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Abstract

Identifying closely related languages at sen-
tence level is difficult, in particular because
it is often impossible to assign a sentence to
a single language. In this paper, we focus
on multi-label sentence-level Scandinavian
language identification (LID) for Danish,
Norwegian Bokmål, Norwegian Nynorsk,
and Swedish.1 We present the Scandina-
vian Language Identification and Evalu-
ation, SLIDE, a manually curated multi-
label evaluation dataset and a suite of LID
models with varying speed–accuracy trade-
offs. We demonstrate that the ability to
identify multiple languages simultaneously
is necessary for any accurate LID method,
and present a novel approach to training
such multi-label LID models.

1 Introduction

Correctly identifying the language of a short piece
of text might seem like a simple (and possibly al-
ready solved) task. While differentiating between
two distant languages might be straightforward, we
show that, when focusing on a group of closely
related languages, this task becomes substantially
more challenging. This is especially true when we
consider the fact that language identification (LID)
tools have to be fast and efficient, as they are often
used for preprocessing large quantities of texts.

In this paper, we focus on the four closely re-
lated Scandinavian languages: Danish, Norwegian

*Equal contribution.
1While acknowledging that the term Scandinavian in En-

glish sometimes also includes Icelandic and Faroese, we use
the term Scandinavian in the sense of Mainland Scandinavian,
in accordance with established and legal usage of the term
in these languages. We also consider Swedish as a single
language, overlooking the nuances between Finland-Swedish
and Sweden-Swedish.
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Figure 1: Scandinavian similarity Accurate lan-
guage identification has to necessarily be multi-
label when discriminating between closely related
languages.

Bokmål, Norwegian Nynorsk, and Swedish. In or-
der to accurately differentiate within this group, we
move away from the standard single-label (multi-
class) language identification and instead treat this
problem as multi-label classification task, allow-
ing for the identification of multiple languages si-
multaneously as illustrated in Figure 1. Sentences
valid in multiple Scandinavian languages are fairly
common—they account for about 5% of our eval-
uation dataset and 16% of the sentences shorter
than 6 words. If not accounted for, these exam-
ples can skew evaluation of existing systems. The
three main contributions of SLIDE (Scandinavian
Language Identification and Evaluation), are as fol-
lows:

1. A multi-label evaluation dataset We have
created a manually corrected multi-label LID
dataset for four Scandinavian languages. We
present two evaluation methods using this
dataset: one designed for a more accurate eval-
uation of traditional multi-class LID methods,
and a second for assessing the performance of
multi-label methods.

2. A suite of LID models We train a family
of language identification models of varying
complexities. The best performing models are
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based on fine-tuned BERT models and smaller,
substantially faster models based on FastText
embeddings. The source code, datasets and
models are released at https://github.com/
ltgoslo/slide.

3. A novel multi-label LID method Manual cre-
ation of a clean multi-label LID dataset is costly.
Instead, we present a novel method of silver-
labeling such a dataset by utilizing existing ma-
chine translation models.

2 Related work

Language identification The task of identifying
the language of a text is an “old” NLP task dating
back to the 1960s. Simple but relatively powerful
tools have been available since the 1990s (Jauhi-
ainen et al., 2019).

In recent years, the main focus of NLP research
has shifted towards large language models, and
especially towards extending their coverage to an
increasing number of languages. As training data
for underrepresented languages is mostly found in
web crawls, reliable LID systems covering a large
number of languages are more important than ever.
While the earliest LID systems were restricted to
a dozen languages, recent systems cover hundreds
(Joulin et al., 2017; Grave et al., 2018; Burchell
et al., 2023; Jauhiainen et al., 2022a) and even
thousands (Kargaran et al., 2023) of languages.

In terms of methods, simple linear classifiers
with character-level and word-level features have
often outperformed more sophisticated neural mod-
els (Jauhiainen et al., 2019). Most currently avail-
able large-coverage LID models are based on the
FastText architecture (Joulin et al., 2017), a multi-
nomial logistic regression classifier with charac-
ter n-gram embeddings as input features. These
include FastText-176 (Joulin et al., 2017; Grave
et al., 2018), NLLB-218 (NLLB Team et al., 2022),
OpenLID (Burchell et al., 2023) and GlotLID (Kar-
garan et al., 2023). Different approaches are used
by HeLI-OTS (Jauhiainen et al., 2022b), which
bases its decisions on a combination of character
n-gram and word unigram language models, and
gpt2-lang-ident2, which is a fine-tuned decoder-
only model (Radford et al., 2019).

In practice, LID is most often applied to individ-
ual sentences, even though the tools can work with
longer or shorter segments of text.

2https://huggingface.co/nie3e/gpt2-lang-ident

LID for closely related and Nordic languages
To our knowledge, the only publication focusing
specifically on LID for Nordic languages is Haas
and Derczynski (2021). They compile a dataset
for the six languages (including both Norwegian
standards) from Wikipedia and evaluate a range of
LID models on it. They find that the languages
mostly cluster into three groups: Danish–Bokmål–
Nynorsk, Swedish, and Icelandic–Faroese. Their
models were not available online as of writing
this paper. Besides this, de la Rosa and Kum-
mervold (2022) present two FastText-based LID
models: one containing only the 12 most common
languages of the Nordic countries (including sev-
eral Sámi languages, Finnish, and English), and
one with an extended coverage of 159 languages.

Futhermore, the previously mentioned off-
the-shelf LID systems (NLLB-218, OpenLID,
GlotLID, HeLI-OTS) cover all six Nordic lan-
guages, with the exception of FastText-176, which
does not include Faroese.

Multi-label language identification Most exist-
ing LID training and evaluation corpora are not
manually labeled. Instead, they are based on the
assumption that the language is determined by the
source it is retrieved from. If a sentence is retrieved
from a Danish newspaper, it is assumed to be only
Danish. But when dealing with closely related lan-
guages, it is often the case that an instance cannot
be unambiguously assigned to a single language
(Goutte et al., 2016; Keleg and Magdy, 2023).

Recent proposals address this issue by framing
LID between similar languages as a multi-label task
(e.g., Chifu et al., 2024; Abdul-Mageed et al., 2024)
and by manually annotating the evaluation data
(e.g., Zampieri et al., 2024; Miletić and Miletić,
2024). However, these works do not include studies
of Scandinavian languages.

3 Data

One of the main contributions of this paper is the
release of manually and automatically annotated
multi-label datasets. In Section 3.1, we introduce
the sources from which we compile our datasets.
We then present our manually annotated multi-
label evaluation dataset (Section 3.2). Next, we
describe a way to obtain multi-label annotations au-
tomatically for the larger training set in Section 3.3.
Lastly, we outline different approaches to data aug-
mentation in Section 3.4.
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3.1 Data sources
As a starting point, we use the Universal Dependen-
cies 2.14 treebanks (UD; Nivre et al., 2016, 2020),
keeping their train/dev/test splits intact.3 For each
of the four languages, we associate each sentence
in the treebank with the language tag correspond-
ing to that treebank’s language. This results in a
foundational single-label dataset with the following
language tags: Danish (DA), Norwegian Bokmål
(NB), Norwegian Nynorsk (NN), and Swedish (SV).
We further incorporate examples labeled as other,
drawing random samples from other UD treebanks
to represent other languages.

As the UD treebanks are manually annotated, we
assume that the texts accurately reflect their corre-
sponding languages. Additionally, the treebanks
cover multiple genres, improving the robustness
of the models to different text varieties. However,
while the resulting dataset is clean, it is not dis-
ambiguated. For example, a sentence labeled as
Nynorsk is almost guaranteed to be in Nynorsk, but
it could also be a valid Bokmål sentence.

3.2 SLIDE dataset: manually multi-labeled
evaluation data

Manual inspection To identify multi-label in-
stances in the validation and test splits, we per-
formed a combination of automatic filtering and
manual annotation. Automatic filtration was done
by removing frequent words that unambiguously
define a language (e.g. ‘ikkje’ is only valid in
Nynorsk; the full list is to be found in our Github
repository).

After filtering, we split the remaining instances
among a group of annotators to manually check
for cases of multilingual acceptability. All annota-
tors were native or near-native Norwegian speakers.
Annotation tasks were delegated depending on the
speakers’ knowledge and exposure to Swedish and
Danish (all native speakers have received education
in or about other Scandinavian languages through
the public curriculum or university classes).

Unclear instances Most cases of multilingual
acceptability involved short sentences with proper
names, numbers, or words that are acceptable in
multiple Scandinavian languages. Instances con-
sisting of only proper names were annotated with
all Scandinavian languages, even if more common
in one language than another. Numerical values

3Specifically, we use the following UD treebanks:
no bokmaal, da ddt, no nynorsk, and sv talbanken.

Language Train
split

Validation
split

Test
split

Bokmål 23 120 2 543 2 098

Danish 5 977 563 677

Nynorsk 21 587 2 031 1 628

Swedish 6 911 553 1 250

Other 8 360 1 124 1 745

Total 61 406 6 433 6 950

Table 1: Dataset sizes Number of sentences per
language. Multi-label samples are reported once
for each language, while the summary row shows
total number of unique sentences.

were treated similarly as they are universally ac-
ceptable across the languages.

Non-Scandinavian instances Sentences from
other languages that are not valid in the Scandi-
navian languages retain the other label, and we
set restrictions on when this label is used. This dis-
tinction is crucial as it ensures that the other label
exclusively identifies non-Scandinavian sentences,
setting it apart from the potential multi-label nature
of the remaining labels. For example, this instance
from the Danish treebank, “- Gerne.”, is labeled
as only Danish, despite it also being acceptable
in German. This approach allows us to evaluate a
model’s ability to handle ambiguity and focus on
the sentences that could belong to multiple Scan-
dinavian languages, without having to consider all
possible languages.

Punctuation errors We found several sentences
that were orthographically identical in Danish and
Bokmål, where commas were the sole distinguish-
ing factor. When a subordinate clause occurs in
the first position of a sentence, both languages in-
clude a comma at the end of the clause. However,
if the subordinate clause does not occur in the first
position, Danish can include a comma before that
clause4, whereas Norwegian cannot5. The optional
comma, in this case, means that Danish can follow
the same punctuation rules as Norwegian but does
not have to, making differentiation difficult.

Such a sentence is shown in example (1) from
the Danish treebank. The words in this sentence are

4https://ro.dsn.dk/?type=rulesearch&side=49
5https://sprakradet.no/godt-og-korrekt-sprak/

rettskriving-og-grammatikk/kommaregler/
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written the same in Danish and Bokmål however,
the comma introducing the subordinate clause at
hun skulle havne på et teater is technically not
allowed in Norwegian.

(1) Der stod ingen steder i Mai Buchs eksamenspapirer,
at hun skulle havne på et teater.

It said nowhere in Mai Buch’s exam papers that she
would end up in a theater.

We decided to annotate such sentences as both Dan-
ish and Bokmål, thereby focusing on lexical infor-
mation rather than punctuation. This is due to Nor-
wegians’ challenges with following comma rules in
general (Michalsen, 2015, pp. 37-39), perhaps due
to Norwegian earlier having Danish comma rules
(Papazian, 2013). We also find 29444 examples of
a comma preceding at ‘that’ in the Norwegian LBK
corpus, keeping in mind that some of these might
be examples of other usage (Fjeld et al., 2020).

Code switching There were also sentences in the
dataset that included more than one language. One
such example is:

(2) Låten heter “The spirit carries on.”

The song is called “The spirit carries on.”

For these sentences that include non-Scandinavian
words, we annotated them for the Scandinavian
languages only. In cases where a sentence had
words from different Scandinavian languages, e.g.
a Nynorsk quote in a Bokmål sentence, we made
small changes to make the sentence monolingual.6

Number of multi-label instances The statistics
of the validation and test sets are shown in Table 1.
The resulting shares of multi-label instances in the
validation and test sets are 6% and 5% respectively.

3.3 Automatically multi-labeled training data

As there is no available multi-labeled training
dataset for any subset of the Scandinavian lan-
guages, and manually annotating a large-enough
dataset would be out-of-scope for this project, we
decided to silver-label the UD training split au-
tomatically. To do so, we converted the task of
machine translation into the task of language iden-
tification. This conversion then allows us to utilize
existing high-quality resources for multi-label lan-
guage identification.

6There were few instances of this, however, it is important
to mention that there is not a complete 1-to-1 correlation
between the source material and our dataset.

Alterations Loose
accuracy

Exact-match
accuracy

Augmentation + Regex 98.6 96.4
Augmentation 98.4 96.3

Regex 98.4 96.2

NER 98.7 95.5

Base 98.3 96.2

Table 2: Ablation study Impact of data aug-
mentation and regular expression normalization
on SLIDE-base measured by test set performance.
”Augmentation” refers to punctuation augmenta-
tion, ”Regex” refers to regular expression normal-
ization, ”NER” refers to named entity swaps and
”Base” is neither of the above.

Machine translation conversion The method
relies on our observation that machine translation
models tend to stay conservative and minimize the
changes between the source and target texts. Thus,
if the translation of a sentence does not lead to any
changes, we label it as a valid sentence of the target
language. This means that the machine translation
model can only add additional language labels to
a sentence as a result; we do not use the translated
sentences in any other way.

Specifically, we use NorMistral-11b to per-
form the translation (Samuel et al., 2024). While
this large language model is able to translate in
a zero-shot manner, we increase its reliability by
fine-tuning it on the small high-quality Tatoeba
evaluation set (Tiedemann, 2020) in all translation
directions between Bokmål, Danish, Nynorsk and
Swedish.

3.4 Data augmentation

Punctuation augmentation To prevent our mod-
els from relying too much on punctuation, we aug-
ment the training data with random punctuation.
This is especially important for disassociating punc-
tuation from the other tag, for which the training
data exhibits punctuation noise to a higher degree
than the Scandinavian language examples. We ran-
domly add either (i) a period, an exclamation point,
or a question mark to the end of the sentence or
(ii) a hyphen, dash or comma at the beginning of
the sentence. Additionally, there is a 1/3 chance
of including an intervening space. This augmenta-
tion scheme is chosen to try to mimic punctuation
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variance that is present in sentence-level (parallel)
corpora.

This method is only applied to instances not
labeled as other and is performed on about 7.5%
of the training data. This value is heuristically
chosen.

Regular expression normalization We normal-
ize URLs, email addresses, and numbers into the
following special symbols: 〈URL〉, 〈mail〉 and
〈num〉. These elements are not informative for lan-
guage identification, and we do not want a model
to associate them with a certain language.

label

machine
translator

augment

named-entity
recognizer

finetune

NorBERT3,
GlotLID

SLIDE
models

SLIDE
evaluation

Existing models:

single-labeled
data

multi-labeled
data

augmented
data

SLIDE dataset
(multi-labeled)

Figure 2: Training pipeline A diagram that il-
lustrates the flow of the full training pipeline. We
start with a high-quality, single-labeled training
dataset, then extend it with multi-label annotations
using a strong machine translation model. The
dataset is further augmented by randomly swap-
ping named entities identified by existing NER
models and through other rule-based augmenta-
tions. We use the (augmented) data to fine-tune
strong tranformer-based models from a family of
NorBERT3 models (Samuel et al., 2023), a fast
model from the GlotLID static word embeddings.
Finally, the manually-annotated multi-label dataset
is used to evaluate the resulting models.

Alphabet variations The alphabet of the four
Scandinavian languages differs by the usage of
the letters ä, ö (in Swedish) and æ, ø (in Danish
and Norwegian). To ensure that the model does not
learn to associate the presence of these letters solely
with their corresponding languages, we augment
the training data by adding Swedish sentences con-
taining the Danish–Norwegian letters and Danish
and Norwegian sentences containing the Swedish
letters (e.g., in proper names and in the context of
quotations).

We use the NPK parallel corpus7 containing
translations of news texts from Bokmål to Nynorsk

7https://www.nb.no/sprakbanken/en/
resource-catalogue/oai-nb-no-sbr-80/

to extract texts containing ä and ö. For Swedish, we
use the EU Bookshop corpus (Skadiņš et al., 2014)
to extract Swedish sentences containing æ and ø.
Together, this yielded 10,262 sentences, which are
included in Table 1.

Named entity swaps We also want to prevent a
model from associating named entities with a given
language. Although named entities are unequally
distributed across languages, they are not necessar-
ily language-dependent. We perform named-entity
recognition (NER) on the training data using the
spaCy8 to identify and extract persons, organiza-
tions, locations, and miscellaneous entities. We
randomly swap the recognized entities with other
entities from the same category to try to break up
any connection between entity name and a given
language.

4 SLIDE evaluation

We introduce two evaluation metrics in our com-
parison: loose and exact-match accuracy.

Loose accuracy This evaluation metric is de-
signed for models that output only one language
label per input, which is common for off-the-shelf
classifiers like FastText and NLLB. According to
this metric, a prediction is considered correct if
the single predicted label is among the gold labels.
This metric is unreliable for multi-label models,
since a model that always predicts all four lan-
guages would get 100%.

Exact-match accuracy This evaluation metric is
more strict and requires an exact match between the
predicted and gold labels sets, making it more ap-
propriate for models capable of predicting multiple
labels.

Per-language scores Additionally, we report the
F1-score for each individual language to measure
the quality of classifications for each of the four
languages separately. Here, a true positive predic-
tion happens if and only if the respective language
is present both in the set of predicted labels and in
the set of gold labels.

5 SLIDE training methodology

In this section, we present our approach to training
the SLIDE models. We explore two main direc-

8https://spacy.io/ pipeline. We use the large
language-specific models, where the Norwegian model is used
for Bokmål and Nynorsk.
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tions: transformer-based models that achieve high
accuracy but require more computational resources,
and a fast model based on static word embeddings
that trades accuracy for faster inference times.

5.1 Transformer models (SLIDE x-small,
small and base)

Fine-tuned masked language models are nowadays
the most popular sequence classification solution
for problems that require accurate solutions and
reasonable inference time (Devlin et al., 2019).

Selection of BERT family We assessed mas-
sively multilingual, Scandinavian, and Norwegian
BERT-like models with comparable number of pa-
rameters in order to choose a model to focus on for
further optimizations.

We test two massively multilingual models:
XLM-RoBERTa-base (Conneau et al., 2020), which
is trained on a corpus containing 100 languages
(including the Scandinavian languages) and has a
total of 278M parameters, as well as DistilBERT-
multilingual-base (Sanh et al., 2019), which is a
distilled version of the multilingual BERT base
model trained on Wikipedia data from 104 lan-
guages (including all the Scandinavian languages)
with 135M parameters. The Scandinavian model
we use is called ScandiBERT (Snæbjarnarson et al.,
2023); it is a BERT-like model with 125M pa-
rameters trained on Icelandic, Danish, Norwegian,
Swedish and Faroese data. Finally, NorBERT3-
base (Samuel et al., 2023) is a masked language
model trained mostly on Norwegian data.

Preliminary experiments showed that the
NorBERT3 models performed the best on our
dataset, as shown in Table 3. We thus use the
NorBERT3 models for further experiments and con-
sider the following sizes from this family of mod-
els: xs (15M parameters), small (40M parameters),
and base (123M parameters). This allows us to
train SLIDE models of varying accuracy-to-speed
trade-offs.

Training details Fine-tuning is done using the
transformers library (Wolf et al., 2020) and the
PyTorch framework (Ansel et al., 2024). We use
binary cross-entropy as the loss function to train
the model for multi-label classification.

To find our final hyperparameters, we perform
a simple grid search. The models are fine-tuned
with a learning rate of 5 · 10−5, a batch size of
64, 1% warmup steps with a linear scheduler to-
gether with the AdamW optimizer. We train the

Model Loose
accuracy

Exact-match
accuracy

Macro
F1

XLM-RoBERTa-base 96.8 94.6 95.4

DistilBERT-base 96.5 94.5 95.2

ScandiBERT 97.6 95.9 96.6

NorBERT3-base 98.6 96.4 97.0

Table 3: Base model selection We made our
choice based on the validation data split, the met-
rics in this table, given in percent, are for the test
split. F1 is per-language exact match. NorBERT3
refers to the same model as SLIDE.

models for 3 epochs (2,877 steps) and load the best
checkpoint at the end based on metric performance
(weighted multi-label accuracy). Model evalua-
tion is performed on the validation set every 100
training steps. We fine-tuned the three NorBERT3
models in this way and release them as SLIDE-xs,
SLIDE-small and SLIDE-base.

Various training set compositions were evalu-
ated; the best model was trained on the multi-label
UD dataset combined with the ‘alphabet varia-
tions’ dataset using the punctuation augmentation
approach and regular expression normalization de-
scribed in Section 3.4. We also observe that lower-
casing the training set leads to slightly better per-
formance. Therefore, we applied lowercasing to
all the training data. While performance typically
improves with more training data, this was not ob-
served on our validation set. The final training set
has a skewed label distribution: 35% Bokmål, 33%
Nynorsk, 13% other, 11% Swedish, and 9% Danish.
The validation and test sets reflect similar skews
(see Table 1). We briefly tested both upsampling
and downsampling to balance labels, but the multi-
label nature of the data made this challenging, and
it ultimately yielded no improvement.

5.2 Static-word-embedding model
(SLIDE-fast)

Since our dataset is smaller than that used to train
baseline FastText models, we train a tiny multi-
label model instead of concentrating efforts on pre-
training a model on our dataset. The model is based
on GlotLID sentence embeddings and has 20.9k
parameters, not counting the input embeddings. It
uses a feed forward network with 1 hidden linear
layer of size 64 and a ReLU activation function be-
tween it and the output linear layer, and is trained
with a regular binary cross-entropy loss. We se-
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lected the 0.5 sigmoid threshold to accept a class
based on the validation data split. The other class
is selected only if all other classes are below the
threshold. Reducing number of classes from 2,102
to 4 explains faster inference (Table 4) than that of
original GlotLID.

Additional Scandinavian data Since a SLIDE-
fast model trained on the same training dataset
as the larger model does not correctly discrimi-
nate Bokmål from Nynorsk and Danish sentences,
we enhance the training dataset with additional
Bokmål, Nynorsk, Danish and Swedish sentences
from the Tatoeba evaluation dataset (automatically
labeled in the same way as the UD-based training
dataset). NER, punctuation augmentation and regu-
lar expression normalization are not applied to the
resulting training split.

6 Experiments

We evaluate our SLIDE models against several es-
tablished LID baselines, comparing both predic-
tion accuracy and speed. Our evaluation focuses
on two key aspects: performance on our manually
annotated multi-label test set, and generalization
to out-of-domain data. We first describe the base-
line models used for comparison, then present our
main results and the results of our out-of-domain
experiments.

6.1 Baselines

We compare against LID models available at the
time of writing that support the four Scandina-
vian languages: FastText-176 (Joulin et al., 2017),
NLLB-218 (Grave et al., 2018), NB-Nordic-LID
(de la Rosa and Kummervold, 2022), OpenLID
(Burchell et al., 2023), GlotLID (Kargaran et al.,
2023); Heliport, a faster version of HeLI-OTS
(Jauhiainen et al., 2022b)9, and gpt2-lang-ident.

While top-k prediction with confidence scores is
possible for the FastText and GPT2-based models,
we observe that the confidence scores are unreli-
able, i.e. there is no consistent threshold value that
improves performance, and for all baseline models,
except Heliport, the best results are achieved when
they are used as single-label classifiers.

6.2 Main results

Table 4 presents the main results of our experi-
ments on the manually-annotated SLIDE test set.

9https://github.com/ZJaume/heliport

We report loose accuracy and exact-match accuracy
as overall metrics, along with per-language exact-
match F1 scores for each of the four languages
and the ’other’ category. Additionally, we mea-
sure inference speed in milliseconds per sentence,
averaged over three runs10.

6.3 Out-of-domain test set
Haas and Derczynski (2021) provide two test
sets with single-label annotations, extracted from
Wikipedia. In order to evaluate our models on an
out-of-domain dataset and compare them with pre-
vious work, we use their two test splits containing 3
000 and 14 960 samples respectively and map Ice-
landic and Faroese to the ‘other’ label. We present
the results on these test sets in Table 5.

7 Discussion

Performance of baseline models The baseline
models exhibit varying levels of performance, see
Table 4 for detailed metrics. These results demon-
strate that, while most FastText-based models of-
fer speed advantages, they fall short in accuracy
for closely related languages such as Norwegian
Bokmål and Norwegian Nynorsk. GlotLID, though
slower (0.51 ms/sentence), provides the best perfor-
mance among the baseline models, with Heliport
being a close contender while being significantly
faster (0.02 ms/sentence). gpt2-lang-ident, orig-
inally pretrained as a monolingual English model,
fails to tell Danish and two Norwegian languages
from each other, while being able to detect Swedish
and ‘other’, which again highlights the importance
of a dataset focused on Scandinavian languages.

Performance of SLIDE models Our three
BERT-based LID models SLIDE-xs, SLIDE-small
and SLIDE-base perform the best on our test set,
with the base version reaching an exact-match ac-
curacy of 96.4%, while the small and xs both
reach 95.7%. This comes at the cost of significantly
longer runtimes compared to the static embedding
models. These models are suitable when high ac-
curacy is of most importance. However, it is worth
noting that we measured inference speed solely on
a CPU, one sentence at a time, to ensure a fair com-
parison with the faster baseline models intended
for CPU usage. Using a GPU with larger batch
sizes would result in significantly faster runtimes
for the transformer models.

10Measured on an AMD EPYC 7702 CPU, with a batch
size of 1.
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Model Loose
accuracy

Exact-match
accuracy

NB
F1

DA
F1

NN
F1

SV
F1

Other
F1

Runtime
ms/sample

BASELINES

gpt2-lang-ident 61.2 58.9 47.0 24.0 36.9 83.6 86.2 52.07

FastText-176* 80.5 77.7 72.6 66.0 55.7 92.7 93.5 0.01
NLLB-218* 95.3 91.6 93.0 85.9 89.0 96.8 93.6 0.08

NB-Nordic-LID* 83.3 80.6 85.0 67.0 84.8 89.7 70.2 0.02

OpenLID* 94.2 90.2 91.5 82.6 88.7 95.7 93.3 0.08

GlotLID* 97.2 93.4 93.5 89.5 89.4 97.9 98.1 0.51

Heliport (HeLI-OTS) 96.5 92.6 90.9 89.0 91.2 97.6 97.2 0.02

OUR MODELS

SLIDE-fast 95.7 93.4 94.5 90.2 92.4 97.5 96.4 0.16

SLIDE-x-small 97.8 95.7 97.5 90.4 96.2 98.0 98.7 13.22

SLIDE-small 98.1 95.7 97.7 89.9 96.3 98.0 99.1 19.70

SLIDE-base 98.6 96.4 98.1 92.0 97.1 98.6 99.4 38.41

Table 4: Detailed results on the manually-annotated multi-label SLIDE test split The best result for
each metric is typeset in bold; higher values are always better, except for the runtimes. * shows which
baselines use FastText.

While our SLIDE-fast model reaches the same
exact-match accuracy as GlotLID, 93.4%, it per-
forms better on Nynorsk, Bokmål and Danish, with
Nynorsk performance increasing by 3%.

Overall, performance on Danish is consistently
the lowest—the best model reaches 92% F1. Our
models have been trained on more Bokmål than
Danish data, and we observe a slight tendency to
predict only Bokmål instead of both Bokmål and
Danish for multilingual samples. We do, however,
notice the same trend with lower Danish perfor-
mance across all evaluated models, see Table 4.

As seen in Table 2, the punctuation augmenta-
tion led to minor performance improvements. The
main motivation behind this approach, however,
is increased robustness to noisy data. While the
model trained with named entity swapping (see
Section 3.4) gained the highest loose accuracy per-
formance, 98.7%, it performed poorly on exact-
match accuracy, 95.5%. We therefore decided not
to include this in the final SLIDE models.

Error analysis Common error sources are proper
names (half of ‘other’ instances misclassified as
Scandinavian contains proper names (e.g. ‘kruvi:
Karl Marx’), instances in English (30% of ‘other’
instances misclassified as Scandinavian), and loan-
words (‘- Ta avisa Kommersant.’, ‘Server med pas-

tasalat med bakte grønsaker og tsatsiki til’, ‘Men
Anne Linnet - oh la la.’) Bokmål and Nynorsk are
confused most often. If a sentence valid both in
Bokmål and Nynorsk contains irregular Bokmål
spelling like ‘høg’ instead of ‘høy’, and ‘tjuvfiske’
instead of ‘tyvfiske’, it is likely to be misclassified
as Nynorsk only. Some errors imply that partic-
ular tokens influence the prediction more than a
sentence representation as a whole: ‘høyre’ is a
valid word both in Nynorsk (‘hear’) and Bokmål
(‘right’), but the sentence ‘I alle år har vi fått høyre
at med dagens forbruk er det olje nok for mange
tiår.’, which is Nynorsk because of ‘høyre’ used
as a verb, is misclassified as Bokmål, while a both
Bokmål and Nynorsk sentence ‘I den nye designen
er høgre og venstre spalte på framsida til nettavisa
fjerna.’ is misclassified as only Nynorsk because of
the spelling. Additionally, some ‘other’ instances
containing subwords matching those in Scandina-
vian are misclassified, although the whole sentence
semantics does not make any sense: ‘Va shiaulteyr
er ny skeabey harrish boayrd.’ (Manx).

Out-of-domain evaluation In order to ensure
that we do not overfit to the UD data, we evaluate
our models on the out-of-domain test set presented
in Section 6.3, which was the only LID dataset spe-
cific for Scandinavian languages available at the
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Model 3K test split 15K test split

SLIDE-base 92.7 95.3

SLIDE-fast 85.4 88.5

GlotLID 93.0 95.7

Table 5: Performance on an out-of-distribution
single-labeled datasets Accuracy on the test sets
from Haas and Derczynski (2021). As this dataset
is single-label, we consider a prediction to be cor-
rect, if one of the predicted languages is correct.

time of writing. While SLIDE-base reaches lower
performance than GlotLID on this test set, we must
add that this dataset is heavily preprocessed: lower-
cased and stripped out of numbers, punctuation
signs and some accented characters. We also no-
ticed a fair amount of mislabeled sentences in the
dataset, with sentences like “ou di be t aatm ne en
wadi”, “atahualpa yupanqui” and “tromssan ruijan-
suomalainen yhdistys” being labeled as Swedish,
Danish and Nynorsk, respectively. Furthermore,
this dataset contains Icelandic and Faroese as the
other languages, which are similar to Nynorsk
in many cases. In short, we cannot draw confi-
dent conclusions from this result, but it hints at the
worst-case performance of our models on out-of-
distribution inputs.

8 Conclusion

We release a novel multi-label LID dataset for Dan-
ish, Norwegian Bokmål, Norwegian Nynorsk and
Swedish with manually annotated validation and
test splits. Using machine translation for creating
a silver multi-label training dataset from a single-
label one has proved to be efficient.

Although fine-tuning models for a specific data
source may be helpful to obtain high performance
on a selected test set, such models (especially the
FastText-based ones) may be not robust towards
the test dataset change. Also, excessive training
data preprocessing may lead to performance degra-
dation on data from unknown domains compared
with training without any preprocessing.

Limitations

We limit ourselves to the larger Scandinavian lan-
guages, and include neither the other closely re-
lated Nordic languages Faroese and Icelandic (also
known as Insular Scandinavian), nor the smaller

Scandinavian varieties with a limited written tradi-
tion, such as Scanian, Elfdalian and Bornholmsk.
We also do not look at other sources of variation,
e.g., dialectal, diachronic or otherwise different
varieties found in literature or social media.

Another limitation is that while all Norwegians
generally understand Swedish and Danish well, as
these languages are a compulsory part of the public
curriculum, and also teaching languages of Norwe-
gian universities, their productive capabilities are
much lower, and there might be cases of mislabel-
ing.
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Glavaš, and Ivan Vulić. 2023. Transfer to a low-
resource language via close relatives: The case study
on Faroese. In Proceedings of the 24th Nordic Con-
ference on Computational Linguistics (NoDaLiDa),
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