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Abstract

Machine unlearning has been used to remove
unwanted knowledge acquired by large lan-
guage models (LLMs). In this paper, we exam-
ine machine unlearning from an optimization
perspective, framing it as a regularized multi-
task optimization problem, where one task op-
timizes a forgetting objective and another op-
timizes the model performance. In particular,
we introduce a normalized gradient difference
(NGDiff) algorithm, enabling us to have better
control over the trade-off between the objec-
tives, while integrating a new, automatic learn-
ing rate scheduler. We provide a theoretical
analysis and empirically demonstrate the su-
perior performance of NGDiff among state-of-
the-art unlearning methods on the TOFU and
MUSE datasets while exhibiting stable training.

1 Introduction

Large language models (LLMs) consume a large
amount of data during pre-training. After the model
is built, we may have to unlearn certain data points
that contain potentially sensitive, harmful, or copy-
righted content. As re-training from scratch in such
a case is not feasible due to the associated costs,
researchers have developed a number of machine
unlearning methods applied after training.

Existing machine unlearning methods are
formulated primarily as minimizing memorization
through the language model loss (Jang et al., 2023;
Chen et al., 2024; Liu et al., 2024b). In particular,
the Gradient Ascent (GA) method maximizes
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the language model (LM) loss (i.e., minimizes
the negative LM loss) on the target forget set (F).
However, this approach can also negatively affect
the utility of the model. To mitigate the utility
loss, the Gradient Difference (GDiff) method
selects a subset of the training data as the retain
set (R), minimizing the sum of the negative LM
loss on the forgetting set and the standard LM
loss on the retaining set. This approach has been
empirically shown to effectively preserve the
model’s performance (Liu et al., 2022; Maini et al.,
2024). Similarly, Negative Preference Optimiza-
tion (NPO) (Zhang et al., 2024b) assigns a lower
likelihood of forgetting data, thereby balancing the
unlearning performance with model utility.

Despite these successes, there are still two key
issues preventing the methods from reaching their
full potential. First, balancing retaining and for-
getting losses is difficult (Figure 1, details are in
Appendix A) given the disproportionate sizes of the
forget and retain datasets. Second, the optimiza-
tion methods for unlearning are usually sensitive to
the learning rate (cf., Appendix A, Figure 7). For
instance, various learning rates can lead to substan-
tial changes in the ROUGE scores and loss values
even for the same algorithm, making the unlearning
methods unstable and difficult to use in practice.

In this paper, we carefully examine unlearning
from an optimization perspective and formulate it
as a multi-task optimization (MTO) problem (Chen
et al., 2021; Xin et al., 2022): we aim to mini-
mize the LM loss (i.e., maximize the utility) on
the retaining set and maximize the LM loss on
the forgetting set (i.e., minimize memorization),
simultaneously.1 To solve this two-task problem,

1A naive approach is optimizing the sum of these two

11278



Figure 1: Memorization (measured by ROUGE) on
TOFU forgetting and retaining sets with Phi-1.5 (see
setup in Sec 5). The dashed line represents extended
GDiff with 0 ≤ c ≤ 1 in (3). Our NGDiff (gray
square) achieves the best trade-off (bottom right pre-
ferred) among other unlearning methods.

we study the rich literature of multi-task methods
that seeks the Pareto optimality of two tasks (e.g.,
IMTL (Liu et al., 2021), GradNorm (Chen et al.,
2018a), RLW (Lin et al., 2021), PCGrad (Yu et al.,
2020), and scalarization (Boyd and Vandenberghe,
2004)), and design an approach specifically for the
LLM unlearning problem.

Inspired by the simplicity and strong empiri-
cal performance of linear scalarization methods,2

which minimize a linearly weighted average of task
losses, we propose an LLM unlearning method,
NGDiff, based on dynamic scalarization, and an-
alyze its theoretical properties. Building on the
analysis, we introduce an automatic learning rate
adaptation method tailored for LLM unlearning.

We showcase the effectiveness of our method
through extensive experiments on multiple datasets,
different LLMs and vision models. For example, on
TOFU (Maini et al., 2024), NGDiff achieves 40%
higher model utility while maintaining comparable
unlearning performance with Llama2-7B. Figure 1
highlights the effectiveness of NGDiff.

Contributions are summarized as follows:
• We formalize LLM unlearning as a multi-task

optimization problem and unify the terminol-
ogy used across both fields. We demonstrate
the Pareto optimality for scalarization-based
unlearning methods under some assumptions.

• Through the lens of multi-task optimization,
we propose a novel unlearning method NGDiff
for LLM unlearning, which uses the gradi-
ent norms to dynamically balance the for-
get and retain tasks. NGDiff improves both
tasks simultaneously and monotonically with
a proper learning rate scheduling.

objectives. We will discuss alternatives to improve upon this.
2Xin et al. (2022) demonstrate that linear scalarization

outperforms, or is at least on par with, other MTO approaches
across various language and vision experiments

• We integrate NGDiff with GeN (Bu and Xu,
2024), which uses Hessian-based learning rate
selection for stable convergence.

2 Related Work

We position our work within the related literature.
More discussion and background on learning rate-
free techniques are in Appendix E.
LLM unlearning The extensive data used in train-
ing LLMs raises significant concerns. Certain data
sources contain personal information (Carlini et al.,
2021), outdated knowledge (Wu et al., 2024), and
copyright-protected materials (Times, 2023). In
addition, adversarial data attacks can maliciously
manipulate training data to embed harmful infor-
mation (Wallace et al., 2021; Li et al., 2024).

To remove unwanted information without re-
training the entire model, machine unlearning has
been proposed using techniques such as data slic-
ing (Bourtoule et al., 2021), influence functions (Ul-
lah et al., 2021), and differential privacy (Gupta
et al., 2021). However, these methods are challeng-
ing to scale to LLMs due to their complexity. Re-
cently, efficient approximate unlearning methods
have been proposed for LLMs (Eldan and Russi-
novich, 2023; Zhang et al., 2024a; Jang et al., 2023;
Pawelczyk et al., 2024; Chen and Yang, 2023).
They mostly focus on designing unlearning objec-
tives or hiding unwanted information. However,
none addresses the fundamental optimization prob-
lem. Our paper bridges this gap and complements
existing approaches. Further discussion of the chal-
lenges surrounding LLM unlearning can be found
in benchmarks (Shi et al., 2024; Maini et al., 2024)
and surveys (Si et al., 2023; Liu et al., 2024c).

Note that the literature on knowledge edit-
ing (De Cao et al., 2021) is also relevant. How-
ever, model editing typically focuses on surgically
updating LLMs for specific knowledge, whereas
unlearning removes the influence of particular doc-
uments. The techniques presented in this paper
could potentially be applied to knowledge editing.
Multi-task optimization In NLP, multi-task learn-
ing (Zhang et al., 2023) typically refers to building
a model that can perform well on multiple tasks
simultaneously by sharing representations, intro-
ducing constraints, or combining multiple learn-
ing objectives3. Multi-task optimization, on the
other hand, focuses on a slightly different concept –

3This often involves optimizing a form of static linear
scalarization, as introduced in the next section
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optimizing two distinct learning objectives simul-
taneously. The key challenge is how to balance
the trade-off among objectives during the optimiza-
tion procedure by modifying the per-task gradients
(e.g. PCGrad (Yu et al., 2020), RLW (Lin et al.,
2021), IMTL (Liu et al., 2021)). Several recent
works have studied Pareto frontier and optimally in
context of NLP tasks (e.g., multi-lingual machine
translation (Chen et al., 2023; Xin et al., 2022) and
NLP fairness (Han et al., 2023)). While optimiza-
tion is often treated as a black-box tool in NLP
research, studying optimization provides deeper
insights and inspires new algorithms.4

3 Unlearning as multi-task optimization

This section casts machine unlearning as a multi-
task optimization (MTO), specifically the two-task
optimization problem. Let the retain set be denoted
by R and the forget set by F, with LR and LF repre-
senting the corresponding cross-entropy losses for
language modeling. We are interested in finding

argminθ LR(θ) ∩ argmaxθ LF(θ), (1)

where θ represents the model parameters.
There might not be a solution that simultane-

ously achieves both objectives in Eq. (1). For
LLMs, the unlearning solutions generally exhibit
a trade-off between performance in R and F (cf.,
Figure 1). To forget F, one may unavoidably un-
learn general knowledge such as grammar rules on
F, which can sacrifice the performance on R.

In MTO, Pareto optimality is used to character-
ize the trade-offs between multiple objectives. In
layperson’s terms, if θ is Pareto optimal, it is im-
possible to improve LR or LF without worsening
the other. Formal definition is in below:

Definition 1 (Pareto optimality in unlearning). For
two models θ and θ′, if LR(θ) ≥ LR(θ

′) and
LF(θ) ≤ LF(θ

′) with at least one inequality being
strict, then θ is dominated by θ′. A model is Pareto
optimal if it is not dominated by any other models.

In the remainder of this section, we will dis-
cuss current unlearning methods in a unified MTO
framework and analyze their Pareto optimality.

4An example is the Baum-Welch algorithm, originally pro-
posed to estimate the parameters of HMMs and applied in
speech recognition in 1970s before it was recognized as an
instance of the EM algorithm (Dempster et al., 1977). It was
later identified as a special case of a broader class of convex-
concave optimization (CCCP) (Yuille and Rangarajan, 2001).
This connection inspired new designs, such as the unified
EM (Samdani et al., 2012).

Figure 2: Gradient space in 2-dimension. gF is the
forgetting gradient and gR is the retaining gradient, each
with a perpendicular dashed line. Yellow area is the
linear span (Eq. (3)) by scalarization. Green area is
positively correlated to gR and negatively correlated to
gF by Eq. (6), whereas NGDiff always stays within this
green area at each iteration.

Building on this, we then propose a dynamic scalar-
ization approach tailored to LLM unlearning.

3.1 Static linear scalarization

A popular MTO method is scalarization, which ad-
dresses MTO by optimizing the linear scalarization
problem (LSP). This method combines multiple
tasks into a single, reweighted task:

LSP(θ; c) = c · LR(θ)− (1− c) · LF(θ), (2)

where c is fixed. At iteration t, the gradient of LSP,
gstatic(θt; c), lies within the linear span of per-task
gradients as shown in Figure 2 (yellow area):

gstatic(θt;c)=
∂LSP
∂θt

=cgR(θt)−(1−c)gF(θt). (3)

Then, the corresponding update rule by the
(stochastic) gradient method is
θt+1 = θt − ηt[c · gR(θt)− (1− c) · gF(θt)].

Remark 3.1. We term the static linear scalariza-
tion as the extended GDiff in this work. Some ex-
isting methods are special cases of extended GDiff.
For example, Gradient Descent (GD) on retaining
set is equivalent to extended GDiff with c = 1. Gra-
dient Ascent (GA) on forgetting is equivalent to that
with c = 0, and vanilla GDiff (Liu et al., 2022) set
c = 0.5 (i.e., equally weighted).

A nice property of linear scalarization is the
Pareto optimality at the convergence of convex
models (Boyd and Vandenberghe, 2004)), which
we state in Lemma 2 (proof in Appendix G) for
the static c and later extend to Theorem 3 for the
dynamic ct in Section 3.2.

Lemma 2 (restated from (Xin et al., 2022)).
For any 0 < c < 1, the model θ∗

LSP(c) =
argminθLSP(θ; c) is Pareto optimal.
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Lemma 2 suggests5 that we can sweep through
c ∈ [0, 1] and construct the Pareto frontier after
sufficiently long training time (e.g., the blue dotted
line in Figure 6 in Appendix A). However, while
any c leads to a Pareto optimal point, the solu-
tion may be useless: e.g., perfect memorization
on (R,F) that fails to unlearn is also Pareto opti-
mal. Next, we investigate different choices of c by
extending the static scalarization in (3).

3.2 Dynamic scalarization
Static scalarization uses a constant c in (3). How-
ever, we can extend it to use different scalars at
different iteration:

θt+1 = θt − ηtgUN(θt; ct), where

gUN(θ; ct) := ct · gR(θ)− (1− ct) · gF(θ). (4)

It is worth noting that instead of defining θ∗ =
argminθLSP at the loss level, we can define it at
the gradient level based on the stationary condition
of the training dynamics, i.e., gUN(θ

∗) = 0.
Several unlearning and MTO methods can be

viewed as special cases of Eq. (4):
1. Gradient descent (GD on R), ct = 1
2. Gradient ascent (GA on F), ct = 0
3. Gradient difference (vanilla GDiff), ct = 0.5
4. Loss normalization (LossNorm), ct

1−ct
= LF

LR

5. RLW (Lin et al., 2021), ct = eλ1

eλ1+eλ2
with

λi ∼ N(0, 1)

6. PCGrad (Yu et al., 2020), ct
1−ct

= 1 +
g⊤

F gR
∥gR∥2

7. IMTL-G (Liu et al., 2021), ct = g⊤
F ( gF

∥gF∥ −
gR

∥gR∥)/(gF − gR)
⊤( gF

∥gF∥ − gR
∥gR∥)

Despite the different designs of {ct}, we show in
Theorem 3 (proof in Appendix G) that all θ∗({ct})
are Pareto optimal following Lemma 2, including
our NGDiff to be introduced in Section 4.2.
Theorem 3. For any {ct} with 0 ≤ ct ≤ 1 that
converges as t → ∞, the model θ∗({ct}) =
limt→∞ θt in (4) is Pareto optimal.

4 Unlearning with normalized gradient
difference

While Theorem 3 shows the Pareto optimality of
θ∗ as t → ∞, it does not shed insight on the con-
vergence through intermediate steps θt. Put differ-
ently, although many MTO and unlearning meth-
ods are all Pareto optimal upon convergence, they

5We note that Lemma 2 is only applicable to the global
minimum of LSP, which is not always achievable. While this
result has its limitations and requires empirical validation, it
provides guidance for algorithm design.

Figure 3: Loss values of retaining and forgetting sets
with different learning rates. Markers are LR(θt − ηgR)
and LF(θt−ηgF) estimated by Phi-1.5 on TOFU at step
10. The curves are fitted as quadratic functions.

may converge to different Pareto points at different
convergence speeds. Therefore, it is important to
understand and control the algorithm dynamics to
maintain high performance for R throughout the
training. Specifically, the dynamics are determined
by the choices of gUN ∈ Rd and ηt ∈ R in Eq. (4).

In this section, we propose to use gradient nor-
malization for gUN and automatic learning rate for
ηt, so as to achieve stable convergence, effective
unlearning, high retaining utility, without manually
tuning the learning rate.

4.1 Loss landscape of unlearning
Applying the Taylor expansion on Eq. (4), we can
view the local landscapes of loss LR and LF as
quadratic functions, where Lω(θt+1)− Lω(θt) =

−ηtg
⊤
ω gUN(ct)+(η2t /2)g

⊤
UNHωgUN+o(η2t ), (5)

where ω is either R or F.
Here Hω = ∂2Lω

∂θ2 is the Hessian matrix, which
empirically gives g⊤

UNHωgUN > 0 and renders LR
and LF locally and directionally convex along the
gradients. This allows the existence of a minimiz-
ing learning rate to be characterized in Section 4.3.
We visualize the loss landscape of Phi-1.5 (Li et al.,
2023a) model on an unlearning benchmark, TOFU
dataset (Maini et al., 2024) in Figure 3 and ob-
serve that the quadratic functions in Eq. (5) are
well-fitted in most iterations.

4.2 Normalized gradient difference
In order for LF to increase as well as LR to de-
crease, we want to construct gUN such that

g⊤
R gUN(ct) ≥ 0 ≥ g⊤

F gUN(ct). (6)

To satisfy Eq. (6) , we propose a normalized gra-
dient difference method (NGDiff) to dynamically
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set ct = 1/∥gR∥
1/∥gR∥+1/∥gF∥ =⇒ gNGDiff(gR, gF) :=

gR
∥gR∥ − gF

∥gF∥ . In words, we normalize the retaining
and forgetting gradients6

We analyze NGDiff as follows. First, we show
the condition in Eq. (6) is satisfied at all iterations
in the following lemma (proof in Appendix G):

Lemma 4. gNGDiff(gR, gF) satisfies Eq. (6) for any
gR ∈ Rd and gF ∈ Rd.

In Theorem 5 (proof in Appendix G), we lever-
age Lemma 4 to claim that the local loss improve-
ment under appropriate learning rate, which will
be implemented adaptively in Section 4.3.

Theorem 5. Consider θt+1 = θt − ηgNGDiff.
(1) Unless gR is exactly parallel to gF, for any

sufficiently small learning rate η, there exist two
constants ϵR,1 = o(η), ϵF,1 = o(η) such that

LR(θt+1)− LR(θt) < ϵR,1;

LF(θt+1)− LF(θt) > ϵF,1.

(2) If additionally g⊤
NGDiffHRgNGDiff > 0 and

g⊤
NGDiffHFgNGDiff > 0, then for any learning rate

0 < η <
2g⊤

R gNGDiff

g⊤
NGDiffHRgNGDiff

, there exist two constants

ϵR,2 = o(η2), ϵF,2 = o(η2) such that

LR(θt+1)− LR(θt) < ϵR,2;

LF(θt+1)− LF(θt) > ϵF,2.

To interpret Theorem 5, we view ϵ ≈ 0 as η is
generally small (say η ∼ 10−4 in our experiments),
and hence, NGDiff is optimizing on R and F simul-
taneously. Visually speaking, Lemma 4 constrains
NGDiff’s gradient to stay in the green area in Fig-
ure 2 unless gF ∥ gR, whereas other methods do not
explicitly enforce Eq. (6) and may consequently
harm the retaining utility.

We end the analysis with the following remark:

Remark 4.1. The condition, g⊤
NGDiffHgNGDiff > 0

in part (2) of Theorem 5, may not always hold in
deep learning. However, it empirically holds in
most iterations across models and datasets in our
experiments (cf., our Figure 3 and Figure 2 in (Bu
and Xu, 2024)), and we can stablize the training by
not updating η when the condition fails.

6We illustrate in Appendix B that NGDiff is critically dif-
ferent and simpler than GradNorm.(Chen et al., 2018a).

Algorithm 1 Learning-rate-free NGDiff
1: for t = 1, 2, ... do
2: —-NGDiff—-
3: Compute LR(θt) by a forward pass on R
4: Compute gR(θt) by backward propagation
5: Compute LF(θt) by a forward pass on F
6: Compute gF(θt) by backward propagation
7: Construct gNGDiff = gR/∥gR∥ − gF/∥gF∥
8: —-AutoLR—-
9: if t mod 10 == 0: then

10: Compute L±
R = LR(θt ± ηg) by two

forward passes on R
11: Fit the quadratic function in Eq. (5)

from (−η, 0, η) → (L−
R , LR, L

+
R )

12: Derive the optimal learning rate η∗t by
Eq. (7) and set η = η∗t

13: Update θt+1 = θt − ηgNGDiff

4.3 Automatic learning rate adaption

In order for NGDiff to work as in Theorem 5, the
learning rate schedule needs to be carefully selected
so that 0 < ηt <

2g⊤
R gNGDiff

g⊤
NGDiffHRgNGDiff

at each iteration.
In Algorithm 1, we adapt GeN (Bu and Xu, 2024)
(or AutoLR) to the unlearning setting and dynam-
ically set the learning rates7 as the minimizer of
(5): to locally optimize LR and to monotonically
increase LF, we use the following learning rate:

η∗t = g⊤
R gNGDiff/g

⊤
NGDiffHRgNGDiff. (7)

GeN estimates two scalars – the numerator and
denominator of Eq. (7) by analyzing the difference
of loss values, thus the high-dimensional Hessian
matrix HR is never instantiated. We devote Ap-
pendix C to explain how GeN works and how we
have modified GeN for unlearning, such as only
forward passing on R but not F in Eq. (7).

Remark 4.2. There is a computational overhead to
use GeN, as it requires additional forward passes
to estimate η∗t . Nevertheless, we only update the
learning rate every 10 iterations so that the over-
head is amortized and thus negligible.

Algorithm 1 summarizes NGDiff.

7We note other parameter-free methods such as D-
adaptation, Prodigy, and DoG can also set the learning rate
automatically. However, these methods need to be tailored for
different gradient methods, hence not compatible to NGDiff
or the unlearning algorithms in general. We give a detailed
explanation in Appendix E.
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5 Experiments

5.1 Setup
Dataset We evaluate the empirical performance of
our proposed method on the two following datasets
(see more dataset details in Section F.1):

Task of Fictitious Unlearning (TOFU) (Maini
et al., 2024). TOFU consists of 20 question-answer
pairs based on fictitious author biographies gen-
erated by GPT-4 (Achiam et al., 2023). In our
experiments, we use the forget10 (10% of the full
training set) as the forgetting set and retain90 (90%
of the full training set) as the retaining set.

MUSE-NEWS (Shi et al., 2024). This dataset
consists of BBC news articles (Li et al., 2023b)
published since August 2023. We use its train split
to finetune a target model, and then the raw set,
which includes both the forgetting and retaining
data, for the target model unlearning. Finally, the
verbmem and knowmem splits are used to evaluate
the unlearned model’s performance.
Unlearning methods We compare NGDiff with 4
baselines. The first baseline method is the target
model without any unlearning, while the remaining
three are the state-of-the-art unlearning methods.

No-unlearn. We fine-tune the base model on
the full training data. Subsequent unlearning ap-
proaches are then applied on No-unlearn.

Gradient Difference (GDiff) (Liu et al., 2022).
GDiff (see Sec. 3.2) applies static linear scalariza-
tion with c = 0.5 in MTO. For a thorough compar-
ison, we also include the extended GDiff method,
with c = 0.1 or c = 0.9.

Loss Normalization (LossNorm). As discussed
in Section 3.2, this approach computes and normal-
izes the forget loss and retain loss separately, with
the overall loss being LR/|LR| − LF/|LF|.

Negative Preference Optimization (NPO) (Zhang
et al., 2024b). NPO is adapted from Direct Pref-
erence Optimization (DPO) (Rafailov et al., 2024)
and uses preference optimization (Ouyang et al.,
2022) with the loss: LNPO,β(θ) =

− 2

β
EF

[
log σ

(
− β log

f(S,w)

fNo-unlearn(S,w)

)]
, (8)

where S is randomly sampled from F, β > 0 is the
inverse temperature, f is the unlearned model, and
fNo-unlearn is the model before unlearning.

Foundation Models We test multiple LLMs:
LLAMA2-7B (Touvron et al., 2023), Phi-1.5 (Li
et al., 2023a), Falcon-1B (Penedo et al., 2023),

GPT2-XL (Radford et al., 2019) and Mistral-7B
(Jiang et al., 2023). They are pre-trained and then
fine-tuned on datasets in Section 5.1, with AdamW
optimizer and are carefully tuned (Appendix F).

5.2 Evaluation Metrics
Following the existing work (Shi et al., 2024),
we evaluate the unlearning performance based on
model’s output quality. We expect a good perfor-
mance should satisfy the following requirements:
No verbatim memorization. After the unlearning,
the model should no longer remember any verba-
tim copies of the texts in the forgetting data. To
evaluate this, we prompt the model with the first k
tokens in F and compare the model’s continuation
outputs with the ground truth continuations. We
use ROUGE-L recall scores for this comparison,
where a lower score is better for unlearning.
No knowledge memorization. After the unlearn-
ing, the model should not only forget verbatim
texts, but also the knowledge in the forgetting
set. For the MUSE-NEWS dataset, we evaluate
knowledge memorization using the KnowmemF
split, which consists of generated question-answer
pairs based on the forgetting data. Similar to verba-
tim memorization, we use ROUGE-L recall scores.
Maintained model utility. An effective unlearning
method must maintain the model’s performance
on the retaining set. We prompt the model with
the question from R and compare the generated
answer to the ground truth. We use ROUGE-L
recall scores for these comparisons. Additionally,
we evaluate the model using the Truth Ratio metric.
We use the Retain10-perturbed split from TOFU,
which consists of five perturbed answers created by
modifying the facts in each original answer from
R. The Truth Ratio metric computes how likely
the model generates a correct answer versus an
incorrect one, where a higher value is better.

5.3 Main Results
The results for Verbatim memorization (Verbmem),
Model utility (Utility), TruthRatio, and Knowledge
memorization (Knowmem) using different unlearn-
ing methods are presented in Table 1, 2 as well as
6 in Appendix. We evaluate these metrics using
TOFU and MUSE-NEWS across LLMs.

In summary, our NGDiff consistently achieves
the superior performance across all models on both
datasets. In stark contrast, the baseline unlearn-
ing methods (1) either effectively forget R by re-
ducing Verbmem and Knowmem but fail maintain
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Table 1: Performance on TOFU dataset (forget10/retain90) with different unlearning methods and models. We
define success as the model being able to reduce Verbatim memorization to below 0.1 or maintain at least 70% of
the Model utility and the TruthRatio compared to the No-unlearn, with successful cases highlighted in bold. NGDiff
achieves success in most cases.

Base Model Metric Method
No-unlearn GDiff-0.9 GDiff-0.5 GDiff-0.1 NPO LossNorm NGDiff

Phi-1.5
Verbmem ↓ 1.000 0.805 0.027 0.000 0.000 0.432 0.024

Utility ↑ 1.000 0.992 0.308 0.000 0.000 0.752 0.747
TruthRatio ↑ 0.385 0.205 0.216 0.221 0.179 0.214 0.353

Falcon-1B
Verbmem ↓ 1.000 0.041 0.001 0.000 0.017 0.055 0.021

Utility ↑ 1.000 0.434 0.305 0.000 0.114 0.521 0.428
TruthRatio ↑ 0.408 0.237 0.244 0.217 0.184 0.252 0.354

GPT2-XL
Verbmem ↓ 1.000 0.029 0.001 0.000 0.031 0.022 0.046

Utility ↑ 0.999 0.381 0.250 0.000 0.136 0.376 0.792
TruthRatio ↑ 0.412 0.186 0.278 0.133 0.179 0.196 0.399

Llama2-7B
Verbmem ↓ 1.000 0.810 0.011 0.000 0.709 0.010 0.002

Utility ↑ 1.000 0.851 0.324 0.000 0.682 0.264 0.724
TruthRatio ↑ 0.490 0.340 0.364 0.161 0.329 0.329 0.334

Mistral-7B
Verbmem ↓ 1.000 1.000 0.945 0.410 0.385 0.259 0.009

Utility ↑ 1.000 0.999 0.944 0.517 0.341 0.925 0.996
TruthRatio ↑ 0.344 0.345 0.366 0.374 0.364 0.358 0.379

Table 2: Results on the MUSE-NEWS dataset. We boldface the entries where unlearning successfully reduces
Verbatim memorization to below 0.1, reduces Knowledge memorization to less than 70% of No-Unlearn, or maintains
at least 70% of the Utility compared to No-Unlearn. With the exception of NGDiff, most unlearning approaches
exhibit a significant trade-off between forgetting and utility.

Base Model Metric Method
No-unlearn GDiff-0.9 GDiff-0.5 GDiff-0.1 NPO LossNorm NGDiff

Llama2-7B
Verbmem ↓ 0.561 0.555 0.043 0.004 0.000 0.388 0.036

Knowmem ↓ 0.755 0.717 0.287 0.000 0.000 0.514 0.455
Utility ↑ 0.646 0.641 0.275 0.000 0.000 0.506 0.556

Mistral-7B
Verbmem ↓ 0.578 0.177 0.000 0.000 0.113 0.196 0.098

Knowmem ↓ 0.416 0.257 0.000 0.000 0.343 0.293 0.165
Utility ↑ 0.411 0.339 0.000 0.000 0.316 0.343 0.354

Table 3: Influence of AutoLR with different unlearning
methods on the Phi-1.5 model. AutoLR improves the
TruthRatio and reduces Verbmem across all methods. W/
or w/o AutoLR, NGDiff outperforms other baselines.

Method TOFU (without → with AutoLR)
Verbmem ↓ Utility ↑ TruthRatio ↑

No-unlearn 1.00 1.00 0.39
GDiff c=0.9 0.81 → 0.20 0.99 → 0.42 0.21 → 0.31
GDiff c=0.5 0.03 → 0.00 0.31 → 0.03 0.22 → 0.30
GDiff c=0.1 0.00 → 0.00 0.00 → 0.00 0.22 → 0.23

NPO 0.00 → 0.00 0.00 → 0.00 0.18 → 0.22
LossNorm 0.43 → 0.23 0.75 → 0.73 0.21 → 0.34

NGDiff 0.02 → 0.01 0.61 → 0.75 0.29 → 0.35

the Utility and TruthRatio, such as GDiff with
c ≤ 0.5, NPO; (2) or cannot unlearn F on Phi-
1.5 and Mistral-7B, such as LossNorm and GDiff
with c = 0.9. We highlight that the effective-
ness of these unlearning methods are highly model-
dependent and dataset-dependent, unlike NGDiff.

For the TOFU dataset, we observe that some
unlearning methods fail to unlearn the forget data
effectively. For example, GDiff-0.9 and LossNorm
do not unlearn effectively when applied to Phi-1.5,
Llama2-7B and Mistral-7B. In fact, GDiff-0.9 has
80% ∼ 100% Verbmem and LossNorm has > 40%
Verbmem on Phi-1.5. However, they are effective
on Falcon-1B and GPT2-XL, even though these
models have similar sizes (≈ 1B parameters) to
Phi-1.5. On the other hand, some methods fail to
preserve the model utility after unlearning. For ex-
ample, GDiff-0.1 has close to 0 Utility on Phi-1.5,
Falcon-1B, GPT2-XL and Llama2-7B; similarly,
NPO also experiences a significant drop in Utility
on Phi-1.5 model, Falcon-1B and GPT2-XL, but
not so on Llama2-7B. In contrast, our NGDiff re-
mains effective in unlearning F and maintaining R
across the models. In addition, NGDiff achieves
the best TruthRatio on all models except Llama2-
7B (which is still on par with the best), indicating
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Figure 4: Comparison of unlearning methods on TOFU. The figures show the ROUGE scores and loss terms during
unlearning process with different methods, which includes GDiff, LossNorm, and NGDiff. We observe that NGDiff
effectively unlearns the forgetting data while maintaining the performance on the retaining data.

Figure 5: Comparison between AutoLR and different learning rates on NGDiff. The figures show the ROUGE
scores and loss values during the unlearning process on TOFU dataset using Phi-1.5 model. We observe that AutoLR
outperforms the static learning rates with better model utility and more stable convergence.

that the model’s answers remain factually accurate
for questions in the retaining data.

For the MUSE-NEWS dataset, NGDiff also out-
performs the baseline methods on Llama2-7B and
Mistral-7B models by achieving a lower Verbmem
and a higher Utility. The Knowmem results indicate
that NGDiff not only unlearns the verbatim copies
of the forgetting texts, but also successfully re-
moves the associated knowledge. While the model
capacities of Phi-1.5 and Falcon-1B are smaller,
limiting their ability to learn knowledge effectively
after fine-tuning on the full dataset, as shown in
Table 6, NGDiff still performs well.

To further illustrate the performance of our pro-
posed method during the training, in addition to
the last iterate results, we plot the ROUGE scores
and loss terms during the unlearning process in Fig-
ure 4. We apply the extended GDiff, LossNorm,
and NGDiff methods, to the Phi-1.5 model using
the TOFU dataset. While GDiff with c = 0.5 and
c = 0.7, and NGDiff are effective in unlearning,
only NGDiff preserve the model utility above 75%
ROUGE score. A closer look at the second and the
fourth plots of Figure 4 shows that NGDiff exhibits
the fastest and most stable convergence on F while
maintaining a low retaining loss ≤ 0.1.

5.4 Ablation Study

Effectiveness of NGDiff. In our experiments, we
utilize the automatic learning rate scheduler (Au-
toLR) for NGDiff method. To investigate the im-
pact of NGDiff alone, we compare all methods with
or without AutoLR in Table 3. With AutoLR or
not (where we use manually tuned learning rates),
NGDiff, GDiff (c = 0.1 or 0.5) and NPO can ef-
fectively unlearn in terms of Verbmem. However,
among these four methods, NGDiff uniquely re-
tains a reasonable Utility between 60 ∼ 75%, while
other methods retains only 0 ∼ 30% Utility. A sim-
ilar pattern is observed in terms of TruthRatio as
well. Overall, NGDiff significantly outperforms
other baseline methods with or without AutoLR.
Impact of automatic learning rate. To evaluate
the impact of AutoLR scheduler, we see in Table 3
all methods exhibit an increase in the TruthRatio
metric and a decrease in Verbmem, though with
some loss in the Utility. For instance, LossNorm
benefits significantly from AutoLR with ≈ 20% de-
crease in Verbmem, and NGDiff increases its retain-
ing Utility and TruthRatio by > 22%. We specifi-
cally demonstrate the impact of AutoLR on NGDiff
in Figure 5. Without AutoLR, the model’s perfor-
mance is highly sensitive to the static learning rates:
when η = 10−5, the model fails to unlearn F as
indicated by the low loss and high ROUGE score;
in contrast, when η = 10−4, there is a significant
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drop in ROUGE score on the retain data, falling
from 100% to around 50%. However, with the
AutoLR scheduler, we observe a steady reduction
in the Verbmem (with the ROUGE forget close to
0 at convergence) while maintaining high utility
(the ROUGE retain is 0.747, which is 19.5% higher
than the best results without AutoLR).

6 Conclusion and Discussion

We formulated the machine unlearning problem as
a two-task optimization problem and proposed a
novel unlearning method NGDiff based on normal-
ized gradient difference and automatic learning rate
adaption. By leveraging insights from multi-task
optimization, NGDiff empirically improves forget-
ting quality while maintaining utility. We hope
this paper helps establish a connection between
LLM unlearning and multi-task optimization, and
inspires further advancements in this field.

Limitations

Like other machine learning approaches in NLP,
while our goal is to remove the influence of specific
documents from LLMs, complete removal cannot
always be guaranteed. Therefore, caution should be
exercised when applying the proposed unlearning
techniques in practical applications as unlearned
LLMs can still potentially generate harmful or un-
desired outputs.

There are several technical alternatives that we
did not explore in this paper due to its scope and
limited resources. For example, other learning-
rate-free methods could potentially be adapted as
alternatives to the GeN approach used in this work.
Additionally, other multi-task optimization meth-
ods could be applied to machine unlearning. How-
ever, scaling these approaches to the level of LLMs
could be challenging, and are left as future work.

Finally, we mainly examined NGDiff’s effective-
ness on LLM unlearning in this paper with two
benchmark datasets, TOFU and MUSE. To show
its generalizability, we provide an additional exam-
ple to apply the algorithm to computer vision tasks
(see Appendix D). However, it would be desirable
to test NGDiff on other modalities beyond NLP
and CV applications.
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Figure 6: Loss values and ROUGE scores on the for-
getting and retaining data from the TOFU dataset using
different unlearning methods on the Phi-1.5 language
model. We apply the extended GDiff with various co-
efficients (see (3), 0 ≤ c ≤ 1) and connect the results
with a blue dashed line. We denote MTO methods as
different markers, and use a grey dashed line to repre-
sent the loss of random guess.

A Preliminary evidence

In our preliminary experiments, we observe two
key issues preventing the standard methods from
being practically applied. First, balancing retaining
and forgetting losses is difficult. In Figure 6, we ob-
serve a trade-off between the performance on R and
F, where some methods fail to unlearn F (points in
the upper-right corner of the left figure), and some
do not maintain utility in R (points in the bottom-
left corner of the left figure). The blue dotted line
in Figure 6 further illustrates the trade-off in GDiff
by sweeping a hyper-parameter c ∈ [0, 1], which
is used to balance the losses on the forgetting and
retaining data (see Eq. (3)). Picking an appropri-
ate c to balance the two terms is often challenging.
Secondly, the optimization methods for unlearn-
ing are usually sensitive to the learning rate. As
illustrated in Figure 7, even for the same algorithm,
various learning rates lead to substantial changes
in the ROUGE scores and loss values, making the
unlearning methods unstable and difficult to use in
practice.

B Comparing NGDiff with GradNorm

Algorithm 2 NGDiff
1: for t = 1, 2, ... do
2: Compute retaining loss LR(θt) by one forward pass
3: Compute retaining gradient gR(θt) = ∇θLR
4: Compute forgetting loss LF(θt) by one forward pass
5: Compute forgetting gradient gF(θt) = ∇θLF
6: Construct unlearning gradient gNGDiff = gR/||gR|| −

gF/||gF||
7: Update θt+1 = θt − ηgNGDiff

We compare the GradNorm algorithm (Chen
et al., 2018b) with our proposed method, NGDiff.
We highlight some steps of GradNorm in red to

Algorithm 3 GradNorm for two-task
1: Initialize the scalaring coefficients wR(θ0) = 1 and

wF(θ0) = 1
2: Pick value for α > 0 and pick the weights θLS (the last

shared layer of θt)
3: for t = 1, 2, ... do
4: Compute retaining loss LR(θt) by one forward pass
5: Compute retaining gradient gR(θLS) = ∇θLSLR
6: Compute forgetting loss LF(θt) by one forward pass
7: Compute forgetting gradient gF(θLS) = ∇θLSLF
8: Compute loss L(θt) = wR(θt)LR(θt) +

wF(θt)LF(θt)
9: Compute ḡ(θLS) by averaging gR and gF

10: Compute GradNorm loss

LGN (θt) = |gR − ḡ× [rR(t)]
α|1 + |gF − ḡ× [rF(t)]

α|1

11: Compute GradNorm gradients ∇wRLGN and
∇wFLGN ∈ R

12: Compute the full gradient ∇θtL
13: Update wR(θt) → wR(θt+1) and wF(θt) →

wF(θt+1) using ∇wRLGN and ∇wFLGN

14: Update θt+1 = θt − η∇θtL
15: Renormalize wR(θt+1) and wF(θt+1) so that

wR(θt+1) + wF(θt+1) = 2

indicate the differences than NGDiff:

• NGDiff sets the scalaring coefficient as
1/||gR|| and 1/||gF||, while GradNorm uses
gradient descent to learn these coefficients as
wR and wF.

• NGDiff is model-agnostic while GradNorm
contains specific designs for multi-task archi-
tecture. In unlearning, there are 2 data splits
(i.e., F and R) and each data split defines one
task. Hence all model parameters are shared.
However, in the original form of GradNorm,
there is 1 data split on which multiple tasks
are defined (can be more than 2). Hence the
model parameters are partitioned into [shared
layers, task 1 specific layers, task 2 specific
layers].

• NGDiff computes the full per-task gradients
whereas GradNorm only computes the last
shared layer’s gradients.

• NGDiff requires 2 back-propagation at each
iteration but GradNorm requires 3 (2 for per-
task gradients, 1 for ∇θL), which may trans-
late to more training time for large models.

• GradNorm introduces additional hyperparam-
eters that can be difficult and costly to tune,
and may cause instability of training if not
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Figure 7: ROUGE scores and loss values during unlearning with vanilla GDiff (equally weighted), under different
learning rates to which the unlearning performance is highly sensitive.

properly tuned. These hyperparameters in-
clude α and two learning rates to update wR
and wF in Line 13 of Appendix B. In con-
trast, NGDiff is hyperparameter-free when
equipped with GeN (AutoLR).

• NGDiff are theoretically supported by The-
orem 5, while the choice of hyperparame-
ters and the use of a heuristic ri(t) by Grad-
Norm may require further justification. Here
ri(t) = L̃i(θt)/Etask[L̃i(θt)] is the "rela-
tive inverse training rate" of task i, where
L̃i(θt) = Li(θt)/Li(θ0), i ∈ {F,R}.

In summary, NGDiff is remarkably simpler and
more well-suited than GradNorm for unlearning,
with stable performance and theoretical ground.

C Details related to GeN

C.1 Brief introduction of GeN
GeN (Bu and Xu, 2024) is a method that sets the
learning rate for any given gradient d as

ηGeN =
G⊤d
d⊤Hd

where G is the gradient and H is the Hessian ma-
trix of some loss L. One only needs to access
the scalars G⊤d and d⊤Hd, without computing
the high-dimensional G and H (or Hessian-vector
product). To do so, two additional forward passes
are needed: given a constant (say ξ = 0.001), we
compute L(θ+ ξd) and L(θ− ξd). Then by curve
fitting or finite difference as demonstrated below,
we can estimate up to arbitrary precision controlled
by ξ:

G⊤d ≈ L(θ + ξd)− L(θ − ξd)

2ξ

and

d⊤Hd ≈ L(θ + ξd)− 2L(θ) + L(θ − ξd)

ξ2

Notice that the regular optimization requires 1
forward pass and 1 back-propagation; GeN requires
in total 3 forward passes and 1 back-propagation.
Given that back-propagation costs roughly twice
the computation time than forward pass, the to-
tal time increases from 3 units of time to 5 units.
Nevertheless, GeN needs not to be applied at each
iteration: if we update the learning rate every 10
iterations as in Remark 4.2, the total time reduces
to 3 + 2/10 = 3.2 units, and the overhead is less
than 10% compared to the regular optimization.

C.2 Adapting GeN to unlearning
Naively applying GeN to the unlearning will result
in

ηGeN =
G⊤gUN

g⊤
UNHgUN

which minimizes the loss over all datapoints, in
both F and R. This is against our goal to max-
imize the forgetting loss. We must consider the
learning rate separately for F and R, as shown in
Appendix G (Proof of Theorem 5). When both
losses have a convex curvature in Figure 3, the op-
timal learning rate is only well-defined for LR and
we do not claim to maximize LF. In other words,
if we minimize LR, we get to worsen LF (though
not maximally); if we choose to maximize LF, we
will use infinite learning rate that also maximizes
LR. Therefore, our learning rate in (7) only uses R
instead of the whole dataset.

D Computer Vision Experiments

To demonstrate the effectiveness of unlearning
across other modalities, we also evaluate our
method on the image classification task. Specif-
ically, we choose the CIFAR-10 and CIFAR-100
dataset (Krizhevsky et al., 2009) and train a ResNet-
50 (He et al., 2015) model from scratch. For the
CIFAR-10 dataset, we sample 500 images from the
class dog as the forgetting data, and use images
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Table 4: Results of Forget Acc and Retain Acc using different unlearning methods on the CIFAR-10 dataset.
Compared to other baseline methods, NGDiff has the best performance on the model utility.

Method CIFAR-10 CIFAR-100
Forget Acc ↓ Retain Acc ↑ Forget Acc ↓ Retain Acc ↑

No-unlearn 0.926 0.956 0.745 0.750
GDiff c=0.9 0.000 0.817 0.000 0.664
GDiff c=0.5 0.000 0.830 0.000 0.609
GDiff c=0.1 0.000 0.825 0.000 0.667
LossNorm 0.000 0.753 0.000 0.432

NGDiff 0.000 0.931 0.000 0.701

from the remaining 9 classes as the retaining data.
For the CIFAR-100 dataset, we sample 500 images
from the class bed as the forgetting data, and use
images from the remaining 99 classes as the re-
taining data. After training, the initial forget data
accuracy is 0.926, and the retain data accuracy is
0.956 on the CIFAR-10 dataset. The initial forget
data accuracy is 0.745, and the retain data accu-
racy is 0.750 on the CIFAR-100 dataset. Then we
apply different unlearning methods to the trained
models. As shown in Table 4, all methods success-
fully reduce the forget accuracy to 0. However,
the retaining accuracy of NGDiff remains the high-
est, which shows its effectiveness in preserving the
model utility in image classification tasks.

E Other Related Works

Machine unlearning Machine unlearning is of-
tentimes viewed as a continual learning approach,
that removes specific data points after a model has
been trained to memorize them. Such removal
is light-weighted in contrast to re-training, espe-
cially when the forgetting set is much smaller
than the retaining. In addition to the methods al-
ready introduced in Section 3.2 (namely GA, GDiff
and NPO), other methods include SISA (Bour-
toule et al., 2021), influence functions (Ullah et al.,
2021), differential privacy (Gupta et al., 2021) and
so on. However, these methods could be difficult
to scale on large models and large datasets due to
the algorithmic complexity. To our best knowledge,
this is the first work that formulate the unlearn-
ing problem as a two-task problem, which can be
solved by a number of well-known MTO methods.

Multi-task optimization MTO is a paradigm
where one model is trained to perform multiple
tasks simultaneously, so as to significantly improve
the efficiency in contrast to training multiple mod-
els, one for each task. The key challenge of MTO is
the performance trade-off among tasks, where the

multi-task model is worse than single-task model if
trained on each task separately. Therefore, the core
idea is to balance different tasks by modifying the
per-task gradients, e.g. with normalization (Loss-
Norm and NGDiff), PCGrad (Yu et al., 2020), RLW
(Lin et al., 2021), IMTL (Liu et al., 2021), MGDA
(Désidéri, 2012), CAGrad (Liu et al., 2024a), Grad-
Vaccine (Wang et al., 2020), GradDrop (Chen et al.,
2020), RotoGrad (Javaloy and Valera, 2022), etc.

Learning-rate-free methods Parameter-free or
learning-rate-free methods automatically set the
learning rate scheduler without the hyperparam-
eter tuning, which is computationally infeasible
for LLMs, e.g. LLAMA2 pre-training uses 3 hy-
perparameters just for the learning rate: warmup
steps, peak learning rate, and minimum learning
rate. At high level, there are two approaches to
learning-rate-free methods.

On one hand, GeN (Bu and Xu, 2024) leverages
the Taylor expansion and convex-like landscape of
deep learning, which is applicable for the general
purpose, even if the gradient is modified like in the
unlearning.

On the other hand, methods like D-adaptation
(Defazio and Mishchenko, 2023), Prodigy
(Mishchenko and Defazio, 2024), DoG (Ivgi
et al., 2023), DoWG (Khaled et al., 2024) are
based on the convex and G-Lipschitz conditions:
L(θ̄T ) − L(θ∗) ≤ |θ0−θ∗|2

2ηT + ηG2

2 where θ∗ is the
unknown minimizer of L and θ̄T is an averaging
scheme of {θ0, ..., θT }. With the same theoretical
foundation, these methods propose different
ways to approximate the initial-to-final distance
|θ0 − θ∗|. There are two main issues to apply
these methods on the unlearning. Firstly, the
assumption of G-Lipschitz is hard to verify and the
minimizer θ∗ is not well-defined in multi-objective
(see our discussion on Pareto optimality under
Lemma 2). Secondly, the optimal learning rate
|θ0−θ∗|
G
√
T

is defined in a manner to minimize the
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loss, whereas MTO methods operate on the
gradient level. Hence MTO is incompatible to
such parameter-free methods given that we cannot
derive a corresponding loss (e.g. there exists no
LNGDiff such that ∂LNGDiff

∂θ = gNGDiff).

F Experiments

F.1 Datasets
To evaluate the empirical performance of our pro-
posed method, we experiment on the following
datasets in Table 5.

• Task of Fictitious Unlearning (TOFU) (Maini
et al., 2024). This dataset consists of question-
answer pairs based on fictitious author bi-
ographies generated by GPT-4 (Achiam et al.,
2023). Initially, predefined attributes, such
as birthplace, gender, and writing genre, are
assigned to 200 distinct authors. GPT-4 is
then prompted to generate detailed informa-
tion about each author. Following the syn-
thesized data, 20 question-answer pairs are
created for each fictitious author. The dataset
is then divided into distinct datasets: the re-
taining set and the forgetting set. In our exper-
iments, we use the forget10 and retain90 split,
which excludes 10% of the original dataset.

• MUSE-NEWS (Shi et al., 2024). This dataset
consists of BBC news articles (Li et al.,
2023b) from August 2023. It includes
seven subsets of news data: raw, verbmem,
knowmem, privleak, scal, sust, and train. We
utilize the train split to finetune a target model,
and then the raw set, which includes both the
forget and retain data, for the target model un-
learning. Then, we use verbmem, knowmem
split to evaluate the unlearned model’s perfor-
mance.

F.2 Evaluation Metrics
Following the existing work (Shi et al., 2024), we
evaluate the unlearning performance based on the
quality of outputs from the model after unlearning.
We expect a good performance should satisfy the
following requirements:

No verbatim memorization We evaluate this
metric by prompting the model with the first l to-
kens of the news data in the forget set and compare
the model’s continuation outputs with the ground
truth continuation. Specifically, for each input
x ∈ F , we choose x[:l] as input, and compare the

output f(x[:l]) with the ground truth continuation
x[l+1:] with the ROUGE-L recall score:

Verbmem(f, F )

=
1

∥F∥Σx ROUGE-L(f(x[:l]), x[l+1:])
(9)

No knowledge memorization To evaluate this
metric, we use the generated question-answer pair
based on each example x ∈ F . We prompt the
model with the question part q and compare the
output answer f(q) to the ground truth answer a
using ROUGE-L recall scores:

Knowmem(f, F ) =
1

∥F∥Σx ROUGE-L(f(q), a)

(10)
Maintained model utility An effective unlearn-

ing method should also maintain the model’s per-
formance on the retain data. For the MUSE-NEWS
dataset, we use the Knowmemr split, which consists
of the generated question-answer pairs based on
the retain data. For the TOFU dataset, we prompt
the model with the question from the retain set
and compare the generated answer with the ground
truth. We use ROUGE-L recall scores for evalua-
tion:

Utility(f,R) =
1

∥R∥Σx ROUGE-L(f(q), a)

(11)
Additionally, we evaluate the model using the

Retain10-perturbed split from the TOFU dataset.
It consists of five perturbed answers for each origi-
nal answer, keeping original template but modify-
ing the facts. We compute the Truth Ratio metric,
which compares the likelihood of the model gen-
erating a correct answer versus an incorrect one
for each question in the retain set. A higher Truth
Ratio indicates better model utility that effectively
remembers knowledge from the retain data.

F.3 Hyper-parameter Settings

To finetune a targeted model with the full dataset,
we use the optimizer Adam with a learning rate
of η = {10−5, 2 ∗ 10−5}, a training batch size
of {16, 32}, and train 25 epochs for all language
models. For the unlearning process, we use the op-
timizer Adam with a learning rate η = {10−5, 5 ∗
10−5, 10−4}, and train 15 epochs for all unlearning
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Table 5: Statistics of the TOFU and MUSE-NEWS datasets. For the TOFU dataset, we use Full split for training
the target model, Forget10 and Retain90 as the forgetting and retaining split for unlearning experiments. For the
MUSE-NEWS dataset, we utilize Train split for training, Raw split for unlearning. For evaluation, we use VerbmemF

and KnowmemF splits from forgetting data, and KnowmemR split from the retaining data.

Dataset TOFU MUSE-NEWS
Full Forget10 Retain90 Train Raw VerbmemF KnowmemF KnowmemR

# samples 4, 000 400 3, 600 7, 110 2, 669 100 100 100

Figure 8: Gradient norms and learning rates during the
unlearning on TOFU dataset using NGDiff and Phi-1.5
model. The AutoLR scheduler assigns a smaller learn-
ing rate to the forgetting gradient, effectively preserving
model utility on the retaining set.

methods. For the Phi-1.5, Falcon-1B, and GPT2-
XL models, we perform full-model parameter tun-
ing. For the Llama2-7B and Mistral-7B models, we
apply the LoRA training method (Hu et al., 2021)
with rank = 8.

F.4 Other unlearning results

More results on MUSE-NEWS dataset with Phi-1.5
model and Falcon-1B model are in Table 6.

F.5 Visualization of learning rate scheduling

We monitor the gradient norms and the learning
rate in Figure 8 for Algorithm 1. We observe that
the automatic learning rate is indeed effective, pick-
ing up from 5e − 5 to around 2e − 4, and that
NGDiff assigns a smaller learning rate to the for-
getting gradient, not perturbing the model too much
to maintain the high utility on the retaining set.

G Proofs

In this section, we provide the proofs of all the
lemma and theorems in this paper.

Lemma 2 (restated from (Xin et al., 2022)).
For any 0 < c < 1, the model θ∗

LSP(c) =
argminθLSP(θ; c) is Pareto optimal.

Proof of Lemma 2. We show that the solution of
LSP cannot be a dominated point, and therefore it
must be Pareto optimal. Consider a solution θ∗ =
argminθLSP(θ; c), and suppose it is dominated by

some θ′, i.e. LF(θ
∗) ≤ LF(θ

′), LR(θ
∗) ≥ LR(θ

′)
with at least one inequality being strict. This con-
tradicts that θ∗ is minimal as cLR(θ

∗) − (1 −
c)LF(θ

∗) > cLR(θ
′)− (1− c)LF(θ

′).

Theorem 3. For any {ct} with 0 ≤ ct ≤ 1 that
converges as t → ∞, the model θ∗({ct}) =
limt→∞ θt in (4) is Pareto optimal.

Proof of Theorem 3. Let c = limt ct, then Eq. (4)
gives that gUN(θt) = ctgR(θt)−(1−ct)gF(θt) →
cgR(θ

∗) − (1 − c)gF(θ
∗) = 0 as t → ∞.

Note θ∗({ct}) is equivalent to the LSP solution
θ∗

LSP(c) = argminθLSP(θ; c) as the latter has the
same stationary condition, which is Pareto optimal
by Lemma 2.

Lemma 4. gNGDiff(gR, gF) satisfies Eq. (6) for any
gR ∈ Rd and gF ∈ Rd.

Proof of Lemma 4. We firstly show g⊤
R gUN ≥ 0

for gUN = gNGDiff. We write

g⊤
R gNGDiff = g⊤

R

(
gR

∥gR∥
− gF

∥gF∥

)

= ∥gR∥ −
g⊤

R gF

∥gF∥
≥ ∥gR∥ −

∥gR∥∥gF∥
∥gF∥

= 0

where the inequality is the Cauchy-Schwarz in-
equality. Similarly, g⊤

F gUN ≤ 0 easily follows.

Theorem 5. Consider θt+1 = θt − ηgNGDiff.
(1) Unless gR is exactly parallel to gF, for any

sufficiently small learning rate η, there exist two
constants ϵR,1 = o(η), ϵF,1 = o(η) such that

LR(θt+1)− LR(θt) < ϵR,1;

LF(θt+1)− LF(θt) > ϵF,1.

(2) If additionally g⊤
NGDiffHRgNGDiff > 0 and

g⊤
NGDiffHFgNGDiff > 0, then for any learning rate

0 < η <
2g⊤

R gNGDiff

g⊤
NGDiffHRgNGDiff

, there exist two constants

ϵR,2 = o(η2), ϵF,2 = o(η2) such that

LR(θt+1)− LR(θt) < ϵR,2;
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Table 6: Results of Verbatim memorization, Model utility, and TruthRatio on MUSE-NEWS dataset with different
unlearning methods on Phi-1.5, and Falcon-1B models. Lower Verbmem along with higher Utility and TruthRatio
indicate a more superior unlearning strategy.

Base Model Metric Method
No-unlearn GDiff-0.9 GDiff-0.5 GDiff-0.1 NPO LossNorm NGDiff

Phi-1.5
Verbmem ↓ 0.018 0.000 0.012 0.000 0.000 0.012 0.004

Utility ↑ 0.372 0.277 0.061 0.000 0.000 0.061 0.001
Knowmem ↓ 0.030 0.000 0.002 0.000 0.000 0.002 0.023

Falcon-1B
Verbmem ↓ 0.204 0.132 0.000 0.000 0.000 0.126 0.000

Utility ↑ 0.386 0.214 0.000 0.000 0.000 0.142 0.025
Knowmem ↓ 0.232 0.078 0.000 0.000 0.000 0.130 0.087

LF(θt+1)− LF(θt) > ϵF,2.

Proof of Theorem 5. Applying (5) with gNGDiff
gives

LR(θt+1)− LR(θt)

= −ηg⊤
R gNGDiff +

η2

2
g⊤

NGDiffHRgNGDiff + o(η2)

(12)

For part (1), note that Lemma 4 gives
g⊤

R gNGDiff > 0 unless gF ∥ gR. Hence for any
η > 0, we have

LR(θt+1)−LR(θt) = −ηg⊤
R gNGDiff+o(η) < o(η)

and similarly for LF.
For part (2), now that g⊤

NGDiffHRgNGDiff > 0, we
have

− ηg⊤
R gNGDiff +

η2

2
g⊤

NGDiffHRgNGDiff < 0

⇐⇒ 0 < η <
2g⊤

R gNGDiff

g⊤
NGDiffHRgNGDiff

and similarly

−ηg⊤
F gNGDiff+

η2

2
g⊤

NGDiffHFgNGDiff > 0 ⇐= 0 < η

We complete the proof by substituting the inequali-
ties into (12).

Remark G.1. There is a computational overhead
to use GeN, as it requires additional forward passes
to estimate η∗t . Nevertheless, we only update the
learning rate every 10 iterations so that the over-
head is amortized and thus negligible.

Proof of Remark G.1. We extend our original com-
plexity analysis in Remark 4.2 and provide quanti-
tative analysis of computation overheads in FLOPs

(floating point operations). Specifically, assume it
takes around N FLOPS to perform one forward
pass on one example and 2N FLOPS to back-
propagate. The basic GDiff requires roughly 6BTN
FLOPS to run with batch size B and total num-
ber of iterations T, because it needs 1 forward
and 1 backward for the retain set and another for
the forget set. Our learning-rate-free NGDiff re-
quires about (6BTN+4BTN/10), hence a 6.6% in-
crease to unlearn the data. We assure that the extra
forward passes do not add memory burden, be-
cause they are in gradient-free mode (e.g. under
torch.no_grad() mode). All in all, NGDiff is
almost as efficient as GDiff and other unlearning
methods, as the target unlearning corpus is usu-
ally relatively small. This has been empirically
observed by our large-scale (up to 7B) model un-
learning experiments.
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