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Abstract

We propose a contrastive attention mechanism
to extend the sequence-to-sequence frame-
work for abstractive sentence summarization
task, which aims to generate a brief summary
of a given source sentence. The proposed con-
trastive attention mechanism accommodates
two categories of attention: one is the conven-
tional attention that attends to relevant parts of
the source sentence, the other is the opponent
attention that attends to irrelevant or less rel-
evant parts of the source sentence. Both at-
tentions are trained in an opposite way so that
the contribution from the conventional atten-
tion is encouraged and the contribution from
the opponent attention is discouraged through
a novel softmax and softmin functionality. Ex-
periments on benchmark datasets show that,
the proposed contrastive attention mechanism
is more focused on the relevant parts for
the summary than the conventional attention
mechanism, and greatly advances the state-
of-the-art performance on the abstractive sen-
tence summarization task. We release the code
at https://github.com/travel-go/
Abstractive-Text-Summarization.

1 Introduction

Abstractive sentence summarization aims at gen-
erating concise and informative summaries based
on the core meaning of source sentences. Previ-
ous endeavors tackle the problem through either
rule-based methods (Dorr et al., 2003) or sta-
tistical models trained on relatively small scale
training corpora (Banko et al., 2000). Following
its successful applications on machine translation
(Sutskever et al., 2014; Bahdanau et al., 2015), the
sequence-to-sequence framework is also applied
on the abstractive sentence summarization task us-
ing large-scale sentence summary corpora (Rush
et al., 2015; Chopra et al., 2016; Nallapati et al.,

∗ Equal contribution.

2016), obtaining better performance compared to
the traditional methods.

One central component in state-of-the-art se-
quence to sequence models is the use of atten-
tion for building connections between the source
sequence and target words, so that a more in-
formed decision can be made for generating a tar-
get word by considering the most relevant parts
of the source sequence (Bahdanau et al., 2015;
Vaswani et al., 2017). For abstractive sentence
summarization, such attention mechanisms can be
useful for selecting the most salient words for a
short summary, while filtering the negative influ-
ence of redundant parts.

We consider improving abstractive summariza-
tion quality by enhancing target-to-source atten-
tion. In particular, a contrastive mechanism is
taken, by encouraging the contribution from the
conventional attention that attends to relevant parts
of the source sentence, while at the same time pe-
nalizing the contribution from an opponent atten-
tion that attends to irrelevant or less relevant parts.
Contrastive attention was first proposed in com-
puter vision (Song et al., 2018a), which is used for
person re-identification by attending to person and
background regions contrastively. To our knowl-
edge, we are the first to use contrastive attention
for NLP and deploy it in the sequence-to-sequence
framework.

In particular, we take Transformer (Vaswani
et al., 2017) as the baseline summarization model,
and enhance it with a proponent attention mod-
ule and an opponent attention module. The for-
mer acts as the conventional attention mechanism,
while the latter can be regarded as a dual module to
the former, with similar weight calculation struc-
ture, but using a novel softmin function to discour-
age contributions from irrelevant or less relevant
words.

To our knowledge, we are the first to investigate

https://github.com/travel-go/Abstractive-Text-Summarization
https://github.com/travel-go/Abstractive-Text-Summarization
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Transformer as a sequence to sequence summa-
rizer. Results on three benchmark datasets show
that it gives highly competitive accuracies com-
pared with RNN and CNN alternatives. When
equipped with the proposed contrastive attention
mechanism, our Transformer model achieves the
best reported results on all data. The visualization
of attentions shows that through using the con-
trastive attention mechanism, our attention is more
focused on relevant parts than the baseline. We re-
lease our code at XXX.

2 Related Work

Automatic summarization has been investigated
in two main paradigms: the extractive method
and the abstractive method. The former extracts
important pieces of source document and con-
catenates them sequentially (Jing and McKeown,
2000; Knight and Marcu, 2000; Neto et al., 2002),
while the latter grasps the core meaning of the
source text and re-state it in short text as abstrac-
tive summary (Banko et al., 2000; Rush et al.,
2015). In this paper, we focus on abstractive sum-
marization, and especially on abstractive sentence
summarization.

Previous work deals with the abstractive sen-
tence summarization task by using either rule
based methods (Dorr et al., 2003), or statistical
methods utilizing a source-summary parallel cor-
pus to train a machine translation model (Banko
et al., 2000), or a syntax based transduction model
(Cohn and Lapata, 2008; Woodsend et al., 2010).

In recent years, sequence-to-sequence neural
framework becomes predominant on this task by
encoding long source texts and decoding into
short summaries together with the attention mech-
anism. RNN is the most commonly adopted and
extensively explored architecture (Chopra et al.,
2016; Nallapati et al., 2016; Li et al., 2017). A
CNN-based architecture is recently employed by
Gehring et al. (2017) using ConvS2S, which ap-
plies CNN on both encoder and decoder. Later,
Wang et al. (2018) build upon ConvS2S with topic
words embedding and encoding, and train the sys-
tem with reinforcement learning.

The most related work to our contrastive atten-
tion mechanism is in the field of computer vision.
Song et al. (2018a) first propose the contrastive
attention mechanism for person re-identification.
In their work, based on a pre-provided person
and background segmentation, the two regions are

contrastively attended so that they can be eas-
ily discriminated. In comparison, we apply the
contrastive attention mechanism for sentence level
summarization by contrastively attending to rel-
evant parts and irrelevant or less relevant parts.
Furthermore, we propose a novel softmax soft-
min functionality to train the attention mechanism,
which is different to Song et al. (2018a), who use
mean squared error loss for attention training.

Other explorations with respect to the charac-
teristics of the abstractive summarization task in-
clude copying mechanism that copies words from
source sequences for composing summaries (Gu
et al., 2016; Gulcehre et al., 2016; Song et al.,
2018b), the selection mechanism that elaborately
selects important parts of source sentences (Zhou
et al., 2017; Lin et al., 2018), the distraction mech-
anism that avoids repeated attention on the same
area (Chen et al., 2016), and the sequence level
training that avoids exposure bias in teacher forc-
ing methods (Ayana et al., 2016; Li et al., 2018;
Edunov et al., 2018). Such methods are built on
conventional attention, and are orthogonal to our
proposed contrastive attention mechanism.

3 Approach

We use two categories of attention for summary
generation. One is the conventional attention that
attends to relevant parts of source sentence, the
other is the opponent attention that contrarily at-
tends to irrelevant or less relevant parts. Both cate-
gories of attention output probability distributions
over summary words, which are jointly optimized
by encouraging the contribution from the conven-
tional attention and discouraging the contribution
from the opponent attention.

Figure 1 illustrates the overall networks. We use
Transformer architecture as our basis, upon which
we build the contrastive attention mechanism. The
left part is the original Transformer. We derive
the opponent attention from the conventional at-
tention which is the encoder-decoder attention of
the original Transformer, and stack several layers
on top of the opponent attention as shown in the
right part of Figure 1. Both parts contribute to the
summary generation by producing probability dis-
tributions over the target vocabulary, respectively.
The left part outputs the conventional probabil-
ity based on the conventional attention as the orig-
inal Transformer does, while the right part outputs
the opponent probability based on the opponent
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Figure 1: Overall networks. The left part is the original
Transformer. The right part that takes the opponent at-
tention as bottom layer fulfils the contrastive attention
mechanism.

attention. The two probabilities in Figure 1 are
jointly optimized in a novel way as explained in
Section 3.3.

3.1 Transformer for Abstractive Sentence
Summarization

Transformer is an attention network based
sequence-to-sequence architecture (Vaswani
et al., 2017), which encodes the source text into
hidden vectors and decodes into the target text
based on the source side information and the
target generation history. In comparison to the
RNN based architecture and the CNN based
architecture, both the encoder and the decoder of
Transformer adopt attention as main function.

Let X and Y denote the source sentence
and its summary, respectively. Transformer is
trained to maximize the probability of Y given X:∏

i Pc(yi|yi−1
1 , X), where Pc(yi|yi−1

1 , X) is the
conventional probability of the current summary
word yi given the source sentence and the sum-
mary generation history. Pc is computed based on
the attention mechanism and the stacked deep lay-
ers as shown in the left part of Figure 1.

Attention Mechanism
Scaled dot-product attention is applied in Trans-
former:

attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

where Q,K, V denotes query vector, key vectors,
and value vectors, respectively. dk denotes the di-
mension of one vector of K. Softmax function
outputs the attention weights distributed over V .
attention(Q,K, V ) is a vector of weighted sum
of elements of V , and represents current context
information.

We focus on the encoder-decoder attention,
which builds the connection between source and
target by informing the decoder which area of the
source text should be attended to. Specifically,
in the encoder-decoder attention, Q is the single
vector coming from the current position of the de-
coder, K and V are the same sequence of vectors
that are the outcomes of the encoder at all source
positions. Softmax function distributes the atten-
tion weights over the source positions.

The attentions in Transformer adopts the multi-
head implementation, in which each head com-
putes attention as Equation (1) but with smaller
Q,K, V whose dimension is 1/h times of their
original dimension respectively. The attentions
from h heads are concatenated together and lin-
early projected to compose the final attention. In
this way, multi-head attention provides a multi-
view of attention behavior beneficial for the final
performance.

Deep Layers
The “N×” plates in Figure 1 stands for the stacked
N identical layers. On the source side, each layer
of the stacked N layers contains two sublayers:
the self-attention mechanism, and the fully con-
nected feed-forward network. Each sublayer em-
ploys residual connection that adds input to out-
come of sublayer, then layer normalization is em-
ployed on the outcome of the residual connection.

On the target summary side, each layer contains
an additional sublayer of the encoder-decoder at-
tention between the self-attention sublayer and the
feed-forward sublayer. At the top of the decoder,
the softmax layer is applied to convert the decoder
output to summary word generation probabilities.

3.2 Contrastive Attention Mechanism

3.2.1 Opponent Attention
As illustrated in Figure 1, the opponent attention
is derived from the conventional encoder-decoder
attention. Since the multi-head attention is em-
ployed in Transformer, there are N×h heads in to-
tal in the conventional encoder-decoder attention,
where N denotes the number of layers, h denotes



3047

	
	

	
	

	
	

(a)	

(b)	

Figure 2: Heatmaps of two sampled heads from the
conventional encoder-decoder attention. (a) is of the
fifth head of the third layer, and (b) is of the fifth head
of the first layer.

the number of heads in each layer. These heads
exhibit diverse attention behaviors, posing a chal-
lenge of determining which head to derive the op-
ponent attention, so that it attends to irrelevant or
less relevant parts.

Figure 2 illustrates the attention weights of two
sampled heads. The attention weights in (a) well
reflect the word level relevant relation between the
source sentence and the target summary, while at-
tention weights in (b) do not. We find that such
behavior characteristic of each head is fixed. For
example, head (a) always exhibits the relevant re-
lation across different sentences and different runs.
Based on depicting heatmaps of all heads for a few
sentences, we choose the head that corresponds
well to the relevant relation between source and
target to derive the opponent attention 1.

Specifically, let αc denote the conventional
encoder-decoder attention weights of the head
which is used for deriving the opponent attention:

αc = softmax(
qkT√
dk

) (2)

where q and k are from the head same to that of αc.
Let αo denote the opponent attention weights. It is
obtained through the opponent function applied on
αc followed by the softmax function:

αo = softmax(opponent(αc)) (3)

The opponent function in Equation (3) performs
a masking operation, which finds the maximum
weight in αc, and replaces it with the negative

1Given manual alignments between source and target of
sampled sentence-summary pairs, we select the head that has
the lowest alignment error rate (AER) of its attention weights.

infinity value, so that the softmax function out-
puts zero given the negative infinity value input.
Then the maximum weight in αc is set zero in
αo after the opponent and softmax functions. In
this way, the most relevant part of the source se-
quence, which receives maximum attention in the
conventional attention weights αc, is masked and
neglected in αo. Instead, the remaining less rele-
vant or irrelevant parts are extracted into αo for the
following contrastive training and decoding.

We also tried other methods to calculate the
opponent attention weights, such as αo =
softmax(1 − αc) (Song et al., 2018a) 2 or αo =
softmax(1/αc), which aims to make αo contrary
to αc, but they underperform the masking oppo-
nent function on all benchmark datasets. So we
present only the masking opponent in the follow-
ing sections.

After αo is obtained via Equation (3), the op-
ponent attention is: attentiono = αov, where v is
from the head same to that of q and k in computing
αc.

Compared to the conventional attention
attentionc, which summarizes current relevant
context, attentiono summarizes current irrelevant
or less relevant context. They constitute a con-
trastive pair, and contribute together for the final
summary word generation.

3.2.2 Opponent Probability
The opponent probability Po(yi|yi−1

1 , X) is com-
puted by stacking several layers on top of
attentiono, and a softmin layer in the end as
shown in the right part of Figure (1). In particu-
lar,

z1 = LayerNorm(attentiono) (4)
z2 = FeedForward(z1) (5)
z3 = LayerNorm(z1 + z2) (6)

Po(yi|yi−1
1 , X) = softmin(Wz3) (7)

whereW is the matrix of the linear projection sub-
layer.
attentiono contributes to Po via Equation (4-7)

step by step. The LayerNorm and FeedForward
layers with residual connection is similar to the

2Song et al. (2018a) directly let αo = 1−αc in extracting
background features for person re-identification in computer
vision. We have to add softmax function since the attention
weights must be normalized to one in sequence-to-sequence
framework.
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original Transformer, while a novel softmin func-
tion is introduced in the end to invert the contribu-
tion from attentiono:

softmin(vi) =
e(−vi)∑j e(−vj)

(8)

where v = Wz3, i.e., the input vector to the soft-
min function in Equation (7). Softmin normalizes
v so that scores of all words in the summary vo-
cabulary sum to one. We can see that the bigger
the vi, the smaller the Po,i is.

Softmin functions contrarily to softmax. As
a result, when we try to maximize Po(yi =
y|yi−1

1 , X), where y is the gold summary word, we
effectively search for an appropriate attentiono to
generate the lowest vg, where g is the index of y in
v. It means that the more irrelevant is attentiono
to the summary, the lower the vg can be obtained,
resulting in higher Po.

3.3 Training and Decoding

During training, we jointly maximize the conven-
tional probability Pc and the opponent probability
Po:

J = log(Pc(yi|yi−1
1 , X) + λlog(Po(yi|yi−1

1 , X)
(9)

where λ is the balanced weight. The conventional
probability is computed as the original Trans-
former does, basing on sublayers of feed-forward,
linear projection, and softmax stacked over the
conventional attention as illustrated in the left part
of Figure 1. The opponent probability is based on
similar sublayers stacked over the opponent atten-
tion, but with softmin as the last sublayer as illus-
trated in the right part of Figure 1.

Due to the contrary properties of softmax and
softmin, jointly maximizing Pc and Po actually
maximizes the contribution from the conventional
attention for summary word generation, while at
the same time minimizes the contribution from the
opponent attention3. In other words, the train-
ing objective is to let the relevant part attended

3We also tried replacing softmin in Equation (7) with soft-
max, and correspondingly setting the training objective as
maximizing J = log(Pc)−λlog(Po), but this method failed
to train because Po becomes too small during training, and
results in negative infinity value of log(Po) that hampers the
training. In comparison, softmin and the training objective of
Equation (9) do not have such problem, enabling the effective
training of the proposed network.

by attentionc contribute more to the summariza-
tion, while let the irrelevant or less relevant parts
attended by attentiono contribute less.

During decoding, we aim to find maximum J
of Equation (9) in the beam search process.

4 Experiments

We conduct experiments on abstractive sentence
summarization benchmark datasets to demonstrate
the effectiveness of the proposed contrastive atten-
tion mechanism.

4.1 Datasets

In this paper, we evaluate our proposed method on
three abstractive text summarization benchmark
datasets. First, we use the annotated Gigaword
corpus and preprocess it identically to Rush et
al. (2015), which results in around 3.8M train-
ing samples, 190K validation samples and 1951
test samples for evaluation. The source-summary
pairs are formed through pairing the first sentence
of each article with its headline. We use DUC-
2004 as another English data set only for testing in
our experiments. It contains 500 documents, each
containing four human-generated reference sum-
maries. The length of the summary is capped at 75
bytes. The last data set we used is a large corpus of
Chinese short text summarization (LCSTS) (Hu
et al., 2015), which is collected from the Chinese
microblogging website Sina Weibo. We follow the
data split of the original paper, with 2.4M source-
summary pairs from the first part of the corpus for
training, 725 pairs from the last part with high an-
notation score for testing.

4.2 Experimental Setup

We employ Transformer as our basis architecture4.
Six layers are stacked in both the encoder and de-
coder, and the dimensions of the embedding vec-
tors and all hidden vectors are set 512. The inner
layer of the feed-forward sublayer has the dimen-
sionality of 2048. We set eight heads in the multi-
head attention. The source embedding, the target
embedding and the linear sublayer are shared in
our experiments. Byte-pair encoding is employed
in the English experiment with a shared source-
target vocabulary of about 32k tokens (Sennrich
et al., 2015).

Regarding the contrastive attention mechanism,
the opponent attention is derived from the head

4https://github.com/pytorch/fairseq
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System Gigaword DUC2004
R-1 R-2 R-L R-1 R-2 R-L

ABS (Rush et al., 2015) 29.55 11.32 26.42 26.55 7.06 22.05
ABS+ (Rush et al., 2015) 29.76 11.88 26.96 28.18 8.49 23.81
RAS-Elman (Chopra et al., 2016) 33.78 15.97 31.15 28.97 8.26 24.06
words-lvt5k-1sent (Nallapati et al., 2016) 35.30 16.64 32.62 28.61 9.42 25.24
SEASSbeam (Zhou et al., 2017) 36.15 17.54 33.63 29.21 9.56 25.51
RNNMRT (Ayana et al., 2016) 36.54 16.59 33.44 30.41 10.87 26.79
Actor-Critic (Li et al., 2018) 36.05 17.35 33.49 29.41 9.84 25.85
StructuredLoss (Edunov et al., 2018) 36.70 17.88 34.29 - - -
DRGD (Li et al., 2017) 36.27 17.57 33.62 31.79 10.75 27.48
ConvS2S (Gehring et al., 2017) 35.88 17.48 33.29 30.44 10.84 26.90
ConvS2SReinforceTopic (Wang et al., 2018) 36.92 18.29 34.58 31.15 10.85 27.68
FactAware (Cao et al., 2018) 37.27 17.65 34.24 - - -
Transformer 37.87 18.69 35.22 31.38 10.89 27.18
Transformer+ContrastiveAttention 38.72 19.09 35.82 32.22 11.04 27.59

Table 1: ROUGE scores on the English evaluation sets of both Gigaword and DUC2004. On Gigaword, the full-
length F-1 based ROUGE scores are reported. On DUC2004, the recall based ROUGE scores are reported. “-”
denotes no score is available in that work.

whose attention is most synchronous to word
alignments of the source-summary pair. In our
experiments, we select the fifth head of the third
layer for deriving the opponent attention in the En-
glish experiments, and select the second head of
the third layer in the Chinese experiments. All di-
mensions in the contrastive architecture are set 64.
The λ in Equation (9) is tuned on the development
set in each experiment.

During training, we use the Adam optimizer
with β1 = 0.9, β2 = 0.98, ε= 10−9. The initial
learning rate is 0.0005. The inverse square root
schedule is applied for initial warm up and anneal-
ing (Vaswani et al., 2017). During training, we
use a dropout rate of 0.3 on all datasets.

During evaluation, we employ ROUGE (Lin,
2004) as our evaluation metric. Since stan-
dard Rouge package is used to evaluate the En-
glish summarization systems, we also follow the
method of Hu et al. (2015) to map Chinese words
into numerical IDs in order to evaluate the perfor-
mance on the Chinese data set.

4.3 Results

4.3.1 English Results

The experimental results on the English evaluation
sets are listed in Table 1. We report the full-length
F-1 scores of ROUGE-1 (R-1), ROUGE2 (R-2),
and ROUGE-L (R-L) on the evaluation set of the
annotated Gigaword, while report the recall-based
scores of the R-1, R-2, and R-L on the evaluation
set of DUC2004 to follow the setting of the previ-
ous works.

The results of our works are shown at the bot-

tom of Table 1. The performances of the re-
lated works are reported in the upper part of Ta-
ble 1 for comparison. ABS and ABS+ are the
pioneer works of using neural models for ab-
stractive text summarization. RAS-Elman extends
ABS/ABS+ with attentive CNN encoder. words-
lvt5k-1sent uses large vocabulary and linguistic
features such as POS and NER tags. RNNMRT,
Actor-Critic, StructuredLoss are sequence-level
training methods to overcome the problem of the
usual teacher-forcing methods. DRGD uses re-
current latent random model to improve summa-
rization quality. FactAware generates summary
words conditioned on both the source text and the
fact descriptions extracted from OpenIE or depen-
dencies. Besides the above RNN-based related
works, CNN-based architectures of ConvS2S and
ConvS2SReinforceTopic are included for compari-
son.

Table 1 shows that we build a strong base-
line using Transformer alone which obtains the
state-of-the-art performance on Gigaword evalua-
tion set, and obtains comparable performance to
the state-of-the-art on DUC2004. When we in-
troduce the contrastive attention mechanism into
Transformer, it significantly improves the perfor-
mance of Transformer, and greatly advances the
state-of-the-art on both Gigaword evaluation set
and DUC2004, as shown in the row of “Trans-
former+Contrastive Attention”.

4.3.2 Chinese Results
Table 2 presents the evaluation results on LC-
STS. The upper rows list the performances of the
related works, the bottom rows list the perfor-
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System R-1 R-2 R-L
RNN context (Hu et al., 2015) 29.90 17.40 27.20
CopyNet (Gu et al., 2016) 34.40 21.60 31.30
RNNMRT (Ayana et al., 2016) 38.20 25.20 35.40
RNNdistraction (Chen et al., 2016) 35.20 22.60 32.50
DRGD (Li et al., 2017) 36.99 24.15 34.21
Actor-Critic (Li et al., 2018) 37.51 24.68 35.02
Global (Lin et al., 2018) 39.40 26.90 36.50
Transformer 41.93 28.28 38.32
Transformer+ContrastiveAttention 44.35 30.65 40.58

Table 2: The full-length F-1 based ROUGE scores on
the Chinese evaluation set of LCSTS.

mances of our Transformer baseline and the inte-
gration of the contrastive attention mechanism into
Transformer. We only take character sequences
as source-summary pairs and evaluate the per-
formance based on reference characters for strict
comparison to the related works.

Table 2 shows that Transformer also sets a
strong baseline on LCSTS that surpasses the per-
formances of the previous works. When Trans-
former is equipped with our proposed contrastive
attention mechanism, the performance is signif-
icantly improved and drastically advances the
state-of-the-art on LCSTS.

5 Analysis and Discussion

5.1 Effect of the Contrastive Attention
Mechanism on Attentions

Figure 3 shows the attention weights before and
after using the contrastive attention mechanism.
We depict the averaged attention weights of all
heads in one layer in Figure 3a and 3b to study
how it contributes to the conventional probabil-
ity computation, and depict the opponent attention
weights in Figure 3c to study its contribution to
the opponent probability. Since we select the fifth
head of the third layer to derive the opponent atten-
tion in English experiment, the studies are carried
out on the third layer.

Figure 3a is from the baseline Transformer, Fig-
ure 3b is from “Transformer + ContrastiveAtten-
tion”. We can see that “Transformer + Con-
trastiveAttention” is more focused on the source
parts that are most relevant to the summary than
the baseline Transformer, which scatters attention
weights on summary word neighbors or even func-
tional words such as “-lrb-” and “the”. “Trans-
former + ContrastiveAttention” cancels such scat-
tered attentions by using the contrastive attention
mechanism.

	
	

	
	

	
	
	
	
	

(a)	

(b)	

(c)	

Figure 3: The attention weight changes by us-
ing the contrastive attention mechanism. (a) is
the average attention weights of the third layer of
the baseline Transformer, (b) is that of “Trans-
former+ContrastiveAttention”, and (c) is the opponent
attention derived from the fifth head of the third layer.

Figure 3c depicts the opponent attention
weights. They are optimized during training to
generate the lowest score which is fed into soft-
min to get the highest opponent probability Po.
The more irrelevant to the summary word the op-
ponent is, the lower the score can be obtained, thus
resulting in higher Po. Figure 3c shows that the at-
tentions are formed over irrelevant parts with var-
ied weights as the result of maximizing Po during
training.

5.2 Effect of the Opponent Probability in
Decoding

We study the contribution of the opponent prob-
ability Po by dropping it during decoding to see
if it hurts the performance. Table 4 shows that
dropping Po significantly harms the performance
of “Transformer + ContrastiveAtt”. The perfor-
mance difference between the model dropping Po

and the baseline Transformer is marginal, indicat-
ing that adding the opponent probability Po is key
for achieving the performance improvement.

5.3 Explorations on Deriving the Opponent
Attention

Masking More Attention Weights for Deriving
the Opponent Attention
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System Gigaword DUC2004
R-1 R-2 R-L R-1 R-2 R-L

mask maximum weight 38.72 19.09 35.82 32.22 11.04 27.59
mask top-2 weights 38.17 19.15 35.51 31.87 10.94 27.41
mask top-3 weights 38.36 19.11 35.56 31.67 10.37 27.31
dynamically mask 38.12 18.92 35.28 31.37 10.32 27.11
synchronous head 38.72 19.09 35.82 32.22 11.04 27.59
non-synchronous head 37.85 18.59 35.16 31.73 10.74 27.35
averaged head 38.43 19.10 35.53 31.82 10.98 27.43
Transformer baseline 37.87 18.69 35.22 31.38 10.89 27.18

Table 3: Results of explorations on the opponent attention derivation. The upper part presents the influence of
masking more attention weights for deriving the opponent attention. The middle part presents the results of select-
ing different head for the opponent attention derivation. The bottom row presents the result of Transformer.

Gigaword R-1 R-2 R-L
Transformer 37.87 18.69 35.22
Transformer+ContrastiveAtt-Po 37.92 18.88 35.21
Transformer+ContrastiveAtt 38.72 19.09 35.82
DUC2004 R-1 R-2 R-L
Transformer 31.38 10.89 27.18
Transformer+ContrastiveAtt-Po 31.21 10.70 26.85
Transformer+ContrastiveAtt 32.22 11.04 27.59

Table 4: The effect of dropping Po (denoted by -Po)
from Transformer+ContrastiveAtt during decoding.

In Section 3.2.1, we mask the most salient word
that has the maximum weight of αc to derive the
opponent attention. In this subsection, we experi-
mented with masking more weights of αc by two
ways: 1) masking top k weights, 2) dynamically
masking. In the dynamically masking method, we
order the weights from big to small at first, then go
on masking two neighbors until the ratio between
them is over a threshold. The threshold is 1.02
based on training and tuning on the development
set.

The upper rows of Table 3 presents the per-
formance comparison between masking maximum
weight and masking more weights. It shows that
masking maximum weight performs better, indi-
cating that masking the most salient weight leaves
more irrelevant or less relevant words to com-
pute the opponent probability Po, which is more
reliable than that computed from less remaining
words after masking more weights.

Selecting Non-synchronous Head or Averaged
Head for Deriving the Opponent Attention
As explained in Section 3.2.1, the opponent at-
tention is derived from the head that is most syn-
chronous to the word alignments between source
sentence and summary. We denote it “syn-
chronous head”. We also explored deriving the
opponent attention from the fifth head of the first

layer, which is non-synchronous to the word align-
ments as illustrated in Figure 2b. Its result is pre-
sented in the “non-synchronous head” row. In ad-
dition, the attention weights averaged on all heads
of the third layer are used to derive the opponent
attention. We denote it “averaged head”.

As shown in the middle part of Table 3,
both “non-synchronous head” and “averaged
head” underperform “synchronous head”. “non-
synchronous head” performs worst, and even
worse than the Transformer baseline on Gigaword.
This indicates that it is better to compose the op-
ponent attention from irrelevant parts that can be
easily located in the synchronous head. “averaged
head” performs slightly worse than “synchronous
head”, and is also slower due to the involved all
heads.

5.4 Qualitative Study

Table 5 shows the qualitative results. The high-
lights in the baseline Transformer manifest the
incorrect areas extracted by the baseline sys-
tem. In contrast, the highlights in Trans-
former+ContrastiveAtt show that correct contents
are extracted since the contrastive system distin-
guish relevant parts from irrelevant parts on the
source side and made attending to correct areas
more easily.

6 Conclusion

We proposed a contrastive attention mechanism
for abstractive sentence summarization, using both
the conventional attention that attends to the rel-
evant parts of the source sentence, and a novel
opponent attention that attends to irrelevant or
less relevant parts for the summary word gener-
ation. Both categories of the attention constitute
a contrastive pair, and we encourage contribution
from the conventional attention and penalize con-
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Src:press freedom in algeria remains at risk despite the release on wednesday of prominent newspaper editor mohamed UNK
after a two-year prison sentence , human rights organizations said .
Ref:algerian press freedom at risk despite editor ’s release UNK picture
Transformer:press freedom remains at risk in algeria rights groups say
Transformer+ContrastiveAtt:press freedom remains at risk despite release of algerian editor
Src:denmark ’s poul-erik hoyer completed his hat-trick of men ’s singles badminton titles at the european championships ,
winning the final here on saturday
Ref:hoyer wins singles title
Transformer:hoyer completes hat-trick
Transformer+ContrastiveAtt:hoyer wins men ’s singles title
Src:french bank credit agricole launched on tuesday a public cash offer to buy the ## percent of emporiki bank it does not already
own , in a bid valuing the greek group at #.# billion euros ( #.# billion dollars ) .
Ref:credit agricole announces #.#-billion-euro bid for greek bank emporiki
Transformer:credit agricole launches public cash offer for greek bank
Transformer+ContrastiveAtt:french bank credit agricole bids #.# billion euros for greek bank

Table 5: Example summaries generated by the baseline Transformer and Transformer+ContrastiveAtt.

tribution from the opponent attention through joint
training. Using Transformer as a strong baseline,
experiments on three benchmark data sets show
that the proposed contrastive attention mechanism
significantly improves the performance, advanc-
ing the state-of-the-art performance for the task.
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