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Abstract
Although reasoning is innately language-
agnostic, the multilingual capacities remain a
significant challenge for large language mod-
els (LLMs). Their ability to generate struc-
tured, step-wise explanations is constantly re-
stricted to dominant languages in pre-training
data, making cross-lingual generalisation diffi-
cult and hindering broader global adoption. Re-
cent works have introduced eclectic strategies
to enhance reasoning beyond English; however,
they remain related to spoken language, which
is not always optimal for reasoning.

To make LLMs’ multilingual reasoning capa-
bilities aligned and grounded, we propose a
modular approach that instructs the models to
structure reasoning in an abstractive problem
space and then delivering step-wise reasoning
trajectories, employing Self-training. Experi-
ments show that our approach stably achieves
significant improvements in the multilingual
reasoning of various models and tasks, with im-
proved reasoning consistency across languages.

1 Introduction

Reasoning is innately language-agnostic; indeed,
multiple evidences show that human language is
optimised for communication rather than reason-
ing (Mahowald et al., 2024). Yet, some complex
reasoning requires step-wise passages to use ex-
tralinguistic constructions, such as formulas and
symbols, as a tool for structuring and external-
ising thought processes (Amalric and Dehaene,
2016). However, in the era of large language mod-
els (LLMs), approaches such as Chain-of-Thought
(CoT) et inter alia aim to emulate human reasoning
and thought via language generation, which should
not be conditioned by the spoken languages. Never-
theless, several works demonstrate that, due to the
disparity in pre-training data across languages, the
LLMs’ reasoning capability differs between lan-
guages and dominant languages, such as English,
which is much more performant than the others.

Research advances in multilingual reasoning are
increasingly aimed at completing the performance
differences among languages, enhancing the mod-
els’ capabilities through in-context learning inter-
ventions (Huang et al., 2023; Ranaldi et al., 2024b;
Li et al., 2024), supervised fine-tuning (SFT) strate-
gies that differ from language-specific augmenta-
tion (Ranaldi and Pucci, 2023; Üstün et al., 2024)
to task-oriented tuning (Zhang et al., 2024), prefer-
ence optimisation (Dang et al., 2024) and encoder-
based strategies (Yoon et al., 2024). Although these
approaches enabled the production of performant
solutions for transferring and aligning multilingual
reasoning capabilities, we argue that some cru-
cial challenges remain hindering further progress.
Firstly, the actual benefits of in-context interven-
tions are limited to large-scale LLMs, which are
able to follow provided instructions systematically,
but at the same time, they must have robust multi-
lingual proficiency; therefore, many works rely on
SFT techniques that maintain reduced costs when
used to specialised smaller-scale LLMs. Secondly,
they require huge amounts of complex reasoning
annotations and tremendous tuning efforts to get
multilingual LLMs capable of delivering reason-
ing through SFT and preference optimisation tech-
niques. Finally, encoder-based approaches are a
convenient solution for aligning multilingual rep-
resentations. Still, they map the input into a latent
space represented in symbols by limiting it to a
single deterministic decoding path.

To improve LLMs’ multilingual reasoning capa-
bilities, we propose a modular approach that first
instructs the models to formalise the problem ab-
stractly and then deliver step-wise reasoning trajec-
tories that lead to the reasoning in the same way
for all languages. Our approach breaks down prob-
lem solutions into a sequence of formal, language-
agnostic sub-problems, which are solved sequen-
tially and can be more effectively utilised by mod-
els. The decomposition consists of two high-level
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一组 200 名学生有不同的爱好。50 名学生喜欢阅读，29 名学生喜欢

打板球，其余的喜欢跳舞或烘焙。如果喜欢烘焙的学生人数比喜欢打板

球的学生人数的两倍少 2 人，那么有多少学生喜欢跳舞？

“A group of 200 students has 
various hobbies. 50 like to 
read, 29 like to play cricket, 
and the rest like to either 
dance or bake. How many 
like to dance if the number 
that like to bake is 2 less than 
twice the number that prefer 
playing cricket?”

<formalisation> <reasoning> <answer>

S = 200
R = 50
C = 29
D = ?
B = ?
B = 2C- 2
R + C + D + B = S
50 + 29 + D + B = 200

1. Calculamos B: B = 2(29) - 2 = 58 - 2 = 56 
2. Sustituyendo  B = 56 en la ecuación total: 

50 + 29 + D + 56 = 200  
3.  135 + D = 200  
4.  D = 200 - 135 = 65  

答案是：65

“The answer is: 65”

65

{question}
Un grupo de 200 estudiantes tiene diversos pasatiempos. 50 
disfrutan de la lectura, 29 prefieren jugar al críquet y el resto 
disfruta de bailar o hornear. ¿Cuántos estudiantes prefieren 
bailar si la cantidad de los que prefieren hornear es 2 menos 
que el doble de los que prefieren jugar al críquet?

La respuesta es: 65

1. 计算 B:  B = 2(29) - 2 = 58 - 2 = 56 
2. 代入  B = 56 到总方程: 

 50 + 29 + D + 56 = 200  
3.  135 + D = 200  
4.  D = 200 - 135 = 65  

1. Compute B: 
B = 2(29) - 2 = 58 - 2 = 56 

2. Substitute  B = 56 into the 
total equation:
50 + 29 + D + 56 = 200  

3.  135 + D = 200  
4.  D = 200 - 135 = 65  

Figure 1: We enable models to deliver language-agnostic reasoning trajectories across languages by disentangling
content from logical reasoning through structured abstraction operating via our Step-wise Abstractive Thought.

modules: Formalisation and Reasoning Execution.
As shown in Figure 1, we instruct the models to: (i)
identify the relevant information in the given prob-
lems, formalising the variable and predicates and
delivering symbolic transformations; (ii) generate
a reasoning execution where the transformations
are solved using symbolic representations that ex-
plicitly exemplify the final solution, producing an
answer where a final solution is delivered in the
same query language.

Previous works proposed English-based strate-
gies that operate via logical formalisms coupled
with external symbolic solvers (Gaur and Saunshi,
2023; Pan et al., 2023). However, entirely sym-
bolic approaches have the bottleneck of requiring
a complete translation from natural to formal lan-
guages, which may negatively impact efficiency
and flexibility, and add further obstacles.

To achieve a better trade-off, we treat formali-
sations in an eclectic manner and propose meth-
ods to disentangle content from logical reason-
ing without introducing rigorous formalisms. To
this end, we instruct larger LLMs to generate syn-
thetic demonstrations using Step-wise Abstractive
Thought (SWATH); then we use the generated
demonstrations for Self-training smaller LLMs. As
classical tuning strategies behind a standard warm-
up phase, we propose different alignment methods
ranging from supervised fine-tuning (instruction-
tuning) to preference optimisation techniques (Re-
inforcement Learning).

We performed an extensive empirical evalua-
tion by observing the impact of different tuning
and alignment methods. In multilingual reason-
ing tasks, our approaches demonstrated significant
improvements, resulting in an overall increase in
exact matching in proposed tasks, which led to the
following results and conclusions:

• Structuring the LLMs’ multilingual reason-
ing passages in formal symbolic trajectories
(SWATH), which employ language-agnostic
formalism, enhances accuracy and delivers
more verifiable generations through a trans-
parent and structured reasoning process.

• Operating with Self-training heuristics con-
sisting of both tuning and preference optimi-
sation enables robust, pervasive and language-
aligned models. Indeed, heuristics based on
tuning via synthetic demonstrations work well
but do not deliver robust performant models in
all languages; instead, heuristics based purely
on preference optimisation strategies require
onerous computational costs to achieve actual
benefit.

• Our approach allows the disentanglement of
content from logical reasoning, improving
multilingual reasoning in LLMs, thus bene-
fiting in different language spaces (we demon-
strate this by proposing MGSM-SYMBOLIC).
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2 Background

2.1 Improving Reasoning in Large Language
Models

Improving reasoning capabilities in LLMs (both
English and multi and cross-lingual) is usually con-
ducted through SFT using ground-thought exam-
ples and preference-based approaches.

Supervised Fine-Tuning SFT is a common way
to improve a model M towards a reasoning prob-
lem with the labelled dataset L. Where L com-
prises a set of questions x, the corresponding y is a
step-wise rationale leading to the answer a. The an-
swers are extracted from the step-wise explanations
using regular expressions. A delivered step-wise
explanation ŷ is valid if the extracted answer â
matches the gold answer a. Formally, the labelled
dataset with n instances can be represented as:

L = {(xi, yi, ai)}ni=1. (1)

Operating via L, SFT optimise Mθ by minimising
the negative log-likelihood loss:

LSFT(θ) = E(x,y)∼L

[
T∑

t=1

log fθ(yt|x, y1:t−1)

]
,

(2)
where T is the length of the rationale y and we use
yt to represent the t-th token in y.

Self-training Self-training is a set of SFT strate-
gies that have recently regained overall attention
as a functional strategy (DeepSeek-AI et al., 2025).
These approaches, usually, operate in a two-phase
process: first, a base model Mθ is trained on a
subset of dataset L, serving as teacher Mθ′ , and
is then used to generate a pseudo-labeled dataset
L̂ by annotating an unlabeled dataset L. In the
second phase, a student model Mθ is trained on
a combination of L and L̂ to outperform the the
teacher model Mθ′ . Several works demonstrated
that pseudo-label quality significantly influences
the overall performance. Hence, Wang et al. (2024),
propose a self-training that iteratively refine Mθ,
ensuring the generation of higher-quality pseudo-
labeled data at each step.

Reinforcement Learning Heuristics (RL)
Within the Self-training approaches, Reinforce-
ment Learning from Human Feedback (RLHF)
is widely used for aligning language models
with human feedback (Ouyang et al., 2022).
The RLHF framework refines LLM behaviour

by leveraging human preference data to guide
model tuning through RL. Specifically, it uses
a reward model r(x, y), which captures human
preference preferences given an input x and its
corresponding output y. This reward model is
then employed to assign preference scores to
arbitrary LLM-generated outputs, facilitating
iterative policy refinements via proximal policy
optimisation (PPO) (Schulman et al., 2017). The
training process follows an optimisation function,
for instance, PPO, which optimises the model
policy ϕθ to maximise expected rewards while
minimising divergence from the SFT policy:

E(x,y)∼Dπ
[r(x, y)− γ log

ϕθ(y|x)
ϕSFT(y|x)

], (3)

where ϕSFT denotes the original model trained via
SFT, and γ serves as a regularization hyperparame-
ter to constrain policy updates.

Direct Preference Optimization Although
RLHF via PPO effectively aligns models with
diverse human preferences, it requires four
sub-models, making training computationally
expensive and complex. To avoid explicit reward
model training, Rafailov et al. (2024) introduced
Direct Preference Optimization (DPO), enabling
direct tuning with human preference. This
approach involves a warm-up phase performed (via
SFT-style), then, given some novel instances x, are
sampled completions from the policy model ϕref:

y1, y2 ∼ ϕref(· | x). (4)

Then, is builded the DPO dataset LDPO from the
completions based on human preference:

LDPO = {( xi, yiw, yil )}Ni=1, (5)

where yiw and yil represent the winning and losing
completions respectively. Then, Mθ is optimised
to minimise LDPO(ϕθ;ϕref) which can be defined
as follows:

E
(x,yw,yl)∼D

[
− log σ

(
r(yw|x)− r(yl|x)

)]
, (6)

where r(·|x) = β log ϕθ(·|x)
ϕref(·|x) and β is a coefficient

that controls ϕθ’s deviation from ϕref.
DPO simplifies preference-based learning by

eliminating explicit reward models, and it suffers
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from limited generalisation across diverse tasks
(Lin et al., 2024) since it relies on static pairwise
comparisons of preference rankings and does not
fully capture context-dependent variations.

Group Relative Policy Optimization To address
these challenges, Shao et al. (2024a) introduced
Group Relative Policy Optimization (GRPO), an
extension of PPO designed to stabilise training by
leveraging group-based reward estimation. GRPO
constructs response groups and evaluates prefer-
ences relatively within each group. Given a batch
of completions from the policy model ϕθ, GRPO
assigns group-relative advantages rather than ab-
solute preference scores, ensuring more stable up-
dates across diverse tasks and languages. GRPO
follows a loss function similar to PPO but replaces
absolute reward estimation with relative ranking
within groups:

E(x,y)∼D [Arel(y|x) log πθ(y|x)− βDKL (πθ∥πref)]
(7)

where: Arel(y|x) represents the relative advan-
tage of the completion y compared to other comple-
tions within the same group, πθ denotes the updated
policy, πref represents the pre-trained policy before
GRPO updates. DKL ensures the updated policy
remains close to its prior distribution, preventing
unnecessary deviations. Finally, as in the previ-
ous cases, β is a hyperparameter controlling the
strength of the KL penalty.

The relative advantage Arel(y|x) is computed as
follows:

Arel(y|x) =
r(y|x)− µ

σ
(8)

where r(y|x) is the reward assigned to the response
y, µ is the mean reward within the group and σ is
the standard deviation of the group’s reward dis-
tribution. GRPO has proven highly effective in
multi-task reasoning, where grouping similar tasks
allows for more stable optimization and better gen-
eralization across related problem structures. By
leveraging relative comparisons within task groups,
GRPO enables adaptive learning mechanisms that
move beyond static absolute preference scores, en-
suring more consistent and robust policy updates.

2.2 Multilingual Reasoning

Ongoing strategies assess the effectiveness of large
language models (LLMs) by evaluating their ability

to handle complex reasoning tasks, such as mathe-
matical problem-solving. For these reasons, several
mathematical reasoning tasks have been introduced
to benchmark these capabilities, including GSM8K
and SVAMP. To extend this evaluation to multi-
lingual contexts, Shi et al. (2022) extent GSM8K

beyond English (i.e., MGSM) by manually trans-
lating 250 samples from the GSM8K test set into
multiple languages. Following this trend, Chen
et al. (2023) introduced MSVAMP, which, in a
similar way to Shi et al. (2022), provides SVAMP
in different languages. Relying on these two multi-
lingual evaluation tasks, different works proposed
translation-based (Ranaldi et al., 2024a), super-
vised fine-tuning (SFT) (Üstün et al., 2024; Ghaz-
aryan et al., 2025), and preference-based alignment
(Dang et al., 2024) strategies yielding significant
improvements in multilingual reasoning.

2.3 Motivations

The effectiveness of these approaches depends
heavily on the quantity and quality of the training
data. Hence, each of these methods has its weak-
nesses. While SFT is prone to challenges such as
catastrophic forgetting and limited generalisation
to out-of-domain problems, traditional alignment
methods (introduced in §2.1) require Critic-based
control systems, which may incur additional costs.

A final unexplored solution could be operating
through sequential instructions, moving the effort
into finding the most performant prompt. However,
these use English as the language for reasoning
(Huang et al., 2023), are suitable for particular
tasks (Ranaldi et al., 2024b), and are ineffective
for small LLMs (Ranaldi et al., 2024c). Finally, the
nature of the reasoning is induced by the instruc-
tions provided by relating them to the constraints
of the prompt compositions.

Our Proposal Reasoning is language-agnostic;
however, the reasoning capabilities of LLMs differ
between languages. We aim to disentangle content
from logical reasoning by operating via language-
agnostic formalisation that allows for aligning rea-
soning in languages beyond English. In other
words, we transfer the problem from any language
into a standard formalism that is easier to manipu-
late and common in all languages. We then conduct
the reasoning phase and provide the answer in a
specific language. To conduct these two phases,
we instruct LLMs to follow this process and tune
smaller models using Self-training strategies.
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3 Method

To enable models to do this without the con-
straints of sequential instructions, we propose a
Self-training approach that, in addition to the loss
functions of the fine-tuning, employs different pref-
erence optimisation policies §3.1 to self-improve
the models. We iteratively apply preference optimi-
sation algorithms (RL) and fine-tuning (SFT), train-
ing the model to abstract the problem and deliver a
step-wise formal solution (§3.2). The iterative pro-
cess ends when the model performance converges
or reaches the maximum iteration. A formal de-
scription of the proposed method is illustrated in
Algorithm 1.

3.1 Preference Estimation
RL strategies employ preference estimation. This
generally involves aligning the policy model with
preferences using a reward model, which learns to
predict preferences based on comparisons and leads
the optimisation process. Although this approach
is practical, it has problems with generalisation,
scalability, robustness, and alignment. In DPO and
GRPO, rule-based reward models are used. While
DPO is generally based on a series of naive string-
matching functions with ground truth values, rules
are explicitly defined in GRPO. Accordingly, we
define the following preference policies:

DPO Preference Estimation We use a string
matching function to follow related approaches for
English (Ranaldi and Freitas, 2024b; Wang et al.,
2024). Moreover, we improve this by filtering out
generations that follow the defined structure and
well-defined form (described in Appendix N)

GRPO Preference Estimation Following Shao
et al. (2024a) we define a set of rule-based metrics
that control the accuracy, the structure and the form
of the generations (described in Appendix M).

3.2 Self-training
Classic self-training begins with fine-tuning the
base model Mθ to optimise DSFT, resulting in an
updated model Mθ′ . Behind this stage, we assume
that Mθ′ can solve a certain problem. Specifically,
given a question x, Mθ′ delivers a formal state-
ments ŷ along with the corresponding answer â.

Self-training In this phase, we first sample mul-
tiple outcomes ŷ from Mθ′ for a set of questions x
from U . We apply preference estimation heuristics
to build completions based on different policies

(for DPO, we use couples, while for GRPO, we use
groups of completions). These generations form
the dataset D, which is used to train the model with
the objective functions (LDPO and LGRPO), yielding
an updated model Mθd .

Then we use Mθd to generate a new pseudo-
labeled dataset for the next-round tuning:

S = (x, ŷ)|x ∼ U , ŷ ∼θ (·|x). (9)

After generation, the dataset S is refined by re-
moving incorrect answers and eliminating dupli-
cates. Consequently, the resulting pseudo-labeled
dataset, denoted as Sα, is a subset of the original
dataset, i.e., Sα ⊂ S. The final training dataset
is constructed by combining the original labeled
dataset L with the newly generated pseudo-labeled
dataset Sα. During this process, each new dataset
is used to train from the original base model Mθ,
rather than continually fine-tuning Mθ, to mitigate
the risk of overfitting.

3.3 Single-training
For comparative purposes, we conduct individual
training operating only with SFT, DPO and GRPO.

Algorithm 1 Self-training via DPO or GRPO
Input: pre-trained language modelMθ

Input: labeled dataset L = {(xi, yi, ai)}li=1

Input: unlabeled dataset U = {(xi, ai)}ui=1

Input: mode ∈ {DPO,GRPO}
Output: fine-tuned modelMθ′

# Warm-up stage
1: Fine-tuneMθ on L to getMθ′

2: repeat
3: if mode = DPO then

Generate DPO dataset D:
D = {( xi, yi

w, y
i
l )}Ni=1

where xi ∼ U and yi
w, y

i
l ∼Mθ′(·|xi)

TuneMθ′ with LDPO on D to getMθd

4: end if
5: if mode = GRPO then

Generate GRPO dataset G:
G = {(xi, Gi)}Ni=1

where xi ∼ U
and Gi = {y1, . . . , yk} ∼ Mθ′(·|xi)
Compute relative preferences within each group Gi,
assign pairwise relative scores to outputs in Gi.
TuneMθ′ with LGRPO on G to getMθg

6: end if
# SFT step
Build pseudo-labeled dataset S:
S = {(xi, ŷi, âi)}si=1

where xi ∼ U and ŷi, âi ∼Mθd(·|xi)
Mθg (·|xi)

Select Sα ⊂ S when âi = ai

Update L ← Sα ∪ L
7: TrainMθ on L to get a newMθ′

8: until convergence or max iteration is reached
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4 Experiments

As described in the introduction, we aim to propose
a method for improving the reasoning of LLMs
beyond the languages. Hence, we operate on mul-
tilingual reasoning tasks. We use three models
(§4.1) trained as described in §4.2 and evaluated
two mathematical reasoning tasks (§4.3) using the
configurations described in §4.4.

4.1 Models

To conduct our study on different models and
have a term of comparison, we use Llama3-8B
(Grattafiori et al., 2024), Phi-3.5-mini (Abdin et al.,
2024) and DeepSeekMath-7B-Instruct (Shao et al.,
2024b) (DeepSeek-7B). Furthermore, to show the
scalability and effectiveness of our approach on fur-
ther models, we introduce additional evaluations.
Details are reported in Appendix J.

4.2 Training Methods

As introduced in §3, we use a Self-tuning technique
based on iterative steps of SFT and RL. We follow
standard practice and perform a warm-up phase
based on an SFT step using synthetic demonstra-
tions discussed in §4.3.2. Then, we conduct the
Self-training by progressively applying SFT and
RL optimisation algorithms (DPO and GRPO, as
in Algorithm 1) in an iterative manner. Follow-
ing pilot studies (later discussed), we set the total
number of iterations to three (excluding warm-up),
the same for the settings where we use only one
between SFT and RL.

Preference Optimisation RL We employ
the HuggingFace trainers (DPOtrainer and
GRPOtrainer) to ensure reproducibility. For
DPO, we set the learning rate to 1e-6 and β to 0.1.
The optimisation process is set at a maximum of
2000 steps, saving the checkpoint corresponding
to the lowest validation loss. For GRPO, we
set the learning rate to 5e-6 and β to x. The
optimisation process is set at a maximum of 2000
steps, saving the checkpoint corresponding to the
lowest validation loss. Details in Appendix I.

Supervised Fine-tuning Regarding the SFT
phase, we employed 8-bit quantization and LoRA.
We tune the model for one epoch (warm-up) and
for one epoch for each iteration using the learning
rates according to the specific model configuration,
as detailed in Appendix I.

4.3 Data
4.3.1 Evaluation Set
To study the multilingual reasoning performances
of trained models, we operate via MGSM,
MSVAMP, and we introduce MGSM-SYMBOLIC.

Mathematical Reasoning task We use the exten-
sion of GSM8K and SVAMP. Respectively, Mul-
tilingual Grade School Math (MGSM) and Mul-
tilingual Simple Variations on Arithmetic Math
word Problems (MSVAMP). In original cases, the
authors proposed a benchmark of English mathe-
matical problems with the following structure: a
word problem in natural language and a target an-
swer in numbers. For both versions, a subset of
instances from the official list of examples were
translated into 11 different languages, maintaining
the structure of the input and output.

MGSM-SYMBOLIC Mirzadeh et al. (2024) im-
proved GSM8k (the ancestor of MGSM) by propos-
ing GSM-Symbolic. This introduces symbolic pat-
terns in GSM8k that complexify the task and dis-
advantage the LLMs’ capabilities. We propose
mGSM-Symbolic, the multilingual GSM-Symbolic
extension. In particular, we conduct an automatic
translation phase disillusioned by qualified anno-
tators in 10 different languages. The dataset is
available on GitHub1 and HuggingFace2.

Evaluation Metrics To evaluate the perfor-
mances, we use the accuracy of the final answer,
assessed through an exact match between the gen-
erated response and the ground truth. Additionally,
to observe the dynamics emerging across different
languages, we use the Answer Consistency Ratio
(ACR), which is defined as the ratio between the
set of math questions answered correctly in English
m and those answered correctly beyond English
m, calculated as: ACR = |m∩n|

|n| . A higher ACR
indicates a greater degree of overlap in reasoning
capabilities among the languages.

4.3.2 Training Set
Instead of using natural language rationale, we em-
ploy synthetic demonstrations to train models to
solve tasks following the two phases in Figure 1.
Specifically, we instruct a robust model capable of
addressing multilingual mathematical tasks by for-
malising problems and solving them in a language-

1 lranaldii/MGSM-Symbolic

2 lrana/MGSM-Symbolic
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agnostic manner. We employ GPT-4o as annotator,
instructing it with the prompt detailed in Appendix
A (we define this procedure as Self-training)

Different works train an expert version of the
same model that is going to be refined for gener-
ating synthetic demonstrations, which are subse-
quently used for self-training (we define this proce-
dure as Full Self-training).

Multilingual Demonstrations We annotate a
subset of the MSVAMP dataset containing 250
samples for all languages to have in-domain demon-
strations. After the annotation process, we check
the quality of the demonstrations using rule-based
heuristics and GPT-4o-mini as an additional evalu-
ator (details in Appendix F).

4.4 Experimental Setup
We test the following configurations:

In-context Learning We evaluate the baseline
models (without tuning) using a few-shot strategy
(6-shot) defined as Direct and CoT. Moreover, we
instruct the models to solve the problem following
SWATH.

Training We assess the impact of the Self-
training approaches (§4) by conducting different
tuning configurations:
• SFT, RL We tune the models using the synthetic
demonstrations as detailed in Appendix E.
• Self-training We warm-up the models using the
synthetic demonstrations as detailed and conduct
the self-training strategies using both policies.
• FULL Self-training Finally, to observe the im-
pact of the self-generated demonstrations, we con-
duct both the annotation, SFT (warm-up) and FULL

Self-train phase completely on the self-generated
data of the same expert model.

5 Results

Reasoning can be performed via language-agnostic
formalisms that large language models (LLMs) can
employ to enhance performance in multilingual
tasks. SWATH that leads to a formal symbolic
reasoned resolution, directing LLMs to deliver ro-
bust answers across different languages. While
SWATH is effective in GPT-4o, in smaller models,
it does not have the same benefits. Self-training
allows smaller models to deliver formal reasoning
trajectories while gaining the same benefits without
operating through instructions and achieving more
consistent results than GPT-4o (§5.1). Self-training

is definitely more performant than single SFT or
RL and allows the models to achieve better results
with significantly fewer training data (§5.2). In in-
depth studies, we analyse the emerging dynamics
between languages (§5.3) and demonstrate the scal-
ability of our method operating the Self-training in
further models (Appendix K).

5.1 Reasoning in Abstractive Spaces

The operation of our formalisation method posi-
tively influences the models’ performance in multi-
lingual reasoning obtaining substantial benefits on
the proposed tasks.

Models AVG EN SW

GPT-4o 69.2 (-1.7) 83.2 (-3.6) 70.5 (-3.4)
+SWATH 84.2 (-0.2) 93.0 (-0.8) 84.4 (-0.6)

Llama3-8B 54.8 (-3.4) 76.0 (3.6) 55.2 (-6.6)
+Self-training 73.0(-1.0) 91.8 (-0.6) 71.2 (-0.6)

Phi-3.5 49.9 (-2.6) 65.6 (-2.4) 52.6 (-2.2)
+Self-training 63.0(-1.1) 81.6(-1.0) 63.2 (-0.4)

DeepSeek-7B 55.2(-1.6) 76.2 (-2.2) 54.0 (-2.2)
+Self-training 73.0 (-0.8) 90.2 (-0.4) 71.4 (-0.6)

Table 1: Performances on MGSM-SYMBOLIC in brack-
ets the differences between MGSM.

Multilingual Symbolic Reasoning Table 1
shows that SWATH with GPT-4o achieves consis-
tent results in MGSM-SYMBOLIC, in line with
those obtained in MGSM (values in brackets). In
addition, the Self-training approach benefits the ab-
straction capabilities of the tuned models as they
are not affected by the biases introduced in MGSM-
SYMBOLIC. In contrast, the baseline strategies ob-
tains definitely lower results. This demonstrates the
functionality of SWATH’s formalisation process.

In-context Learning Table 2 reports the results
of SWATH on GPT-4o, compared to previous
prompting-based methods (Direct, CoT), it per-
forms better (+18.2% compared to Direct, +13.9%
compared to CoT). The nature of in-context instruc-
tions leads the models to formalise problem solu-
tions systematically and encourages planning by
improving the evolution of reasoning. As a result,
the reasoning trajectories are more consistent and
not language-specific, avoiding performances of
imbalances. On the other hand, in smaller models
such as Llama-3-8B, Phi-3.5-mini, and DeepSeek-
7B, we observe a decrease in performance (see red
values in brackets reported in Table 2), indicating
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Model Method MGSM MSVAMP Average

ACC ARC ACC ARC ACC ARC

GPT-4o
Direct 70.9 46.8 69.2 44.2 70.1 40.5
CoT 73.5 55.6 72.2 56.9 72.8 56.2
SWATH 84.2 68.9 82.7 69.3 83.4 69.1

Llama-3-8B

Direct(SWATH as ICL) 58.2 (57.3) 30.8 62.6 (61.0) 34.3 60.4 (59.1) 32.5
RL (GRPO) 66.0 53.7 67.8 55.2 66.9 54.4
SFT 62.3 52.4 65.0 50.1 63.6 49.7
Self-training 74.0 69.2 71.5 70.6 72.7 69.9

Phi-3.5-mini

Direct(SWATH as ICL) 52.5 (53.7) 32.8 57.9 (56.4) 36.4 55.2 (55.0) 34.6
RL (GRPO) 58.5 36.2 62.2 44.8 60.3 40.5
SFT 58.1 34.9 59.4 38.6 58.7 36.6
Self-training 64.1 48.3 66.0 49.5 65.0 48.9

DeepSeek-7B

Direct(SWATH as ICL) 56.8 (56.2) 38.6 63.0 (62.3) 39.2 60.0 (59.4) 38.9
RL (GRPO) 68.2 59.0 70.8 63.8 69.5 61.4
SFT 62.9 57.7 67.2 60.2 65.0 58.9
Self-training 73.8 72.5 74.8 70.2 74.9 72.3

Table 2: Average accuracy (ACC) and Answer Consistency Ratio (ARC) scores using methods introduced in §3.
We report the models trained via the GRPO algorithm (in Table 7, we compare DPO and GRPO). ∗(in bold the best
performance per model, in brackets the SWATH as in-context learning strategy detailed in Table 7).

that such models are unable to follow the instruc-
tions and do not fully benefit from this approach.

Self-training Table 2 and detailed in Appendix
D report the results of Self-training for different
models. From the results, it clearly emerges that
Self-training is consistently effective in enhanc-
ing the performance of the proposed models. Al-
though Self-trained models do not outperform GPT-
4o, they achieve greater consistency between lan-
guages (answer consistency ratio, i.e., ARC). In
particular, concerning ARC, we observe a robust
gain over the GPT-4o (with an improvement of 2%
for Llama-3-8B and 4.6% for DeepSeek-7B).

MGSM MSVAMP Avg

Llama-3-8B
RL +3.6 +2.8 +3.2
SFT+RL +11.2 +3.9 +7.5

Phi-3.5
RL +0.5 +1.6 +1.0
SFT+RL +1.4 +3.4 +2.4

DeepSeek-7B
RL +5.8 +4.4 +5.1
SFT+RL +12.1 +6.0 +9.0

Table 3: Differences (∆) between GRPO and DPO when
used alone (denoted as RL) and in Self-training settings
(denoted as SFT+RL). *In bold, the highest differences.

5.2 The Self-training Impact

The Self-training process delivers more robust mod-
els by consistently increasing performance and
using less training data than the other tuning ap-
proaches, including SFT and RL. In Table 2, we
observe general robust improvement over the SFT
with an improvement of 9.6% for Phi-3.5, 12.6%

for Llama-3-8B and 13.5% for DeepSeek-7B. The
improvements are likewise in terms of data con-
sumption efficiency, as Self-tuning operates using
a reduced number of displays compared to SFT
configurations, as reported in Appendix G.

The role of RL In Table 2, we reported the re-
sults achieved using GRPO. Table 3 shows that
GRPO consistently outperforms DPO when used
independently and in synergy with SFT (complete
Self-training). As described in §3.1, the GRPO
metric is not opted via an annotated dataset. As in
previous contributions, a rule-based algorithm can
be defined as a reward model. Hence, GRPO fits
the proposed task instead of operating on single in-
stances, and it aims to optimise groups of instances
that, by construction, are in different languages.

Figure 2: Average differences using data generated by
GPT-4o and self-generated (i.e. FULL Self-training).

The impact of FULL Self-training Current
alignment policies operate via demonstrations gen-
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erated by an expert model from the same families.
Ranaldi and Freitas (2024a) reveal that- in-family
learning has a more significant impact on student
models. We applying FULL Self-tuning, and we
show that self-generated demonstrations could ben-
efit models more robustly than data generated by
GPT-4o. Figure 2 shows that self-generated anno-
tations result in more robust and consistent models
across languages for the same amount of training.

5.3 Low-resource Language Improvements
Reasoning is language-agnostic; however, natural
language explanations are used to structure and ex-
ternalise reasoning processes. The SWATH formal-
ism supports multilingual reasoning consistently
across languages and achieves the same benefits
in high-resource (HR) and low-resource (LR) lan-
guages. Figure 3 shows the improvement over
baselines in GPT-4o and the improvement of Self-
trained models over baselines and models tuned
only via SFT or RL. SWATH as in-context ap-
proach used with GPT-4o achieves higher accu-
racy in HR than in LR (because of the bias of
the languages themselves). However, comparing
SWATH’s performances with baseline we observe
a major improvement in low-resource languages
(+12.7 in LR and +9.2 in HR). We observe consis-
tent benefits regarding the Self-trained models as
well. Although they do not outperform GPT-4o,
they achieve the same improvement when com-
pared to baseline models. Moreover, in the LR,
they even achieve significant benefits that exceed
+17.5 points (except Phi-3.5, which achieves +6.8).

Figure 3: SWATH performances in High- and Low-
resource Languages. In GPT-4o, it is used as ICL in the
other models via Self-training, SFT and RL (GRPO).
*(The differences with the baselines above the bars).

This demonstrates that SWATH: (i) disentan-
gling logical reasoning and content obtains sub-
stantial benefits both in the more robust models
capable of performing this abstraction step and (ii)

in the smaller models, not able to perform abstrac-
tion via direct instruction provided at inference-
phase, consistently improves results by providing
performance quasi-alignment between languages.

6 Conclusion

Although reasoning is language-agnostic, the
LLMs’ generations are unbalanced towards domi-
nant languages in pre-training. In fact, while LLMs
have a good level of proficiency in different lan-
guages and tasks, the ability to deliver step-wise
reasoned responses remains unstable. To make
multilingual reasoning more equitable and robust
across languages, we propose a modular approach
that first instructs the model to formalise the prob-
lem in an abstractive problem space and then solve
it using step-wise passages. In order to align per-
formance across languages, we operate through a
self-training approach and show that this substan-
tially improves performance by making multilin-
gual reasoning trajectories more correct.

Limitations & Future Work

In future developments, we plan to extend the anal-
ysis to other tasks and take care of the efficiency
of the methodologies used. In particular, with re-
gard to tasks, we would like to expand the analysis
to tasks of common-sense reasoning, natural lan-
guage comprehension and inference in multilingual
spaces. Regarding improving efficiency, we would
like to investigate the use of FULL operating with
reduced computational and data resources.

In our study, we assessed the efficacy of our
method using GPT-based models (closed-source)
and different open-source models. Moving forward,
it will be crucial to explore how our methods per-
form comparative to other closed-source large lan-
guage models. Given the constraints of evaluation
benchmarks and the expenses associated with the
OpenAI API, our testing was restricted to a limited
set of tasks and languages, merely touching upon
the global linguistic diversity. Furthermore, while
our study has considered and evaluated different
models, we aim to more thoroughly examine the
outcomes of models pre-trained specifically for in-
dividual languages (language-focused). Currently,
there are few open resources of comparable scale to
those we have examined. We hope that such mod-
els become more accessible in the future, allowing
for a deeper investigation into this area.
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A SWATH Instruction Template

#Role
You are an experienced expert skilled in multilingual mathematical reasoning problems.

#Task
You are presented with a mathematical reasoning problem in a given language. Follow the steps below
rigorously to formalize and solve it.

#Instructions
1) Formalisation (Language-Agnostic): Identify and define the key mathematical components of the
problem, such as variables, functions, operations, and constraints. Structure these components in an abstract
manner to ensure a clear and precise formulation. Label this step as <formalisation>....</formalisation>

2) Reasoning Execution: Solve the problem systematically by breaking it into logical steps. Clearly justify
each step using natural language explanations while maintaining logical rigor. Express the final answer in
the same language as the input query. Label this step as <reasoning>....</reasoning>

Final Answer: Present the extracted answer in a concise format, marked as “The answer is: [num]” in the
same language as the query. Label this step as <answer>....</answer>

#Question
{question}

Table 4: The SWATH instructs the model to abstract problem components and deliver step-wise reasoning paths that
lead the models to solve multilingual task.

B Results Arithmetic Reasoning Tasks GPT-4o
Model Method en de zh fr ru sw es bn ja te th Avg

MGSM

GPT-4o
Direct 86.8 78.0 79.2 83.0 78.4 76.2 82.2 38.8 72.0 40.4 65.4 70.9
CoT 92.5 78.8 79.6 84.2 79.2 77.2 83.4 44.0 76.2 45.4 66.2 73.5
SWATH 93.0 90.2 89.4 88.6 87.5 85.0 88.8 79.0 84.4 70.6 74.6 84.2

MSVAMP

GPT-4o
Direct 83.2 74.1 73.6 81.2 76.3 70.5 77.2 36.0 70.5 - 65.9 69.2
CoT 89.8 74.6 74.2 81.8 76.2 71.4 78.1 38.0 71.2 - 66.3 72.2
SWATH 96.2 85.7 82.1 87.1 81.9 80.4 86.4 72.7 78.2 - 76.6 82.7

Table 5: Accuracies (%) on MGSM and SVAMP of GPT-4o on first 100 questions for each language..

C Results on MGSM-SYMBOLIC

Model Method en de zh fr ru sw es bn ja te th Avg

GPT-4o
Direct 83.2 74.4 75.4 79.8 74.6 72.8 78.8 35.2 68.6 37.2 61.6 67.3
CoT 89.4 75.8 76.6 81.2 76.2 73.8 80.4 41.0 73.0 42.2 62.8 70.2
SWATH 92.2 89.4 88.6 88.0 87.2 84.2 88.0 78.4 84.0 69.2 74.4 84.0

Llama-3-8B
Direct 76.0 57.8 58.0 58.0 56.4 55.2 60.8 47.0 48.8 43.2 42.0 54.8
Self-training 91.8 83.0 74.0 73.2 72.4 71.2 76.4 64.8 64.0 65.8 65.2 73.0

Phi-3
Direct 65.6 55.8 56.0 54.8 54.8 52.6 55.2 45.0 46.6 28.4 34.8 49.9
Self-training 81.6 64.8 62.8 65.8 64.8 63.8 64.4 55.2 60.0 56.0 54.8 63.0

DeepSeek-7B
Direct 75.8 57.6 67.8 57.8 56.0 54.0 60.8 45.4 49.0 43.3 38.8 55.2
Self-training 90.2 82.0 80.4 72.4 72.2 71.4 75.0 65.3 63.0 65.8 65.0 73.0

Table 6: Accuracies (%) on MGSM-SYMBOLIC using baseline (Direct) and Self-training via GRPO.
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D Results Arithmetic Reasoning Tasks
Model Method en de zh fr ru sw es bn ja te th Avg

MGSM

Llama-3-8B

Direct 79.6 61.0 61.4 61.2 59.8 58.8 64.4 50.4 52.0 46.6 45.4 58.2
SWATH (ICL) 78.6 60.5 60.5 60.1 58.7 57.7 63.9 49.2 51.0 45.7 44.6 57.3
SFT 82.6 64.4 64.6 64.4 62.8 62.2 67.8 53.4 55.0 49.8 48.8 61.5
Full SFT 81.6 63.0 63.5 63.2 61.2 61.0 66.8 52.4 54.2 48.8 47.6 60.4
RL(DPO) 83.6 66.0 63.0 65.2 61.0 62.8 68.6 52.0 56.0 50.5 44.6 62.2
RL(GRPO) 84.0 76.2 67.2 66.4 65.6 63.0 69.6 58.4 57.2 59.0 58.0 66.0
Self-training(DPO) 86.4 69.2 66.0 68.0 64.5 65.7 71.4 55.8 58.8 53.3 47.4 62.4
Full Self-training(DPO) 84.6 67.0 64.0 65.8 62.8 63.6 69.2 54.0 57.0 51.4 45.8 62.0
Self-training(GRPO) 92.4 84.0 75.2 74.2 73.4 71.8 77.6 66.0 65.0 67.0 66.2 74.0
Full Self-training(GRPO) 94.0 85.8 77.0 75.8 75.4 73.2 79.4 67.8 67.2 69.2 68.6 75.8

Phi-3-mini

Direct 68.0 58.2 58.5 57.4 57.1 55.0 57.8 47.5 49.2 30.9 37.6 52.5
SWATH (ICL) 75.1 57.8 56.8 58.8 57.0 56.3 57.1 47.7 49.4 37.7 36.9 53.7
SFT 79.6 62.6 61.0 63.1 61.0 60.5 61.4 51.6 53.5 42.8 41.0 58.1
Full SFT 76.2 59.6 57.0 60.0 58.2 57.4 58.0 48.2 50.4 39.8 38.0 55.7
RL(DPO) 79.0 61.2 61.0 62.0 61.2 60.2 61.4 52.4 52.2 45.0 44.2 58.0
RL(GRPO) 75.6 60.9 59.0 61.6 60.8 59.0 60.8 51.4 56.0 46.9 45.6 58.5
Self-training(DPO) 81.2 64.0 63.2 65.0 63.4 62.4 63.6 54.6 55.0 47.0 46.2 60.7
Full Self-training(DPO) 79.1 62.0 61.0 63.0 61.6 60.6 61.6 52.8 53.0 45.5 44.3 58.6
Self-training(GRPO) 82.6 65.8 64.0 66.8 65.8 64.2 65.4 56.4 61.2 57.0 55.8 64.1
Full Self-training(GRPO) 81.3 64.0 63.4 65.2 63.5 62.5 63.4 54.8 59.4 55.0 54.2 62.1

DeepSeek-7B

Direct 78.0 59.7 69.7 59.9 58.2 56.2 62.8 47.6 50.9 45.4 40.7 56.8
SWATH (ICL) 77.1 59.1 69.0 59.0 57.5 56.3 62.0 47.0 50.2 44.8 39.8 56.2
SFT 84.1 66.0 65.6 68.2 64.6 63.4 69.3 54.8 56.8 51.4 50.2 62.9
Full SFT 82.1 66.7 69.9 64.7 63.3 62.0 68.2 53.6 55.8 50.0 50.2 62.0
RL(DPO) 84.0 67.2 67.0 65.2 62.0 63.4 69.4 53.6 57.2 51.2 45.0 62.4
RL(GRPO) 86.9 78.0 77.0 69.2 68.8 68.9 72.2 62.3 58.2 62.6 62.2 68.2
Self-training(DPO) 83.0 65.8 68.2 65.0 61.4 63.0 68.6 53.4 55.6 49.8 44.6 61.7
Full Self-training(DPO) 86.1 68.0 70.7 67.5 63.6 65.2 70.8 55.8 57.8 52.2 47.0 63.8
Self-training(GRPO) 90.8 82.6 81.6 73.2 72.8 72.0 76.0 66.2 63.8 66.5 66.0 73.8
Full Self-training(GRPO) 92.8 84.6 83.0 75.0 74.5 71.8 79.0 66.9 66.2 68.4 67.0 74.5

MSVAMP

Llama-3-8B

Direct 81.3 62.8 62.9 62.8 61.4 60.4 66.1 52.1 53.8 - 48.3 62.6
SWATH (ICL) 81.5 63.3 62.7 61.9 61.3 60.5 66.1 52.0 53.7 - 47.2 61.0
SFT 85.0 66.4 66.6 66.7 65.0 63.8 69.5 55.2 57.4 - 51.5 65.0
Full SFT 85.6 67.3 68.1 67.7 66.1 65.1 70.6 56.6 58.7 - 53.0 65.9
RLDPO 82.5 66.3 66.8 66.6 65.3 63.6 69.8 53.2 60.3 - 55.7 65.0
RLGRPO 85.1 68.6 68.8 69.1 67.5 65.8 71.6 60.0 63.0 - 60.9 67.8
Self-trainingDPO 85.2 68.8 69.0 69.2 67.6 66.2 72.0 55.7 62.9 - 58.0 67.6
Full Self-trainingDPO 82.5 66.1 66.3 66.5 64.9 63.5 69.3 53.0 60.2 - 55.3 65.8
Self-trainingGRPO 88.4 72.0 72.3 72.5 71.0 69.6 75.4 63.2 66.2 - 64.4 71.5
Full Self-trainingGRPO 88.6 71.4 75.4 73.1 70.2 69.3 75.1 63.7 65.6 - 64.6 71.7

Phi-3-mini

Direct 77.9 59.4 59.7 59.6 58.2 57.2 62.9 48.9 50.7 - 44.8 57.9
SWATH (ICL) 77.0 58.9 56.6 59.7 58.5 56.9 62.5 48.4 50.3 - 44.5 56.4
SFT 78.9 61.2 61.3 61.4 60.1 58.6 64.3 50.0 52.2 - 46.4 59.4
Full SFT 81.3 63.6 63.6 63.8 62.5 61.0 66.7 52.4 54.5 - 48.7 59.1
RLDPO 77.6 62.3 62.4 62.7 61.1 59.6 65.6 49.2 56.4 - 51.4 60.8
RLGRPO 78.1 62.7 63.0 63.2 61.6 60.2 66.2 53.7 56.8 - 55.2 62.2
Self-trainingDPO 81.5 66.2 66.3 66.6 65.0 63.5 69.5 53.1 60.3 - 55.3 64.7
Full Self-trainingDPO 79.2 63.9 63.8 64.0 62.6 60.7 67.1 50.7 57.6 - 53.0 62.3
Self-trainingGRPO 82.0 66.6 66.9 67.1 65.5 64.1 70.1 57.6 60.7 - 59.1 66.0
Full Self-trainingGRPO 79.2 64.6 65.1 65.0 63.4 61.2 68.1 55.7 58.6 - 56.5 63.9

DeepSeek-7B

Direct 83.0 64.5 74.6 64.5 63.0 62.1 67.8 53.8 55.5 - 50.0 63.0
SWATH (ICL) 82.3 64.2 68.9 64.1 62.6 61.5 67.1 52.9 54.9 - 49.3 62.3
SFT 86.6 68.1 70.2 68.4 66.7 65.5 71.1 56.8 59.1 - 53.2 67.2
Full SFT 88.0 69.4 73.3 69.9 68.2 67.3 72.8 58.7 61.1 - 55.3 68.1
RLDPO 83.4 67.1 69.2 67.7 66.0 64.7 70.3 53.9 61.3 - 56.3 66.4
RLGRPO 87.1 70.8 75.7 71.1 69.1 68.3 74.1 61.8 67.7 - 63.1 70.8
Self-trainingDPO 87.3 71.0 73.1 71.6 69.9 68.6 74.2 57.8 65.2 - 60.2 69.0
Full Self-trainingDPO 84.8 68.4 71.5 68.7 67.2 65.7 71.6 55.1 62.4 - 57.7 67.0
Self-trainingGRPO 90.9 74.5 79.8 75.0 73.2 72.1 78.0 65.6 71.6 - 67.0 74.8
Full Self-trainingGRPO 90.6 71.5 78.4 73.0 76.5 70.2 74.1 60.9 68.6 - 62.9 75.5

Table 7: Accuracies (%) on MGSM and SVAMP of using the methods described in §3.
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E Annotations Pipeline

We use SWATH to generate synthetic demonstra-
tions for training smaller LLMs. We use GPT-4o
as an annotator and use the annotations to warm-
up the models with the proposed methodologies.
We then conduct a complete Self-training phase.
Moreover, we conduct the Self-training by using
self-generated data (generated by the trained mod-
els themselves). We define these configurations
‘FULL’-Self-training. In both cases, the demon-
strations are generated by prompting the models
using instructions detailed in Appendix A. How-
ever, while GPT-4o follows the instructions well
(in fact, we did not find any significant issues), the
other models generate outcomes that include errors.
To handle this, we evaluated the quality of the gen-
erated demonstrations by filtering out inaccurate
examples to get a gold instruction set. In particular,
we removed all inaccurate answers (outputs that do
not match the exact target string metric). Then, we
control if the demonstrations follow correctly the
steps indicated in our prompt (see Table 4) using
GPT-4o-mini and the prompt in Appendix F.

F Evaluation Metrics

We used a double-check to assess the accuracy of
the responses delivered in the different experiments.
In the first step, we used an exact-match heuristic.
However, since some experiments required a more
accurate response check, we used GPT-4o-mini as
a judge. Hence, we prompt the model as follows:

GPT-4o Evaluation Prompt

#Role:
You are an experienced expert skilled in answering
complex problems through logical reasoning and
structured analysis.
#Instructions:
Given the following "#Senteces", you are a decider
that decides whether the "Generated Answer" follows
the "Required Format" and the final answer is the
same as the "Target Answer". If the output doesn’t
align with the required format and target answer,
respond with ’0’, whereas if it’s correct, then respond
with ’1’. Please, do not provide any other answer
beyond ‘0’ or ‘1’.
#Senteces:
Generated Answer: {model_result}
Required Format: {format}
Target Answer: {correct_answer}.

G Data Composition

As evaluation sets, we use the tasks introduced in
§4.3. These tasks are used to assess the perfor-
mance of LLMs, but they do not have reserved sets
for evaluation and training. Therefore, to produce
a training set, we split MSVAMP into training and
testing. Table 8 shows the instances of each dataset
in training and testing. To ensure the languages
are perfectly balanced, we translated 350 samples
from English to Telugu (language non-present in
MSVAMP). This subset was used for training pur-
poses only.

Task Total Test Train. Set # dim

MGSM 2.5k 2.5k No No
MGSM-SYMBOLIC 2.5k 2.5k No No
MSVAMP 10k 2.5k Yes 3, 5k

Table 8: Training and evaluation data. *(1k is equal to
1000).

The data are perfectly balanced between the lan-
guages in the proposed tasks. However, as de-
scribed in Appendix E, the qualities of the annota-
tions are not perfect. Behind filtering the annota-
tions, we obtained a reduced dataset, respectively
1.6k for GPT-4o and about 1.2k for the other mod-
els. To have fair, balanced subsets, we use 1k sam-
ples in total. We use 1k samples when instructing
the models for DPO and SFT. For the Self-training,
we used as the initial subset (§3.2) 60% of the fil-
tered samples balanced between all languages.

H Number of Iterations

Following pilot experiments, we set the number of
iterations of self-tuning at three. Figure 9 shows
the performances trend by increasing number of
iterations, epochs and steps after warm-up (wup).

Table 9: Average accuracies on MGSM.
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I Models and Hyperparameters

Models In our experimental setting, as intro-
duced in §4.1, we propose different models (de-
tailed in Table 10). Finally, we fix generation
temperature to τ = 0 for all models. We choose
these temperature for (mostly) deterministic out-
puts, with a maximum token length of 512. The
other parameters are left unchanged as recom-
mended by the official resources. We use four
48GB NVIDIA RTXA600 GPUs for all experi-
ments performed only in inference.

Hyperparameters In §4.2, we described the
standard Self-training setting. However, we have
proposed different experimental settings. In the
Self-training experimental setting, we conducted
three iterations as proposed in (Wang et al., 2024;
Shao et al., 2024b). In the SFT-only and RL-only
settings, we used warm-up and four epochs and
8000 steps, respectively. We conducted this setting
after the pilot experiments shown in the previous
sections.

J Models Vesions
Model Version
Llama3-8(-instruct) meta-llama/Meta-Llama-3-

8B-Instruct
Phi-3(-mini-instruct) microsoft/Phi-3-mini-4k-

instruct
DeepSeekMath-7B deepseek-ai/deepseek-

math-7b-instruct
GPT-4o gpt-4o-2024-08-06
GPT-4o-mini gpt-4o-mini-2024-07-18

Table 10: List the versions of the models proposed
in this work, which can be found on huggingface.co.
We used all the default configurations proposed in the
repositories for each model.

K Transferability in Smaller Models

To analyse the transferability of Self-training
and SWATH, we extend the experiments to
smaller models exemplified by Llama-3-1B,
EuroLLM-1.7B and Velvet-2B chosen for the pur-
pose of construction, i.e. their multilingual na-
ture, for the performances obtained in mathemat-
ical reasoning tasks and for the reduced number
of parameters that allowed different experiments
to be conducted. Hence, we adopt the experimen-
tal setup proposed in §4.1 using SFT, GRPO and
Self-training. Table 11 shows the average scores
obtained on MGSM-SYMBOLIC. On average Self-
training via SWATH, outperforms the baselines, RL
and SFT models resulting in an ARC comparable
to that obtained by Llama-3-8B and DeepSeek-7B
in Table 2.

Table 11: Average accuracies of smaller models in our
MGSM-SYMBOLIC.

L Proposed Task
Dataset Languages #Lang
MGSM Bengali (bn), Chinese

(zh), French (fr), Thai
(th), German (de),
Japanese (jp), Russian
(ru), Telugu (te), Span-
ish (es), Swahili (sw)

11

MSVAMP Bengali (bn), Chinese
(zh), French (fr), Thai
(th), German (de),
Japanese (jp), Russian
(ru), Spanish (es),
Swahili (sw)

11

MGSM-SYMBOLIC Bengali (bn), Chinese
(zh), French (fr), Thai
(th), German (de),
Japanese (jp), Russian
(ru), Telugu (te), Span-
ish (es), Swahili (sw)

12

Table 12: Languages present in datasets used in this
work.
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M GRPO Tuning

This approach evaluates model-generated comple-
tions using five key constraints:

1. Strict Reward (rs) Ensures factual accuracy
by comparing the extracted answer to the ground
truth. The reward is computed as:

rs(y) =

{
2 if extract_match(y) = ŷ

0 otherwise
(10)

where extract_match(y) match the target answer
and generated response.

2. Format Reward (rnum) Ensures the correct-
ness of the answer structure and valid numerical
reasoning. The reward is computed as:

rans(y) =

{
0.5 if answer_format(y) is valid
0 otherwise

(11)
follow The answer is: [] (in specific language).

3. Format Reward (rf) Enforces compliance
with a rigid reasoning structure using regex:

rf(y) =

{
0.5 if response matches s1 ∧ s2

0 otherwise
(12)

Ensures that responses follow explicit structured
reasoning process elicited by SWATH.

4. Soft Format Reward (rs) Provides flexibility
and maintains structure by checking for the pres-
ence of reasoning and answer tags:

rs(y) =

{
0.5 if response matches s1 *∧ s2

0 otherwise
(13)

Allows minor deviations and ensures reasoning and
answers remain explicitly structured.

5. Structural Integrity Reward (rSI) Assign
incremental rewards on correct placement and pe-
nalising excessive content:

rSI(y) =
4∑

i=1

wi · 1(si ∈ y)− λ · extra_content

(14)
where: wi = 0.125 for placing s1 and s2 and λ =
0.001 additional content.

N DPO Tuning

In parallel with the GRPO method (Appendix M),
we use DPO as a preference optimisation algorithm.
As mentioned in §3, DPO was designed to lower
the costs of the reward model and have a stronger
binary choice. This algorithm has been used in
different configurations. In this paper, we adopt
the configuration proposed in (Ranaldi and Freitas,
2024b) by extending the functionality in multilin-
gual contexts and using prompt-based demonstra-
tions of our SWATH.
Starting from the demonstrations defined as D =
(xi, ai) where i ∈ D (note that ai are generated
using SWATH), we instruct the models using the
input xi ∀i ∈ D (the latter being the proposed
approach in the main paper). For each element, we
collect the Answers (yi = πθ(xi)), which are the
responses generated by the model given the input
xi.
We define the following components:

• Oracle or Target ti: the expected target an-
swer given the input xi.

• Demonstration Answer âi and ai: target an-
swers given the input xi or x̂i.

• Answer yi = πinst(x): the response generated
by the model given the input x.

• SWATH Answer ySWATH = πinst(xSWATH):
the structured response generated via the
SWATH mechanism xSWATH.

After an initial warm-up phase using SFT, we apply
the DPO, selecting yw following function:

yw =

{
ŷi if ti ∈ ŷi ∧ form(ŷi)

âi otherwise
(15)

while the discouraged answers yl are given by yi
∀i ∈ D. The function hasStep(ŷi) returns ’True’
when both constraints of the function are satisfied
otherwise ’False’.
Specifically, given an output y:

form(y) =

{
True if (s1 ∧ s2) ∈ y

False otherwise
(16)

where s1 and s2 are respectively
"<formalisation>...</formalisation>"
and "<reasoning>...</reasoning>" (SWATH

in Table A).
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