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Abstract

Laboratory tests generate structured numerical
data, which a clinician must interpret to justify
diagnoses and help patients understand the out-
comes of the tests. LLMs have the potential to
assist with the generation of interpretative com-
ments, but legitimate concerns remain about
the accuracy and reliability of the generation
process. This work introduces LAB-KG, which
conditions the generation process of an LLM on
information retrieved from a knowledge graph
of relevant patient conditions and lab test re-
sults. This helps to ground the text-generation
process in accurate medical knowledge and en-
ables generated text to be traced back to the
knowledge graph. Given a dataset of labora-
tory test results and associated interpretive com-
ments, we show how an LLM can build a KG of
the relationships between laboratory test results,
reference ranges, patient conditions and demo-
graphic information. We further show that the
interpretive comments produced by an LLM
conditioned on information retrieved from the
KG are of higher quality than those from a stan-
dard RAG method. Finally, we show how our
KG approach can improve the interpretability
of the LLM generated text.

1 Introduction

Artificial Intelligence (AI) has become increasingly
influential in the medical field, offering transforma-
tive potential in various applications such as medi-
cal data summarisation (Van Veen et al., 2024) and
diagnostics (Tu et al., 2024). The data generated
in clinical care, from Electronic Health Records
(EHRs) to laboratory tests, present both an opportu-
nity and a challenge. In principle, using such data
efficiently and intelligently has the potential to cre-
ate efficiencies for healthcare professionals which
allow them to improve patient experiences and out-
comes. Laboratory diagnostics generate substan-
tial amounts of structured numerical data, which
can be difficult for patients and clinicians to inter-

pret effectively. AI models have the potential to
provide interpretative comments and personalised
explanations of laboratory results, improving the
laboratory-clinical interface, and improving patient
understanding (Padoan and Plebani, 2022a,b).

However, there are critical considerations when
using AI models in the medical domain, includ-
ing issues such as hallucinations, inaccuracies, and
non-determinism. These issues can lead to incor-
rect or harmful results in healthcare (Cadamuro
et al., 2023; Stevenson et al., 2024), and the errors
can often be difficult to identify during model eval-
uation and to characterize a priori. These problems
call for approaches to improve the reliability and
accuracy of AI systems in medicine.

Integrating Knowledge Graphs (KGs) with
LLMs through Retrieval-Augmented Generation
(RAG) can be a promising strategy. KGs provide
structured, interconnected data that can ground
LLM outputs in factual information, reducing hal-
lucinations, and improving the accuracy of AI-
generated content (Yan et al., 2024; Gilbert et al.,
2024). By combining the LLM’s generative capa-
bilities with the KG’s factual grounding, AI sys-
tems can be more reliable and explainable.

In this work, we aim to improve laboratory test
interpretation generation by combining RAG with
a Knowledge Graph, referred to as the LAB-KG
approach. Traditional RAG methods rely on em-
bedding similarity between the user’s query and a
set of documents or knowledge base entries. They
retrieve relevant information to condition the lan-
guage model’s generation process. However, the
reasoning behind the generated interpretations of-
ten remains a black box, Our LAB-KG approach
uses both the internal knowledge of LLMs and lab
test examples to build a knowledge graph that ex-
plicitly captures the relevance between each test
result and the patient’s condition. This allows
for more explainable and transparent interpretation
generation.

mailto:rui.guo@cirdan.com
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Our contributions are threefold:

1. Knowledge Graph Construction with Lim-
ited Examples: We present a novel approach
for building a Knowledge Graph (KG) utilis-
ing the internal knowledge of Large Language
Models (LLMs) and a limited set of labora-
tory test examples, capturing the relationships
between test results and medical conditions.

2. Improved Performance over Retrieval-
Augmented Generation (RAG): Our KG-
based approach demonstrates better perfor-
mance compared to traditional Retrieval-
Augmented Generation methods. By struc-
turally representing knowledge, the system
can more accurately interpret and retrieve rel-
evant conditions from new patient test results.

3. Explainable System: The proposed KG ap-
proach offers greater interpretability than stan-
dard RAG methods. The explicit structure
of the KG allows for the tracing of errors in
generated reports back to specific nodes and
relationships within the graph.

2 Previous Work

The application of AI to the task of laboratory test
interpretation is an area of growing interest. Tra-
ditional methods of providing interpretative com-
ments on laboratory reports have been recognised
as essential to improving the laboratory-clinical
interface (Plebani, 2009).

Several studies have been applied to use AI and
natural language processing models to interpret
laboratory test results. Cadamuro et al. (2023) eval-
uated the performance of ChatGPT and other AI
models in understanding laboratory medicine test
results. Whilst the AI models could recognise lab-
oratory tests and detect deviations from reference
intervals, their interpretations were often superfi-
cial and incorrect. The models sometimes failed to
differentiate between slight and severe deviations
and did not provide meaningful suggestions for
follow-up diagnostics.

Stevenson et al. (2024) evaluated the thyroid
function test result interpretation by biochemist,
ChatGPT, and Google Bard. The AI tools correctly
interpreted only a fraction of the cases, showing
the limitations of current AI models in complex
medical interpretation tasks.

Abusoglu et al. (2024) assessed the perfor-
mance of various chatbots as assistants for problem-

solving in clinical laboratories. Their study showed
that AI applications had good performance in iden-
tifying cases and responding to questions related to
preanalytical, analytical, and postanalytical errors.
However, the chatbots’ accuracy varied, and there
were concerns about their reliability and safety in
clinical settings.

An early work by Patil et al. (2013) introduced
a Concept Graph Engine (CG-Engine) that gener-
ates patient-specific personalised disease rankings
based on laboratory test data, using the Unified
Medical Language System (UMLS) as a medical
knowledge base. The CG-Engine constructs a con-
cept graph connecting laboratory tests to diseases
and computes weights based on relation types, se-
mantic types, and other attributes. While their ap-
proach utilises a knowledge base to connect lab
tests and conditions, it relies on pre-existing medi-
cal ontologies that may differ from the actual data
terminology.

Despite these advancements, a major challenge
with LLMs in the medical domain is their tendency
to produce hallucinations and inaccurate informa-
tion. Retrieval-Augmented Generation (RAG) tech-
niques have been proposed to mitigate these is-
sues, where LLMs are augmented with external
knowledge sources to ground their outputs in fac-
tual data. Zakka et al. (2024) developed Almanac,
an LLM framework augmented with retrieval capa-
bilities from curated medical resources for medical
guidelines and treatment recommendations. Their
results showed significant performance improve-
ments compared to standard LLM pipelines.

In the domain of laboratory test interpretation,
He et al. (2023) built a dataset by collecting and an-
notating interpretations of textual lab results from
health articles. They evaluated transformer-based
language models for recognizing key terms and
mapped them to concepts in major controlled ter-
minologies.

In healthcare generally, integrating LLMs with
Knowledge Graphs can improve the reliability and
accuracy of AI models. Gilbert et al. (2024) dis-
cussed the potential of combining LLMs with KGs
as medical information curators. By providing a
structured representation of medical knowledge,
KGs can help LLMs generate more accurate and
verifiable outputs, reducing the risk of misinforma-
tion and enhancing patient safety.

Our work builds upon these approaches by con-
structing a knowledge graph that combines LLM
internal knowledge with examples to associate lab
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train_83.csv
test_63.csv
train_12.csv GPT-4o-mini

train_20.csv
2. Query

1. KG building 

1. strict matched: 
mild absolute neutropenia
2. score matched: 
None
3. candidate condition: 
mild absolute neutropenia

3. Result

Figure 1: Overview of LAB-KG. GPT-4o-mini helps to
find the relationship between the test result and condi-
tion. When a new patient’s test results are input into the
system, they are compared with the LAB-KG to iden-
tify relevant conditions using strict set matching and
confidence score matching. This process enables the
generation of accurate and explainable interpretations
of laboratory test results.

tests with conditions. This allows for improved
accuracy in lab test interpretation generation and
provides explainability through the graph structure.

3 Method

Given a set of patient full blood test csv files, we
build a LAB-KG with the help of GPT-4o-mini
to find the relationships between the test results
and conditions. A condition in our context refers
to a specific medical finding or diagnosis derived
from laboratory test results. For instance, “Mild
normochromic normocytic anaemia” indicates a
type of anemia characterized by red blood cells
that are of normal size (normocytic) and normal
hemoglobin content (normochromic). Clinicians
use those conditions to determine the appropriate
follow-up and management for the patient. The
new patient test result is compared with the LAB-
KG to find the relevant condition. An overview
of this process is in Figure 1. An example of a
transcribed report is shown in Table 1.

3.1 KG-RAG Approach
We propose an approach combining both the in-
ternal knowledge of a large language model and
limited examples to build a knowledge graph. A
laboratory test is a medical procedure using a sam-
ple of blood, urine, or other tissues to assess a
patient’s health. Interpreting lab test results can be
complex due to the subtle variations that may indi-
cate different medical conditions. Our knowledge
graph (KG) represents relationships between lab
tests, conditions, and patients and can be queried
to generate interpretations for new patients. The
relation between lab tests and conditions are built
as in the method described below.
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Figure 2: The schema of the lab-kg.

3.1.1 Graph Building

The knowledge graph is constructed to model the
relationships between lab tests, patients, conditions,
and results. The schema of the graph is shown
in Figure 2. The key nodes and relationships are
summarised in Table 4 in appendix.

Reference Ranges A reference range is the set
of values considered normal for a healthy individ-
ual for a specific test, serving as a benchmark to in-
terpret individual test results. The reference ranges
for some tests are sometimes missing, and to ad-
dress this issue, we aggregated all the reports’ ref-
erence. We ask LLM to infer the correct reference
range by providing all the related reference ranges
for that test and asking the LLM to use its internal
medical knowledge for the patient.

Test Names and Test Result Test names are the
standardised identifiers used to represent specific
laboratory tests. The test names in our dataset are
standardised by curating a list of test names and
manually mapping different variations to a standard
name. Each TestResult node represents the result
of a specific test. If the reference range is provided,
the test result will be labelled with a suffix indi-
cating its status (e.g., Normal, Abnormal (High),
Abnormal (Low), Borderline (High), Borderline
(Low)).

Condition Extraction The most important task
for LLM is extracting the conditions from the com-
ments and determining the relevance of each test
result to the conditions mentioned in the patient
comments. We prompted the LLM to split the com-
ment into several conditions and establish potential
CONTRIBUTES_TO relationships between each
test result node and condition node. This effectively
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Category Test Name Result Unit Ref Start Ref End norm Ab flag

Info Age 9
Blood Haemoglobin 11.30 g/dL 11.5 15.5 -0.05 Low
Blood Hematocrit 33.9 % 35 45 -0.11 Low
Blood Red cell count 4.71 x10^6/uL 4 5.2 0.59
Blood MCV 72.0 fL 78 96 -0.33 Low
Blood MCH 24.0 pg 26 32 -0.33 Low
Blood MCHC 33.4 g/dL 31 36 0.48
Blood RDW 14.2 % 11.5 14.5 0.9
Blood Platelet Count 292 x10^3/uL 170 450 0.44
Blood T.L.C 8.2 x10^3/uL 5 13 0.4
WBC Diff Basophils 1 % 0
... ...
WBC Diff Monocytes (Absolute) 1.1 x10^3/uL 0.2 1 1.12 High

Comments Mild microcytic hypochromic anaemia. Platelets are adequate. Mild absolute monocytosis.

Table 1: Patient report example (Abridged). Ab flag: abnormality flag.

builds a rule set based on the examples and the
LLM’s knowledge. For example, “Mild normocytic
normochromic anemia with mild anisocytosis” can
be split into two conditions: “Mild normocytic nor-
mochromic anemia” and “mild anisocytosis.” We
only ask LLM to infer that CONTRIBUTES_TO
relationship from the abnormal conditions to test
results, and omit the conditions such as “normal
blood picture” or “follow up is recommended”,
which cannot be mapped to a set specific test re-
sult.

Knowledge Aggregation We added an aggre-
gation stage where we asked the LLM to assign
weights to each relationship between a test result
and a condition identified by the LLM. First, we
added a StandardTerm node to group different con-
ditions with potential semantic similarity. This
grouping is based on querying each condition name
using the BioPortal API for standardised terms, pri-
oritizing matches in ontologies such as SNOMED
CT, LOINC, and MEDDRA. In this way, we can
group conditions under the same standard term,
such as “mild anaemia” and “moderate anaemia”
both being under the standard term “anaemia.”
Then, by providing all the CONTRIBUTES_TO
in the KG between a condition group and related
TestResult, we aim for the LLM to use these ex-
amples to indicate the importance of each test
result for a particular condition group by assign-
ing a weight to each CONTRIBUTES_TO relation-
ship. This weight-assigning stage uses the aggre-
gation CONTRIBUTES_TO from a condition with

the frequency of each test result and the patient
age/gender distribution.

3.2 Graph Retrieval Process
The KG is queried to find candidate conditions for
a new patient. We tested three methods to find
relevant conditions: an example-based match, a
confidence score ranking, and their combination.

We first identify abnormal test results for a new
patient and retrieve the connected Condition nodes
for any abnormal tests in that patient, creating a list
of candidate conditions. The connected patients
and their related test results for each potential con-
dition are retrieved from there.

Not all test results connected to a condition are
critical; some might be false positives or less rel-
evant. To filter less important conditions, we use
two methods to select potential conditions.

Strict Match For each condition, we compare
the test results of the new patient to those of the re-
trieved patients. Suppose the test results of the new
patient cover all the test results of one patient in the
training dataset connected to that condition (here,
Borderline and Abnormal are treated the same). We
consider it a “strict match” for that condition. An
example is illustrated in Figure 3, with the con-
dition “mild normochromic normocytic anemia.”
The new patient (with id 938) matches most of the
test results of an existing patient (with id 100) but
lacks “RBC count Abnormal (Low).” In this case,
the new patient will not be assigned to this con-
dition based on strict match. Note that there are
other test results related to the condition without
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Figure 3: The condition query process for a new patient.
The patient with ID 938 lacks “RBC count Abnormal
(Low)” compared to the example patient with ID 100
using strict test result matching.

Test result Weight

haematocrit_Abnormal (Low) 0.95
haemoglobin_Abnormal (Low) 0.95
rbc count_Abnormal (Low) 0.9
mcv_Normal 0.85
haemoglobin_Borderline (Low) 0.75
haematocrit_Borderline (Low) 0.75
rdw_Abnormal (High) 0.7
rbc count_Borderline (Low) 0.6
rdw_Borderline (High) 0.5
mch_Normal 0.5
mchc_Normal 0.4
rdw-cv_Normal 0.3

Table 2: The weight for “mild normochromic normo-
cytic anemia” assigned by LLM

any patient connected, due to additional borderline
connections added with slightly lower weights than
abnormal, or because there are existing patients in
the same condition group with those test results.

Confidence score-based match We utilise the
weight assigned on the CONTRIBUTES_TO rela-
tionship to calculate each condition’s confidence
score by normalizing the weights connected to that
patient for each condition. We sum the weights of
the test results in the patient connected to one con-
dition, and divide that sum by the total weight of
all test results linked to that condition. A detailed
example of a confidence score match is in the Ap-
pendix. The threshold to filter the confidence score
is decided by the performance of the training data,
as explained in section 4.

After the candidate conditions were retrieved

from graph retrieval, we added an optional finalis-
ing stage using LLM to refine the conditions given
the candidate conditions, merging potential dupli-
cates or selecting the most specific condition rather
than a broader one.

A key advantage of our LAB-KG approach is its
inherent explainability addressing the limitations
of traditional AI models in laboratory test inter-
pretation. When generating interpretations for a
new patient, clinicians can examine the specific
test results leading to each suggested condition,
along with the associated weights and confidence
scores. This allows the clinicians to understand
which conditions are being suggested and the ra-
tionale behind them. For instance, if a condition
is identified, clinicians can review the exact match
of test results between the new patient and existing
examples and the weights of individual test results
contribute to the overall confidence score.

Explainability Example The Knowledge Graph
(KG) provides a transparent means to explain why
each condition is retrieved, allowing us to iden-
tify and correct errors by examining the relation-
ships between conditions and test results. As an
illustrative example, consider the case of a patient
diagnosed with “mild microcytosis,” depicted in
Figure 4. Initially, the KG connected both low
Mean Corpuscular Hemoglobin (MCH) and low
Mean Corpuscular Volume (MCV) to “mild micro-
cytosis,” even though low MCV alone is sufficient
to diagnose microcytosis. When querying a new pa-
tient (ID 283) who exhibited low MCV but not low
MCH, the system failed to retrieve “mild microcy-
tosis” because the KG’s connections implied that
both low MCH and low MCV were required for
retrieval. Upon reviewing the definition of “mild
microcytosis”, we corrected the KG by removing
the redundant connection between low MCH and
“mild microcytosis.” After this, the system success-
fully retrieved “mild microcytosis” for the patient,
demonstrating how the explainability provided by
the KG facilitates refinement and improves retrieval
accuracy.

4 Implementation and Evaluation

To the best of our knowledge, there are very few
publicly accessible datasets providing detailed lab-
oratory test reports along with associated clinical
interpretations. We utilised a dataset from Mende-
ley Data (Abdelmaksoud et al., 2022), which in-
cludes 260 clinical laboratory test reports issued by



45

Redundant Test Result

Redundant Test Result

Figure 4: Illustration of explainability in the KG. Ini-
tially, “mild microcytosis” was connected to both “low
MCH” and “low MCV.” When querying patient ID 283,
“mild microcytosis” was not retrieved because the KG in-
correctly required both “low MCH” and “low MCV” for
retrieval. After removing the unnecessary connection
to “low MCH,” “mild microcytosis” was successfully
retrieved for the patient.

24 Egypt laboratories covering several test types.
Among these, blood tests constitute the majority.
We used GPT-4o 1 to transcribe all the blood test
reports from PDF to CSV format. After remov-
ing duplicates, we obtained 47 unique blood test
reports.

We used the Cypher query language in Python to
build the KG in Neo4j Community Edition. GPT-
4o-mini was used as the default LLM. Once the
graph was built on training examples, it included
38 patient examples, 37 conditions, 78 test results,
459 nodes and 2287 relationships.

Our evaluation metrics include MEDCON (Yim
et al., 2023), BLEU-3 (Papineni et al., 2002),
ROUGE-1/2/L (Lin, 2004), BERTScore (Zhang
et al., 2019), METEOR (Banerjee and Lavie, 2005),
recall, precision, and F1 score. The LLM helps to
preprocess the condition result, aligning seman-
tically equivalent conditions (e.g., “mild anemia”
vs. “anemia”) between the generated and target,
so that the extracted sets of conditions are com-
parable. The calculation of recall and precision
itself remains a standard statistical comparison af-
ter the conditions have been extracted and aligned
by the LLM. The F1 score is based on recall and
precision. We use BLEU-3 instead of BLEU-4
because the results can be very short, such as “nor-
mal blood picture,” which BLEU-4 would omit.

1https://platform.openai.com/docs/models

MEDCON is a metric for evaluating medical con-
dition extraction from generated texts, considering
semantic similarity and clinical relevance. The KG
and KG with CONTRIBUTES_TO relationships in-
ferred without examples (referred to KG * below)
are compared for those metrics, together with other
methods listed below.

In all our experiments, we performed five-fold
cross-validation, with test data sizes of 10, 10, 9,
9, and 9 in each fold. We use MEDCON to select
the threshold for the confidence score in each fold
and from a list of values ranging from 0.1 to 0.9,
with step 0.05. The best threshold values are stable
across folds (0.55, 0.6, 0.55, 0.5, 0.5 for KG and
0.45, 0.35, 0.35, 0.35, 0.35 for KG *). The me-
dian values 0.55 and 0.35 are selected as the final
threshold values for all the folds in KG and KG *
respectively.

We compared the performance of the LAB-KG
approach with several baseline methods, including:

1. Prompt Engineering

A detailed prompt was designed to output
different conditions given the patient report,
which is a textual representation of each CSV
file.

2. Text Embedding-Based Retrieval

This method relies purely on text embed-
dings to retrieve relevant interpretations. The
eight most similar examples are provided to
the LLM for few-shot learning (we selected
eight by testing numbers from 1 to 8). The
query is the document of the new patient
without the comment row. HuggingFace’s
all-MiniLM-L6-v2 model embeds the text.
We tested different document components in
the retrieval and generation stages, including:

• (A) Using all the rows.
• (B) Using only the abnormal rows.
• (C) Adding the normalised value as a

column.

An exhaustive search of all possible compo-
nent combinations in the retrieval/generation
stages is infeasible, so we tested four config-
urations using the same components for both
retrieval and generation stages, and two con-
figurations using different elements, totalling
six results, as described in Table 3. The input
examples include the above components and

https://platform.openai.com/docs/models
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the final comment, which the LLM may use
as context to align its knowledge to the format
and content of the example output comment.

3. LAB-KG Built with Examples (KG)

We evaluated the results of the strict match,
the confidence score match, and the combina-
tion of the strict and confidence score match.
We also tested the effect of using the LLM to
finalise the result.

4. Finding the relationship between TestResult
and Condition without examples (KG *)

An approach using the LLM’s internal knowl-
edge only to infer the CONTRIBUTES_TO
relationships between test result nodes and
condition nodes. We aim to assess the LLM’s
ability to find these relationships without ex-
amples. Based on the KG built with examples,
the CONTRIBUTES_TO relationships are re-
moved first. Then, for each condition, the
LLM is provided with all possible test results
to find the relationships and assign weights
based on its own knowledge. New test result
nodes can be created in this case.

5. Random Forest

This traditional machine learning classifier
was trained to predict the conditions given the
patient data. Two kinds of inputs are tested:
one with test results categorised as inputs (e.g.,
Haemoglobin Abnormal (High)), and another
using the numerical test values directly. The
conditions are classified, and adjectives such
as “mild” and “moderate” are removed to re-
duce the possible classes to predict.

To determine whether using the LLM to evaluate
the results is reliable, the correlation between F1
and each metric is shown in Table 5 in appendix.
The F1 score has the highest correlation with MED-
CON (0.95) and Bert score (0.94), and the corre-
lation for the KG without examples is MEDCON
(0.97) and Bert score (0.91). This validates the
LLM’s alignment between the generated and target
results.

The results are presented in Table 3. The results
show that combining the LLM’s internal knowl-
edge and examples can most effectively utilise the
LLM and data, with an F1 score of 0.76, higher
than the best KG * result of 0.71. The RAG ap-
proach has a best F1 score of 0.56, much lower

than the best KG retrieval approach. When using
the strict match, because it is based on the occur-
rence of test results in the examples, KG AND
KG * show little difference. The combination of
result of strict match and confidence score based
match achieved higher score than separate result
for KG, however, the combination of result for KG
* is worse. The finalisation step does not make the
result much different for the F1 score.

A detailed example about the difference in
the result using KG and KG * in the ap-
pendix. All the LLM generated interpretation
and the calculated metrics can be downloaded
at https://docs.google.com/spreadsheets/
d/10YTnKbLUs9UAJVGACh3wcNt-erMBLpJI

5 Conclusion

In this paper, we integrate the knowledge graph
with RAG and LLM to improve the interpretation
of laboratory test results with limited examples,
providing an explainable framework clinicians can
understand.

The evaluation demonstrated that the LAB-KG
method outperforms LLM prompt engineering, text
embedding-based retrieval, and random forests.
The combination of strict matching and confidence
score-based matching with KG allows us to retrieve
the most clinically relevant interpretations. The KG
with the relationship between condition and test
result built without examples also performs well,
especially in the strict match case, demonstrating
its accurate internal knowledge.

We observed that in some cases, the relevance
inferred by the LLM without examples was bet-
ter than when examples were provided. This sug-
gests the potential to combine the LLM’s internal
knowledge more effectively with examples to opti-
mise performance. When multiple conditions are
present in the example, the LLM sometimes strug-
gles to differentiate the test results associated with
each condition. Providing separate conditions in
examples or generating synthetic data could help
mitigate this issue.

The strength of our findings may be limited with
only 47 blood test reports. Expanding the dataset
and applying LAB-KG to other laboratory tests
are essential steps for validating LAB-KG. The
LLM’s internal knowledge may not be up to date
and limited, and integrating our knowledge graph
with external medical ontologies like SNOMED
CT is for future exploration.

https://docs.google.com/spreadsheets/d/10YTnKbLUs9UAJVGACh3wcNt-erMBLpJI
https://docs.google.com/spreadsheets/d/10YTnKbLUs9UAJVGACh3wcNt-erMBLpJI
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category medcon bleu bert score meteor rouge1 rouge2 rougeL recall precision f1

zero shot PE only 0.28 0.16 0.5 0.25 0.31 0.15 0.3 0.45 0.44 0.38

RAG

Q=G=A 0.39 0.29 0.6 0.44 0.47 0.32 0.45 0.56 0.46 0.48
Q=G=A,C 0.38 0.2 0.59 0.39 0.42 0.23 0.39 0.56 0.42 0.46
Q=G=B 0.49 0.29 0.64 0.47 0.5 0.32 0.48 0.68 0.5 0.56
Q=G=B,C 0.47 0.28 0.63 0.46 0.48 0.3 0.47 0.67 0.51 0.56
Q=A,C
G=B,C

0.46 0.29 0.64 0.45 0.49 0.3 0.47 0.67 0.52 0.56

Q=B
G=B,C

0.48 0.29 0.64 0.47 0.49 0.31 0.48 0.67 0.51 0.56

KG retrieval
strict 0.68 0.37 0.71 0.56 0.56 0.43 0.53 0.78 0.65 0.67
score 0.67 0.29 0.67 0.5 0.51 0.39 0.45 0.73 0.65 0.66
strict +
score

0.75 0.36 0.73 0.58 0.58 0.47 0.53 0.88 0.73 0.76

KG * retrieval
strict 0.67 0.3 0.7 0.51 0.54 0.38 0.5 0.78 0.65 0.68
score 0.58 0.23 0.63 0.45 0.45 0.35 0.41 0.74 0.58 0.62
strict +
score

0.6 0.25 0.65 0.49 0.47 0.36 0.44 0.81 0.59 0.66

KG retrieval +
finalise

strict 0.64 0.41 0.73 0.56 0.61 0.46 0.56 0.73 0.7 0.67
score 0.59 0.28 0.67 0.49 0.53 0.35 0.46 0.69 0.68 0.65
strict +
score

0.74 0.4 0.78 0.58 0.68 0.45 0.56 0.82 0.75 0.75

KG * retrieval +
finalise

strict 0.66 0.4 0.74 0.56 0.63 0.42 0.57 0.74 0.73 0.71
score 0.51 0.27 0.66 0.46 0.53 0.34 0.47 0.68 0.55 0.57
strict +
score

0.55 0.3 0.68 0.51 0.54 0.36 0.46 0.7 0.64 0.65

random forest
input =
categories

N/A 0.46 0.53 0.49

input =
values

N/A 0.28 0.38 0.32

Table 3: Evaluation results for different methods. PE: prompt engineering. RAG: A = using all the rows; B = using
abnormal rows; C = adding normalised value as a column. The KG achieves the best result with strict match +
confidence score, using the KG built with examples, with a F1 score 0.76. The KG * has a similar performance for
the strict match, but worse with the confidence score and combination of strict match and confidence score. The
best result for RAG is an F1 score of 0.56, which is higher than the zero-shot and random forest results.
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A Appendix

A.1 The KG Schema

Start Node Type Relationship Type End Node Type

TestResult CONTRIBUTES_TO Condition
Condition COMPOSED_OF StandardTerm
Report HAS_PATIENT Patient
Patient HAS_TEST Test
Patient HAS_COMMENT Comment
Patient HAS_CONDITION Condition
Patient HAS_AGE Age
Patient HAS_GENDER Gender
Patient HAS_RESULT TestResult
Condition IS_A StandardTerm
Test HAS_REF Reference
Test HAS_UNIT Unit
Test HAS_TEST_RESULT TestResult

Table 4: The schema of the lab-kg

A.2 An Query Example

0.6
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0.85
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9HAS_RESULT

HAS_
PATIE
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0.3
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train_53.…

mch_Border…rbc
count_Ab…

mcv_Abnor…

mch_Abnor…

948

train_6.c…

rbc
count_Bor…

Figure 5: The “mild hypochromia” query process for
a new patient. The query patient with ID 948 lacks
“RBC count Borderline Abnormal (Low)” compared to
the example patient with ID 412 using strict test result
matching. The RBC count is not necessary for “mild
hypochromia”.

A.3 Confidence Score Calculation

In this example, the weights associated with
the condition “mild normochromic normocytic
anaemia” are shown in Table 2.

The maximum possible score is the sum of the
highest weights for each test result:

Max Score = 0.95 + 0.95 + 0.9 + 0.85

+ 0.7 + 0.5 + 0.4 + 0.3

= 5.55

We sum the weights of the matching test results
for the patient’s test results, omitting borderline
weights if there is a corresponding abnormal weight
with a higher value. In this case, the confidence
score is:

Patient Score = 0.75 + 0.75 + 0.85

+ 0.5 + 0.4 + 0.3

= 3.55

The normalised confidence score is:

Confidence Score =
3.55

5.55
= 0.64

A.4 KG and KG * Comparison
To compare the differences between the results
from CONTRIBUTES_TO relationships built by
the LLM with and without examples, we compared
the generated results and highlighted the most sig-
nificant differences below:

1. KG with relevance built with example wins

KG * cannot generate “Mild absolute neu-
tropenia” in many cases, which is in the
target output. The reason is that the LLM
only assigns weight to neutrophils percent-
age_Abnormal (Low), absolute neutrophils
count_Borderline (Low), and neutrophils per-
centage_Borderline (Low). However, the ab-
solute neutrophil count comprises absolute
segmented neutrophil count and absolute band
neutrophil count, which are present in the ex-
amples but not recognised by the LLM’s inter-
nal knowledge without examples.

2. KG with Relevance Built without Example
Wins

The KG built with examples cannot use strict
match for the condition “mild hypochromia.”
Because some example patients (12.5% across
all the patients with that condition) have
a test result RBC count_Abnormal (High)
associated with that condition, the LLM
connects that test result to the condition
with a low weight (0.4). However, in the
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strict match, the new patient only has the
test result MCV_Abnormal (Low), which
is not present in the example patient who
has both MCV_Abnormal (Low) and RBC
count_Abnormal (High). The internal LLM
did not connect RBC count_Abnormal to that
condition, and it can retrieve that condition by
strict match. The LLM’s decision is affected
by the noise of the dataset, which causes this
misidentification. The graph for this query is
Figure 5 in appendix.

A.5 Correlation between F1 Score and Other
Metrics

metrics medcon bleu bert_score meteor rouge1 rouge2 rougeL

corr 0.95 0.75 0.94 0.91 0.91 0.9 0.85
corr * 0.97 0.66 0.91 0.87 0.84 0.9 0.74

Table 5: The correlation between F1 score and each
metric, for the result built by 1. KG (corr) and 2. KG *
(corr *).
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