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Abstract

This paper describes an operational se-
mantics for DATR theories. The seman-
tics is presented as a set of inference rules
that axiomatises the evaluation relation-
ship for DATR expressions. The infer-
ence rules provide a clear picture of the
way in which DATR works, and should
lead to a better understanding of the
mathematical and computational prop-
erties of the language.

1 Introduction

DATR was originally introduced by Evans and
Gazdar (1989a; 1989b) as a simple, non-
monotonic language for representing lexical inher-
itance hierarchies. A DATR hierarchy is defined
by means of path-value specifications. Inheritance
of values permits appropriate generalizations to
be captured and redundancy in the description of
data to be avoided. A simple default mechanism
provides for concise descriptions while allowing for
particular exceptions to inherited information to
be stated in a natural way.

Currently, DATR is the most widely-used lexical
knowledge representation language in the natural
language processing community. The formalism
has been applied to a wide variety of problems,
including inflectional and derivational morphol-
ogy (Gazdar, 1992; Kilbury, 1992; Corbett and
Fraser, 1993), lexical semantics (Kilgariff, 1993),
morphonology (Cahill, 1993), prosody (Gibbon
and Bleiching, 1991) and speech (Andry et al,
1992). In more recent work, DATR has been used
to provide a concise, inheritance-based encoding
of Lexicalized Tree Adjoining Grammar (Evans
et al., 1995). There are around a dozen different
implementations of DATR in existence and large-
scale DATR lexicons have been designed for use in
a number of natural language processing applica-
tions (Cahill and Evans, 1990; Andry et al., 1992;
Cahill, 1994). A comprehensive, informal intro-
duction to DATR and its application to the design
of natural language lexicons can found in (Evans
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and Gazdar, 1996).

The original publications on DATR sought to
provide the language with (1) a formal theory
of inference (Evans and Gazdar, 1989a) and (2)
a model-theoretic semantics (Evans and Gazdar,
1989b). Unfortunately, the definitions set out in
these papers arc not general enough to cover all
of the constructs available in the DATR language.
In particular, they fail to provide a full and cor-
rect treatment of DATR’s notion of ‘global inher-
itance’, or the widely-used ‘cvaluable path’ con-
struct. A denotational semantics for DATR that
covers all of the major constructs has been pre-
sented in (Keller, 1995). However, it still remains
to provide a suitably general, formal theory of in-
ference for DATR, and it is this objective that is
addressed in the present paper.

2 Syntax of DATR Theories

Let NODE and ATOM be finite sets of symbols. El-
ements of NODE are called nodes and denoted by
N. Elements of aAroMm are called atoms and de-
noted by a. Elements of AToM™ are called values
and denoted by «, 8, 7. The set DESC of DATR
value descriptors (or simply descriptors) is built
up from the nodes and atoms as shown below. In
the following, sequences of descriptors in DESC*
are denoted ¢, 1.
1. a € DESC for any a € ATOM
2. For any IV € NODE and ¢ € DESC™:
N : {¢) € brsc
“N: {¢)” € DrSC
“(¢)” € pEsc
“N” € DESC

Elements of DESC are cither atomic descriptors
(1) or else inheritance descriptors (2). Inheritance
descriptors are further distinguished as being local
(unquoted) or global (quoted). For ¢ € DESC* a
sequence of descriptors, an expression {(¢) is called
a path descriptor. When cach element of ¢ is
atomic, then (¢) is called a path, and denoted P.

For N a node, P a path and ¢ a (possibly
empty) sequence of value descriptors, an equation
of the form N : P == ¢ is called a (definitional)



sentence. Informally, N : P == ¢ specifies a
property of the node N, namecly that the value
of the path P is given by the sequence of value
descriptors ¢, A DATR theory T is a finite sct
of definitional sentences subject to the following
requirement of functionality:

UN:P==¢pecT &N :P==1¢cT then ¢ =1

Functionality thus corresponds to a semantic re-
quirement that node/path pairs are associated
with (at most) one valuc.

3 Inference in DATR

The problem of constructing an explicit theory
of inference for DATR was originally addressed in
(Tivans and Gazdar, 1989a). In this work, an at-
tempt is made to set oul a logic of DATR state-
ments.  Consider for example the following rule
of inference, adapted from (livans and Gazdar,

1989a).
Nt Di== Ny Py, Ny Py ==u

The premises are definitional sentences which can
be read: “the value of path I’y at node Ny 1s (in-
herited from) the value of path % at Ny” and
“the value of path % at node Nj is o, respec-
tively. Given the premises, the rule licences the
conclusion “the value of path I} at node Ny is
«”. Thus, the rule captures a logical relationship
between DATR sentences. For a given DATR the-
ory 7, rules of this kind may be used to deduce
additional sentences as theorems of T,

In contrast, the system of inference described
in this paper characterizes a relationship between
DATR expressions (i.e. sequences of descriptors)
and the values they may be used to compute.
As an example, consider the following (simplified)
rule of the operational semantics:

if Nv: P ==¢ ¢ 7T then

The rule is applicable just in case the theory 7T
containsg a definitional seutence Ny @ 1) === ¢. It
states that if the sequence of value descriptors ¢
on the right of the sentence evaluates to (==) the
sequence of atoms «, then it may be concluded
that the node/path pair Ny ¢ Py also cvaluates
to a. Rules of this kind may be used to provide
an inductive definition of an evaluation relation
hetween DATR expressions and their values.
Both approaches to inference in DATR aim to
provide a system of deduction that makes it possi-
ble to determine formally, for a given DATR theory
7", what follows from the statcments in 7. The
primary interest lies in deducing statements about
the values associated with particular node/path
pairs defined within the theory. Unfortunately,
the proof rules described in (Evans and Gazdar,
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1989a) are not sufficiently gencral to support all of
the required inferences, and it is not obvious that
the approach can be extended appropriately to
cover all of the available DATR constructs. A par-
ticular problem concerns DATR’s notion of non-
local or global inheritance. The value expressed by
a global inheritance descriptor depends on more
than just the properties of the nodes specified by
the definitional sentences of a theory. 1In fact,
it only makes sense to talk about the value of
a global descriptor relative to a given context of
evaluation, or global contexzt. Because the proof
rules of (Evans and Gazdar, 1989a) just talk about
DATR sentences, which do not make explicit refer-
ence to context, it is not possible to give a satisfac-
tory account of the global inheritance mechanisim.

The evaluation semantics described in the fol-
lowing scetions provides a perspicuous treatment,
of hoth local and global inheritance in DATR. The
rules capture the essential details of the process of
cvaluating DATR expressions, and for this reason
should prove of use (o the language implementer,

4 Local Inheritance

As a point of departure, this section provides
rules of inference for a restricted variant of DATR
which lacks both global inheritance and the de-
fault mechanism. This variant will be referred to
as DATR,,. The syntax of DATRy, is as given in
section 2, except of course that the three forms
of global inheritance descriptor are omitted. An
example of a simple DATR, theory is shown next.

Noun : {cat) == noun

(suft) == s

Dog:

In this and all subsequent examples, a num-
ber of standard abbreviatory devices are adopted.
Sets of definitional sentences with the same node
oun the left-hand side are grouped together and
the node left implicit in all but the first given
sentence.  Also, a definitional sentence such as
Dog : (cat) === Noun : {cat), where the path on
the right is identical to that on the left, is written
more succinetly as Dog : {cat) == Noun. Simn-
ilarly, nodes on the right of a sentence are sup-
pressed when identical to the node on the left,

The DATR;, theory defines the properties of two
nodes, Noun and Dog. The definitional sen-
tences specify values for node/path pairs, where
the specification is either direct (a particular value
is exhibited), or indirect (the value is obtained
by local inheritance). For example, the value of
the node/path pair Noun : (cat) is specified di-
rectly as noun. In contrast, the node/path pair
Dog : (cat) obtains its value indirectly, by local



Values :
a=a YV

Definitions : if N (o) == ¢ € T then
_2=P8  py
N:{a)= g3
Sequences :

p=oa p=p

b —ap
Evaluable Paths :
p==>a N:{(o)=f Sub
N:(¢) =5 ¢

Figure 1: Evaluation Semantics for DATRy,

inheritance from the value of Noun : {cat). Thus
Dog : (cat) also has the value noun. The value of
Dog : (plur) is specified indirectly by a sequence
of descriptors Dog : {root) Noun : {suff). Intu-
itively, the required value is obtained by concate-
nating the values of the descriptors Dog : (root)
and Noun : (suff}, yielding dog s.

We wish to provide an inductive definition of
an evaluation relation (denoted =) between se-
quences of DATR descriptors in DESC* and se-
quences of atoms (i.e. values) in ATOM*. We write

=

to mean that the sequences of descriptors ¢ eval-
uates to the sequence of atoms . With respect
to the DATR; theory above we should expect
that Dog : (cat) = noun and that Dog :
(root) Noun : (suff) = dog s, amongst other
things.

The formal definition of = for DATR}, is pro-
vided by just four rules of inference, as shown in
figure 1.  The rule for Values states simply that
a sequence of atoms evaluates to itself. Another
way of thinking about this is that atom sequences
are basic, and thus cannot be evaluated further.
The rule for Definitions was briefly discussed in
the previous section. It permits inferences to be
made about the values associated with node/path
pairs, provided that the theory 7 contains the ap-
propriate definitional sentences. The third rule
deals with the evaluation of sequences of descrip-
tors, by breaking them up into shorter sequences.
Given that the values of the sequences ¢ and %
are known, then the value of ¢ can be obtained
simply by concatenation. Note that this rule in-
troduces some non-determinism, since in general
there is more than one way to break up a se-
quence of value descriptors. However, whichever
way the sequence is broken up, the result (i.e.
value obtained) should be the same. The follow-
ing proof serves to illustrate the use of the rules
Val, Def and Seq. It establishes formally that the
node/path pair Dog : (plur) does indeed evaluate
to dog s given the DATRy theory above.
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dog —> dog Val 5= Val

D
Dog : (root) = dog efNoun : (suff) = s
Dog : (root) Noun : (suff) —> dog s Def
Dog : (plur) = dog s ‘

The final rule of figure 1 deals with DATR’s evalu-
able path construct. Consider a value descriptor
of the form A : (B : {)). To determine the value of
the descriptor it is first necessary to establish what
path is specified by the path descriptor (B : ()).
This involves evaluating the descriptor B : {) and
then ‘plugging in’ the resultant value a to obtain
the path {«). The required value is then obtained
by evaluating A : {(a). The rule for Evaluable
Paths provides a general statement of this pro-
cess: if a sequence of value descriptors ¢ evaluates
to o and N : {a) evaluates to 3, then N : (¢) also
evaluates to 3.

5 Global Inheritance

DATR’s local inheritance mechanism provides for
a simple kind of data abstraction. Thus, in the
DATR, theory above, information about the plu-
ral suffix is stated once and for all at the abstract
Noun node. It is then available to any instance
of Noun such as Deg via local inheritance. On
the other hand, information about the formation
of singular and plural forms of dog must still be
located at the Dog node, even though the pro-
cesses involved are entirely regular. To overcome
this problem, DATR provides a second form of in-
heritance: global inheritance. This section pro-
vides an evaluation semantics for a default-free
variant of DATR with both local and global in-
heritance (DATRg). A simple DATRg theory is
shown below.

Def
Seq

Noun: (cat) == noun
{suff) ==s
(sing) == “(root)”
{plur) == “(root)” (suff)
Dog : (cat) == Noun
(root) == dog

(sing) == Noun
{plur) == Noun
The new theory is equivalent to that given pre-
viously in the sense that it associates exactly the
same values with node/path pairs. However, in
the DATR¢ theory global inheritance is used to
capture the relevant generalizations about the sin-
gular and plural forms of nouns in English. Thus,
the sentence Noun : (sing) == “(root)” states
that the singular form of any noun is identical to
its root (whatever that may be). The sentence
Noun : (plur) == “(root)” (suff) states that the
plural is obtained by attaching the (plural) suffix
to the root.
To understand the way in which global inheri-
tance works, it is necessary to introduce DATR’s



notion of global context. Suppose that we wish
to determine the value of Dog : (sing) in the ex-
ample DATR; theory. Initially, the global context
will be the pair (Dog, sing). From the theory, the
value of Dog : (sing) is to be inherited (locally)
from Noun : (sing), which in turn inherits its
value (globally) from the quoted path “(root)”.
To evaluate the quoted path, the global context is
examined to find the current global node (this is
Dog) and the value of “{(root)” is then obtained
by evaluating Dog : {root), which yiclds dog as
required.

More generally, the global context is used to fill
in the missing node (path) when a quoted path
(node) is enconntered. In addition, as a side ef-
fect of cvaluating a global inheritance descriptor
the global context is updated. Thus, after encoun-
tering the quoted path “(root)” in the preced-
ing example, the global context is changed from
(Dog, sing) to (Dog,root). That is, the path
component of the context is set to the ncw global
path root.

Let 7 be a DATR( theory defined with respect
to the set of nodes NODE and the set of atoms
ATOM. The set cONT of (global) contexts of T is
defined as the sct of all pairs of the form (N, «), for
N € NoDE and « € AToM*. Contexts are denoted
by C. The evaluation mlatlon = is now taken
to be a mapping from elements of CONT x DESC*
to ATOM*. We write

Crop==0

to mean that ¢ cvaluates to 3 in the global context
C.

To axiomatise the new cvaluation relation, the
DATR;, rules are modified to incorporate the
global context parameter. For example, the rule
for Fvaluable Paths now becomoes:

Fép=a CEHN:(y)=>p
CHN:{(p)y==>p

.5uh1

Two similar rules are required for sentences con-
taining quoted descriptors of the forms “N : (¢)”
and “(¢)”. Note that the context C plays no spe-
cial role here, but is simply carried unchanged
from premises to conclusion. The rules for Velues,
Definitions and Sequences arc modified in an en-
tirely similar manner. Finally, to capture the way
in which values are derived for quoted descriptors
three entirely new rules are required, one for each
of the quoted forms. These rules are shown in
figure 2.

Consider for example the Quoted Path rule.
The premise states that N : («) cvaluates to
in the global context (N, «). Given this, the rule
licences the conclusion that the quoted descrip-
tor “{a)” also evaluates to § in any context with
the same node component V. In other words, to
evaluate a quoted path “(a)” in a context (N, '),
just evaluate the local descriptor N : (@) in the
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Quoted Node/Path

(N a)b N :{a)=p
OF N ey =g
Quoted Path :
(N,o) b N : {a) =
Qu"'z
(N,a') b “a)” =B
QQuoted Node :
(N,a)F N : () = [
Quo,

(N',a) F “N” = §
Figure 2: Evaluation of Quoted Descriptors

updated global context (NV,«). The rules deal-
ing with global node/path pairs, and global nodes
work in a similar way.

The following proof illustrates the use of the
Quoted Path rule (Quo,). It demonstrates that
Dog : (sing) cvaluates to dog, given the DATRg
theory, and when the initial global context is taken
to be (Dog, sing).

(Dog, root) - dog —= dog "
(Dog, root) - Dog : (root) —» dog

(Dog, smg) - “(root)” = dog - Quos
Def

Def

-(]_)05, sing) Noun : (-;mg) = dog

(Dog, r;1ng) - Dog (sing) =— dog

6 Path Extensions and Defaults

In DATR, values may be associated with particu-
lar node/path pairs either explicitly, in terms of
local or global inheritance, or implicitly ‘by de-
fault’. The basic idea underlying DATR’s default
mechanism is as follows: any definitional sentence
is applicable not only to the path specified on its
left-hand side, but also for any rightward exten-
gion of that path for which no more specific def-
initional sentence exists. Making use of defaults,
the DATR(; theory given above can be expressed
more succinctly as shown next.

Noun : (cat) == noun
(sing) == “(rvot)”
(plur) == “(root)” (suff)
(suft) == s

Dog : () == Noun

(root) === dog

Here, the relationship between the nodes Dog and
Noun has cffectively been collapsed into just a
single statement Dog : () == Noun. This is pos-
sible because the sentence now corresponds to a
whole clags of implicit definitional sentences, cach
of which is obtained by extending the paths found
on the left- and right-hand sides in the same way.
Accordingly, the value of Dog : {cat) is specified
implicitly as the value of Noun : {cat), and sim-
ilarly for Dog : (sing) and Dog : (suff). In con-
trast, the specification Dog : {root) == Noun :



Values :

Ckha=,«a Val

Definitions : if « is the longest prefix of avy
st. N:{(a)==¢ €T, then
Cr¢=,p0

CHN:{ay)y=p

Sequences :
Chtp=,a Crop=,p0

Ct oy = af

Bvaluable Paths :

Ctd¢=,a CHN:{(a)=,p
CrN:($)—

Def

Seq

Suby

Cho=>rya CkF“N:{(a) =0
Ct “N:(¢) =8

S'll,bz

Crd=>ya Ck Ya) =5, f

CF gy =27 f
Quoted Descriptors :
(N,ay) = N : {a) ==,

Ct“N :{a)) =, 0

Subg

Quo,

(N,ay)F N : {a) =, 8
(N, o) o)’ = f

Quo,

(N,a) b N : () =5, 8

(N, 0) F N ==, §
Path Eztensions :

CHN:{ay)=p
ChHN:{a)=>,p

Quog

Lt

Figure 3: The Evaluation Semantics for DATR

(root) does not follow ‘by default’ from the def-
inition of Dog, even though it can be obtained
by extending left and right paths in the required
manner. The reason is that the theory alrcady
contains an explicit statement about the value of
Dog : (root).

The evaluation relation is now defined as a map-
ping from eclements of CONT X DESC* x ATOM*
(i.e. context/descriptor sequence/path extension
triples) to aToM*. We write:

CkH¢p=,

to mecan that ¢ evaluates to « in context C' given
path extension v. When v = € is the empty path
extension, we will continue to write C F ¢ == a.

A complete set of infercnce rules for DATR is
shown in figure 3. The rules for Values, Sequences
and Fuvaluable Paths require only slight modi-
fication as the path extension is simply passed
through from premises to consequent. The rules
for Quoted Descriptors are also much as before.
Here however, the path extension v appears as
part of the global context in the premise of cach
rule. This means that when a global descriptor is
encountered, any path extension present is treated
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‘globally’ rather than ‘locally’. The main change
in the Definitions rule lies in the conditions un-
der which it is applicable. The amended rule just
captures the ‘most specific sentence wins’ default
mechanism. Finally, the new rule for Path Ezten-
sions serves as a way of making any path exten-
sion explicit. Por example, if Dog : {(cat) eval-
uates to noun, then Dog : () also evaluates to
noun given the (explicit) path extension cat.

An example proof showing that Dog : (plur)
evaluates to dog s given the DATR theory pre-
sented above is shown in figure 4.

7 Conclusions

The evaluation semantics presented in this paper
constitutes the first fully worked out, formal sys-
tem of inference for DATR theories. This fulfills
one of the original objectives of the DATR pro-
gramme, as set out in (Evans and Gazdar, 1989a;
Evans and Gazdar, 1989b), to provide the lan-
guage with an explicit theory of inference. The
inference rules provides a clear picture of the way
in which the different constructs of the language
work, and should serve as a foundation for future
investigations of the mathematical and computa-
tional propertics of DATR. Although the rules ab-
stract away from particular implementational de-
tails such as order of evaluation, they can be read-
ily understood in computational terms and may
prove useful as a guide to the construction of prac-
tical DATR interpreters.
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