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Abstract

We address the challenge of cross-lingual
POS tagger evaluation in absence of man-
ually annotated test data. We put forth
and evaluate two dictionary-based metrics.
On the tasks of accuracy prediction and
system ranking, we reveal that these met-
rics are reliable enough to approximate
test set-based evaluation, and at the same
time lean enough to support assessment
for truly low-resource languages.

1 Introduction

Cross-lingual learning of NLP models is currently
in an evaluation impasse. While we can create reli-
able cross-lingual taggers and parsers for hundreds
of low-resource languages (Agić et al., 2016), we
can only evaluate our models for languages where
some hand-annotated test data is available. The re-
quirement for the uniformity of annotations (Mc-
Donald et al., 2013) further strengthens the con-
straint. The set of languages with readily available
test data is very exclusive. Namely, they are the
resource-rich languages from the Universal De-
pendencies project (Nivre et al., 2015).1

Recent works have suggested to evaluate cross-
lingual approaches by proxy, e.g., by using crowd-
sourced tag dictionaries (Li et al., 2012; Agić et
al., 2015). In these works, though, the validity of
assessment by using tag dictionaries is left com-
pletely unaddressed.

Contributions. Our work poses the question:
How adequate are tag dictionaries for evaluating
POS taggers for low-resource languages? Across
25 languages, we compare the POS tagger rank-
ings induced by evaluation against dictionaries to

1http://universaldependencies.org/

those induced by evaluation on manually anno-
tated gold standards. We select the best out of five
competitive taggers for 14 out of 25 languages.
We also consider to what extent we can predict
true tagging scores. We find that as little as the 100
most frequent tokens with corresponding POS tags
suffice to provide reliable estimates of true scores.
Finally, we introduce a novel metric that presumes
nothing but an English tag dictionary and a small
bilingual dictionary for the target language. We
also find this metric to be a relatively robust esti-
mator for tagging accuracy. It finds the best tagger
for 11 out of 20 languages.

Our code and data are freely available.2

2 Metrics

In cross-lingual learning work, it is common to
evaluate POS taggers for accuracy by using test
data annotated by human experts. For a test set T
of n word-tag pairs (wi, ti) and its tagging T̂ , we
define the true accuracy Atrue as:

Atrue(T̂ , T ) = ∣{(wi, t̂i) ∈ T̂ ∣ t̂i = ti}n
i=1∣

∣T̂ ∣

T = {(wi, ti)}, T̂ = {(wi, t̂i)},1 ≤ i ≤ n

Obviously this metric can only be computed when
test data is available, which is not the case for the
vast majority of the world’s languages. Note that
while we use the term true accuracy, the adequacy
of the metric depends on how representative the
annotated data is of the underlying distribution.

Drawing from Li et al. (2012)—who compared
Wiktionaries to gold dictionaries extracted from
the tagger training sets—Agić et al. (2015) pro-
pose an approximate metric in absence of test data
T . They apply it to 10 low-resource languages by

2Wiktionaries included,
https://bitbucket.org/lowlands/release.
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using Wiktionaries ranging from only 50 to more
than 20k dictionary entries. We take their metric
as our starting point.

Soft accuracy. Given a dictionary D whose en-
tries are word forms with their ambiguous tag-
gings (w,Dw = {tw1 , ..., twk }), we express the ap-
proximate or soft accuracy Asoft as:

Asoft(T̂ ,D) = ∣{(wi,t̂i)∈T̂ ∣(wi,Dwi)∈D∧t̂i∈Dwi}
n
i=1∣

∣{(wi,t̂i)∈T̂ ∣(wi,Dwi)∈D}
n
i=1∣

In absence of true tags ti, we ambiguously tag T
using the tags from D, but only for the tokens wi

that are covered by the dictionary: (wi,Dwi) ∈ D.
We then count the tagger output t̂i as correct iff it
is warranted by the dictionary: t̂i ∈Dwi .

Problems. Crowd-sourced dictionaries can suf-
fer from limited coverage and poor quality. We
counter the first issue by covering the most fre-
quent words. We distinguish between Asoft with
frequency information (+freq), using the m most
frequent words, or without frequency information
(−freq), using m random words.

Tag lists Di can also be deficient: They can be
missing certain tags, or contain incorrect tags, or
both. For example, the Croatian Wiktionary only
notes the NOUN tagging of igra (en. game), but in
reality the word form also has a VERB tagging (en.
to play, third person singular).

We can gauge the quality of D in presence of a
high-quality dictionary G = {(wi,Gi)}∣G∣i=1 which
we can induce from a training set:

precision(D,G) = ∑∣D∣i=1
∣{Di∩Gi}∣

∣{t∈Di}∣

recall(D,G) = ∑∣D∣i=1
∣{Di∩Gi}∣

∣{t∈Gi}∣

Namely, for each word wi covered by both D and
G, we check how many tags Di and Gi intersect,
and then use the intersection to estimate dictionary
precision and recall.

Translated dictionaries. With low-resource
languages, we cannot presume the availability of
tag dictionaries. However, we often have high-
quality bilingual dictionaries with translations
of common words into a resource-rich language
such as English. With these in place, we can
“translate” the English dictionary into a low-
resource language and exploit the resulting Dtrans

in the evaluation for Asoft. We implement a very

simple form of dictionary lookup-based transla-
tion, whereby all words in the English word-tag
dictionary are replaced by target-language words
through bilingual dictionaries.

We expect this bilingual dictionary-based soft
metric Atrans to suffer from the same coverage
and quality problems as Asoft, and to introduce
additional “translation noise” on top of that. We
maintain that both metrics can still be reliable esti-
mators of tagging accuracy for truly low-resource
languages in absence of annotated test data.

3 Experiments

We perform two sets of experiments:

i) numerical score prediction, where we eval-
uate the approximate metricsAsoft andAtrans

as estimators of the true POS tagging accura-
cies Atrue, and

ii) rank prediction, where we test how well do
Asoft and Atrans perform in ranking several
POS taggers relative to Atrue.

In numerical score prediction, we evaluate the tag-
gers using all three metrics, and establish empiri-
cal relations between dictionary quality and size,
and the observed scores.

In rank prediction, we rank five POS taggers us-
ing Atrue, and then attempt to replicate the rank-
ing using Asoft and Atrans. We express the quality
of predicted rankings using precision (P@1) and
Kendall’s τb statistic (Knight, 1966).

Data. We train and test our taggers on data from
UD version 1.2 (Nivre et al., 2015). We inter-
sect this collection with the dictionaries we make
available for this experiment: 9 of the Wiktionar-
ies come from Li et al. (2012), and we collect 16
new on top of that. Thus, we experiment with a
total of 25 languages from the UD. We refer to the
9 languages of Li et al. (2012) as development lan-
guages. To make the Wiktionaries and the UD data
compatible, we map all POS tags to the tagset by
Petrov et al. (2012).

We estimate the frequencies for the +freq vari-
ants of the soft metrics by using the multilingual
Bible corpus by Christodouloupoulos and Steed-
man (2014) and the Watchtower corpus (Agić et
al., 2016) combined.

We translate the English Wiktionary from Li
et al. (2012) by using bilingual dictionaries from
Wiktionary to obtain Dtrans for 20 languages.3

3We choose the English Wiktionary rather than the En-
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Figure 1: Impact of dictionary size and frequency usage (−freq, +freq) on numerical score prediction
for nine development languages using the TnT tagger. The shaded regions represent 95% confidence
intervals forD− freq. The −freq dictionaries are randomly sampled 100 times for each size step, and the
steps range 100–10,000 entries both for −freq and +freq.

Taggers. We experiment with five POS taggers,
all run with their default settings:

a) bi-LSTM tagger (Plank et al., 2016),
b) CRF++ (Kudo, 2005),
c) MarMoT (Mueller et al., 2013),
d) TnT (Brants, 2000), and
e) TreeTagger (Schmid, 1994).

3.1 Results

Score prediction. Here, we discuss how well
our metric Asoft performs in guessing the true tag-
ger accuracies by using the Wiktionaries.

Figure 1 reveals that even large Wiktionaries do
not make for good accuracy estimators if they do
not exploit the frequencies. We see the evidence
for that in the very wide confidence intervals in
our Wiktionary sampling. In contrast, even the
smallest of frequency-aware Wiktionaries prove to
be much more reliable. They can contain as little
as 100 entries, especially if their tagging quality
is high. For example, a bad sample of 6k Span-
ish (es) words and tags might underestimate Atrue

by 10 points, while using the 100 most frequent
Spanish words get us as close as -4 points even
with erroneous tags.

We observe high negative correlations of Wik-
tionary F1 scores (Pearson’s ρ = −0.58) and test

glish UD training set due to much higher coverage in spite of
lower precision: F1 = 18.51 for the Wiktionary translations
(Dtrans), compared to F1 = 13.22 for the UD training set
translations (Gtrans) over 20 languages.

set coverages (ρ = −0.60) with the quality of accu-
racy estimation, expressed as absolute difference
of the two scores ∣Atrue−Asoft∣ for the data in Fig-
ure 1. In simpler terms: The higher i) the intrin-
sic quality of the Wiktionary and ii) its coverage,
the better the score estimation. There, the Wik-
tionaries are intrinsically evaluated with respect
to the training set dictionaries. We also note that
the noisy Wiktionaries (D) tend to underestimate
Atrue, while the more reliable gold dictionaries
(G) overestimate.

The translation-based metric Atrans approxi-
mates the true scores better thanAsoft for 7/20 lan-
guages, and is more stable across languages as all
Dtrans originate from English (en). See Table 1 for
the results on all 25 languages.

Rank prediction. In system ranking, we try to
select the best tagger for a given language through
our metrics. We note the task is rather hard as all
the taggers score very close to one another. Still,
we manage to find the best tagger for 14/25 lan-
guages with Asoft, and for 11/20 with Atrans.

For some languages, even in spite of Wiktionary
deficiency, we manage to i) select the best tag-
ger and to ii) improve the true score prediction
through translation from English. For example,
the high quality of Bulgarian (bg) Wiktionary is
outweighed by the high coverage of itsDtrans, and
there Atrans significantly improves the prediction.
For Farsi (fa), we improve both the score predic-
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Wiktionary quality Metrics evaluation

D Dtrans Atrue Asoft Atrans

∣D∣ P R ∣D∣ P R Ātrue Āsoft P@1 τb Ātrans P@1 τb
Bulgarian (bg) 3 93.58 3.54 15 59.33 7.65 97.45±1.14 89.73±0.20 0 -0.2 95.54±0.18 0 -0.2

Czech (cs) 14 98.77 4.82 23 62.35 5.59 97.88±1.00 94.74±0.82 1 0.6 93.47±0.19 0 0.2
* Danish (da) 23 83.89 19.00 15 55.42 12.21 96.07±1.03 88.94±0.51 1 0.6 87.54±0.51 0 0.4

* German (de) 63 94.97 23.19 46 63.20 14.79 95.02±0.42 92.48±0.21 1 0.4 76.77±0.24 1 0.2
* Greek (el) 22 87.99 18.72 21 56.50 10.85 96.97±1.22 89.45±0.47 1 1.0 78.28±0.32 1 0.4

* English (en) 388 69.88 65.97 – – – 95.39±1.07 93.15±0.26 0 -0.4 – – –
* Spanish (es) 240 85.00 40.20 31 67.27 17.00 96.22±0.38 91.91±0.65 0 -0.2 79.39±0.36 1 0.4

Basque (eu) 1 90.43 1.49 – – – 95.08±1.33 74.90±1.25 1 0.8 – – –
Farsi (fa) 4 87.87 11.89 1 56.22 1.43 96.35±0.73 90.46±0.45 0 -0.2 94.05±0.54 1 0.6

Finnish (fi) 104 88.41 8.52 45 53.70 6.38 94.72±2.24 79.72±1.26 1 1.0 90.51±0.44 1 0.8

French (fr) 17 88.70 7.49 36 67.55 18.55 96.47±0.62 48.08±1.03 0 0.2 79.30±0.23 0 0.2
Irish (ga) 6 85.73 12.54 – – – 92.77±0.87 91.97±2.88 0 0.2 – – –

Ancient Greek (grc) 5 94.13 2.46 – – – 91.97±2.88 74.62±0.96 1 1.0 – – –
Hebrew (he) 4 83.12 5.04 7 58.37 5.06 95.69±1.15 86.23±0.65 1 0.6 79.84±0.57 1 0.4

Hindi (hi) 2 89.79 4.19 2 61.03 3.81 97.97±0.73 81.25±1.03 0 0.2 80.16±0.50 0 -0.4

Croatian (hr) 21 92.03 12.76 6 55.44 2.43 95.32±1.06 89.81±0.46 0 0.4 94.41±0.76 0 -0.2
Hungarian (hu) 14 84.01 15.29 17 49.78 10.75 92.46±2.35 86.22±2.43 0 -0.2 73.04±1.14 1 0.4

* Italian (it) 494 79.03 65.29 29 63.32 19.62 97.53±0.61 94.58±0.46 1 0.6 85.51±0.23 0 0.2
Latin (la) 30 68.15 7.80 – – – 91.24±2.27 68.24±2.11 1 1.0 – – –

* Dutch (nl) 55 83.67 35.25 29 57.45 16.92 92.38±2.11 92.85±0.74 0 0.2 86.58±0.76 1 0.6

Norwegian (no) 47 89.51 6.94 11 55.32 7.48 97.67±0.55 33.99±0.11 0 0.2 87.33±0.14 0 0.2
Polish (pl) 6 92.97 3.70 22 53.91 8.50 95.55±1.35 87.97±1.17 1 0.8 81.86±0.28 1 0.6

* Portuguese (pt) 42 90.55 18.38 26 62.10 17.98 97.22±0.69 92.39±0.22 1 0.6 82.46±0.27 0 0.2
Romanian (ro) 7 82.29 16.95 15 49.65 16.64 89.59±2.26 83.59±1.50 1 1.0 84.24±0.74 1 1.0
* Swedish (sv) 91 85.84 48.32 29 53.89 16.60 96.22±0.92 92.14±0.77 1 0.4 83.32±0.49 1 0.4

Mean – 86.81 18.38 – 58.09 11.01 95.25±0.89 83.27±5.69 14/25 0.42 86.40±2.89 11/20 0.27

Table 1: Wiktionary size and quality, and metrics evaluation. The dictionary sizes ∣D∣ are ×103 entries.
Wiktionaries are evaluated for precision (P) and recall (R) against the respective UD training set dictio-
naries (G). In metrics evaluation, scores are obtained by using the full Wiktionaries, averaged (Ā) over
five POS taggers. *: development languages, with Wiktionaries by Li et al. (2012). ±: 95% confidence
intervals; bold: best score estimates, i.e., lowest differences to true scores ∣Atrue −Asoft∣.

tion and the tagger selection.
Through Kendall’s τb statistic, we rate the qual-

ity of the entire rankings, not just of guessing the
best out of five taggers. We find that the true and
the estimated rankings are statistically dependent
at p < 0.05 for all languages. We also find that the
taggers are easier to rank when the true scores are
lower and further apart. For example, the French
(fr) and Spanish (es) taggers are hard to rank as
they all score very close to one another, while
we easily rank the taggers for Greek (el), Basque
(eu), Polish (pl), or Romanian (ro). We argue that
such ranking behavior favors evaluation for low-
resource languages, where insufficient data is very
likely to cause even greater disparity between dif-
ferent POS taggers.

3.2 Discussion

Sources of POS tags. Our work aims at support-
ing cross-lingual POS tagger evaluation. Why did

we then evaluate the metrics on outputs of fully su-
pervised taggers? In short, because higher tagging
scores are harder to estimate.

We experimented with: i) fully supervised tag-
gers, ii) actual cross-lingual taggers from Agić et
al. (2016), for which Ātrue = 70.56, and iii) artifi-
cial corruption of gold POS tags.

In artificial data corruption for the development
languages, we found that the score prediction error
correlates with the true score (ρ = 0.54). For the
corruption, we created 20 samples ofAtrue ∈ [0,1]
for each language with a 0.05 increment. Further,
we evaluated Asoft on the cross-lingual taggers.
There, we singled out the best taggers for 13/21 in-
tersecting languages, or for 2 languages more than
over fully supervised taggers (11/21). With trans-
lated dictionaries, i.e., through Atrans, we scored
13/20 (also +2 languages).

For these reasons, we decided to show how our
metrics perform in the most difficult case. Here,
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the additional experiments with different sources
of POS tags show that the metrics easily scale
down to evaluating cross-lingual taggers for low-
resource languages.

Held-out data. Annotating a handful of test sen-
tences could serve as an alternative to dictionary-
based evaluation. We find that ∼55±27 sentences
are needed on average to reach the system ranking
accuracy ofAtrans for our 20 languages. However,
the option of annotating test data might not be
feasible for many low-resource languages, while
Wiktionaries are currently readily available for
more than 300 languages. We also note that the
required sample size is negatively correlated with
tagging accuracy (ρ = −0.63): the lower the tagger
accuracy, the more sentences we need to reason-
ably estimate it.

4 Related work

Li et al. (2012) gauge 9 Wiktionaries against gold
dictionaries to strengthen the argument for their
weakly-supervised tagger. Agić et al. (2015) use
10 Wiktionaries to extend a cross-lingual tagger
evaluation to languages without test sets, but they
do so indiscriminately. Their Wiktionaries range
from only 50 to more than 20k random entries. To
the best of our knowledge, research on evaluating
POS taggers in absence of manually annotated test
data is novel to our work.

We collected 16 new Wiktionaries on top of
the 9 provided by Li et al. (2012) for our exper-
iment. Recently, larger Wiktionary datasets4 have
been made available, enabling further experiments
with cross-lingual tagging. The dataset of Sylak-
Glassman et al. (2015) covers more than 300 lan-
guages, and includes parts of speech and morpho-
logical features.

Plank et al. (2015) discuss how various metrics
for evaluating syntactic dependency parsing corre-
late with human judgments. We suggest that our
translation-based metrics might naturally extend
to dependency parsing by, e.g., treating an English
dependency relation dictionary as a tag dictionary.
The strong correlations between labeling (LA) and
attachment scores (UAS) in dependency parsing
favor our proposal.5

Garrette and Baldridge (2013) build taggers for
low-resource languages from just 2 hours of man-

4http://unimorph.org/
5Pearson’s ρ = 0.82; 0.91 (gold POS; predicted POS), UD

data for 20 languages, TurboParser (Martins et al., 2013).

ual annotation. Similarly, we show how to reliably
evaluate cross-lingual POS taggers by translating
as little as 100 most frequent English Wiktionary
entries to the target language.

5 Conclusions

We evaluated how well the quality of POS taggers
can be estimated without annotated test data. Our
work has obvious applications to developing un-
supervised or weakly supervised POS taggers for
low-resource languages.

We were able to reliably estimate tagging accu-
racies by using very small tag dictionaries. Dic-
tionaries with as little as 100 entries were in the
majority of cases sufficient to predict true accura-
cies within 5%. We only require that these 100 en-
tries be frequently used. Out of 5 competitive POS
taggers, we then single out the best ones using our
metric for 14/25 languages.

Finally, we showed that even if the dictionar-
ies are “translated” from the English Wiktionary
through a small list of bilingual word pairs we can
still predict what POS taggers are best for 11/20
languages. In other words, we found that it is suf-
ficient to translate a small list of frequent words
from English to start reliably evaluating cross-
lingual taggers for the true targets.
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