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Abstract

Recognizing affective events that trigger pos-
itive or negative sentiment has a wide range
of natural language processing applications
but remains a challenging problem mainly be-
cause the polarity of an event is not neces-
sarily predictable from its constituent words.
In this paper, we propose to propagate affec-
tive polarity using discourse relations. Our
method is simple and only requires a very
small seed lexicon and a large raw corpus.
Our experiments using Japanese data show
that our method learns affective events effec-
tively without manually labeled data. It also
improves supervised learning results when la-
beled data are small.

1 Introduction

Affective events (Ding and Riloff, 2018) are
events that typically affect people in positive or
negative ways. For example, getting money and
playing sports are usually positive to the experi-
encers; catching cold and losing one’s wallet are
negative. Understanding affective events is impor-
tant to various natural language processing (NLP)
applications such as dialogue systems (Shi and
Yu, 2018), question-answering systems (Oh et al.,
2012), and humor recognition (Liu et al., 2018).
In this paper, we work on recognizing the polarity
of an affective event that is represented by a score
ranging from —1 (negative) to 1 (positive).

Learning affective events is challenging be-
cause, as the examples above suggest, the po-
larity of an event is not necessarily predictable
from its constituent words. Combined with the
unbounded combinatorial nature of language, the
non-compositionality of affective polarity entails
the need for large amounts of world knowledge,
which can hardly be learned from small annotated
data.

In this paper, we propose a simple and effective
method for learning affective events that only re-
quires a very small seed lexicon and a large raw
corpus. As illustrated in Figure 1, our key idea
is that we can exploit discourse relations (Prasad
et al., 2008) to efficiently propagate polarity from
seed predicates that directly report one’s emotions
(e.g., “to be glad” is positive). Suppose that events
x1 are xo are in the discourse relation of CAUSE
(i.e., x1 causes x3). If the seed lexicon suggests x3
is positive, 1 is also likely to be positive because
it triggers the positive emotion. The fact that x5
is known to be negative indicates the negative po-
larity of ;. Similarly, if £ and x2 are in the dis-
course relation of CONCESSION (i.e., x2 in spite
of z1), the reverse of x2’s polarity can be prop-
agated to x;. Even if x2’s polarity is not known
in advance, we can exploit the tendency of 1 and
x2 to be of the same polarity (for CAUSE) or of
the reverse polarity (for CONCESSION) although
the heuristic is not exempt from counterexamples.
We transform this idea into objective functions and
train neural network models that predict the polar-
ity of a given event.

We trained the models using a Japanese web
corpus. Given the minimum amount of supervi-
sion, they performed well. In addition, the combi-
nation of annotated and unannotated data yielded
a gain over a purely supervised baseline when la-
beled data were small.

2 Related Work

Learning affective events is closely related to sen-
timent analysis. Whereas sentiment analysis usu-
ally focuses on the polarity of what are described
(e.g., movies), we work on how people are typ-
ically affected by events. In sentiment analysis,
much attention has been paid to compositional-
ity. Word-level polarity (Takamura et al., 2005;
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Type Former event Latter event Relation
A ITHED (1] win the game) 2 L\ ([1] am glad)
AL 1 t D41 CAUSE
Propagate the same polarity
B2 = 71297< ([1] go to a picnic) KIZDVLEL ([1] am worried about the weather)
AL +1 t I CONCESSION
Propagate the reverse polarity
BEFE A4 LY (There is no heating) FE L\ ([1] am cold)
CA t iy CAUSE
Encourage them to have the same polarity
/N HYE LY ([1] have good eyes) &£ < B 272U ([1] cannot see [it] well)
(6[0) * iy CONCESSION

Encourage them to have the reverse polarity

Figure 1: An overview of our method. We focus on pairs of events, the former events and the latter events, which
are connected with a discourse relation, CAUSE or CONCESSION. Dropped pronouns are indicated by brackets in
English translations. We divide the event pairs into three types: AL, CA, and CO. In AL, the polarity of a latter
event is automatically identified as either positive or negative, according to the seed lexicon (the positive word is
colored red and the negative word blue). We propagate the latter event’s polarity to the former event. The same
polarity as the latter event is used for the discourse relation CAUSE, and the reversed polarity for CONCESSION. In
CA and CO, the latter event’s polarity is not known. Depending on the discourse relation, we encourage the two
events’ polarities to be the same (CA) or reversed (CO). Details are given in Section 3.2.

Wilson et al., 2005; Baccianella et al., 2010) and
the roles of negation and intensification (Reitan
et al., 2015; Wilson et al., 2005; Zhu et al., 2014)
are among the most important topics. In contrast,
we are more interested in recognizing the senti-
ment polarity of an event that pertains to common-
sense knowledge (e.g., getting money and catch-
ing cold).

Label propagation from seed instances is a com-
mon approach to inducing sentiment polarities.
While Takamura et al. (2005) and Turney (2002)
worked on word- and phrase-level polarities, Ding
and Riloff (2018) dealt with event-level polarities.
Takamura et al. (2005) and Turney (2002) linked
instances using co-occurrence information and/or
phrase-level coordinations (e.g., “A and B” and
“A but B”). We shift our scope to event pairs
that are more complex than phrase pairs, and con-
sequently exploit discourse connectives as event-
level counterparts of phrase-level conjunctions.

Ding and Riloff (2018) constructed a network
of events using word embedding-derived similar-
ities. Compared with this method, our discourse
relation-based linking of events is much simpler
and more intuitive.

Some previous studies made use of document
structure to understand the sentiment. Shimizu
et al. (2018) proposed a sentiment-specific pre-
training strategy using unlabeled dialog data
(tweet-reply pairs). Kaji and Kitsuregawa (2006)
proposed a method of building a polarity-tagged
corpus (ACP Corpus). They automatically gath-

ered sentences that had positive or negative opin-
ions utilizing HTML layout structures in addition
to linguistic patterns. Our method depends only
on raw texts and thus has wider applicability.

3 Proposed Method
3.1 Polarity Function

Our goal is to learn the polarity function p(zx),
which predicts the sentiment polarity score of an
event x. We approximate p(x) by a neural net-
work with the following form:

p(z) = tanh(Linear(Encoder(z))). (1)

Encoder outputs a vector representation of the
event x. Linear is a fully-connected layer and
transforms the representation into a scalar. tanh
is the hyperbolic tangent and transforms the scalar
into a score ranging from —1 to 1. In Sec-
tion 4.2, we consider two specific implementations
of Encoder.

3.2 Discourse Relation-Based Event Pairs

Our method requires a very small seed lexicon and
a large raw corpus. We assume that we can au-
tomatically extract discourse-tagged event pairs,
(51, xi2) (@ = 1,---) from the raw corpus. We
refer to x;1 and x;2 as former and latter events,
respectively. As shown in Figure 1, we limit
our scope to two discourse relations: CAUSE and
CONCESSION.

The seed lexicon consists of positive and neg-
ative predicates. If the predicate of an extracted
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event is in the seed lexicon and does not in-
volve complex phenomena like negation, we as-
sign the corresponding polarity score (+1 for pos-
itive events and —1 for negative events) to the
event. We expect the model to automatically learn
complex phenomena through label propagation.
Based on the availability of scores and the types of
discourse relations, we classify the extracted event
pairs into the following three types.

AL (Automatically Labeled Pairs) The seed
lexicon matches (1) the latter event but (2) not the
former event, and (3) their discourse relation type
is CAUSE or CONCESSION. If the discourse rela-
tion type is CAUSE, the former event is given the
same score as the latter. Likewise, if the discourse
relation type is CONCESSION, the former event is
given the opposite of the latter’s score. They are
used as reference scores during training.

CA (CAUSE Pairs) The seed lexicon matches
neither the former nor the latter event, and their
discourse relation type is CAUSE. We assume the
two events have the same polarities.

CO (CONCESSION Pairs) The seed lexicon
matches neither the former nor the latter event, and
their discourse relation type is CONCESSION. We
assume the two events have the reversed polarities.

3.3 Loss Functions

Using AL, CA, and CO data, we optimize the pa-
rameters of the polarity function p(z). We define
a loss function for each of the three types of event
pairs and sum up the multiple loss functions.

We use mean squared error to construct loss
functions. For the AL data, the loss function is
defined as:

1 NaL
Lar, = N (rig — p(wi2))
AL =
1 NaL
ML~ i1 —p(ria))”, @
+ ALY ;(7‘1 p(zi1)) ()

where z;; and z;9 are the i-th pair of the AL data.
r;1 and 7o are the automatically-assigned scores
of x;1 and x;2, respectively. Nat, is the total num-
ber of AL pairs, and A4y, is a hyperparameter.

For the CA data, the loss function is defined as:

1 Nca )
ﬁ A—A e — ) 7
CA = Aca ; (p(yi1) — p(yi2))
Nca

figed, 3 (A-p)),

=1 ue{yi1,yi2}
3

y;1 and y;o are the i-th pair of the CA pairs. Nca
is the total number of CA pairs. Aca and p are
hyperparameters. The first term makes the scores
of the two events closer while the second term pre-
vents the scores from shrinking to zero.

The loss function for the CO data is defined
analogously:

1 Nco )
= Aco—— i i
Lco = Aco Neg ; (p(zi1) + p(2i2))
Nco

1
+ MT% Z Z (1 —p(u)?).
=1 ’U,E{Zﬂ,zig}
“)

The difference is that the first term makes the
scores of the two events distant from each other.

4 Experiments
4.1 Dataset
4.1.1 AL, CA,and CO

As a raw corpus, we used a Japanese web cor-
pus that was compiled through the procedures pro-
posed by Kawahara and Kurohashi (2006). To ex-
tract event pairs tagged with discourse relations,
we used the Japanese dependency parser KNP!
and in-house postprocessing scripts (Saito et al.,
2018). KNP used hand-written rules to segment
each sentence into what we conventionally called
clauses (mostly consecutive text chunks), each of
which contained one main predicate. KNP also
identified the discourse relations of event pairs if
explicit discourse connectives (Prasad et al., 2008)
such as “®D T” (because) and “D T (in spite
of) were present. We treated Cause/Reason (Ji
- # ) and Condition (55f4) in the original
tagset (Kawahara et al., 2014) as CAUSE and Con-
cession (¥ #%)> as CONCESSION, respectively.
Here is an example of event pair extraction.
'"http://nlp.ist.i.kyoto-u.ac.jp/EN/

index.php?KNP

% To be precise, this discourse type is semantically broader
than Concession and extends to the area of Contrast.
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Type of pairs # of pairs
AL (Automatically Labeled Pairs) 1,000,000
CA (CAUSE Pairs) 5,000,000
CO (CONCESSION Pairs) 5,000,000

Table 1: Statistics of the AL, CA, and CO datasets.

(1) BERZEREZLRLEZOT, FHEE2IE
2727z,
Because [I] made a serious mistake, [I] got
fired.

From this sentence, we extracted the event pair of
“EE K72 8% 3297 ([1] make a serious mis-
take) and “fL 5 % 7 L1272 57 ([1] get fired), and
tagged it with CAUSE.

We constructed our seed lexicon consisting of
15 positive words and 15 negative words, as shown
in Section A.1. From the corpus of about 100
million sentences, we obtained 1.4 millions event
pairs for AL, 41 millions for CA, and 6 millions
for CO. We randomly selected subsets of AL event
pairs such that positive and negative latter events
were equal in size. We also sampled event pairs
for each of CA and CO such that it was five times
larger than AL. The results are shown in Table 1.

4.1.2 ACP (ACP Corpus)

We used the latest version® of the ACP Cor-
pus (Kaji and Kitsuregawa, 2006) for evaluation.
It was used for (semi-)supervised training as well.
Extracted from Japanese websites using HTML
layouts and linguistic patterns, the dataset covered
various genres. For example, the following two
sentences were labeled positive and negative, re-
spectively:

(2) FEZEDHETZ,

The work is easy.

(3) BEEHEIGHRN,
There is no parking lot.

Although the ACP corpus was originally con-
structed in the context of sentiment analysis, we
found that it could roughly be regarded as a col-
lection of affective events. We parsed each sen-
tence and extracted the last clause in it. The
train/dev/test split of the data is shown in Table 2.
The objective function for supervised training is:

1 Nacp )
L = Ri — (Y s 5
ACP Nacp ; ( p(vi)) )

3The dataset was obtained from Nobuhiro Kaji via per-
sonal communication.

Dataset Event polarity # of events
Train Positive 299,834
Negative 300,164

Dev Positive 50,118
Negative 49,882

Test Positive 50,046
Negative 49,954

Table 2: Details of the ACP dataset.

where v; is the i-th event, R; is the reference score
of v;, and Nacp is the number of the events of the
ACP Corpus.

To optimize the hyperparameters, we used the
dev set of the ACP Corpus. For the evaluation, we
used the test set of the ACP Corpus. The model
output was classified as positive if p(z) > 0 and
negative if p(x) < 0.

4.2 Model Configurations

As for Encoder, we compared two types of neu-
ral networks: BiGRU and BERT. GRU (Cho et al.,
2014) is a recurrent neural network sequence en-
coder. BiGRU reads an input sequence forward
and backward and the output is the concatenation
of the final forward and backward hidden states.

BERT (Devlin et al., 2019) is a pre-trained
multi-layer bidirectional Transformer (Vaswani
et al., 2017) encoder. Its output is the final hid-
den state corresponding to the special classifica-
tion tag ([CLS]). For the details of Encoder, see
Sections A.2.

We trained the model with the following four
combinations of the datasets: AL, AL+CA+CO
(two proposed models), ACP (supervised), and
ACP+AL+CA+CO (semi-supervised). The corre-
sponding objective functions were: Lar,, La1, +
Lca + Lco, Lacp, and Lacp + Lar, + Leoa +
Lco.

4.3 Results and Discussion

Table 3 shows accuracy. As the Random baseline
suggests, positive and negative labels were dis-
tributed evenly. The Random+Seed baseline made
use of the seed lexicon and output the correspond-
ing label (or the reverse of it for negation) if the
event’s predicate is in the seed lexicon. We can
see that the seed lexicon itself had practically no
impact on prediction.

The models in the top block performed consid-
erably better than the random baselines. The per-
formance gaps with their (semi-)supervised coun-
terparts, shown in the middle block, were less than
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Training dataset Encoder Acc
BiGRU  0.843
AL BERT 0.863
BiGRU  0.866
AL+CA+CO BERT  0.835
BiGRU 0.919
ACP BERT 0.933
BiGRU 0917
ACP+AL+CA+CO BERT 0.913
Random 0.500
Random+Seed 0.503

Table 3: Performance of various models on the ACP
test set.

Training dataset Encoder Acc
ACP (6K) 0.876
+AL BERT 0.886
ACP (6K) . 0.830
+AL+CA+cO  DIORU g 879

Table 4: Results for small labeled training data. Given
the performance with the full dataset, we show BERT
trained only with the AL data.

7%. This demonstrates the effectiveness of dis-
course relation-based label propagation.

Comparing the model variants, we obtained the
highest score with the BiGRU encoder trained
with the AL+CA+CO dataset. BERT was compet-
itive but its performance went down if CA and CO
were used in addition to AL. We conjecture that
BERT was more sensitive to noises found more
frequently in CA and CO.

Contrary to our expectations, supervised mod-
els (ACP) outperformed semi-supervised models
(ACP+AL+CA+CO). This suggests that the train-
ing set of 0.6 million events is sufficiently large for
training the models. For comparison, we trained
the models with a subset (6,000 events) of the ACP
dataset. As the results shown in Table 4 demon-
strate, our method is effective when labeled data
are small.

The result of hyperparameter optimization for
the BiGRU encoder was as follows:

AaL =1, Aca = 0.35, A\co =1, u = 0.5.

As the CA and CO pairs were equal in size (Table
1), Aca and Aco were comparable values. Aca
was about one-third of Ac(, and this indicated that
the CA pairs were noisier than the CO pairs. A
major type of CA pairs that violates our assump-

tion was in the form of “problem,.y,q . causes

Input event Polarity
JEIZE S ([1] get lost) -0.771
TEIZ KD 7\ ([1] don’t get lost) 0.835
%5 ([I] laugh) 0.624
ZH 3 ([I] am laughed at) -0.687
HElfi % ¥% & 9 (1] lose body fat) 0.452
JE % #% & 9 ([I] feel disappointed) ~ -0.653

Table 5: Examples of polarity scores predicted by the
BiGRU model trained with AL+CA+CO.

solutionpositive™”:

@) CBEWEZIARHDB, k< hbdL518H
3 5)
(there is a bad point, [I] try to improve [it])

The polarities of the two events were reversed in
spite of the CAUSE relation, and this lowered the
value of A\ca.

Some examples of model outputs are shown in
Table 5. The first two examples suggest that our
model successfully learned negation without ex-
plicit supervision. Similarly, the next two exam-
ples differ only in voice but the model correctly
recognized that they had opposite polarities. The
last two examples share the predicate “¥%& & 9
(drop) and only the objects are different. The sec-
ond event “J§ % ¥ & 977 (lit. drop one’s shoul-
ders) is an idiom that expresses a disappointed
feeling. The examples demonstrate that our model
correctly learned non-compositional expressions.

5 Conclusion

In this paper, we proposed to use discourse rela-
tions to effectively propagate polarities of affec-
tive events from seeds. Experiments show that,
even with a minimal amount of supervision, the
proposed method performed well.

Although event pairs linked by discourse analy-
sis are shown to be useful, they nevertheless con-
tain noises. Adding linguistically-motivated filter-
ing rules would help improve the performance.
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A Appendices
A.1 Seed Lexicon

Positive Words = 3% (rejoice), & L \» (be
glad), 25 L\ (be pleasant), S (be happy), /&
&) (be impressed), HLE (be excited), f#75> L W
(feel nostalgic), i Z (like), BL4X (respect), ZZ /0y
(be relieved), &0 (admire), & 5 % < (be calm),
fili J& (be satisfied), & & 11 % (be healed), and
Aw F Y (be refreshed).

Negative Words X% (get angry), 7 L \» (be
sad), A L\ (be lonely), i\ (be scared), f~%
(feel anxious), HD 9 7> L\ (be embarrassed), B
(hate), 7% 5 A& (feel down), J& J (be bored),
# B (feel hopeless), 3£\ (have a hard time),
% (have trouble), 2 (be depressed), /LML (be
worried), and I |} 72\ (be sorry).

A.2 Settings of Encoder

BiGRU The dimension of the embedding layer
was 256. The embedding layer was initialized
with the word embeddings pretrained using the
Web corpus. The input sentences were segmented
into words by the morphological analyzer Ju-
man++.* The vocabulary size was 100,000. The
number of hidden layers was 2. The dimension of
hidden units was 256. The optimizer was Momen-
tum SGD (Sutskever et al., 2013). The mini-batch
size was 1024. We ran 100 epochs and selected
the snapshot that achieved the highest score for the
dev set.

BERT We used a Japanese BERT model® pre-
trained with Japanese Wikipedia. The input sen-
tences were segmented into words by Juman++,
and words were broken into subwords by apply-
ing BPE (Sennrich et al., 2016). The vocabulary
size was 32,000. The maximum length of an input
sequence was 128. The number of hidden layers
was 12. The dimension of hidden units was 768.
The number of self-attention heads was 12. The
optimizer was Adam (Kingma and Ba, 2014). The
mini-batch size was 32. We ran 1 epoch.

‘nttp://nlp.ist.i.kyoto-u.ac.jp/EN/
index.php?JUMAN++

‘http://nlp.ist.i.kyoto-u.ac.jp/
index.php?BERTSE6%97%$A5%E6%9CSACSESSAAS
9EPretrained%$E3%83%A2%E3%83%87%E3%83%AB
(in Japanese)
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