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Abstract
This paper evaluates the language under-
standing capabilities of various large lan-
guage models (LLMs) through an anal-
ysis of 112 translated and human-edited
questions from the Multitask Language
Understanding (MMLU) dataset, focusing
specifically on two underrepresented lan-
guages: Latvian and Giriama. The study
compares the performance of six state-of-
the-art (SOTA) models, with OpenAI’s
o1-preview model demonstrating superior
performance across all languages, signifi-
cantly outperforming non-proprietary mod-
els in Latvian and Giriama. Human edit-
ing of automated translations from English
to Latvian yielded only a small, statisti-
cally insignificant improvement in perfor-
mance estimates, suggesting that machine-
translated benchmarks may be sufficient
for comparing model performance in lan-
guages with established digital resources
like Latvian. However, automated trans-
lation to Giriama proved infeasible, and
model performance in Giriama remained
poor, highlighting the persistent challenges
LLMs face with low-resource languages.
These findings underscore the need for
high-quality datasets and improved ma-
chine translation capabilities for underrep-
resented languages, emphasizing the im-
portance of localized benchmarks and hu-
man evaluation in addressing cultural and
contextual limitations in AI models.

1 Introduction

The potential benefits of advanced artificial intelli-
gence (AI) are vast, but to ensure these advantages
are globally accessible, it’s crucial that AI systems
perform well across multiple languages. Previous
research has highlighted a significant disparity be-
tween the performance of frontier large language

models (LLMs) in English compared to other lan-
guages, particularly those with limited resources
(Cohere For AI team, 2024; OpenAI, 2024; Dubey
et al., 2024).

Recently, there has been growing interest in as-
sessing the capabilities of LLMs, with studies such
as HELM (Liang et al., 2022), BIG-Bench (Sri-
vastava et al., 2022), LAMBADA (Paperno et al.,
2016) evaluating various model functions. How-
ever, these evaluations mostly focus on English,
leaving a gap in assessing LLMs’ multilingual per-
formance. As new language technologies based
on LLMs rapidly emerge, evaluating their multilin-
gual effectiveness is crucial (Blasi et al., 2021).

As AI models continue to evolve, it’s essential to
monitor how this language gap is narrowing. Users
working with models in various languages could
greatly benefit from comparative performance anal-
yses across different linguistic contexts. However,
evaluating model performance in non-English lan-
guages presents challenges, for example manual
translation is time-consuming, and this has forced
the NLP community to focus on a selection of tasks
and languages only. Moreover, it has become stan-
dard practice to machine translate the training set
but use human translation for test sets (Choenni
et al., 2024). While automated translation of bench-
marks is cost-effective, it raises concerns about
quality. Conversely, human translations, though
potentially more accurate, can be prohibitively ex-
pensive. Driven by these considerations this study
aims to address the following key questions:

• Q1: Which LLM performs best in both Lat-
vian and Giriama tasks?

• Q2: How do model performance levels differ
between English, Latvian, and Giriama?

• Q3: How does human post-editing of transla-
tions affect benchmark quality compared to
pure machine translation?

In our work, we utilize the Massive Multitask
Language Understanding (MMLU) benchmark,
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which covers 57 subjects ranging from STEM to
humanities and social sciences. Our goal is to en-
hance the understanding of LLMs performance in
low-resource languages, with a specific focus on
Latvian and Giriama, and to contribute to the devel-
opment of AI systems that are both linguistically
and culturally inclusive.

2 Related works

2.1 Multilingual models across cultures and
languages

State-of-the-art (SOTA) massively multilingual lan-
guage Models (MMLMs) such as mBERT (Devlin,
2018), XLMR (Conneau, 2019), and mT5 (Xue,
2020) support 100+ languages worldwide and have
shown exceptional proficiency in both understand-
ing and generating text across diverse linguistic
contexts. Additionally, generative models like
GPT-4 (Achiam et al., 2023), LLaMA (Touvron
et al., 2023) and BLOOM (Le Scao et al., 2023)
are also gaining world recognition for their contri-
butions to advancing natural language generation
and understanding. Significant challenges remain
in ensuring cultural sensitivity and language equity
(Dawson et al., 2024).

Studies have shown that multilingual models
perform well on high-resource languages like En-
glish, French, and German, but struggle with low-
resource languages (Li et al., 2024; Hedderich
et al., 2020; Ranathunga and De Silva, 2022), par-
ticularly in Africa (Adelani et al., 2021; Alabi et al.,
2022; Adebara et al., 2024) and South Asia (Lahoti
et al., 2022; Baruah et al., 2021), due to limited
training data (Adebara et al., 2024; Magueresse
et al., 2020). Challenges such as cultural nuances
(Romero et al., 2024; Winata et al., 2024), dialectal
variation (Faisal et al., 2024), and code-switching
(Winata et al., 2021) further hinder model per-
formance. While efforts like cross-lingual trans-
fer learning and culturally relevant datasets have
been made to address these issues (Hu et al., 2020;
Winata et al., 2022; Liu et al., 2021), performance
gaps persist in underrepresented languages.

2.2 Datasets, benchmarks, or libraries for
evaluating multi-lingual models

Most existing multilingual NLP benchmarks such
as (Hendrycks et al., 2020; Hu et al., 2020; Wang,
2018; Wang et al., 2019; Guzmán et al., 2019) are
heavily skewed toward high-resource languages,
particularly those in the Indo-European language
family, and reflect predominantly Western cultural

contexts. As a result, these benchmarks fail to
capture the linguistic and cultural diversity of the
global population, making them less reliable in as-
sessing the performance of multilingual language
models (MMLMs) across underrepresented lan-
guages and cultures (Bender, 2019).

Recent works have focused on expanding mul-
tilingual datasets to better reflect the linguistic
and cultural diversity across the world. Projects
such as (Romero et al., 2024; Winata et al., 2024;
Kirby et al., 2016; Miquel-Ribé and Laniado, 2019;
Moran et al., 2022; Adebara et al., 2024; Ife-
oluwa Adelani et al., 2024; Costa-jussà et al., 2022)
are making strides in enhancing the representa-
tion of multilingual models, leveraging community-
driven initiatives to build localized datasets. These
efforts have highlighted the importance of under-
standing the cultural context in which language
is used, rather than relying solely on translation-
based approaches (Tiedemann, 2020).

2.3 Human evaluation of multilingual and
multicultural aspects of models

Human ability to understand language is general,
flexible, and robust (Wang, 2018; Lin and Och,
2004). Hence, human evaluations are typically
considered the gold standard in natural language
generation to assess the effectiveness of multilin-
gual models (Clark et al., 2021; Chiang and Lee,
2023), particularly in evaluating their ability to gen-
erate text that aligns with diverse linguistic and cul-
tural contexts. Automatic metrics such as BLEU
(Papineni et al., 2002) and ROUGE (Lin, 2004)
even though commonly used, often fail to capture
cultural nuances, making human evaluation essen-
tial for a more comprehensive assessment (Kocmi
et al., 2021).

Human evaluations are essential for assessing
how well multilingual models handle grammatical,
syntactical, and contextual differences, particularly
in low-resource languages where machine models
often struggle with culturally specific terms (Costa-
jussà et al., 2022). Evaluating multicultural aspects
is even more challenging due to cultural references,
social norms, and context-dependent meanings.
Human raters are better at identifying these nu-
ances, using criteria such as appropriateness, bias
detection, and cultural sensitivity (Choenni et al.,
2024)
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Language Question and Answers (Question subject: miscellaneous)
English According to the children’s nursery rhyme what type of ocean did Columbus sail in 1492?

A: calm X, B: blue ✓, C: windy X, D: really big X
Giriama Kulingana na wira wa kitalu cha ahoho ni aina yani ya bahari ambayo Columbus wasafiri

makathi ga 1492?
A: Kuhurira X, B: buluu ✓, C: peho X, D: bomu jeri X

Latvian Saskan, ā ar bērnu bērnudārza atskan, u, kāda veida okeānu Kolumbs ku ‘goja 1492. gadā?
(autotranslated) A: Mierı̄gs X, B: zils ✓, C: Vējains X, D: L, oti liels X
Latvian Saskan, ā ar bērnudārza pantin, u, kāda veida okeānu Kolumbs ku ‘goja 1492. gadā?
(autotranslated & edited) A: Mierı̄gu X, B: Zilu ✓, C: Vējainu X, D: L, oti lielu X

Table 1: Sample question translated into Giriama and Latvian (AT: autotranslated, AT+E: autotranslated and edited)
with correct answers marked (✓) and incorrect answers marked (X). The correct answer "blue" in English refers to the
popular children’s rhyme "In 1492, Columbus sailed the ocean blue," which is a cultural reference that may not resonate
in Latvian or Giriama without further explanation.

3 Methodology

3.1 Datasets
The MMLU dataset (Hendrycks et al., 2021) in-
cludes 57 subjects spanning various disciplines
such as mathematics, history, computer science,
law, and more. The dataset features over 15,000
questions from publicly available sources such
as practice tests for exams like the GRE and
USMLE. These questions are categorized by dif-
ficulty, from elementary to advanced professional
levels. The benchmark is designed to evaluate mod-
els in zero-shot and few-shot settings, aiming to
assess their world knowledge and problem-solving
ability across diverse subjects.

3.2 Languages covered
Our benchmarks encompass Latvian and Giriama,
two languages that are quite distinct both in their
geographic origins and linguistic structures:

• Latvian (lav): spoken by approximately 1.75
million people primarily in Latvia, belongs to
the Baltic branch of the Indo-European lan-
guage family and is closely related to Lithua-
nian, though they are not mutually intelligible.
Latvian has lower digital resources as com-
pared to high-resource languages like English,
German, or Chinese and limited representa-
tion in widely used multilingual benchmarks.
The complexity of Latvian, such as its rich
morphology (seven cases, gender system, and
inflectional forms), further adds to the diffi-
culty of processing it with LLMs, which often
struggle with the intricate grammatical struc-
tures of low- and medium-resource languages.
It remains underrepresented in many NLP ap-
plications (Darg̀is et al., 2024).

• Giriama (nyf): Giriama, or Kigiryama, is a
Bantu language spoken by around 700,000
people, primarily in Kilifi County, Kenya. It

is one of the nine (9) Mijikenda languages,
classified under the Northeastern Bantu sub-
group of the Niger-Congo family. Like many
Bantu languages, Giriama is agglutinative, us-
ing affixes to express grammatical relations,
and features a complex noun class system
that affects agreement with verbs and adjec-
tives. Predominantly oral, Giriama has lim-
ited written texts, though recent efforts have
promoted literacy using the Latin alphabet.
Despite these efforts, Giriama remains under-
resourced in linguistic and digital documenta-
tion.

3.2.1 Dataset collection
We created our dataset by randomly selecting 112
questions and answers from the MMLU (Massive
Multitask Language Understanding) benchmark
(Hendrycks et al., 2021). The dataset preparation
involved three versions:

1. The original English questions (baseline)
2. Machine translations of these questions into

Latvian using MyMemory API (MyMemory,
2024)

3. Human-edited translations in both Latvian
and Giriama

For Giriama, we skipped machine translation
since automatic translation systems frequently
misidentified the language as Swahili. This three-
version approach enabled us to compare LLM per-
formance across machine-translated and human-
edited content.

3.2.2 Translations and annotation process
We recruited one language coordinator, who also
doubled as a translator for the Giriama language.
The translator holds a master’s degree in computer
science and is a native speaker of the language,
with extensive experience as a translator. As a to-
ken of appreciation, we provided compensation for
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Figure 1: Frontier LLMs in Latvian and Giriama Dataset and Benchmarking pipeline

the work completed. For the Latvian translations,
a Latvian-fluent annotator reviewed and edited the
machine-translated questions. The focus was on
correcting any errors that could hinder comprehen-
sion or lead to misinterpretations of the answer op-
tions. This human-edited process ensured a higher
level of accuracy in both the Giriama and Latvian
translations.

3.3 Task covered

Our work focuses on evaluating the multilin-
gual understanding of LLMs by assessing their
ability to process translated questions from the
MMLU benchmark across three languages: En-
glish, Latvian, and Giriama. The translation
tasks involve both machine-generated and human-
annotated translations. Specifically, the task ex-
amines how well the models comprehend and an-
swer 112 questions from English into Latvian and
Giriama. The objective is to compare the perfor-
mance of LLMs in handling machine translations
versus human-annotated versions, thereby explor-
ing the necessity and impact of human involvement
in translation tasks, particularly in low-resource
languages like Giriama.

4 Evaluation metrics

We evaluated the performance of six LLMs on four
distinct language tasks: English, Latvian, machine-
translated Latvian, and Giriama using an accuracy
score. A uniform temperature setting of 0.5 was ap-
plied across all models, except for the o1-preview,
for which only a fixed temperature of 1 was sup-
ported.

For each model, accuracy was computed as the
proportion of correct outputs from a test set com-
prising 112 samples. To account for uncertainty in
the performance estimates, we employed the Wil-
son score interval. This method provides a more
accurate estimation of confidence intervals for bi-
nomial proportions p such as model accuracy by
considering the sample size n and desired confi-
dence level (typically set at z = 1.96 for a 95%
confidence interval). The Wilson interval is pre-
ferred over traditional intervals like Wald due to its
robustness, particularly with smaller sample sizes,
ensuring more reliable confidence bounds around
the accuracy metric.

We tested statistical significance using a two-
proportion z-test, comparing each model’s perfor-
mance against the highest-performing model in its
respective task category. This approach allowed us
to ascertain whether differences in accuracy were
statistically significant or occurred due to random
chance. The evaluation process leveraged the UK
AISI Inspect framework (AI Safety Institute, 2024),
which provided a standardized structure for imple-
menting and automating our assessment.

5 Experiment

5.1 Model choice
We employed a combination of six (6) closed and
open large LLMs to evaluate their performance
across English, Latvian, and Giriama translations.1

The closed models selected for this study include

1Specifically: claude-3-5-sonnet-20241022, gemini-1.5-
pro-002, gpt-4o-2024-08-06, Meta-Llama-3.1-405B-Instruct-
Turbo, mistral-large-2407, and o1-preview-2024-09-12.
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o1-preview, GPT-4o, and versions of Claude and
Gemini, all of which are proprietary models known
for their SOTA performance and extensive use in
commercial applications. These models were cho-
sen due to their established capabilities in handling
a wide range of tasks, particularly in high-resource
languages like English.

In contrast, open models such as Llama and Mis-
tral were also included in the evaluation due to the
transparency regarding their underlying architec-
ture and training data, hence valuable for our use
case. We aim to provide a comprehensive com-
parison of their effectiveness in low-resource lan-
guages, while also exploring the potential trade-
offs between proprietary solutions and more cus-
tomizable, open models.

6 Results and discussions

6.1 Model performance on languages

Table 2 presents the performance results of six
LLMs across four languages—English, Latvian,
machine-translated Latvian (denoted as Latvian
(AT)), and Giriama. The results reflect varying de-
grees of proficiency across these languages, with
a notable performance disparity between high-
resource (English) and low-resource (Latvian and
Giriama) languages.

The o1-preview model demonstrated superior
performance across all three languages, achieving
an accuracy of 87.5% in English, 84.8% in Latvian,
and 82.1% in machine-translated Latvian. While
the model’s performance declined in Giriama, it
still led the other models with an accuracy of
64.3%, suggesting relative robustness in handling
lower-resource languages. The relatively small per-
formance gap between English and Latvian shows
the model’s effectiveness in transferring knowledge
to a non-English, medium-resource language.

Mistral showed the weakest performance across
all languages, with English accuracy at 76.8% and
a sharp decline in Latvian (57.1%**) and Giriama
(34.8%**). This underscores the challenges of Mis-
tral model in processing low-resource languages
and its inability to maintain consistent accuracy
across diverse linguistic contexts.

o1-preview model demonstrates the highest per-
formance in Giriama, though the differences be-
tween o1, GPT-4o, Claude 3.5 Sonnet, and Gemini
1.5 Pro are statistically insignificant. In contrast,
Llama 3.1 405B and Mistral Large 2 show notably
lower performance, struggling to handle Giriama
and Latvian

6.2 Cross-language performance gaps
The performance disparities observed between En-
glish (Figure 2), Giriama (Figure 3) and Latvian
(Figure 4) underscore the challenges faced by cur-
rent LLMs in processing both medium- and low-
resource languages.

The average gap between English and Latvian
performance across all models is 9.3%, which is
comparable to approximately two-thirds of the per-
formance difference between GPT-3.5 and GPT-4
in English (OpenAI et al., 2024). However, this
gap narrows for higher-performing models like o1-
preview, where the difference becomes less pro-
nounced. Large differences in this gap are primar-
ily observed in the performance of Mistral.

In contrast, Giriama—a low-resource Bantu lan-
guage—exhibits a much more pronounced perfor-
mance gap, with average model accuracy dropping
sharply to (47.6%), underscoring the limitations
of cross-lingual transfer learning in handling lan-
guages with limited digital resources and complex
linguistic structures.

The results reveal a consistent performance gap
between more resourced languages and less re-
sourced languages. On average, the models per-
form best in English (83.6%), followed by Latvian
(74.3%) and machine-translated Latvian (71.3%),
with the lowest performance observed in Giriama
(47.6%).

Figure 2: Model performance in English. Error
bars represent 95% Wilson confidence intervals.

6.3 Impact of human-edited vs.
machine-translated Data

For Latvian translations, human editing provided
a modest improvement over machine translation,
with accuracy increasing by 3.0% on average (see
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Model English Latvian Latvian (AT) Giriama
o1-preview-2024-09-12 0.875 0.848 0.821 0.643
claude-3-5-sonnet-20241022 0.866 0.804 0.777 0.482∗

gemini-1.5-pro-002 0.846 0.786 0.732 0.509∗

Meta-Llama-3.1-405B-Instruct-Turbo 0.839 0.688∗∗ 0.643∗∗ 0.411∗∗∗

gpt-4o-2024-08-06 0.821 0.759 0.723 0.464∗∗

mistral-large-2407 0.768∗ 0.571∗∗∗ 0.580∗∗∗ 0.348∗∗∗

AVG 0.836 0.743 0.713 0.476

Table 2: Model performance across languages. AT: autotranslated. Each model: n=112; AVG: n=672. Boldface indicates
the highest score in each column. Asterisks indicate statistically significant differences from the highest-scoring model
within each language variant (*: p<0.05, **: p<0.01, ***: p<0.001), computed using two-proportion z-test.

Figure 3: Model performance in Giriama. Error
bars represent 95% Wilson confidence intervals.

Table 2). While this difference is not statistically
significant, it suggests that human involvement re-
mains valuable for languages with complex mor-
phology and syntax. However, we note that our
baseline used a free translation service - SOTA
machine translation might further narrow this gap.

Giriama presented more significant challenges.
The language was consistently misidentified as
Swahili by translation systems, making automatic
translation infeasible. This technical limitation,
combined with uniformly poor model performance
across all tested models, emphasizes the need for
increased linguistic resources and human exper-
tise when working with low-resource African lan-
guages.

6.4 Impact of the temperature setting

As noted previously, we used a temperature set-
ting of 0.5 for all models except for o1-preview,
which only permits temperature=1. To assess
whether this non-uniform temperature setting sig-
nificantly affected our results, we conducted addi-

Figure 4: Model performance in Latvian. Error
bars represent 95% Wilson confidence intervals.

tional tests on the edited Latvian translations. We
ran the five other models at temperature=1 and
compared their performance against the temper-
ature=0.5 runs. The results were similar across
models, with only Llama 3.1 405B showing slight
improvement (+0.9%). On average, performance
marginally declined (-0.4%), but none of the differ-
ences were statistically significant. We conclude
that the non-uniform temperature settings did not
materially impact our findings.

6.5 Implications for multilingual LLM
development

The substantial performance drop from English to
Giriama across all models reflects the broader chal-
lenges in scaling LLMs for low-resource languages.
While advancements in multilingual modeling have
closed some gaps for medium-resource languages
like Latvian (Darg̀is et al., 2024), this study high-
lights the considerable distance yet to be covered
in adequately supporting low-resource languages,
particularly African languages like Giriama. These
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results underscore the importance of developing
more inclusive benchmarks and expanding the
availability of high-quality training data to ensure
that LLMs are more equitable across diverse lin-
guistic contexts.

6.6 Bias and considerations for future
Research

Anecdotal evidence showed that some of the tested
models were much better at translating questions
and answers than the free translation service. Fu-
ture research could make use of the LLM transla-
tion capabilities. However, it is important not to
bias the results in favor of one model or another:
it is not inconceivable that a given model finds
its own translations easier to interpret than those
of other models (which is another hypothesis to
explore). Alternatively, it is possible to use other
translation services and human translation services
together or separately.

These, as other benchmark results, may be sub-
ject to bias due to potential data contamination.
(Bean et al., 2024). The English MMLU dataset is
more likely to have been included in or influenced
the models’ training data. This could lead to an
overestimation of the performance gap between
languages, as models might have prior exposure to
the English questions.

Cultural context introduces another potential
source of bias and reduced relevance in this study.
For example, Professional Law questions are based
on the U.S. legal system, not Kenyan or Latvian
law, which may lead to less accurate responses
when questions are presented in Giriama or Lat-
vian. This mismatch between the source material’s
cultural context and the target languages could af-
fect model performance independently of linguistic
factors. Future research could assess the impact of
cultural context by using a larger sample size and
analyzing model performance in culturally sensi-
tive subcategories like Professional Law. However,
U.S.-centric legal questions are inherently limited
in evaluating legal expertise within other contexts.
Adapting such questions to local contexts is crucial
but may require costly specialist knowledge.

Expanding the sample size in future studies
could yield more robust results. The scope of
this investigation was primarily constrained by two
factors: the human resources required for editing
translations and the available resources for model
API access.

7 Conclusion

Our evaluation of six frontier LLMs across En-
glish, Latvian, and Giriama reveals several critical
insights about the current state of multilingual AI
capabilities:

1. Model-specific language gaps: While all
models showed performance degradation in
non-English languages, proprietary models
(particularly o1-preview with only a 2.7%
English-Latvian gap) maintained relatively
consistent performance compared to open-
source alternatives (up to 19.7% gap). This
suggests that recent advances in commercial
AI systems are beginning to address historical
English-centric bias, though significant gaps
remain in open-source alternatives.

2. Translation quality impact: For Latvian, hu-
man editing of machine translations improved
accuracy by only 3.0% on average, indicating
that automated translations may be sufficient
for benchmark creation in languages with es-
tablished digital infrastructure. This finding
could significantly reduce the cost and effort
of developing multilingual evaluations.

3. Low-resource language challenges: The dra-
matic performance drop in Giriama (average
accuracy 47.6% vs 83.6% in English) reveals
fundamental limitations in current approaches
to low-resource language support. The failure
of machine translation for Giriama highlights
how technological gaps compound the chal-
lenges of language accessibility.

These findings have immediate implications for
both research and deployment. For research, they
highlight the viability of using machine transla-
tion for creating benchmarks in medium-resource
languages and the need for better methods to sup-
port low-resource languages. For deployment, our
results suggest that while LLMs are becoming vi-
able for medium-resource languages like Latvian,
significant work remains before they can reliably
serve low-resource language communities.

Future work should prioritize two key areas: (1)
developing more efficient methods for extending
LLM capabilities to low-resource languages with-
out requiring extensive compute or data resources,
and (2) creating evaluation frameworks that ex-
plicitly measure both linguistic accuracy and cul-
tural appropriateness. The substantial gap in low-
resource language performance emphasizes that
achieving truly equitable AI requires not just tech-
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nical advancement, but sustained investment in
linguistic resources and community engagement.

8 Limitations

Our work presents several limitations that should
be acknowledged. First, no formal quality control
measures, such as inter-annotator agreement (IAA)
or Cohen’s Kappa, were employed to assess the
consistency and reliability of the translations in our
dataset. This could affect the overall validity of the
translation quality.

The dataset size is relatively small, consisting
of only 500 questions per language. While this
dataset provides preliminary insights, the dataset
size limits the generalizability of the results, and
larger datasets would be necessary to draw more
robust conclusions.

This study’s scope was limited to six language
models and two non-English languages due to API
access costs. A more comprehensive evaluation
would require greater financial resources to test
additional models and languages.

Finally, Giriama, as a low-resource language,
faces unique challenges due to limited linguistic
resources, which may lead to oversimplified trans-
lations and insufficient validation, affecting the
dataset’s quality. Unlike Latvian, which has more
established digital resources, Giriama may lack the
tools for thorough quality control, increasing the
risk of inaccuracies.

9 Ethical considerations

Native speakers translated the MMLU dataset into
Giriama and Latvian to ensure linguistic and cul-
tural accuracy. However, several potential ethical
concerns arise in this process:

• Cultural Relevance and Sensitivity: While
linguistic fidelity was prioritized, the dataset
contains many questions grounded in Western,
specifically American, cultural contexts such
as historical references to Columbus or moral
standards in the US. When translating such
questions into Latvian or Giriama, there is a
risk of imposing culturally foreign concepts
onto the target audience, potentially alienating
speakers or distorting meaning. For instance,
some questions may have no direct equivalent
in Giriama or Latvian law and moral philos-
ophy. This can lead to mistranslation or mis-
understanding, as the target audience may not
relate to or fully grasp the original cultural
context.

• Linguistic Complexity and Vocabulary
Gaps: Many questions in the dataset involve
highly technical and specialized terminology
from subjects such as law, science, and ethics
(such as "neurotransmitters," "Pauli exclu-
sion principle"). Low-resource languages like
Giriama may not have established vocabulary
for such specialized terms, resulting in chal-
lenges for accurate translation. Translators
must decide whether to borrow terms from En-
glish or create new ones, both of which have
ethical implications that could undermine lin-
guistic purity or lead to confusion or lack of
consistency in the target language Cultural
Bias in Translation: The MMLU dataset
reflects Western-centric knowledge and per-
spectives, which pose ethical challenges when
translating into low-resource languages like
Giriama or Latvian. Without careful adapta-
tion, cultural differences in political ideolo-
gies, social norms, or gender roles may be
misrepresented, leading to misunderstandings.
These biases can hinder the performance of
language models by failing to accurately cap-
ture the nuances of the target cultures, reduc-
ing their effectiveness in real-world applica-
tions.
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