copies of the same text
are prevalent in religious and literary texts (Resnik
et al., 1999; Koppel et al., 2016), machine transla-
tion n-best lists (Kumar and Byrne, 2004; Papineni
et al., 2002), comparable corpora (Barzilay and Lee,
2003), and social media (Xu et al., 2015). While
copies can be analyzed independently or together
in a pairwise manner, information can be lost by
not using them all jointly.

We view these copies of text as multi-parallel
corpora, which consist of multiple sets of compa-
rable or partially aligned documents. This contrasts
with parallel corpora, which are usually between
only two. The goal of this work is to produce word
alignments for multi-parallel corpora (Fig. 1).

We approach this problem by tying the multi-
parallel corpora together using features such as

Consensus newsimplified montgomery lexham

Then (Then, 0) (Thereupon, 0) (Then, 0)
Herod (Herod, 1) (Herod, 1) (Herod, 1)
secretly (secretly, 2) (secretly, 3) (secretly, 2)
called (called, 3) (sent, 2) (summoned, 3)
for (for, 4)
the (the, 4) (the, 5) (the, 4)
wise (wise, 5)
men (astrologers, 5) (Magi, 6) (men, 6)

Figure 1: A sample of Fig. 3, in which different words with
a similar meaning are aligned. Each entry contains the word
and its index in the original sentence.

pairwise word alignments, dependency parses, and
POS tags. Our method jointly learns word align-
ments and annotations for these features in the En-
glish Biblical multi-parallel corpora. We produce
multiway word alignments, complete dependency
parses, and POS tag annotations for the English
Bible. While our resources and choice of features
are catered for our specific domain, the method can
be applied more broadly for aligning and establish-
ing consensus in any domain.

The English Bible is a literary religious text with
multiple authors, disputed authorship structure, and
multiple revisions for language modernization.1

While there is existing computational work in Bib-
lical analysis (Lee, 2007), our contribution of auto-
matically generated consensus annotations for all
verses allows future research to efficiently investi-
gate across all English Bibles. As the Bible is avail-
able in electronic form in over 800 of the world’s
languages (Mayer and Cysouw, 2014), the Bible
may be the only parallel corpus for low-resource
languages, and our in-domain resources can be a
valuable reference.2

1The unresolved Synoptic Problem questions the order and
dependencies of the the Synoptic Gospels.

2Available at github.com/pitrack/monolign.
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2 Method

The consensus consists of aligned tokens between
the corpora. Assuming each corpus consists of par-
tially aligned documents (e.g. verses of the Bible),
we first target the word alignments at the document
level. We then use a bootstrapping approach to
produce the final corpus-wide alignment. By using
a majority vote, the final alignments can produce
additional consensus resources.

2.1 Document-level alignment
To create document-level alignments, documents
from each corpus are processed sequentially. Sup-
pose L = {D1, D2, ..., Dk} is a set of parallel doc-
uments where di,j is the jth token in Di. A match-
ingML is a document-level alignment which con-
sists of a set of relations, R1, ..., Rr. For example,
if |L| = 2, thenML is a one-to-one word align-
ment between two lines of text. Its relations are
either an aligned pair of tokens or an unaligned
singleton token.

In Algorithm 1, ML is generated by adding
the next document to an existing matching and
weighing the edges between tokens and relations
according to Equation 1. Edges are pruned to both
speed up the solver and avoid conflating separate
or weakly related tokens. The maximum weighted
matching is then used to decide which relations are
expanded.

W (di,j , Rk) =
∑
d∈Rk

f(d, di,j). (1)

Algorithm 1 Document-level alignment
function ALIGNDOCUMENTS(L)

L = D1, D2, ..., Dk . Assume fixed ordering
M = {{d1,j} : d1,j ∈ D1}

. Initialize matching with singletons relations
for Di = D2, ..., Dk do

(V,E) = (Di ∪M, Di ×M)
G = (V,E,W (E)) . W is defined by Eqn. 1
G′ = PRUNE(G) . Remove small edges
A = MAXWEIGHTMATCHING(G′)
for (d,R) ∈ A do

R← R ∪ {d}
M ←M∪ {{di,j} : di,j ∈ Di \A}
. Update existing relations or create new singletons

returnM

The scoring function, f , is a weighted sum of
the features described in Table 1. While a feasible
weight function could be normalized by |Rk|, we
instead choose to sum. If two different relations
have a similar meaning but are not initially placed

Feature Values Description
IDENTITY Binary d = e
PAIRWISE Binary Aligned(d, e)
LEMMA Binary Lemma(d) = Lemma(e)
POS Binary POS(d) = POS(e)
PARENT Binary Parent(d) = Parent(e)
NEIGHBORS Integer |L+(d) ∩ L+(e)|, L+(d) is the

multiset of outgoing edge labels
from d in the dependency parse.

CHILDREN Integer The number of children u, v of
d, e where the edges (d, u) and
(e, v) have the same label and
Aligned(u, v).

PARENT(V) Real Relates a child v of e to d by con-
sidering the set U that aligns to
v. For each u ∈ U , we incre-
ment the score if its parent is d
and give additional points if the
parent’s POS tag and edge label is
the same as those of e. However,
these are normalized by |U |.

Table 1: These specific features are used in f(d, e). Aligned(d,
e) is determined by the bitext aligner, and PARENT(V) is a
feature for each child v of e. All features have weight 1, except
for IDENTITY, which has weight 3. The pruning threshold is
4. These values could be further tuned.

together, both will grow as tokens from new tokens
would have a similar score to both. By using total
score, the bigger relation will dominate. On the
other hand, taking the sum could lead large rela-
tions matching with unrelated tokens. For ease of
future analysis, errors of this type were preferred.

F (M) =
∑

Ri∈M

∑
d,e∈Ri

f(d, e) (2)

A matching is scored by summing pairwise scores
in all of its relations (Equation 2). Ideally, we
would directly maximize F (M), but that is NP-
hard.3 Instead, we match each document greedily.

2.2 Creating a corpus alignment
Suppose the documents in the multi-parallel cor-
pora C = C1, C2, . . . , Cc are already aligned, so
for any document, we can find its counterpart in
each Ci, if it exists. This is the case for the Bibli-
cal data since the verse numbers act as document
labels.

Given an existing document-level alignment, we
can improve the accuracy of individual features.
For example, tokens within the same relation are
synonymous, and so they are used to recompute
the PAIRWISE feature. Algorithm 1 depends on the
initial ordering of L. This motivates Algorithm 2,

3With just three documents, this is a weighted variant of
the 3-dimensional matching problem.
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which both recomputes the feature values and shuf-
fles the documents between each of the T = 10
iterations.

Algorithm 2 Corpus alignment
Input: Multi-parallel corpora C = C1, C2, ...Cc

Parse and tag each Ci ∈ C 4

for t = 1 . . . T do
Recompute corpus statistics
Align every pair Ci, Cj ∈ C
C.shuffle() . Choose a new order for the documents
for all documents L ∈ C do
ML,t = ALIGNDOCUMENTS(L)

Output: {argmaxML,t
F (ML,t) : L ∈ C}

2.3 Dataset and tools

The corpus of Bibles were collected by Mayer and
Cysouw (2014) and contains 27 English versions.
23 contain just the New Testament (~8K verses,
~200K words), while four also include the Old
Testament (~31K verses, ~900K words).

We use fast_align (Dyer et al., 2013), a
greedy, transition-based dependency parser (Honni-
bal and Johnson, 2015), and an averaged perceptron
POS tagger with Brown cluster features (Collins,
2002; Koo et al., 2008) for feature computation.5

3 Results

3.1 Analysis of alignments

Fig. 3 shows an example of an alignment produced
by our system.6 There are a few misalignments due
to both literary divergence and our design choices,
such as the sum in Equation 1 and targeting one-to-
one alignments.

The visualization of the matchings simplifies
analysis of literary variation. Relations with only a
few or different members are easy to spot. These
anomalies can be indicators of different choices
in translation, unclean source text, or use of older
language. For example, unlike “wise men" and
“magi," “astrologers" only appears once across the
rows wise men in Fig. 3, so the word choice may
be a deliberate. Small or singleton relations prompt
further investigation into the source.7 Since some
of our features are independent of meaning, we
correctly align non-English (e.g. Hebrew) words.

4If parsing or tagging is improved by the alignments from
the previous iteration, it could be rerun every iteration.

5Implemented by https//spacy.io.
6More examples in Appendix Tables 7 and 8
7In Matthew 8:22 (diaglot version), an error in the source

was discovered by an extraneous singleton relation: {“The”}.

1 2 3 4 5 6 7 8 9 10
Iteration

1.00

1.05

1.10
Relative improvement to iteration 1

Figure 2: Relative change in total score with respect to the first
iteration: Entire text (#); Old Testament (�); New Testament
(4); per iteration (+). Since the feature weights are fixed, the
absolute score is not meaningful.

Word indices in each of the columns also show the
degree of reordering, which itself is a measure of
divergence.

3.2 Improvements across iterations

Fig. 2 tracks the relative change in total score
summed across all the documents. The Old Tes-
tament plateaus early, possibly because there are
only four sources. The high variance in per itera-
tion score shows the large effect of the ordering.

3.3 Limitations

Since there are no gold-standard annotations for
this task, it is difficult to perform a meaningful
quantitative evaluation on the alignments directly.
Empirical evaluation is also challenging due to the
scale of even a single multiway alignment.

Because the tools used are not trained specifi-
cally for historical English religious texts, it is pos-
sible for the features themselves to be imprecise or
noisy. For this predominantly modern English cor-
pora, tokens with incorrectly preprocessed features
can still be placed in the correct relation due to the
correct features. For an even better alignment, ad-
ditional features or a looser definition of IDENTITY

would encourage improved alignments.
The proposed method assumes a one-to-one map-

ping between tokens and relations. Multi-word ex-
pressions in the consensus, like wise men, can be
viewed as a multi-relation expression. It is chal-
lenging to generalize our method to many-to-many
alignments.

4 Additional Biblical Resources

For a given relation, a consensus annotation can
be derived by taking the majority annotation of the
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Parse Consensus Analysis worldwide newsimplified montgomery etheridge godsword majority lexham common contemporary
Then RB (Then, 0) (Then, 0) (Thereupon, 0) (Then, 0) (Then, 0) (Then, 0) (Then, 0) (Then, 0) (first, 13)
Herod NNP (Herod, 1) (Herod, 1) (Herod, 1) (Herodes, 1) (Herod, 1) (Herod, 1) (Herod, 1) (Herod, 1) (Herod, 0)
, . („ 2)
secretly RB (secretly, 10) (secretly, 2) (secretly, 3) (privately, 2) (secretly, 2) (secretly, 3) (secretly, 2) (secretly, 2) (secretly, 1)
called VBD (called, 2) (called, 3) (sent, 2) (called, 3) (called, 3) (called, 5) (summoned, 3) (called, 3) (called, 2)
for IN (for, 4) (for, 4)
the DT (the, 3) (the, 4) (the, 5) (the, 4) (the, 4) (the, 6) (the, 4) (the, 5) (the, 4)
wise JJ (wise, 4) (wise, 5) (wise, 7) (wise, 5) (wise, 5)
men NNS (men, 5) (astrologers, 5) (Magi, 6) (Magians, 5) (men, 6) (men, 8) (men, 6) (magi, 6) (men, 6)
, . („ 7) („ 6) („ 9)
to IN (to, 6) (to, 6) (to, 17)
and CC (and, 8) (and, 7) (and, 7) (and, 7) (and, 7) (and, 7)
found VBD (talk, 7) (find, 7) (found, 9) (learned, 8) (found, 8) (ascertained, 10) (determined, 8) (found, 8) (asked, 8)
of IN (with, 8) (at, 11)
them PRP (them, 9)
He PRP (He, 12)
out RP (out, 14) (out, 8) (out, 10) (out, 9) (out, 9)
from IN (from, 15) (from, 11) (from, 9) (from, 10) (from, 11) (from, 10) (from, 10) (in, 3)
them PRP (them, 16) (them, 12) (them, 10) (them, 11) (them, 12) (them, 11) (them, 11) (them, 9)
exactly RB (found, 13) (exactly, 9) (exactly, 12) (precisely, 9) (first, 18)
the DT (the, 10) (the, 13) (the, 13) (the, 12) (the, 12)
exact JJ* (what, 17) (what, 12) (that, 15)
time NN (time, 18) (time, 11) (time, 14) (time, 13) (time, 14) (time, 13) (time, 13)
they PRP (they, 19) (them, 18) (they, 11)
had VBD (had, 16) (having, 4) (had, 17) (had, 12)
when WRB (when, 15) (when, 13) (when, 14) (when, 14) (when, 10)
the DT (the, 21) (the, 12) (the, 16) (the, 14) (the, 14) (the, 16) (the, 15) (the, 15) (the, 15)
star NN (star, 22) (star, 13) (star, 17) (star, 15) (star, 15) (star, 17) (star, 16) (star, 16) (star, 16)
appeared VBN* (saw, 20) (appeared, 14) (appeared, 18) (appeared, 16) (appeared, 17) (appeared, 18) (appeared, 17) (appeared, 19) (seen, 14)
. . (., 11) (., 15) (., 19) (:, 19) (., 18) (., 19) (., 18) (., 20) (., 17)
. . (., 23)

Figure 3: A matching for document D = Matthew 2:7. For space reasons, nine versions are shown in the same order they were
aligned. Each row is a relation; the row header is its most common word. Each cell (r, c) is a member of the relation Rr and
contains a token and an index from document Dc. The relations are arranged by the consensus index. Consensus POS tags and
edges to the head token are shown in the analysis column. For presentation purposes, row headers are bolded if the majority of
the documents in this table had a word in the relation. * indicates that there existed an equally competitive tag. Misalignments
are italicized.

tokens in that relation. This can be extended on
the corpus-level to word types by considering all
relations represented by or containing that type.

4.1 In-domain paraphrases
We create a Bible-specific set of paraphrases. To
obtain a distribution of similar words to a specific
type w, we consider either all tokens in all relations
that contain w (finer) or just the majority type of
relations containing w (coarser) (Fig. 4).

Fine-grained paraphrases:
HEROD: Herod (0.90), Herodes (0.04), he (0.01) . . .
SECRET: secret (0.59), mystery (0.19), private
(0.04) . . .
Coarse-grained paraphrases:
HEROD: Herod (0.95), Herods (0.05)
SECRET: secret (1.00)

Figure 4: Each word is followed by possible paraphrases and
their proportions, which are computed from the consensus.

The domain specific paraphrases demonstrate
the linguistic variation across the Bible, which can
be further analyzed. Fig. 5 explores some of the
variations that occur in our specific domain.

4.2 Consensus distributions
We can compute both the majority values (Fig. 3)
and the entire distributions (Fig. 6) of specific fea-
tures such as POS tags and head words. Aggregat-
ing each corpus independently before alignment,

HYMENAEUS: Hymenaeus (0.82), Hymenius (0.04),
Hymeneus (0.04), Humenaios (0.04) . . .
BLAZES: burns (0.48), burning (0.33) burneth
(0.10), blazes (0.04) . . .
CHALLENGED: said (0.15), opposed (0.13), urged
(0.12), tested (0.10), tempted (0.06), tried (0.05),
asked (0.04).

Figure 5: These examples demonstrate spelling variation, lan-
guage modernization, and unexpected domain-specific distri-
butions.

we can compute the possible tags for a word type.
By using the alignments, the distribution of tags
is softer. This could be useful as a prior in cross-
lingual tag projection, since bitexts in the Bible are
often not exact translations.

For each possible head of a token, we compute
consensus edge labels. By taking the most frequent
edges, this results in a consensus dependency parse.
If the proportions are used instead of the consensus,
the result is a distribution over possible parses.

5 Discussion and Related Work

While monolingual insights like paraphrases have
potential applications in semantic textual similarity
(Agirre et al., 2012), there exist bigger corpora
for those tasks, such as PPDB (Ganitkevitch et al.,
2013). However, as the Bible is often the only
significant parallel text for many of the world’s
languages, improved 27-way consensus English
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POS tags
Before corpus alignments:
TIME: NN (1.00)
SECRET: NN (0.54), JJ (0.46)
With corpus alignments:
TIME: NN (0.94), NNS (0.05) . . .
SECRET: JJ (0.51), NN (0.47), NNS (0.01) . . .

Head words
Before corpus alignments:
TIME: at (0.23), for (0.09), in (0.07), is (0.06) . . .
SECRET: in (0.28), is (0.06) kept (0.04) places
(0.04) . . .
With corpus alignments:
TIME: at (0.17), in (0.09), for (0.09), is (0.05) . . .
SECRET: in (0.32), place (0.05), mystery (0.04), is
(0.04) . . .

Figure 6: A comparison of the POS tags (above) and head
words (below) distributions for time and secret with and with-
out the consensus alignment.

resources created here have value for annotation
projection to low-resource languages.

The Bible has been productively used as a
key resource for cross-lingual knowledge transfer
(Yarowsky et al., 2001; Agić et al., 2015). Specif-
ically, Johannsen et al. (2016) suggests a method
for projecting POS tags and dependency parses
onto a target language. Our approach can be mod-
ified in a similar way. By restricting the scoring
function to use entirely language-independent fea-
tures (e.g. pairwise alignments), our algorithm still
maximizes the score of the matching by relearning
an improved dictionary between iterations. The
corpus alignment may also be desirable over sep-
arate alignments for multi-source projection tasks
in noisier data because a word or phrase may only
align with only a subset of the sources.

By generating resources specifically for the
Bible, we hope to foster future computational meth-
ods for studying religious texts. Current Biblical
visualization (Zhang et al., 2016) and authorship
(Moritz et al., 2016) works use a small subset of
the translations to perform their analysis. Our re-
sources would encourage analysis across all ver-
sions of the Bible, which would be less biased than
picking a small set. By weighing the votes cast
by each token in a relation, it is even possible to
emphasize a specific corpus.

The algorithms described in Section 2 can be
applied to any parallel corpora. The scoring func-
tion is simple and accommodates arbitrary fea-
tures. While our approach specifically assumes
the documents (verses) within the corpora are al-
ready aligned, knowing which documents are simi-
lar (e.g. through clustering) is sufficient – perhaps

at the cost of quality – to align and generate the
subsequent resources.

6 Conclusion

We present a method for analyzing noisy multi-
parallel text on significant multi-parallel corpora:
27 versions of the English Bible. The algorithm
maximizes a flexible heuristic scoring function, so
it is language-independent and applicable to any
multi-parallel corpora. We produce a corpus-wide
word alignment and use its consensus to create
additional in-domain resources.

Given the Bible’s unique role as the primary or
only significant bitext for many of the world’s lan-
guages, the robustly induced consensus analyses
and associated alignments offer particular value to
annotation projection in low-resource languages.
In addition, these results shed insight into the un-
derlying semantics of very widely studied source
texts via both consensus and divergence of their
multiple distinct translations.
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