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Abstract

Automatic lexical acquisition has been an active area of research in computational linguistics
for over two decades, but the automatic identification of new word-senses has received attention
only very recently. Previous work on this topic has been limited by the availability of appropriate
evaluation resources. In this paper we present the largest corpus-based dataset of diachronic
sense differences to date, which we believe will encourage further work in this area. We then
describe several extensions to a state-of-the-art topic modelling approach for identifying new
word-senses. This adapted method shows superior performance on our dataset of two different
corpus pairs to that of the original method for both: (a) types having taken on a novel sense over
time; and (b) the token instances of such novel senses.

1 Novel word-senses

The meanings of words change over time with, in particular, established words taking on new senses. For
example, the usages of drop, wall, and blow up in the following sentences correspond to relatively-recent
senses of these words that appear to be quite common in text related to popular culture, but are not listed
in many dictionaries; for example, they are all missing from WordNet 3.0 (Fellbaum, 1998).

1. The reissue album drops March 27 and is an extension of Perry’s huge 2010 Teenage Dream. [drops
= “comes out”, “is released” ]

2. On Facebook, you can plainly see much of the data the site has on you, because it’s posted to your
wall. [wall = “Facebook wall”, “personal electronic noticeboard” ]

3. Why would I give him my number so he can blow up my phone the way he does my inbox. [blow up
= “overwhelm with messages” ]

Computational lexicons are an essential component of systems for a variety of natural language process-
ing (NLP) tasks. The success of such systems, therefore, depends on the quality of the lexicons they use,
and (semi-)automatic techniques for identifying new word-senses could benefit applied NLP by helping
to keep lexicons up-to-date. In revising dictionaries, lexicographers must identify new word-senses, in
addition to new words themselves; methods which identify new word-senses could therefore also help to
keep dictionaries current.

In this paper, because of the need for lexicon maintenance, we focus on relatively-new word-senses.
Specifically, we consider the identification of word-senses that are not attested in a reference corpus,
taken to represent standard usage, but that are attested in a focus corpus of newer texts.

Lau et al. (2012) introduced the task of novel sense identification. They presented a method for
identifying novel word-senses — described here in Section 4 — and evaluated this method on a very
small dataset consisting of just five lemmas having a novel sense in a single corpus pair. Cook et al.
(2013) extended the method of Lau et al. to incorporate knowledge of the expected domains of new word-
senses, but did not conduct a rigorous empirical evaluation. The remainder of this paper is structured
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as follows. After discussing related work in Section 2, we present a substantially-expanded evaluation
dataset in Section 3, that is based on a second corpus pair and consists of many more lemmas with a
novel sense. We describe the models used by Lau et al. and Cook et al., and our new extensions to
them, in Section 4. In Section 5 we analyse the results of novel sense identification, and consider a new
baseline for this task. We demonstrate that the extended methods give an improvement over the original
method of Lau et al. We conclude by discussing some previously-unexplored variations on novel sense
identification, and limitations of the approaches considered.

The primary contributions of this paper are: (1) development of a novel sense detection dataset much
larger than has been used in research to date; (2) development and evaluation of a new baseline for
novel sense detection, reformulations of the method of Lau et al., and a method that incorporates only
the expected domain(s) of novel senses; (3) empirical evaluation of the method of Cook et al.; and (4)
extension of the novel sense detection method of Cook et al. to automatically acquire information about
the expected domain(s) of novel senses.

2 Related work

Identifying diachronic changes in word-sense is a challenge that has only been considered rather recently
in computational linguistics. Sagi et al. (2009) and Cook and Stevenson (2010) propose methods to
identify specific types of semantic change — widening and narrowing, and amelioration and pejoration,
respectively — based on specific properties of these phenomena. Gulordava and Baroni (2011) identify
diachronic sense change in an n-gram database, but using a model that is not restricted to any particular
type of semantic change. Cook and Hirst (2011) consider the impact of sense frequency on methods for
identifying novel senses. Crucially, all of the aforementioned approaches are type-based: they are able
to identify words that have undergone a change in meaning, but not the token instances which give rise
to these sense differences.

Bamman and Crane (2011) use a parallel Latin–English corpus to induce word senses and build a
WSD system, which they then apply to study diachronic variation in sense frequency. Rohrdantz et al.
(2011) present a system for visualizing changes in word usage over time. Crucially, in these token-based
approaches there is a clear connection between (induced) word-senses and tokens, making it possible to
identify usages of a specific (new) sense.

Other work has focused on sense differences between dialects and domains. Peirsman et al. (2010)
consider the identification of words that are typical of Belgian and Netherlandic Dutch, due to either
marked frequency or sense. McCarthy et al. (2007) consider the identification of predominant word-
senses in corpora, including differences between domains. However, this approach does not identify new
senses as it relies on a pre-existing sense inventory. Carpuat et al. (2013) identify words in a domain-
specific parallel corpus with novel translations.

The method proposed by Lau et al. (2012), and extended by Cook et al. (2013), identifies novel word-
senses using a state-of-the-art word-sense induction (WSI) system. This token-based approach offers a
natural account of polysemy and not only identifies word types that have a novel sense, but identifies
the token instances of the hypothesized novel senses, without reliance on parallel text or a pre-existing
sense inventory. We therefore adopt this method for evaluation on our new dataset, and propose further
extensions to this method.

3 Datasets

Evaluating approaches to identifying semantic change is a challenge due to the lack of appropriate evalu-
ation resources (i.e., corpora for the appropriate time periods, known to exhibit particular sense changes);
indeed, most previous approaches have used very small datasets (e.g., Sagi et al., 2009; Cook and Steven-
son, 2010; Bamman and Crane, 2011). In this study we consider two datasets of relatively newly-coined
word-senses: (1) an extended version of the dataset based on the BNC (Burnard, 2000) and ukWaC (Fer-
raresi et al., 2008) used by Lau et al. (2012); and (2) a new dataset based on the SiBol/Port Corpus.1 This

1http://www3.lingue.unibo.it/blog/clb/?page_id=8
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is the largest dataset for evaluating approaches to identifying diachronic semantic change constructed
from corpus evidence to be presented to date.

3.1 BNC–ukWaC

Lau et al. (2012) take the written portion of the BNC (approximately 87 million words of British English
from the late 20th century) as the reference corpus, and a similarly-sized random sample of documents
from the ukWaC (a Web corpus built from the .uk domain in 2007) as the focus corpus. They used
TreeTagger (Schmid, 1994) to tokenise and lemmatise both corpora.

A set of words that has acquired a new sense between the late 20th and early 21st centuries — the time
periods of the reference and focus corpora — is required. The Concise Oxford English Dictionary aims
to document contemporary usage, and has been published in numerous editions including Thompson
(1995, COD95) and Soanes and Stevenson (2005, COD08), enabling the identification of new senses
amongst the entries in COD08 relative to COD95. Manually searching these dictionaries for new senses
would be time intensive, but new words often correspond to concepts that are culturally salient (Ayto,
2006), and one can leverage this observation to speed up the process of finding some candidate words
with novel senses.2

Between the time periods of the reference and focus corpora, computers and the Internet have become
much more mainstream in society. Lau et al. therefore extracted all headwords in COD08 whose entries
contain the word computing. They then carefully annotated these lemmas to identify those that indeed
exhibit the novel sense indicated in the dictionary in the corpora. Here, we expand Lau et al.’s dataset by
extracting all headwords including any of the following words code, computer, internet, network, online,
program, web, and website. We then follow a similar annotation process to Lau et al.

An annotator read the entries for the selected lexical items in COD95 and COD08, and identified those
which have a clear sense related to computers or the Internet in COD08 that is not present in COD95;
such senses are referred to as novel senses. This process, along with all the annotation in this section
(including Section 3.2), is carried out by native English-speaking authors of this paper and graduate
students in computational linguistics.

To ensure that the words identified from the dictionaries do in fact have a new sense in the ukWaC
sample compared to the BNC, we examine word sketches (Kilgarriff et al., 2004)3 for each of these
lemmas in the BNC and ukWaC for collocates that likely correspond to the novel sense; we exclude any
lemma for which we find evidence of the novel sense in the BNC, or fail to find evidence of the novel
sense in the ukWaC sample.4

We further examine the usage of these words in the corpora. We extract a random sample of 100
usages of each lemma from the BNC and ukWaC sample, and annotate these usages as to whether they
correspond to the novel sense or not. This binary distinction is easier than fine-grained sense annotation,
and since we do not use these annotations for formal evaluation — only for selecting items for our dataset
— we do not carry out an inter-annotator agreement study here. We eliminate any lemma for which we
find evidence of the novel sense in the usages from the BNC, or for which we do not find evidence of the
novel sense in the ukWaC sample usages.5

This process resulted in the identification of two lemmas not in the dataset of Lau et al., with frequency
greater than 1000 in the ukWaC sample, and having a novel sense in the ukWaC compared to the BNC
(feed (n) and visit (v)). Combining these new lemmas with the dataset of Lau et al. gives an expanded
dataset consisting of seven lemmas. For both of the two new lemmas, a second annotator annotated
the sample of 100 usages from the ukWaC. The observed agreement and unweighted Kappa for this
annotation task for all seven lemmas is 97.4% and 0.93, respectively, indicating that this is indeed a
relatively easy annotation task. The annotators discussed the small number of disagreements to reach

2We access the dictionaries in the same way as Lau et al., namely we use COD08 online via http://oxfordreference.
com, and the paper version of COD95.

3http://www.sketchengine.co.uk/
4We examine word sketches for the full ukWaC because this version of the corpus is available through the Sketch Engine.
5We use the IMS Open Corpus Workbench (http://cwb.sourceforge.net/) to extract usages of our target lemmas

from the corpora. This extraction process fails in a number of cases, and so we also eliminate such items from our dataset.

1626



BNC–ukWaC
Lemma Frequency Novel sense definition
domain (n) 41 Internet domain
export (v) 28 export data
feed (n) 23 data feed
mirror (n) 10 mirror website
poster (n) 4 one who posts online
visit (v) 28 access a website
worm (n) 30 malicious program

SiBol/Port
Lemma Frequency Novel sense definition
cloud (n) 9 Internet-based computational resources
drag (v) 1 move on a computer screen using a mouse
follower (n) 34 Twitter follower
help (n) 1 displayed instructions, e.g., help menu
hit (n) 2 search hit
platform (n) 22 computing platform
poster (n) 5 one who posts online
reader (n) 3 e-reader
rip (v) 1 copy music
site (n) 39 website
text (n) 39 text message
visit (v) 7 access a website
wall (n) 2 Facebook wall

Table 1: Lemmas in the BNC–ukWaC and SiBol/Port datasets. For each lemma, the frequency of its
novel sense in the annotated sample of usages from the focus corpus, and a definition of its novel sense,
are shown.

consensus. The seven lemmas in this dataset are shown in Table 1, along with definitions of their novel
senses, and the frequencies of their novel senses in the focus corpus.

Lau et al. compared the novelty of the lemmas with a novel sense to that of a same-size set of distractor
lemmas not having a novel sense. Here we consider a much larger set of 50 distractors — 25 nouns and
25 verbs — randomly sampled from a similar frequency range as the items with a novel sense.

One shortcoming of this dataset (and indeed the subset of it used by Lau et al.) is that text types are
represented to different extents in the BNC and ukWaC, with, for example, texts related to the Internet
being much more common in the ukWaC. Such differences in corpus composition are a noted challenge
for approaches to identifying lexical semantic differences between corpora (Peirsman et al., 2010). In the
following subsection we therefore consider the creation of a new dataset from more-comparable corpora.

3.2 SiBol/Port

The SiBol/Port Corpus consists of texts from several British newspapers for the years 1993, 2005, and
2010; we use the 1993 and 2010 portions of this corpus — referred to as SP1993 and SP2010 — as
our reference and focus corpora, respectively. SP1993 and SP2010 contain approximately 93M and 99M
words, respectively. In contrast to BNC–ukWaC, our reference and focus corpora are now comparable,
in that they both consist of texts from British newspapers but they differ with respect to the specific year.

The novel word-senses in the BNC–ukWaC dataset are all related to computers and the Internet, but
there has been recent lexical semantic change unrelated to technology as well (e.g., sick can be used to
mean “excellent”). In an effort to include such non-technical novel senses in this new dataset, we obtain
a list of headwords for which a sense was added to the Macmillan English Dictionary for Advanced
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Learners (MEDAL)6 since its first edition (Rundell and Fox, 2002), courtesy of Macmillan Dictionaries.
Beginning with these candidates from MEDAL, and the items extracted from COD from Section 3.1, we
discard any lemma whose frequency is less than 1000 in SP1993 or SP2010.

As for the BNC–ukWaC dataset, an annotator examined word sketches for these lemmas. However, it
is possible that the novel sense for a lemma is present in a corpus, but that we fail to find evidence for it in
that lemma’s word sketch. We therefore also obtain judgements from two annotators as to whether each
novel sense is expected to be very infrequent (or unattested) in SP2010. To reduce subsequent annotation
effort, we discard any lemma for which its novel sense is believed to be infrequent in SP2010 by both
judges, and is not found in the word sketch from SP2010.

Annotators then annotate a random sample of 100 usages of each lemma in the reference and focus
corpora as before, and again eliminate any lemma for which we find evidence of its novel sense in the
reference corpus, or fail to find evidence of that sense in the focus corpus. We identify thirteen lemmas
having a novel sense in SP2010 relative to SP1993. These lemmas are also shown in Table 1.

We obtain a second set of annotations for the usages of these lemmas in the sample from SP2010,
with each lemma being annotated by a different annotator than before. The observed agreement and
unweighted Kappa between the two sets of annotations is 96.2% and 0.81, respectively. In cases of
disagreement, a final annotation is again reached through discussion.

We randomly select 164 lemmas (116 nouns and 48 verbs) from a similar frequency range as the
lemmas having a novel sense, to serve as distractors.

Both the BNC–ukWaC and SiBol/Port datasets have been made available.7

4 The WSI-based approach to novel word-sense detection

In this section we describe the WSI-based method of Lau et al. (2012) for detecting novel senses, and an
extension of this method from Cook et al. (2013). We then present new extensions of this method.

The Lau et al. (2012) WSI model is based on a Hierarchical Dirichlet Process (HDP, Teh et al., 2006),
which is a non-parametric variant of a topic model that, like the commonly-used Latent Dirichlet Allo-
cation (LDA, Blei et al., 2003), learns topics (in the form of multinomial probability distributions over
words) and per-document topic assignments (in the form of multinomial probability distributions over
topics) for a collection of documents; unlike LDA, however, it also optimises the number of topics in an
unsupervised data-driven manner. In the context of WSI, by creating “documents” that consist of sen-
tences containing a target word, we can view the topics learnt by topic models as the sense representation
of the target word. Indeed, topic models have been previously applied to WSI (e.g., Brody and Lapata,
2009; Yao and Van Durme, 2011).

To generate the input for the topic model, the documents are tokenised (in this case, a “document” is
a short context, typically 1–3 sentences, containing a target word) into a bag of words. All words are
lemmatised, and stopwords and low frequency terms are removed. Positional word features — commonly
used in WSI — for each of the three words to the left and right of the target word are also included.

To induce the senses of a target word w from a given set of usages of w, HDP is run on those usages
(represented according to the features described above) to induce topics; these topics are then interpreted
as representing the senses of w (one topic per sense). To determine the sense assigned to each instance,
the system aggregates over the topic assignments for each word in the context of w, and selects the topic
with the highest aggregated probability, i.e., argmaxzP (t = z|d), where d is a document and t is a topic.

Recently, Lau et al. (2013a,b) found this method to give the overall best performance on two WSI
shared tasks (Jurgens and Klapaftis, 2013; Navigli and Vannella, 2013), demonstrating that the method
is competitive with the state-of-the-art in WSI, and appropriate as the basis for a method for identifying
novel word-senses.

6http://www.macmillandictionary.com/
7http://www.csse.unimelb.edu.au/~tim/etc/novel-sense-dataset.tgz
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4.1 Novel Sense Detection
Following Lau et al. (2012), to detect novel senses of a target word using this WSI method, we jointly
topic model two corpora: a reference corpus — taken to represent standard usage — and a focus corpus
of newer texts potentially containing novel senses. In other words, we extract usages of a target word w
from both corpora, and then topic model the pooled instances of w. Under this approach, the discovered
topics are applicable to both corpora, so there is no need to reconcile two different sets of topics. For the
experiments in this paper, we extract three sentences of context for each usage, one sentence to either
side of the usage of the target word.

As each usage is given a sense assignment, we can identify novel senses — senses present in the focus
corpus, but unattested in the reference corpus — based on differences in the sense distribution for a given
word between the two corpora. Lau et al. present a Novelty score which is proportional to the following:

NoveltyRatio(s) =
pf (s)
pr(s)

(1)

where pf (s) and pr(s) are the proportion of usages of a given word corresponding to sense s in the focus
corpus and reference corpus, respectively, calculated using smoothed maximum likelihood estimates.
The score for a given lemma is the maximum score for any of its induced senses. We refer to the novel
sense for a lemma as the induced sense corresponding to this maximum.

4.2 Alternative Formulations of Novelty
The WSI system underlying the approach of Lau et al. labels each usage of a target lemma with an
induced sense. Therefore, any approach to identifying keywords — words that are substantially more
frequent in one corpus than another — can potentially be applied to identify novel senses, by viewing
“words” as (word,sense) tuples. We consider a version of Novelty based on the difference in relative
frequency of an induced sense in the focus and reference corpora, as below:

NoveltyDiff(s) = pf (s)− pr(s) (2)

We consider a further new variant of Novelty based on the log-likelihood ratio of an induced sense in the
two corpora, referred to as NoveltyLLR.

4.3 Incorporating knowledge of expected topics of novel senses
Cook et al. (2013) extended Lau et al.’s method by incorporating the observation that many neologisms
are related to topics that are culturally salient (e.g., Ayto, 2006); nowadays we see many neologisms
related to computing and the Internet. Indeed this observation was used to construct the gold-standard
dataset for this study. Cook et al. identified a set of words, W , related to computing and the Inter-
net, based on manual analysis of keywords for the corpora they considered. They then formulated the
Relevance of an induced sense s for a given word as follows:

RelevanceManual(s) =
∑
w∈W

p(w|s) (3)

For a given lemma, RelevanceManual is the maximum of this score for any of its induced senses, similar
to Novelty.

Following Cook et al., we calculate Relevance and Novelty for each induced sense of each lemma,
and then rank all the induced senses by these measures independently. We then compute the rank sum
of each induced sense of each lemma under these two rankings. The final score for a given lemma is
then the rank sum of its highest-ranked sense, and this sense is taken as that lemma’s novel sense. We
refer to this new method as “Rank Sum”. Cook et al. only considered Novelty and Rank Sum; here we
additionally consider Relevance on its own.

For the keywords, we manually construct a set of words related to computing and the Internet, the
topics for which we expect to observe many novel senses in both of our datasets, in a similar way to
Cook et al. In order to minimize annotation effort, we concentrate on words that are more-frequent in the
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focus corpus than the reference corpus. For a given corpus pair, we begin by computing the keywords
for those corpora using Kilgarriff’s (2009) method.8 Two annotators — both computational linguists
and not authors of this paper — independently scanned the top-1000 keywords for the focus corpus, and
selected those that were, based on their intuition, related to computing and the Internet. We then took
the topically-relevant words for a given corpus pair to be those in the intersection of the sets of words
selected by the two annotators. For BNC–ukWaC and SiBol/Port this gives 102 and 30 topically-relevant
words, respectively. This annotation required, on average, 23 minutes per annotator per corpus pair to
complete. Examples of the keywords selected for SiBol/Port include broadband, click, device, online,
and tweet.

4.4 Automatically-extracting keywords

We propose a new fully-automated method for identifying a set of topically-relevant keywords. Because
of the differences in corpus composition, the BNC–ukWaC keywords are often related to computing and
the Internet. To automatically obtain topically-relevant words, we take the top-1000 keywords for the
ukWaC relative to the BNC (i.e., the same keywords annotated for the BNC–ukWaC in Section 4.3).
The keywords for SiBol/Port are less-clearly related to the topics of interest, so we therefore use the
topically-relevant keywords from BNC–ukWaC for both datasets.

5 Results

In the following subsections we consider results at the type and then token level.

5.1 Type-level results

In these experiments we rank all items — lemmas with a novel sense, and distractors — by the various
Novelty, Relevance and Rank Sum methods for the BNC–ukWaC and SiBol/Port datasets. When a
lemma takes on a new sense, it might also increase in frequency. We therefore also consider a baseline in
which we rank the lemmas by the ratio of their frequency in the focus corpus and the reference corpus.
This baseline has not been previously considered by Lau et al. (2012) or Cook et al. (2013).

To compare approaches, we examine precision–recall curves in Figures 1 and 2. In an applied setting,
we envision these ranked lists being manually examined; we are therefore primarily interested in the
highly-ranked items, i.e., the left portion of the precision–recall curves.

For BNC–ukWaC (Figure 1), NoveltyDiff and NoveltyRatio perform much better than NoveltyLLR, but
not better than the frequency ratio baseline, at least for the left-most portion of the precision–recall
curve. Surprisingly, for Relevance, RelevanceAuto outperforms RelevanceManual . This could be because
the focus corpus exhibits a clear topical bias towards computing and the Internet (the expected domain
of many neologisms in the focus corpus), and therefore a larger set of potentially noisy keywords is
more informative than a smaller, hand-selected set. All of the measures including the baseline, except
for NoveltyLLR, assign higher scores to lemmas with a gold-standard novel sense than the distractors,
according to a one-sided Wilcoxon rank sum test (p < 0.05 in each case).

Turning to SiBol/Port in Figure 2, the frequency ratio baseline is much less effective here; the fre-
quency of the gold-standard novel senses is much lower overall than for BNC–ukWaC. All of the Novelty
and Relevance methods outperform the baseline, and — with the exception of NoveltyRatio — rank the
lemmas with a gold-standard novel sense higher than the distractors (again using a one-sided Wilcoxon
rank sum test and p < 0.05). Furthermore, in this case, RelevanceManual outperforms RelevanceAuto, as
expected.

In terms of the three Novelty measures, only NoveltyDiff ranked items with a novel sense higher than
the distractors for both datasets. We therefore also show results for the Rank Sum approach combin-
ing NoveltyDiff and each of RelevanceManual and RelevanceAuto, denoted Rank SumDiff,manual and Rank
SumDiff,auto, respectively, in Figures 1 and 2. For both BNC–ukWaC and SiBol/Port, Rank SumDiff,manual

8Using this method, the keywordness score for a given word is simply the ratio of its frequency per million words, plus a
constant, in two corpora; we set the constant to 100, the value recommended by Kilgarriff.
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Figure 1: Precision–recall curve for the BNC–ukWaC dataset.

gives the best performance, and is a clear improvement over either of the individual methods. As ex-
pected, the performance of Rank SumDiff,auto is not as good, but is nevertheless an improvement over the
frequency ratio baseline for both datasets and provides an alternative to manual scrutiny of the keywords.

To further examine the potential of incorporating knowledge of the expected domains of novel senses
to improve novel sense identification, we consider the case of cloud (n) from the SiBol/Port dataset. The
highest-probability words for the topic with highest NoveltyDiff are the following: ash, volcanic, flight,
@card@,9 travel, airline, volcano, airport, air, cloud. This sense appears to be related to the eruption
of the Eyjafjallajökull volcano, a major event in 2010 (the year from which the SiBol/Port focus corpus
is taken). Such topical differences, which do not correspond to a novel sense, are a problem for any
approach to identifying lexical semantic differences between two corpora based on differences in the
lexical context of a target word, and indeed observations such as this motivated our use of the methods
incorporating Relevance. The highest probability words for the topic with highest RelevanceAuto are
the following: cloud, @card@, company, service, business, computing, market, security, datum, need.
This topic appears to correspond to the expected novel sense of Internet-based computational resources,
demonstrating the potential to improve a system for identifying novel word-senses by incorporating
knowledge of the expected domains of neologisms. Moreover, incorporating Relevance is particularly
powerful for avoiding false positives. For example, the distractor clause (n) is the lemma with the
sixth-highest NoveltyDiff for SiBol/Port. The highest probability words for the corresponding topic are
the following: contract, @card@, club, player, million, england, capello, manager, sign, deal. This
induced sense appears to be related to clauses in Fabio Capello’s contract as manager of the England
national football team, and is not a novel sense of clause. However, none of the induced senses of clause
have high RelevanceAuto or RelevanceManual , and so incorporating information from Relevance can avoid
incorrectly identifying this lemma as having a novel sense.

9A generic token signifying a cardinal number.
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Figure 2: Precision–recall curve for the SiBol/Port dataset.

5.2 Token-level results
In this section, we consider the token-level identification of instances of the gold-standard novel senses.
We compare Novelty, Relevance, and Rank Sum to a baseline that assigns all usages of a lemma to a
single topic which is selected as the novel sense; in this case recall is 1, and precision is proportional to
the frequency of the novel sense. We further consider the theoretical upper-bound of a method which
selects a single topic as the novel sense, based on the output of the HDP-based WSI method; this oracle
selects the best topic in terms of F-score as the novel sense. Results are presented in Table 2.

Each variant of Novelty and Relevance is an improvement over the baseline, although the Relevance
measures don’t perform as well as the Novelty ones, despite this dataset only containing novel senses
related to computing (despite our efforts to include non-technical novel senses). For consistency with
the presentation of the type-level results, we again consider Rank Sum using NoveltyDiff, even though it
doesn’t perform as well as NoveltyLLR or NoveltyRatio on BNC–ukWaC. Using either automatically- or
manually-obtained keywords, the performance of Rank Sum on BNC–ukWaC is remarkably on par with
the upper-bound, although for SiBol/Port there is little or no improvement over NoveltyDiff. Neverthe-
less, these findings are further indication that novel sense identification can be improved by incorporating
information about the topics for which we expect to see novel senses. However, this approach is par-
ticularly helpful at the type-level, where information about the expected topics of novel senses prevents
lemmas not having a novel sense (i.e., the distractors) from being assigned high novelty.

6 Discussion and conclusion

The methods considered in this paper could be applied to any corpus pair, and potentially to identify
lexical semantic differences between, for example, domains or language varieties. The focus of this
study is English; sufficiently-large comparable corpora of national varieties of English (e.g., British and
American English), are not readily-available, but could potentially be inexpensively constructed in the
future (Cook and Hirst, 2012). We conducted some preliminary experiments using domain-specific sports
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Method
F-score

BNC–ukWaC SiBol/Port
NoveltyDiff 0.57 0.29
NoveltyLLR 0.67 0.28
NoveltyRatio 0.66 0.28
RelevanceAuto 0.48 0.24
RelevanceManual 0.45 0.27
Rank SumDiff,auto 0.72 0.30
Rank SumDiff,manual 0.72 0.29
Upper-bound 0.72 0.42
Baseline 0.36 0.20

Table 2: Token-level F-score for the BNC–ukWaC and SiBol/Port datasets using variants of Novelty,
Relevance, and Rank Sum. The F-score of an oracle upper-bound and baseline are also shown.

and finance corpora (Koeling et al., 2005) and the BNC. However, in these experiments we observed
very high NoveltyRatio for many distractors (selected in a similar way to our other experiments). Unlike
the case of time difference, in corpora from different domains, an arbitrarily chosen word will tend to
cooccur with very different words in the corpora, and NoveltyRatio will consequently be high. To address
vocabulary differences between corpora, in their experiments on identifying lexical semantic differences
between Dutch dialects, Peirsman et al. (2010) restricted the context words used to represent a target word
to those with moderate frequency in each of the two corpora used. We considered a similar restriction in
experiments on SiBol/Port, but did not see an overall improvement in performance.

We demonstrated that the performance of a method for identifying novel word-senses can be improved
by incorporating information — acquired manually or automatically — about the expected topics of
novel senses, which tend to be related to culturally-salient concepts. In future work, we intend to consider
improved approaches for automatically identifying topically-relevant words by incorporating information
about the top keywords of a corpus harvested from the Web for the domain of interest (e.g., PVS et al.,
2012). We also believe that topic models could be useful for identifying emerging or changing domains
themselves given the reference and focus corpus, and related work in this area (e.g., Wang and McCallum,
2006; Blei and Lafferty, 2007).

To conclude, we have presented the largest type- and token-level dataset of diachronic sense differ-
ences to date, drawing on two pairs of corpora, and have made this dataset available. We applied a
recently-proposed WSI-based method to the task of finding sense differences in this data. We demon-
strated that, while the method shows promise, on a type-based task it is comparable to a a simple fre-
quency baseline, which had not been previously considered for this task. We carried out the first empirical
evaluation of a recently-proposed extension of this method that incorporates manually-acquired knowl-
edge of the expected domains of new senses, and found it to have superior performance at both the type
and token level. We further proposed and evaluated an approach that only uses this domain knowledge,
and a method for automating its acquisition.
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