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Abstract

Can we construct a neural model that is in-
ductively biased towards learning human lan-
guages? Motivated by this question, we aim
at constructing an informative prior over neu-
ral weights, in order to adapt quickly to held-
out languages in the task of character-level lan-
guage modeling. We infer this distribution
from a sample of typologically diverse train-
ing languages via Laplace approximation. The
use of such a prior outperforms baseline mod-
els with an uninformative prior (so-called ‘fine-
tuning’) in both zero-shot and few-shot set-
tings. This shows that the prior is imbued
with universal phonological knowledge. More-
over, we harness additional language-specific
side information as distant supervision for
held-out languages. Specifically, we condition
language models on features from typologi-
cal databases, by concatenating them to hid-
den states or generating weights with hyper-
networks. These features appear beneficial in
the few-shot setting, but not in the zero-shot
setting. Since the paucity of digital texts af-
fects the majority of the world’s languages, we
hope that these findings will help broaden the
scope of applications for language technology.

1 Introduction

With the success of recurrent neural networks and
other black-box models on core NLP tasks, such as
language modeling, researchers have turned their
attention to the study of the inductive bias such neu-
ral models exhibit (Linzen et al., 2016; Marvin and
Linzen, 2018; Ravfogel et al., 2018). A number of
natural questions have been asked. For example,
do recurrent neural language models learn syntax
(Marvin and Linzen, 2018)? Do they map onto
grammaticality judgments (Warstadt et al., 2019)?
However, as Ravfogel et al. (2019) note, “[m]ost of
the work so far has focused on English.” Moreover,
these studies have almost always focused on train-
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ing scenarios where a large number of in-language
sentences are available.

In this work, we aim to find a prior distribu-
tion over network parameters that generalize well
to new human languages. The recent vein of re-
search on the inductive biases of neural nets im-
plicitly assumes a uniform (unnormalizable) prior
over the space of neural network parameters (Rav-
fogel et al., 2019, inter alia). In contrast, we take
a Bayesian-updating approach: First, we approxi-
mate the posterior distribution over the network pa-
rameters using the Laplace method (Azevedo-Filho
and Shachter, 1994), given the data from a sample
of seen training languages. Afterward, this distri-
bution serves as a prior for maximum-a-posteriori
(MAP) estimation of network parameters for the
held-out unseen languages.

The search for a universal prior for linguistic
knowledge is motivated by the notion of Universal
Grammar (UG), originally proposed by Chomsky
(1959). The presence of innate biological proper-
ties of the brain that constrain possible human lan-
guages was posited to explain why children learn
languages so quickly despite the poverty of the
stimulus (Chomsky, 1978; Legate and Yang, 2002).
In turn, UG has been connected with Greenberg
(1963)’s typological universals by Graffi (1980)
and Gilligan (1989): this way, the patterns observed
in cross-lingual variation could be explained by
an innate set of parameters wired into a language-
specific configuration during the early phases of
language acquisition.

Our study explores the task of character-level
language modeling. Specifically, we choose an
open-vocabulary setup, where no token is treated
as unknown, to allow for a fair comparison among
the performances of different models across differ-
ent languages (Gerz et al., 2018a,b; Cotterell et al.,
2018; Mielke et al., 2019). We run experiments un-
der several regimes of data scarcity for the held-out
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languages (zero-shot, few-shot, and joint multilin-
gual learning) over a sample of 77 typologically
diverse languages.

As an orthogonal contribution, we also note that
realistically we are not completely in the dark about
held-out languages, as coarse-grained grammati-
cal features are documented for most world’s lan-
guages and available in typological databases such
as URIEL (Littell et al., 2017). Hence, we also
explore a regime where we condition the universal
prior on typological side information. In particu-
lar, we consider concatenating typological features
to hidden states (Ostling and Tiedemann, 2017)
and generating the network parameters with hyper-
networks receiving typological features as inputs
(Platanios et al., 2018).

Empirically, given the results of our study, we
offer two findings. The first is that neural recur-
rent models with a universal prior significantly out-
perform baselines with uninformative priors both
in zero-shot and few-shot training settings. Sec-
ondly, conditioning on typological features further
reduces bits per character in the few-shot setting,
but we report negative results for the zero-shot set-
ting, possibly due to some inherent limitations of
typological databases (Ponti et al., 2019).

The study of low-resource language modeling
also has a practical impact. According to Simons
(2017), 45.71% of the world’s languages do not
have written texts available. The situation is even
more dire for their digital footprint. As of March
2015, just 40 out of the 188 languages documented
on the Internet accounted for 99.99% of the web
pages.! And as of April 2019, Wikipedia is trans-
lated only in 304 out of the 7097 existing languages.
What is more, Kornai (2013) prognosticates that the
digital divide will act as a catalyst for the extinction
of many of the world’s languages. The transfer of
language technology may help reverse this course
and give space to unrepresented communities.

2 LSTM Language Models

In this work, we address the task of character-level
language modeling. Whereas word lexicalization is
mostly arbitrary across languages, phonemes allow
for transferring universal constraints on phonotac-
tics? and language-specific sequences that may be
shared across languages, such as borrowings and
'nttps://w3techs.com/technologies/
overview/content_language/all

’E.g. with few exceptions (Evans and Levinson, 2009, sec.
2.2.2), the basic syllabic structure is vowel-consonant.

cognates (Brown et al., 2008). Since languages
are mostly recorded in text rather than phonemic
symbols (IPA), however, we focus on characters as
a loose approximation of phonemes.

Let X, be the set of characters for language
£. Moreover, consider a collection of languages
T L € partitioned into two disjoint sets of observed
(training) languages 7 and held-out (evaluation)
languages £. Then, let X = Uyc(76)20 be the
union of character sets in all languages. A univer-
sal, character-level language model is a probability
distribution over X*.3 Let x € ¥* be a sequence
of characters. We write:

n

p(x | w) =[] pa: | x<t,w) )

t=1

where ¢ is a time step, z is a distinguished begin-
ning-of-sentence symbol, w are the parameters,
and every sequence x ends with a distinguished
end-of-sentence symbol x,,.

We implement character-level language models
with Long Short-Term Memory (LSTM) networks
(Hochreiter and Schmidhuber, 1997). These en-
code the entire history x; as a fixed-length vector
h; by manipulating a memory cell c¢; through a set
of gates. Then we define

p(z¢ | X<t, w) = softmax(W h; +b).  (2)

LSTMs have an advantage over other recurrent ar-
chitectures as memory gating mitigates the problem
of vanishing gradients and captures long-distance
dependencies (Pascanu et al., 2013).

3 Neural Language Modeling with a
Universal Prior

The fundamental hypothesis of this work is that
there exists a prior p(w) over the weights of a
neural language model that places high probability
on networks that describe human-like languages.
Such a prior would provide an inductive bias that
facilitates learning unseen languages. In practice,
we construct it as the posterior distribution over
the weights of a language model of seen languages.
Let D, be the examples in language ¢, and let the
examples in all training languages be D = Uyc7Dy.
Taking a Bayesian approach, the posterior over

3Note that 3 is also augmented with punctuation and white
space, and distinguished beginning-of-sequence and end-of-
sequence symbols, respectively.
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weights is given by Bayes’ rule:

p(w | D)o [[ p(De | W) p(w) — (3)
LeT
likelihood

——

posterior

——

prior

We take the prior of eq. (3) to be a Gaussian with
zero mean and covariance matrix o2 L i.e.

1 1
) = —enp (g wlR) . @

However, computation of the posterior p(w | D)
is woefully intractable: recall that, in our setting,
each p(x | w) is an LSTM language model, like the
one defined in eq. (2). Hence, we opt for a simple
approximation of the posterior, using the classic
Laplace method (MacKay, 1992). This method has
recently been applied to other transfer learning or
continuous learning scenarios in the neural network
literature (Kirkpatrick et al., 2017; Kochurov et al.,
2018; Ritter et al., 2018).

In §3.1, we first introduce the Laplace method,
which approximates the posterior with a Gaussian
centered at the maximum-likelihood estimate.* Its
covariance matrix is amenable to be computed with
backpropagation, as detailed in §3.2. Finally, we
describe how to use this distribution as a prior to
perform maximum-a-posteriori inference over new
data in §3.3.

3.1 Laplace Method

First, we (locally) maximize the logarithm of the
RHS of eq. (3):

L(w) = logp(Ds | w) +logp(w)  (5)
LeT

We note that £(w) is equivalent to the log-posterior
up to an additive constant, i.e.

logp(w | D) = L(w) —logp(D)  (6)

where the constant log p(D) is the log-normalizer.
Let w* be a local maximizer of £.> We now ap-
proximate the log-posterior with a second-order
Taylor expansion around w*:

log p(w | D) =~ (7)
£(w*) + 5 (ww*) TH (w — w*) — logp(D)

*Note that, in general, the true posterior is multi-modal.
The Laplace method instead approximates it with a unimodal
distribution.

3In practice, non-convex optimization is only guaranteed to
reach a critical point, which could be a saddle point. However,
the derivation of Laplace’s method assumes that we do reach
a maximizer.

where H is the Hessian matrix. Note that we
have omitted the first-order term, since the gra-
dient VL(w) = 0 at the local maximizer w*.
This quadratic approximation to the log-posterior
is Gaussian, which can be seen by exponentiating
the RHS of eq. (7):

exp[—%(w —w*) T (=H)(w — W*)}
(2m)d|-H|™!
A2 N(w*, —-H 3)

where exp(L(w*)) is simplified from both numer-
ator and denominator. Since w* is a local maxi-
mizer, H is a negative semi-definite matrix.® The
full derivation is given in App. C.

In principle, computing the Hessian is possible
by running backpropagation twice: This yields a
matrix with d? entries. However, in practice, this is
not possible. First, running backpropagation twice
is tedious. Second, we can not easily store a matrix
with d? entries since d is the number of parameters
in the language model, which is exceedingly large.

3.2 Approximating the Hessian

To cut the computation down to one pass, we ex-
ploit a property from theoretical statistics: Namely,
that the Hessian of the log-likelihood bears a close
resemblance to a quantity known as the Fisher in-
formation matrix. This connection allows us to de-
velop a more efficient algorithm that approximates
the Hessian with one pass of backpropagation.

We derive this approximation to the Hessian of
L(w) here. First, we note that due to the linearity
of V2, we have

H = VL(w)
= V? (Z log p(Dy | w) + 10gp(W)>
LeT
=> V?logp(Dy | w)+ V2logp(w) (9)
LeT
likelihood prior

Note that the integral over languages £ € T is a
discrete summation, so we may exchange addends
and derivatives such as is required for the proof.
We now discuss each term of eq. (9) individually.
First, to approximate the likelihood term, we draw
on the relation between the Hessian and the Fisher
®Note that, as a result, our representation of the Gaussian

is non-standard; generally, the precision matrix is positive
semi-definite.
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information matrix. A basic fact from information
theory (Cover and Thomas, 2006) gives us that the
Fisher information matrix may be written in two
equivalent ways:

—E [VZ1logp(D | w)]
=E [V logp(D | w) Viegp(D | w)T

(10)

expected Fisher information matrix

This equality suggests a natural approximation of
the expected Fisher information matrix—the ob-
served Fisher information matrix

| | ZVQIng(x\w) (11)
XGD
’D‘ > Viegp(x | w) Viegp(x | w)'
xeD

observed Fisher information matrix

which is tight in the limit as |D| — oo due to the
law of large numbers. Indeed, when we have a
large number of training exemplars, the average
of the outer products of the gradients will be a
good approximation to the Hessian. However, even
this approximation still has d? entries, which is far
too many to be practical. Thus, we further use a
diagonal approximation. We denote the diagonal
of the observed Fisher information matrix as the
vector f € R?, which we define as

2
=% RN |D‘ [Viogp(x | w)]

LeT x€Dy

(12)

where the (+)? is applied point-wise. Computation
of the Hessian of the prior term in eq. (9) is more
straightforward and does not require approximation.
Indeed, generally, this is the negative inverse of the
covariance matrix, which in our case means
2 1

V<logp(w) = —;I (13)
Summing the (approximate) Hessian of the log-
likelihood in eq. (12) and the Hessian of the prior
in eq. (13) yields our approximation to the Hessian
of the log-posterior

- . 1

H = —diag(f) — EI (14)
The full derivation of the approximated Hessian is
available in App. D.

3.3 MAP Inference

Finally, we harness the posterior p(w | D) ~
N (w*,—H™!) as the prior over model parame-
ters for training a language model on new, held-out
languages via MAP estimation. This is only an
approximation to full Bayesian inference, because
it does not characterize the entire distribution of
the posterior, just the mode (Gelman et al., 2013).

In the zero-shot setting, this boils down to using
the mean of the prior w* as network parameters
during evaluation. In the few-shot setting, instead,
we assume that some data for the target language
{ € £ is available. Therefore, we maximize the
log-likelihood given the target language data plus
a regularizer that incarnates the prior, scaled by a
factor of A:

= logp(Dy | w)

et

15)
A *\ T 1 *

—|—§(W—W ) H(w—w")
We denote the the prior N'(w*, —H~!) that fea-
tures in eq. (15) as UNIV, as it incorporates uni-
versal linguistic knowledge. As a baseline for this
objective, we perform MAP inference with an unin-
formative prior N(0,I), which we label NINF. In
the zero-shot setting, this means that the parame-
ters are sampled from the uninformative prior. In
the few-shot setting, we maximize

A
L(w) = Y logp(De | w) — 51wl
le€

(16)

Note that, owing to this formulation, the unin-
formed NINF model does not have access to the
posterior of the weights given the data from the
training languages.

Moreover, as an additional baseline, we consider
a common approach for transfer learning in neural
networks (Ruder, 2017), namely ‘fine-tuning.” Af-
ter finding the maximum-likelihood value w* on
the training data, this is simply used to initialize
the weights before further optimizing them on the
held-out data. We label this method FI1TU.

4 Language Modeling Conditioned on
Typological Features

Realistically, the prior over network weights should
also be augmented with side information about the
general properties of the held-out language to be
learned, if such information is available. In fact,
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linguists have documented such information even
for languages without plain digital texts available
and stored it in the form of attribute—value features
in publicly accessible databases (Croft, 2002; Dryer
and Haspelmath, 2013).

The usage of such features to inform neural NLP
models is still scarce, partly because the evidence
in favor of their effectiveness is mixed (Ponti et al.,
2018, 2019). In this work, we propose a way to
distantly supervise the model with this side infor-
mation effectively. We extend our non-conditional
language models outlined in §3 (BARE) to a series
of variants conditioned on language-specific prop-
erties, inspired by Ostling and Tiedemann (2017)
and Platanios et al. (2018). A fundamental differ-
ence from these previous works, however, is that
they learn such properties in an end-to-end fash-
ion from the data in a joint multilingual learning
setting. Obviously, this is not feasible for the zero-
shot setting and unreliable for the few-shot setting.
Rather, we represent languages with their typologi-
cal feature vector, which we assume to be readily
available both for both training and held-out lan-
guages.

Let t, € [0,1)f be a vector of f typological
features for language ¢ € 7 LI E. We reinterpret the
conditional language models within the Bayesian
framework by estimating their posterior probability

p(w | D, F) o< [[ p(De | w)p(w | ts) (17)
LeT

We now consider two possible methods to estimate
p(w | tg). For both of them, we first encode
the features through a non-linear transformation
f(t¢) = ReLU(W t;+b), where W € R"*/ and
b € R", r <« f. A first variant, labeled OEST, is
based on Ostling and Tiedemann (2017). Assum-
ing the standard LSTM architecture where o is the
output gate and c; is the memory cell, we modify
the equation for the hidden state h; as follows:

h; = (o; ® tanh(ct)) ® f(t) (18)

where ® stands for the Hadamard product and &
for concatenation. In other words, we concatenate
the typological features to all the hidden states.
Moreover, we experiment with a second variant
where the parameters of the LSTM are generated
by a hyper-network (i.e., a simple linear layer with
weight W € RIWIX") that transforms f(t,) into
w. This approach, labeled PLAT, is inspired by

Platanios et al. (2018), with the difference that they
generate parameters for an encoder-decoder archi-
tecture for neural machine translation.

On the other hand, we do not consider the condi-
tional model proposed by Sutskever et al. (2014),
where f(t;) would be used to initialize the val-
ues for hgy and cg. During the evaluation, for all
time steps t, h; and c; are never reset on sentence
boundaries, so this model would find itself at a dis-
advantage because it would require either to erase
the sequential history cyclically or to lose memory
of the typological features.

5 Experimental Setup

Data The source for our textual data is the
Bible corpus’ (Christodouloupoulos and Steedman,
2015).3 We exclude languages that are not written
in the Latin script and duplicate languages, result-
ing in a sample of 77 languages.” Since not all
translations cover the entire Bible, they vary in
size. The text from each language is split into train-
ing, development, and evaluation sets (80-10-10
percent, respectively). Moreover, to perform MAP
inference in the few-shot setting, we randomly sam-
ple 100 sentences from the train set of each held-out
language.

We obtain the typological feature vectors from
URIEL (Littell et al., 2017).'© We include the fea-
tures related to 3 levels of linguistic structure, for
a total of 245 features: i) syntax, e.g. whether the
subject tends to precede the object. These origi-
nate from the World Atlas of Language Structures
(Dryer and Haspelmath, 2013) and the Syntactic
Structures of the World’s Languages (Collins and
Kayne, 2009); ii) phonology, e.g. whether a lan-
guage has distinctive tones; iii) phonological in-
ventories, e.g. whether a language possesses the
retroflex approximant /1/. Both ii) and iii) were
originally collected in PHOIBLE (Moran et al.,
2014). Missing values are inferred as a weighted
average of the 10 nearest neighbor languages in
terms of family, geography, and typology.

"http://christos-c.com/bible/

8This corpus is arguably representative of the variety of the
world’s languages: it covers 28 families, several geographic
areas (16 languages from Africa, 23 from Americas, 26 from
Asia, 33 from Europe, 1 from Oceania), and endangered or
poorly documented languages (39 with less than 1M speakers).

These are identified with their 3-letter 1ISO 639-3 codes
throughout the paper. For the corresponding language names,
consult www.1iso.org/standard/39534.html.

Oyww.cs.cmu.edu/~dmortens/uriel .html
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NINF UNIV NINF UNIV NINF UNIV

BARE BARE OEST BARE BARE OEST BARE BARE OEST

acu 8491 3244 3472 | fra 8.587 4.066 4.467 || por 8491 37751 4219
afr  8.607 3.229 3.995 gbi 8.610 3.823 3912 || por 8.600 5336 5.359

agr 8.603 3.779 3.946 gla 8490 4.179 3.956 || ppk  8.596 4.506 4.599
ake 8.602 5.753 6.281 glv 8.606 4.349 4612 | quc 8.605 4.063 4.118
alb 8490 4.571 5.017 hat 8594 4.186 4.620 || quw 8.488 3.560 4.027

amu 8.610 4912 5.959 hrv 8.606 4.050 3.441 | rom 8.603 3.669 4.056
bsn 8591 5.046 5.695 | hun 8.493 4.836 5.030 || ron 8.588 5.011 5.690
cak 8.603 4.068 4.326 ind 8.604 3.796 4.311 shi 8.601 5.496 5.946
ceb 8.488 3.668 3.850 isl 8.596 5.039 5.629 slk 8.491 4304 4.512
ces 8.600 4369 4461 ita 8.605 4.023 3.752 sly 8.604 3.661 4.106

cha 8594 4366 4.353 | jak 8.488 4.051 4.793 || sna 8596 4.146 4.283
chg 8.598 6940 7.623 Jiv 8.601 3.866 4.039 || som 8.614 4159 4470
cjp 8494 4.600 4985 | kab 8596 4.659 5400 || spa 8489 3.645 4.020

cni  8.604 3.740 4.651 kbh  8.607 4.663 4950 || srp 8.604 3.414 3.437

dan 8.593 3471 4.599 kek 8.491 4.666 4944 || ssw  8.593 4.064 3.780
deu 8599 4102 4.214 lat 8.601 3.703 4.093 || swe 8.605 4.210 3.892
dik 8490 4.447 4.533 lav 8.588 5415 6.130 tgl 8.487 3.639 3.878

dje 8.603 3.725 3.996 lit 8.602 4794 4853 | tmh 8.602 4.830 4.711

djik 8592 3.663 3.874 || mam 8.488 4292 5.076 tur 8.592 5.574 5935

dop 8.609 5950 7.351 mri 8.606 3.440 4.074 || usp  8.604 4127 4.337
eng 8.488 3816 4.028 || nhg 8.588 4.323 4.450 vie 8.490 7.137 7.484
epo  8.605 3.818 4.116 nld 8.601 3.851 4326 | wal 8.605 4.027 4.585
est 8.606 6.807 8.261 nor 8492 3174 3902 || wol 8.607 4290 4.420

eus 8.605 4118 4321 | pck 8.603 4.053 4233 | xho 8.602 4.171 4.276
ewe 8490 5.049 5.497 plt 8.603 4364 4.648 zul 8.488 3.218 4.109

fin  8.604 4308 4338 || pol 8.601 5.158 5.556 || ALL 8.572 4343 4.691

Table 1: BPC scores (lower is better) for the ZERO-SHOT learning setting, with the uninformed prior (NINF) and
the universal prior (UNIV): see §2 for the descriptions of the priors. Note that for NINF there is no difference
between a BARE model and a conditional model (OEST). Colors define the partition in which each language
(rows) has been held out.

BARE OEST BARE OEST BARE OEST BARE OEST
acu 1413 1308 || eng 1355 1350 || kek 1131 1.133 || sik  1.844 1.754
afr 1471 1457 || epo 1471 1450 || lat 1.792 1.758 || siv  1.848 1.793
agr 1701 1.581 || est 0333 0150 | lav  2.146 1931 | sna 1489 1.457
ake 1453 1377 || eus 1.763 1.635 lit 1.895 1.833 || som 1477 1.468
alb 1590 1.552 || ewe 2.084 1944 || mam 1.654 1.548 || spa 1.559 1.525
amu 1402 1340 || fin 1716 1.680 || mri 1342 1330 || srp 1832 1.756
bsn 1232 1172 || fra 1465 1432 | nhg 1302 1238 | ssw 1.890 1.697
cak  1.281 1.221 || gbi 1398 1331 | nid 1.621 1.601 || swe 1.619 1.595
ceb 1.193 1.185 || gla 3403 1839 || nor 1.623 1590 || gl 1.221 1.210
ces 1.872 1795 || glv. 1932 1.644 || pck 1.731 1.711 || mmh  2.786 2.301
cha 1934 1.790 || har 1480 1.454 || pit 1.296 1.286 || wwr 1.801 1.773
chg 1265 1.220 || hrv  2.059 1974 || pol 1.743 1.698 || usp 1290 1.214
c¢jp 1706 1.565 || hun 1.887 1.847 | por 1586 1.552 || vie 1.648 1.637
cni 1.348 1.290 || ind 1356 1336 | por 2484 2144 || wal 1.561 1.457
dan 1.727 1.693 || isl 1.845 1.808 || ppk 1538 1.439 | wol 2.053 1.890
deu 1532 1512 || ita 1.615 1.583 || quc 1.393 1.291 || xho 1.680 1.634
dik 1979 1.835 | jak 1415 1322 | quw 1498 1418 || zul 1.880 1.620
dje 1.570 1.550 || jiv 1705 1.572 || rom 1.706 1.587 || ALL 1.652 1.550
djk 1515 1435 | kab 1955 1791 | ron 1.572 1.537
dop 1810 1.676 || kbh 1436 1371 || shi  2.057 1.903

Table 2: BPC results (lower is better) for the JOINT learning setting, with the uninformed NINF prior. These results
constitute the expected ceiling performance for language transfer models.
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NINF FiITuU UN1V

BARE OEST BARE OEST

acu 4203 2117 2551 2.136
afr 4423 3620 3.042 2773

agr 4268 3.282 3403 2457
ake 4318 2.168 2.238 2.180
alb 4544 3.186 3.302 3.084
amu 4486 2.820 3.948 2.080
bsn 4546 1861 2.678 1.850
cak 4426 1.994 2.053 1.956
ceb 4.084 2562 2595 2470
ces 4984 4651 4.190 3.680

cha 4329 2546 2.899 2.525
chg 4941 1948 2078 1.963
cp 4424 2389 2.880 2.393

cni 4185 2.797 3.018 1.982

dan 4719 3211 3.127 3.180
deu 4589 3.103 3.007 2.953
dik 4380 2.640 3.020 2.667

dje 4382 3.815 3398 2.898

dik  4.130 2,064 2446 2.085

dop 4508 2506 2562 2.448
eng 4436 2.808 2913 2.719
epo 4469 3.609 3511 2.825
est 3.618 1952 2487 1.962

eus 4354 2628 2705 2.567
ewe 4590 2.806 3.336 2.786
fin 4385 4339 3.830 3.312
fra 4551 3.086 3276 2.981
ghbi 4250 2.138 2.170 2.054
gla 4159 2377 2.835 2.395
glv 4346 3523 3702 2.644
hat 4468 2929 3.048 2.849
hrv 4615 3.845 3.608 3.588
hun  4.806 3.589 3.709 3.522
ind 4377 3317 3.258 2.420

isl 4744 3.174 3.703 3.101

ita 4370 3.384 3.196 3.178

jak 4532 2113 2.650 2.126
Jiv 4338 3413 3475 2.504
kab 4.649 2783 3.574 2.800

NINF FiITu UN1V
BARE OEST BARE OEST
kbh  4.644 2362 2434 2.288
kek 4613 2.809 3.015 2.714
lat 4239 4342 3416 3.202
lav 4765 2.867 3.842 2917
lit 4769 3.752 3.592 3.668
mam 4.525 2274 2873 2.363
mri 3795 3.482 3.010 2.459
nhg 4373 2004 2480 1.965
nld 4469 3.008 2.908 2.903
nor 4453 3152 2954 3.054
pck 4246 4011 3.532 3.030
plt 4201 2.532 2742 2.490
pol 4.853 3.852 3.620 3.788
por 4446 3231 3.198 3.098
pot 4299 3773 3944 2.763
ppk 4439 2220 2736 2.236
quc 4538 2154 2242 2108
quw 4223 2196 2547 2.158
rom 4378 3.121 3.257 2.455
ron 4579 3273 3734 3.216
shi 4509 2963 3.092 2970
slk 4873 3722 3812 3.631
sly 4.633 4.630 3.527 3.501
sna 4455 2910 3.114 2.870
som 4257 3.048 2908 2.934
spa 4.507 3.223 3.149 3.090
Srp 4561 4.467 3.367 3.380
ssw o 4370 2611 2924 2.570
swe 4.657 3266 3.184 3.177
tgl 4060 2.546 2.592 2.436
mh  4.618 4.087 4.218 3.125
tur 4846 3.509 4282 3.552
usp 4529 2.114 2.189 2.073
vie 5.185 3.018 3.751 3.015
wal 4398 2986 3.623 2.278
wol 4.621 2.898 2968 2.826
xho 4561 3415 3.208 3.289
zul 4564 2.625 2.866 2.622

LL 467 .007

Table 3: BPC scores (lower is better) for the FEW-SHOT learning setting, with NINF, FITU and UNIV priors.
Colors define the partition in which each language (rows) has been held out.

Language Model We implement the LSTM
following the best practices and choosing the
hyper-parameter settings indicated by Merity et al.
(2018b,a). Specifically, we optimize the neural
weights with Adam (Kingma and Ba, 2014) and a
non-monotonically decayed learning rate: its value
is initialized as 10~* and decreases by a factor of
10 every 1/3rd of the total epochs. The maximum
number of epochs amounts to 6 for training on D,
with early stopping based on development set per-
formance, and the maximum number of epochs is
25 for few-shot learning on Dyc¢.

For each iteration, we sample a language pro-

portionally to the amount of its data: p(¢) o |Dy|,
in order not to exhaust examples from resource-
lean languages in the early phase of training. Then,
we sample without replacement from D, a mini-
batch of 128 sequences with a variable maximum
sequence length.!! This length is sampled from
a distribution m ~ N'(u = 125,0 = 5).!2 Each
epoch ends when all the data sequences have been
sampled.

"""This avoids creating insurmountable boundaries to back-
propagation through time (Tallec and Ollivier, 2017).
Lml | _|D7|
uoATDel?
where |-] is an operator that rounds to the closest integer.

2The learning rate is therefore scaled by
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We apply several techniques of dropout for regu-
larization, including variational dropout (Gal and
Ghahramani, 2016), which applies an identical
mask to all the time steps, with p = 0.1 for char-
acter embeddings and intermediate hidden states
and p = 0.4 for the output hidden states. Drop-
Connect (Wan et al., 2013) is applied to the model
parameters U of the first hidden layer with p = 0.2.

Following Merity et al. (2018b), the underlying
language model architecture consists of 3 hidden
layers with 1,840 hidden units each. The dimen-
sionality of the character embeddings is 400. We
tie input and output embeddings following Merity
et al. (2018a). For conditional language models, the
dimensionality of f(ty) is set to 115 for the OEST
method based on concatenation (Ostling and Tiede-
mann, 2017), and 4 (due to memory limitations)
in the PLAT method based on hyper-networks (Pla-
tanios et al., 2018). For the regularizer in eq. (15),
we perform grid search over the hyper-parameter
A: we finally select a value of 10° for UNIV and
10~ for NINF.

Regimes of Data Paucity We explore different
regimes of data paucity for the held-out languages:
e ZERO-SHOT transfer setting: we split the sample
of 77 languages into 4 partitions. The languages in
each subset are held out in turn, and we use their
test set for evaluation.' For each subset, we further
randomly choose 5 languages whose development
set is used for validation. The training set of the
rest of the languages is used to estimate a prior over
network parameters via the Laplace approximation.
e FEW-SHOT transfer setting: on top of the zero-
shot setting, we use the prior to perform MAP in-
ference over a small sample (100 sentences) from
the training set of each held-out language.

e JOINT multilingual setting: the data includes
the full training set for all 77 languages, including
held-out languages. This serves as a ceiling for the
model performance in cross-lingual transfer.

6 Results and Analysis

The results for our experiments are grouped in Ta-
ble 1 for the ZERO-SHOT regime, in Table 3 for the
FEW-SHOT regime, and in Table 2 for the JOINT
multilingual regime, which constitutes a ceiling to
cross-lingual transfer performances. The scores
represent Bits Per Character (BPC; Graves, 2013):

¥Holding out each language individually would not in-
crease the sample of training languages significantly, while
inflating the number of experimental runs needed.

this metric is simply defined as the negative log-
likelihood of test data divided by In 2. We compare
the results along the following dimensions:

Informativeness of Prior Our main result is that
the UNTV prior consistently outperforms the NINF
prior across the board and by a large margin in both
ZERO-SHOT and FEW-SHOT settings. The scores of
the naivest baseline, ZERO-SHOT NINF BARE, are
considerably worse than both ZERO-SHOT UNIV
models: this suggests that the transfer of informa-
tion on character sequences is meaningful. The low-
est BPC reductions are observed for languages like
Vietnamese (15.94% error reduction) or Highland
Chinantec (19.28%) where character inventories
differ the most from other languages. Moreover,
the ZERO-SHOT UNTV models are on a par or better
than even the FEW-SHOT NINF models. In other
words, the most helpful supervision comes from a
universal prior rather than from a small in-language
sample of sentences. This demonstrates that the
UNT1V prior is truly imbued with universal linguis-
tic knowledge that facilitates learning of previously
unseen languages.

The averaged BPC score for the other baseline
without a prior, FINE-TUNE, is 3.007 for FEwW-
SHOT OEST, to be compared with 2.731 BPC of
UNI1V. Note that fine-tuning is an extremely com-
petitive baseline, as it lies at the core of most state-
of-the-art NLP models (Peters et al., 2019). Hence,
this result demonstrates the usefulness of Bayesian
inference in transfer learning.

Conditioning on Typological Information An-
other important result regards the fact that condi-
tioning language models on typological features
yields opposite effects in the ZERO-SHOT and FEW-
SHOT settings. Comparing the columns of the
BARE and OEST models in Table 1 reveals that
the non-conditional baseline BARE is superior for
71 /77 languages (the exceptions being Chamorro,
Croatian, Italian, Swazi, Swedish, and Tuareg). On
the other hand, the same columns in Table 3 and Ta-
ble 2 reveal an opposite pattern: OEST outperforms
the BARE baseline in 70 / 77 languages. Finally,
OEST surpasses the BARE baseline in the JOINT
setting for 76 / 77 languages (save Q’eqchi’).

We also also take into consideration an alter-
native conditioning method, namely PLAT. For
clarity’s sake, we exclude this batch of results from
Table 1 and Table 3, as this method proves to be
consistently worse than OEST. In fact, the average
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BPC of PLAT amounts to 5.479 in the ZERO-SHOT
setting and 3.251 in the FEW-SHOT setting. These
scores have to be compared with 4.691 and 2.731
for OEST, respectively.

The possible explanation behind the mixed evi-
dence on the success of typological features points
to some intrinsic flaws of typological databases.
Ponti et al. (2019) has shown how their feature
granularity may be too coarse to liaise with data-
driven probabilistic models, and inferring missing
values due to the limited coverage of features re-
sults in additional noise. As a result, language mod-
els seem to be damaged by typological features in
absence of data, whereas they benefit from their
guidance when at least a small sample of sentences
is available in the FEW-SHOT setting.

Data Paucity Different regimes of data paucity
display uneven levels of performance. The best
models for each setting (ZERO-SHOT UNIV BARE,
FEW-SHOT UNI1V OEST, and JOINT OEST) reveal
large gaps between their average scores. Hence, in-
language supervision remains the best option when
available: transferred language models always lag
behind their supervised equivalents.

7 Related Work

LSTMs have been probed for their inductive bias to-
wards syntactic dependencies (Linzen et al., 2016)
and grammaticality judgments (Marvin and Linzen,
2018; Warstadt et al., 2019). Ravfogel et al. (2019)
have extended the scope of this analysis to typolog-
ically different languages through synthetic varia-
tions of English. In this work, we aim to model
the inductive bias explicitly by constructing a prior
over the space of neural network parameters.

Few-shot word-level language modeling for truly
under-resourced languages such as Yongning Na
has been investigated by Adams et al. (2017)
with the aid of a bilingual lexicon. Vinyals et al.
(2016) and Munkhdalai and Trischler (2018) pro-
posed novel architectures (Matching Networks and
LSTMs augmented with Hebbian Fast Weights, re-
spectively) for rapid associative learning in English,
and evaluated them in few-shot cloze tests. In this
respect, our work is novel in pushing the problem
to its most complex formulation, zero-shot infer-
ence, and in taking into account the largest sample
of languages for language modeling to date.

In addition to those considered in our work, there
are also alternative methods to condition language
models on features. Kalchbrenner and Blunsom

(2013) used encoded features as additional biases
in recurrent layers. Kiros et al. (2014) put forth a
log-bilinear model that allows for a ‘multiplicative
interaction’ between hidden representations and
input features (such as images). With a similar de-
vice, but a different gating method, Tsvetkov et al.
(2016) trained a phoneme-level joint multilingual
model of words conditioned on typological features
from Moran et al. (2014).

The use of the Laplace method for neural trans-
fer learning has been proposed by Kirkpatrick et al.
(2017), inspired by synaptic consolidation in neuro-
science, with the aim to avoid catastrophic forget-
ting. Kochurov et al. (2018) tackled the problem
of continuous learning by approximating the pos-
terior probabilities through stochastic variational
inference. Ritter et al. (2018) substitute diagonal
Laplace approximation with a Kronecker factored
method, leading to better uncertainty estimates.
Finally, the regularizer proposed by Duong et al.
(2015) for cross-lingual dependency parsing can be
interpreted as a prior for MAP estimation where
the covariance is an identity matrix.

8 Conclusions

In this work, we proposed a Bayesian approach to
transfer language models cross-lingually. We cre-
ated a universal prior over neural network weights
that is capable of generalizing well to new lan-
guages suffering from data paucity. The prior was
constructed as the posterior of the weights given
the data from available training languages, inferred
via the Laplace method. Based on the results of
character-level language modeling on a sample of
77 languages, we demonstrated the superiority of
this prior imbued with universal linguistic knowl-
edge over uninformative priors and unnormalizable
priors (i.e., the widespread fine-tuning approach)
in both zero-shot and few-shot settings. Moreover,
we showed that adding language-specific side in-
formation drawn from typological databases to the
universal prior further increases the levels of perfor-
mance in the few-shot regime. While cross-lingual
transfer still lags behind supervised learning when
sufficient in-language data are available, our work
is a step towards bridging this gap in the future.
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A Character Distribution

Even within the same setting, BPC scores vary
enormously across languages in both the ZERO-
SHOT and FEW-SHOT settings, which requires an
explanation. Similarly to Gerz et al. (2018a,b), we
run a correlation analysis between language mod-
eling performance and basic statistics of the data.
In particular, we first create a vector of unigram
character counts for each language, shown in Fig. 1.
Then we estimate the cosine distance between the
vector of each language and the average of all the
others in our sample. This cosine distance is a mea-
sure of the ‘exoticness’ of a language’s character
distribution.

Pearson’s correlation between such cosine dis-
tance and the perplexity of UNIV BARE in each
language reveals a strong correlation coefficient
p = 0.53 and a statistical significance of p < 1076
in the ZERO-SHOT setting. On the other hand, such
correlation is absent (p = —0.13) and insignifi-
cant p > 0.2 in the FEW-SHOT setting. In other
words, if a few examples of character sequences
are provided for a target language, language mod-
eling performance ceases to depend on its unigram
character distribution.

B Probing of Learned Posteriors

Finally, it remains to establish which sort of knowl-
edge is embedded in the universal prior. How to
probe a probability distribution over weights in
the non-conditional UNTV BARE language model?
First, we study the signal-to-noise ratio of each pa-
rameter w;, computed as |’; f' , in each of the 4 splits.
Intuitively, this metric quaﬁtiﬁes the ‘informative-
ness’ of each parameter, which is proportional to
both the absolute value of the mean and the inverse
standard deviation of the estimate. The probabil-
ity density function of the signal-to-noise ratio is
shown in Fig. 2. From this plot, it emerges that
the estimated uncertainty is generally low (small
o; denominators yield high values). Most crucially,
the signal-to-noise values concentrate on the left of
the spectrum. This means that most weights will
not incur any penalty for changing during few-shot
learning based on eq. (15); on the other hand, there
is a bulk of highly informative parameters on the
right of the spectrum that are very likely to remain
fixed, thus preventing catastrophic forgetting. All
splits display such a pattern, although somewhat
shifted.

Second, to study the effect of conditioning the

universal prior on typological features, I gener-
ate random sequences of 25 characters from the
learned prior in each language. The first character
is chosen uniformly at random, and the subsequent
ones are sampled from the distribution given by
eq. (1) with a temperature of 1. The resulting texts
are shown in Table 4. Although this would warrant
a more thorough and systematic analysis, from a
cursory view it is evident of the sequences abide
with universal phonological patterns, e.g. favor-
ing vowels as syllabic nuclei and ordering conso-
nants based on sonority hierarchy. Moreover, the
language-specific information clearly steers pre-
dicted sequences towards the correct inventory of
characters, as demonstrated by Vietnamese (VIE)
and Lukpa (DOP) in Table 4.
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LIT Jjaven Suksyr sun siriai tes pije nuks SHI ereswrin an da~ytartnaas ni mad yano
NOR s hech far binje alrn bre a ver e hior JAK | fipelo ayok musam nejaz jih tewat ushi
KEK sx er taj chan linam laj dtebke naque SWE ssiar fades perdeshen heklui tart si a
JIV | da tum suuam sitas nekkin una tekaru ni | DIK e wen ke nun ni piyitia de run ye e ke
DJE a ciya toi milkak mo to yen nga suci EWE | d mula pe ose le ake mente amesa ke kul
SLK o0 je to temokoé lostave sa jesé gukli ALB I kur je ki thet je ji tin nuk t tho

CES e je jek jem neuten rekssyj jazd nib ws CNI u pen mireshisinoe airitcsa ateani yi
POR uc somo ai jegparase saves e iper to POT neta ynimka nekin linaayi meu carii a
SPA esqudr y lues dusme allis nencec adi ZUL dnakan kund bencro krileke konusti k
GLV ayr shzi ayn ai sephson a gil or geee QuUW ai chimira kachisinyra poi apre asyu
POL eteni na hidi cého oz swchj jeci i cil AGR | ji ica ama kujaa muri wajetar aumam hu
QuC iis xe cd wija ro pio kin cbi’ ij jejac DOP btelo v telaya ko ne zilryL neko po
WAL banjake la dos que benthi shivegina EUS cerer nagcermac istirinun qatserite
XHO | ukayla azigeecoa kosubentisiili jen maky | HUN elyet a bukot aky azrad ot mu hdldj y
SOM ao kun adku i sir jija i befey yadui GLA o0 e kere hho sho dhoir te ilailui a tu a
TGL | ikugy peo asha atan kao amai kain ak a | PCK | u gihiha ki mi dhia mea la hen a puh ih
CJp pae yei aje kin trheka pdn awawa ri s AFR | mal hoor in e sheei wer var buerkeas en
ACU | animmhi mustatur tukaw aants aastasai a | USP okan mi ykis ris rajajkujij taka ja
FIN i koin suu meit ja ii soi tetot jasw IND | t berka duhah menkad kemia ukus keri ya
MRI oki ka benoka ai ki kimanka pikaka ko ROM | hal kus seke nukertia dehe neshes hos n
SLV cicvim koko si nece pau ku meta noj ne | TMH arofm sibarn awigtir €li d usi leped
HRV ca ka te zet jon jem nezin isak ve u ITA tri cordia io si si conse de namni nel
EPO Jj li inij keris ec xom el e sepon kaj SRP e se a nil do zasom kuz je sefe nij hoc¢
AMU | mibinya na fiero melee cano’ ndo’ cy’oc | NLD e suet en de semeshord ak abaido zin
KBH Xe aquangmomnaynangmuacha tojam LAT | ifte quissi fetam remnas emens in timnex
CEB abithon kayay isa atoug giraban sula MAM [ la yil a cheh tjea nut tej quxen kaj
GBI | fuma ome pani de imoako kema kaye ntul | VIE hd' ki ddi bi dt ni i sa hid vii r

ENG | g ban urse auth ahen ant msesher at nhe

ISL J noka nie leli maken ti aide ni itsim a EST | inam acha dius dempegun geben parug j
SNA | xe yare ske tengker ci bendar nu derbe CHA é duka ka kina kia nextis ne aka nisa
RON ma awa nasil ko khe ni koy koj tikis t FRA | dis assan in man usia issokoj mulel e me
KAB | je cana ka casa chomdis mear de ber h DJK | okrana anginar matom iliantarinta a non
NHG | chun neyal den ma kashtaka asa as riste | LAV ilu kagsa eriri isi paj ewri bus os
DAN | dnepse aa aye sas ningli inas giksaj abe | BSN as juhma yainawa nusa wali apai basti
PPK ios yena mona kemewascoj ni ne maa HAT | a kuneati ua veskos oramaj meseqen ye k
SSW nta yoti gesi kela nii ikasgaber ni tus TUR | che a shachmo éspi meng rinnaj e ish em
WOL | alen kokpan fed man benu pei ei kestam | AKE | njes silem semmo caja arka wagtoa doo
DEU ke giko si obi rer nin eber tun ke ele CHQ shas nej neysakun kina alistad mesabe
CAK tej je awem titoj lunik c¢’u chis m ni PLT vwi meyak me imai anet alavis edte kin

Table 4: Randomly generated text on observed languages (top) and held-out languages (bottom) in the 4th split.
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Figure 1: Unigram character distribution (x-axis) per language (y-axis). Note how some rows stand out as outliers.

102

10

100

1071

pdf

1072 |
1073

10~*

107°

3

Figure 2: Probability density function of the signal-to-noise ratio for each parameter of the learned posteriors in
the UNTV BARE language models on splits 1 (blue), 2 (red), 3 (green), 4 (gold). The plot is in log-log scale.
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C Derivation of the Laplace Approximation

exp(ﬁ(w))
[ exp(L(w)) dw
exp[L(W*) + (w — w*) TVL(W*) + 3(w — w*) TH (w — w*)]
" Jexp [L(w*) + (W — W) TVL(W*) + 2(w — w*) TH (w — w*)] dw
_ o exp [L(w*) + L(w—w*)TH (w — w*)]
[exp[L(w*) + 3(w — w*)TH (w — w*)] dw
exp(£(w*)) exp = 1w — wH) T (H) (w = w)]

- exp(L(w*)) [exp[—1(w —w*)T(-H)(w — w*)] dw

p(w| D)=

Bayes rule

Taylor expansion

V,C(W) ‘w* =0

exponential of sum

1w — T(_
= exp[ 3w —w) CH)w )] integration and simplification
(2m)4|-H|™"
A2 N(w*, —H

19)

D Derivation of the Approximated Hessian

We assume w ~ N (0, 02T). Given the relationship among the expected Fisher Information Z(w), the
observed Fisher Information 7 (w), the observed Fisher Information based on |D| samples Jp(w), and
the Hessian H:

1 1

—— L a- Lo 20

Q

—I(w) = —EJ(w)

we can derive our approximation of |—%| H:
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R v

ﬁv2 <Z logp(Dy | w) + logp(w)) definition of L(w)
KET

= Z Z |7_| V2 log p(x | w) 4+ V2logp(w) linearity of V?

LeT x€Dy
Z Z <VP(X | W)> + V2logp(w) derivative of logarithm
22 mrmn” Glxw
-y Z p(x | w)V?p(x | w) — Vp(x | w)Vp(x | w)T
2
2 20T B P w)

+ VZlog p(w) quotient rule

S X it - (e (St

LeT x€Dy L
+ V2 log p(W) rearrange and simplify
o2
=>_ > = VP W) G logp(x | w) Viogp(x | W)T]
2 20T o | e )
+ V2logp(w) derivative of logarithm 1)
1 V2p(x | w)
2 — | Exwn(jw Vi Vi
e; 7 P S Tw) |D | x; ogp(x | w) Viogp(x | w)"

+ V2 log p(w) sample average as expectation

2 X W
:Zi /V | x|w)dx——ZVlogp(XIW)Vlogp(X\ )]

(W i 2,

+ V2 log p(W) expectation as integral

1
:Zm V2/p(x|w)dx |D| Z Viegp(x | w) Vlogp(x | w) ]

+V2logp( ) simplify

Z Z T Vlogp(x | w) Viogp(x | w)| + V2logp(w) derivative of constant
LeT x€Dy
2
Z Z dlag [V log p(x | w)] + V2logp(w) diagonal approximation
LeT x€Dy

2
1
= E E T dlag {V log p(x | W):| — —1 second derivative of log-probability
LeT x€Dy | | g
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