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Abstract

Formulaic criteria for proportional analogies,
which capture relational mappings between two
ratios of terms, are mainly confined to the for-
mal level. As analogy datasets grow more com-
plex, especially in evaluating the cognitive abili-
ties of Large Language Models (LLMs), assess-
ing parallelism in them becomes increasingly
challenging and often requires human annota-
tion. In this work, we propose AnaScore, an
automatic metric for evaluating the strength
of semantic parallelism in sentence analogies.
AnaScore systematically provides formalized
explanations for shared relational patterns at
the level of conceptual knowledge. We apply
AnaScore to annotate several existing datasets,
considering different directions of the relations,
and uncover artifacts in data construction. Our
experiments with various LLMs demonstrate
the efficacy of the AnaScore metric in capturing
the inherent quality of analogical relationships,
showing a positive correlation between analogy
quality and model performance. Thanks to this
metric, we clearly demonstrate that formally ex-
plainable examples are more beneficial for ana-
logical reasoning, while ambiguous analogies
with no clear criterion tend to hinder inference.

1 Introduction

Analogy, which relies on the parallelism of rela-
tional structures, is a ubiquitous cognitive opera-
tion that basically adapts learnt knowledge to new
tasks (Gentner, 1983; Gick and Holyoak, 1983;
Hofstadter, 2001). How analogy facilitates infer-
ence in problem-solving has been formalized into
various learning paradigms for a multitude of dif-
ferent tasks (Prade and Richard, 2021). Recent re-
search has explored the emergent capacity of Large
Language Models (LLMs) to perform analogical
reasoning (Ushio et al., 2021; Webb et al., 2023;
Yasunaga et al., 2024). Research in deepening our
understanding of the underlying processes involved
in analogy is justified by results showing that mod-

Figure 1: Mappings of relational structures between the
four terms depicted through their conceptual knowledge
under the RelatedTo edge in ConceptNet. AnaScore is
designed to compute the strength of parallelism between
conceptual descriptions for each term in analogies.

els enhanced with analogical abilities through fur-
ther training demonstrate improved performance
on other tasks (Petersen and van der Plas, 2023;
Wang et al., 2024).

In LLM benchmarking, analogy datasets have
been developed with increasing levels of complex-
ity. From well-defined word analogies (Gladkova
et al., 2016), they have expanded to sentence-level
analogies (Zhu and de Melo, 2020; Wijesiriwar-
dene et al., 2023) with richer relational patterns,
and further to mining intricate structural mappings
in long contexts (Sultan and Shahaf, 2022; Ye et al.,
2024; Bhavya et al., 2024). As these relational
structures become more sophisticated, defining ana-
logical parallelism becomes increasingly challeng-
ing, often requiring human annotation (Lepage,
2019; Sultan et al., 2024). Performance on such
complex analogies is considered a hallmark of how
well LLMs align with human cognition (Ichien
et al., 2020; Czinczoll et al., 2022; Yuan et al.,
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2023).
However, whether complex analogies always

benefit in model learning is left to be discussed.
Research in cognitive psychology (Gentner and
Smith, 2012; Holyoak, 2012) suggests that people
are particularly sensitive to transparent mappings,
profiting most from those with a high degree of
structural consistency. Such structural mappings
allow for accurate inference from known situations
to new ones. If analogies are abstract without any
clear criterion for explaining the mappings they
encode, will they be useful to imbue the models
with reasoning abilities? To ensure effective model
learning, it is indispensable to verify the solidity
of analogies in existing datasets. In this paper, we
focus on studying proportional analogies between
sentences in the format A : B :: C : D.

Parallelism in proportional analogies refers to
the structural mapping between two paired relation-
ships, such that the transformation from A to B
align with the transformation from C to D. In
formal analogies, this parallelism is defined by
equivalent transformations that can be captured
through common edit operations applied to both
ratios (Lepage, 1998; Murena et al., 2020). Seman-
tic parallelism involves parallel transformations in
underlying meaning, which can be described using
external knowledge sources like ConceptNet (Speer
et al., 2017), as illustrated in Figure 1.

To evaluate semantic parallelism, previous meth-
ods such as vector arithmetic (Rumelhart and
Abrahamson, 1973; Mikolov et al., 2013) rely on
the theory of geometric parallelogram in multi-
dimensional Euclidean spaces. However, it has
been corroborated that vector offset approaches are
ineffective at identifying analogical relationships in
embedding spaces. These measurements are often
limited to simple relational patterns and cannot be
generalized to richer analogical structures (Linzen,
2016; Bouraoui et al., 2018). There remains a need
for a robust and explanatory metric to evaluate se-
mantic analogies between sentences.

In this paper, we propose AnaScore, an auto-
matic metric for evaluating the quantity of concep-
tual mappings in sentence analogies. We use Con-
ceptNet to reify relational structures between sen-
tences, depicting the underlying transformations
in ratios. AnaScore exhaustively identifies parallel
transformations between concepts, quantifying the
degree of semantic parallelism of analogies, with
formalized explanations of their shared relational
patterns. We apply AnaScore to annotate existing

analogy datasets and analyze the artifacts emerging
from data construction based on annotation statis-
tics. In addition, our LLM experiments show a
positive correlation between model performance
and analogy quality. Ambiguous analogies devoid
of clear relational criteria are prone to impede anal-
ogy inference in few-shot learning.

2 Preliminaries

2.1 Conceptual representation
Let Gw = (Vw, Ew) denote the conceptual
graph of a word w in ConceptNet, where Vw =
{w, v1.v2, · · · , vk} represents the set of concept
nodes linked to w, and Ew = {(r, v)|r ∈ Rw, v ∈
Vw} is the set of relational edges connecting w to
its corresponding concepts. Each edge (r, v) in-
dicates a directed connection, either from w to v
(w r−→ v) or from v to w (v r−→ w), depending on
whether w functions as the source or the target in
the relationship r. We append the directional label
d as a prefix to the connected concept node, de-
noted as d.v. Thus, for a given relation r, the set of
annotated nodes connected to w is Vw,r = {v′|v′ =
d.v, d ∈ {start, end}, v ∈ Vw, (r, v) ∈ Ew}. The
conceptual representation of w can then be formu-
lated as G(w) = {(r, Vw,r) | r ∈ Rw}, where Rw

is the set of all relations linked with w.
To extend this structured representation to

a sequence of words (e.g., a sentence) S =
{w1, w2, . . . , wn}, we aggregate the representa-
tions of its constituent words from ConceptNet.
Concept nodes connected by the same relation r are
grouped into an aggregated set VS,r =

⋃n
i=1 Vwi,r.

The conceptual representation of a sentence S can
then be expressed as:

G(S) = {(r, VS,r) | r ∈ RS} (1)

where RS =
⋃n

i=1Rwi is the union of all relation-
ships associated with the words in S.

2.2 Relational encoding
To encode semantic relationships between two
terms in the ratio x : y, we employ two compo-
nents that capture the overlapping and distinctive
concepts based on their representations.

Conceptual overlap The shared knowledge be-
tween two terms x and y is identified through com-
mon descriptions associated with the same rela-
tions, as defined in Equation (2).

Λ(x, y) = G(x)∩G(y) = {(r, Vx∩y,r) | r ∈ Rx∩y}
(2)
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In Equation (2), Vx∩y,r = Vx,r ∩ Vy,r denotes the
intersection of concept nodes linked to x and y
through relation r, while Rx∩y = Rx ∩ Ry is the
set of shared relations associated with both terms.

Conceptual difference This encodes the concep-
tual edits applied to transform x into y, represented
by computing substitutions of associated concepts
between x and y as follows:

∆−
r (x, y) = Vx,r \ Vy,r (3)

∆+
r (x, y) = Vy,r \ Vx,r (4)

Here, ∆−
r (x, y) represents the concepts present

in x but absent in y (indicating deletions), while
∆+

r (x, y) represents the concepts in y but not in x
(indicating insertions), both to the relation r. The
∆r(x, y) pair (⟨∆−

r (x, y),∆
+
r (x, y)⟩) encodes the

structural transformation required to convert x into
y under r. Consequently, the overall relational dif-
ference of a ratio can be formalized as shown in
Equation (5)1.

∆(x, y) = G(x) \ G(y)
=

{(
r, ⟨∆−

r (x, y),∆
+
r (x, y)⟩

)
| r ∈ Rx∩y

} (5)

3 AnaScore Metric

3.1 Non-overlapping content
The reasoning to analogies essentially involves the
inference of similarities and dissimilarities, which
correspond to the formation of trivial and non-
trivial patterns in quadruples. In trivial patterns
such as A : A :: B : B, the parallel holds in con-
sistent overlap between terms. Non-trivial patterns
reveal high-level associations that explain the un-
derlying parallel structure.

The AnaScore metric targets to evaluate the com-
monalities between the differences in ratios, par-
ticularly measuring the quality of non-trivial par-
allelism between transformations in the associated
concepts. To achieve this, we first eliminate the
shared content within each ratio, isolating the non-
overlapping components of each term.

For each term, the overlapping content can be
identified from its representation of shared con-
cepts, as formalized in Equation (6).

xΛ =
⋃

r∈Rx∩y

G−1(Λr(x, y)) (6)

1If ∆−
r (x, y)∪∆+

r (x, y) = ∅, it indicates that the terms in
the ratio are identical under r, sharing the exact same concepts.
Such relations are excluded from ∆(x, y).

Here, (x, y) ∈ {(A,B), (C,D)}, and the func-
tion G−1(Λr(x, y)) decodes the shared nodes
(Λr(x, y)) connected through relation r into their
corresponding words in the sequence (x) for ratio
x : y. By removing these shared components from
each term, resulting in x̃ = {x} \ xΛ, AnaScore
then focuses on computing the relational similarity
between the non-overlapping content.

3.2 Parallel transformation

Let Rx̃ denote the set of relations describing the
semantic meaning of non-overlapping content x̃
in a term x ∈ (A,B,C,D). The transformations
between terms in the ratios A : B and C : D are
represented by ∆(Ã, B̃) and ∆(C̃, D̃), which are
the sets of conceptual modifications consisting of
deletion and insertion pairs under various relation
paths, as defined in Equation (5). For a common
relation r ∈ R = RÃ∩B̃ ∩ RC̃∩D̃, the similarity
between the ratios can be evaluated by computing
exact matches for both deletions and insertions as
follows:

delr = ∆−
r (Ã, B̃) ∩∆−

r (C̃, D̃) ,
insr = ∆+

r (Ã, B̃) ∩∆+
r (C̃, D̃).

∆−
r (Ã, B̃) and ∆−

r (C̃, D̃) represent the sets of
deletions for relation r in the ratios A : B and
C : D, respectively. ∆+

r (Ã, B̃) and ∆+
r (C̃, D̃) are

the corresponding insertion sets. If either delr or
insr is non-empty, it implies that the two ratios
share a common conceptual transformation (sub-
stitution, deletion-only, or insertion-only) under
relation r.

However, not all matched transformations are
meaningful in having analogical correspondences.
A proportion may fail to establish parallelism along
a relational path if the shared transformations do
not preserve structural consistency across all rele-
vant elements. Consider the following example2:
I do not
want any
problems.

:
I do not want
a boyfriend. ̸= I do not need

any rest. :
I do not need
a girlfriend.

For the RelatedTo relation, both ratios share a
surface-level transformation, involving the dele-
tion of the concept end.any and the insertion of
end.a. However, this match is limited to par-
tial elements. There is no alignment between
problems : boyfriend and rest : girlfriend in their
descriptions under the RelatedTo relation. De-
spite the appearance of a similar transformation, the

2This sentence analogy is taken from (Lepage, 2019). The
overlapping content in each sentence is grayed out.
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underlying conceptual shifts do not align entirely,
thereby failing to establish a parallel structure.

To verify whether shared transformations pre-
serve structural parallelism, we convert the con-
cepts into their respective words and evaluate
whether the common edits in ⟨delr, insr⟩ cover all
relevant elements in each of the four terms. Specif-
ically, we introduce a binary function ϕ that deter-
mines whether all the content words involved in
the modifications (e.g., ∆−

r (Ã, B̃)) appear in the
shared transformations (e.g., delr) for each respec-
tive term (e.g., Ã):

ϕ(delr,∆
−
r (Ã, B̃)) =

{
1, if G−1(delr) = G−1(∆−

r (Ã, B̃))

0, otherwise

(7)

We compute ϕ for all four terms and aggregate the
values to obtain:

Φr =ϕ(delr,∆
−
r (Ã, B̃)) + ϕ(insr,∆

+
r (Ã, B̃))+

ϕ(delr,∆
−
r (C̃, D̃)) + ϕ(insr,∆

+
r (C̃, D̃))

(8)
The parallelism score for r is then defined as:

Pr =

⌊
Φr

4

⌋
(9)

If Pr is 1, the shared structures cover all associated
words in each term, preserving parallel transforma-
tions. Otherwise, the transformations are partially
aligned or inconsistent.

3.3 Final scoring
The number of parallel structures can quantify the
relational similarity between the two ratios. The
more relational paths that draw parallels, the greater
the commonalities between the two ratios with
consistent transformations. Given ∆(Ã, B̃) and
∆(C̃, D̃), involving conceptual transformations un-
der all shared relations R, we define the similarity
score between the two transformations as follows:

P =

∑
r∈R Pr

max(|∆(Ã, B̃)|, |∆(C̃, D̃)|)
(10)

where |∆(Ã, B̃)| is the number of relations associ-
ated with the ratio. P ∈ [0, 1] measures the extent
to which the relational structures in the two ratios
capture parallel associations.

In addition, AnaScore evaluates the extent to
which the non-overlapping content in each term is
aligned with the identified parallel transformations.

To this end, the set x∆ is used to represent words
that participate in consistent modifications across
both ratios, defined as Equation (11).

x∆ =
⋃

r∈R
1{Pr=1}G−1(opr, x̃)

with opr =

{
delr, for x ∈ {A,C}
insr, for x ∈ {B,D}

(11)

Here, 1{Pr=1} is an indicator that denotes trans-
formations confirmed to be parallel in both ratios
under r. The final metric, denoted as A(A : B,C :
D), integrates structural similarity with the average
coverage of aligned words involved in parallel asso-
ciations for each term, as defined in Equation (12).

A(A : B,C : D) =
P

4

∑

x∈{A,B,C,D}

|x∆|
|x̃| (12)

In Equation (12), |x̃| is the number of non-
overlapping content words in x, and |x∆| computes
the number of the words involved in analogical re-
lationships. A high AnaScore A(A : B,C : D)
indicates strong alignment, validating the propor-
tion as a solid analogy. Conversely, a low score
suggests inconsistencies or misalignment in the re-
lational patterns, indicating weaker analogical cor-
respondence. The metric is symmetric, ensuring
that the score remains consistent when the ratios
are reversed, such that A(A : B,C : D) = A(C :
D,A : B), following the fundamental principle of
analogy (symmetry of conformity).

4 Data Curation

4.1 Datasets
We curate four datasets of proportional analogies
between sentences, including:

Semantico-formal analogies between short sen-
tences (Semantico) This dataset3 (Lepage, 2019)
offers over 5,000 analogies that combine seman-
tic and formal relationships between short Tatoeba
sentences. Analogies are decomposed into propor-
tions between word pieces, holding at a formal
level (same string edits) or a semantic level (same
vector offsets in FastText).

Mixing Google analogies with template sen-
tences (MixGoogle) This dataset4 (Afantenos

3http://lepage-lab.ips.waseda.ac.jp/Projects >
kakenhi-18K11447 > “Experimental Results”

4https://github.com/arxaqapi/
analogy-classifier/tree/main/generated_sentences
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et al., 2021) consists of over 50,000 sentence analo-
gies, generated by combining word analogies with
manually created sentence templates. Each word
analogy is extended into multiple analogies be-
tween synthetic sentences using different templates,
designed for specific relational categories in the
Google analogy set5.

Multi-level analogies between NLI sentence
pairs (MulNLIs) This set (Wang and Lepage,
2023) contains over 170,000 analogies, enriched
with relational patterns derived from entailment
sentence pairs. The analogies are extracted under
relational constraints, capturing approximate paral-
lelograms in both syntactic structure and semantic
representations, with varying degrees of formality.

Sentence analogy test set (SATS) This
set6 (Blain-Montesano and Langlais, 2024)
collects 32 analogical clusters, each containing 50
sentence pairs sharing the same relational pattern.
Some clusters include relatively straightforward
sentence analogies, with manually crafted pairs
capturing lexical or syntactic equivalence through
subtle variations, while others represent more ab-
stract patterns, using the first Wikipedia sentences
describing the words from BATS analogies.

We preprocess these datasets to standardize the
sentences and deduplicate equivalent forms of each
analogy, as detailed in Appendix A.1.

4.2 Annotation

The objective is to classify sentence analogies
based on the nature of their underlying analogical
relationships into three categories: formal, seman-
tic, and no criterion.

Formal analogies They adhere to strict confor-
mity, where the transformations in both the left
and right ratios are identical in their forms. These
analogies can be identified using three criteria7 that
are grounded in the definition of formal analogy
in (Lepage, 1998, 2004). An analogy is classified
as formal if it satisfies all criteria at either the char-
acter or word level, treating sentences as sequences
of characters or words.

Semantic analogies Analogies that do not meet
the formal criteria are subjected to a semantic eval-

5https://aclweb.org/aclwiki/Google_analogy_
test_set_(State_of_the_art)

6https://github.com/rali-udem/
sats-sentence-analogy/tree/rali/data/sats

7See Appendix A.2 for more details of formal criteria.

uation using the AnaScore metric, which quantifies
the parallelism in conceptual transformations, with
scores ranging from 0 to 1. Analogies that achieve
a non-zero score are categorized as semantic, in-
dicating that they capture some level of semantic
parallelism with a formalized explanation.

Analogies with no criterion Analogies in this
category lack formal or semantic justification.8

These analogies often capture abstract or incon-
sistent patterns, making them unexplainable using
formulaic criteria.

To further assess the consistency of analogical
relationships, each analogy is annotated in two con-
figurations: A : B :: C : D and A : C :: B : D . An
analogy that satisfies formal or semantic criteria
in both directions is labeled as having an evident
formalized explanation. However, if an analogy
holds only in one direction or lacks an explanation
in both, it is categorized as having a vague formal-
ized explanation. Examples of sentence analogies
for each category can be found in Appendix A.3.

4.3 Statistics and artifacts

Table 1 reports the distribution of analogies across
four datasets, categorized into distinct types in
terms of their explainability with formulaic criteria.

In the Semantico set, 41% of the analogy data
strictly follow formal criteria after sentence nor-
malization. Despite the alignment of non-trivial
components in geometric configurations within a
FastText space, only 3% of analogies exhibit se-
mantic parallelism in one direction. Over half of
the data lack a clear formalized criterion. For ex-
ample, in the analogy that lacks a criterion at both
the formal and semantic levels:
You were
bluffing, ... :

You were
scared, ... ::

You were
there, ... :

You were ter-
rified, ...

it is hard to explain the semantic alignment be-
tween the transformation from a specific behavior
(bluffing) to an emotional state (scared) and from a
state of being present (there) to an extreme emotion
(terrified), even though terrified is the optimal al-
ternative given its geometric proximity to the ideal
solution for the other three words in vector space.

In MixGoogle, vague analogies are prevalent
across most subsets, with some being explainable
in the original form A : B :: C : D but failing when
the middle terms are swapped as A : C :: B : D. As

8Analogies with no criterion either do not align with formal
conditions or fail to demonstrate meaningful semantic paral-
lelism, as indicated by a score of zero assigned by AnaScore.
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Dataset # Evident explanation (%) Vague explanation (%)
Formal Semantic Semantic No criterion
A : B :: C : D ∧ A : C :: B : D A : B :: C : D A : C :: B : D sum

Semantico 5,471 41 0 1 2 3 56

MixGoogle 33,458 2 3 22 34 56 39
capital-common-countries 1,771 0 39 53 3 56 5
city-in-state 16,968 0 0 0 63 63 37
currency 1,732 0 1 74 0 74 25
family 2,223 7 10 1 23 24 59
gram6-nationality-adjective 10,660 6 0 48 0 48 46
gram2-opposite 104 26 5 0 69 69 0

MulNLIs 170,409 43 20 1 32 33 4
strict 68,109 99 0 0 1 1 0
strong 803 35 14 0 48 48 3
weak 62,171 7 42 1 45 46 5
free 39,326 2 20 1 66 67 11

SATS 39,140 5 6 2 32 34 55
lexical 7,350 3 1 0 53 53 43
syntactic 12,250 14 18 1 51 52 16
semantic 9,800 0 1 1 24 25 74
encyclopedic 9,740 0 0 3 2 5 95

Table 1: Percentage of analogies annotated into different categories based on their explanatory properties in two
forms across datasets of varying sizes (#). Analogies are assessed at formal and semantic levels, with Anascore
measuring semantic parallelism. Those holding in both forms have evident explanations , while those in only one
form are vague in semantics. Analogies (where ¬A : B :: C : D ∧ ¬A : C :: B : D) lack a clear criterion in
either underlying meaning or superficial patterns. The percentages for the four categories: evident formal, evident
semantic, vague semantic (sum), and vague no criterion, sum to 100% in each set.

in the following example from the capital-common-
countries set:
We just came
back from
Kabul

:

We arrived
yester-
day from
Afghanistan

::
We just came
back from
London

:

We arrived
yesterday
from Eng-
land

the sentence analogy is constructed from the seed
analogy Kabul : Afghanistan :: London : England
using a pair of templates. In A : B :: C :
D, sentence pairs maintain a consistent struc-
tural resemblance influenced by these template
patterns, where the word analogy is supported
with overlapping concepts of end.afghanistan in
ΛPartOf(Kabul,Afghanistan) and start.rented
flat in ΛAtLocation(London,England). When re-
ordered as A : C :: B : D, our semantic verification
reduces to checking the parallelism of the word
analogy. The semantic consistency of the sentence
analogy collapses as ConceptNet lacks robust links
connecting all four geographical terms under any
shared relationships. In contrast, the conceptual
descriptions for opposite terms show better align-
ment, where all analogies in the gram2-opposite
set have well-formulated explanations.

In the MulNLIs set, the majority of analogies
are more explainable in A : C :: B : D than in
A : B :: C : D. This pattern arises because the
sentence analogies are constructed from entailment

pairs, where each sentence in a pair has significant
overlap. As a result, minor variations in sentence
structures are substantially influenced on the eval-
uation of A : B :: C : D. Consider the analogy
constructed from two contradiction pairs:

There is no
man riding a
... bull

:
The man is
riding a ...
bull

::

The men are
not putting
suitcases
into ...

:
The men are
putting suit-
cases into ...

In the original form, the metric is sensitive to partial
changes in converting a negative statement into its
affirmative form. However, in ConceptNet, there is
no alignment between the content expressing that
no one is performing the action and the negation of
the action itself, leading AnaScore to assign a score
of 0. In A : C :: B : D, the evaluation considers a
more global transformation, where each sentence
pair follows a similar pattern of switching between
two actions.

In addition, we observe from the MulNLIs set
that analogies with a higher degree of formality are
more explainable, resulting in fewer data lack crite-
ria. This suggests that similar syntactic structures
are more likely to exhibit meaningful relationships
in semantics.

In the SATS set, analogical relationships are rela-
tively abstract. The encyclopedic category is partic-
ularly difficult to formally explain, as most analo-
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Llama3.2 (ρ = 0.26) Gemma2 (ρ = 0.37) DeepSeek-V2 (ρ = 0.20)

Llama3.2 (ρ = 0.19) Gemma2 (ρ = 0.37) DeepSeek-V2 (ρ = 0.37)

Figure 2: Correlation between reasoning abilities and analogy quality for Llama3.2 (left), Gemma2 (middle), and
DeepSeek-V2 (right) with 0-shot (top) and 5-shot (bottom) prompting. Spearman’s coefficient (ρ) annotated in
each plot is statistically significant at p-value < 0.05. Gemma2 demonstrates a relatively strong positive relationship
between analogy quality and performance in both settings. DeepSeek-V2 improves significantly in 5-shot, while
Llama3.2 shows modest gains. All models struggle with low-quality analogies (AnaScore ∼ 0).

gies that rely heavily on factual knowledge not
well-represented in ConceptNet lack a formulaic
criterion. While semantic analogies in SATS have
consistent patterns between ratios, they are primar-
ily defined by their abstract structural relationships
between sentences. Consider the example in the
phrasal-implicative-entailment set,

They possessed
the ingenuity to
create it.

:
They
created
it.

::
He fulfilled his
duty to provide
the evidence.

: He provided
the evidence.

the two ratios share an entailment relationship,
where the left sentence sets up a condition that
implies the action in the right sentence. However,
they are misaligned in terms of meaning.

For the lexical and syntactic sets of SATS, which
contain certain syntactic alignments in analogies,
over half of analogies have semantic explanations
in at least one direction. The syntactic set exhibits
a stronger parallel structure compared to the lexical
set. In the lexical set, analogies with explanations
in either direction dominate, except for the idiom-
literal set, where 92% fall in no criterion, as shown
in Table 7. This is because collecting the semantic
meaning of individual words will overlook the com-
positional semantics of multi-word expressions.

5 LLM Reasoning on Sentence Analogies

5.1 Setup

In this section, we explore the reasoning abilities of
LLMs in solving the sentence analogy task (A : B ::
C : x =⇒ x = D). To this end, we sample 1,000
analogies9 from a collection of the four datasets,
uniformly distributed based on the average of their
AnaScore values computed in two forms.

We evaluate the latest models of Llama (Tou-
vron et al., 2023), Gemma (Team et al., 2024), and
DeepSeek (DeepSeek-AI, 2024) using the Ollama
framework.10 For each test analogy, we prompt
the LLMs to generate the solution for the fourth
sentence in few-shot settings, using examples re-
trieved from the set of well-structured analogies
(AnaScore= 1). Model performance is evaluated
by comparing models’ generated solutions with
their references. Appendix B introduces further
prompting details.

9The test set excludes mere-appearance analogies classified
under the formal category in Table 1.

10We experiment with Llama3.2-3B, Gemma2-9B, and
DeepSeek-V2-16B from https://ollama.com/library.
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5.2 Correlation between model performance
and analogy quality

Figure 2 illustrates the relationship between anal-
ogy quality (measured by AnaScore) and model
performance (measured by BLEU11) for three
LLMs under 0-shot and 5-shot settings.

Gemma2 outperforms the others in both set-
tings, showing the strongest positive correlation be-
tween AnaScore and BLEU scores. As the quality
of test analogies increases, Gemma2 tends to gen-
erate more reliable solutions that closely align with
the reference. In contrast, Llama3.2 and DeepSeek-
V2 struggle to capture analogical patterns, showing
no clear correlation when no examples are provided
in context for inference. In particular, the solutions
of DeepSeek-V2 often deviate significantly from
the expected references, even for higher-quality
analogies.

In the 5-shot setting, Llama3.2 shows only mod-
est improvement. DeepSeek-V2 exhibits a signifi-
cant improvement, shifting from weak performance
in 0-shot to a stronger alignment between analogy
quality and generated solutions when given contex-
tual examples. It becomes more adept at leveraging
clear and well-structured analogical relationships.

Despite these improvements, a noticeable
concentration remains at the lower left corner
(Anascore near 0) of each plot. For such ambigu-
ous analogies, even with examples the models still
struggle to recognize their analogical relationships,
making it difficult to generate accurate or meaning-
ful answers.

5.3 Effects of few-shot examples

We further examine the impact of examples on anal-
ogy inference, particularly comparing model per-
formance using formally explainable (AnaScore=
1) and ambiguous (AnaScore= 0) examples across
different n-shot settings. Our observations suggest
that general metrics may be insufficient for assess-
ing whether models engage in intelligent reasoning
or merely taking shortcuts through the repetition
of given terms (like C). BLEU can assign inflated
similarity scores to fallacious answers due to mini-
mal differences between given terms and reference
solutions.

To better measure analogical capabilities, we
evaluate the accuracy of models in generating non-

11BLEU, as a general metric, measures the similarity be-
tween LLMs’ solutions D′ for analogies, i.e., generating the
fourth term given three known terms, against references D.

overlapping components, as introduced in Sec-
tion 3.1. In particular, this accuracy metric mea-
sures the percentage of cases in which LLMs accu-
rately generate the pieces of D that are not shared
with given terms. Table 2 presents the accuracy
results for the three LLMs.

n explain-
able Llama Gemma DeepSeek

0 2 24.8 65.6 41.2

1 2� 29.5 +4.7 65.0 −0.6 38.3 −2.9
4 23.2 −1.6 64.4 −1.2 27.9 −13.3

3 2� 25.9 +1.1 67.6 +2.0 43.5 +2.3
4 20.5 −4.3 65.4 −0.2 27.0 −14.2

5 2� 25.5 +0.7 69.3 +3.7 43.4 +2.2
4 19.1 −5.7 68.7 +3.1 33.6 −7.6

7 2� 27.0 +2.2 68.1 +2.5 44.0 +2.8
4 17.1 −7.7 68.0 +2.4 35.5 −5.7

10 2� 26.5 +1.7 69.4 +3.8 45.9 +4.7
4 18.6 −6.2 68.4 +2.8 34.7 −6.5

Table 2: Accuracies (%) in analogical reasoning across
different n-shot settings, using explainable examples
(2�) and those with no criteron (4). The 0-shot set-
ting is the baseline for comparison. The best score for
each model is bolded. Highlighted scores confirm that
models consistently perform better with explainable ex-
amples compared to ambiguous ones.

Quantity All models improve when explainable
analogies are used, compared to the 0-shot base-
line. Performance increases with the number of
examples, with Gemma2 and DeepSeek-V2 reach-
ing their highest scores at 10-shot. Llama3.2 peaks
at 1-shot, showing little benefit from additional
examples.

Quality Using explainable analogies consistently
results in better performance across all models com-
pared to ambiguous examples. Ambiguous analo-
gies, in fact, have a detrimental effect that ham-
pers the models’ ability to identify analogical pat-
terns, often causing performance drops compared
to the 0-shot baseline. This negative impact is
especially significant for Llama3.2 and DeepSeek-
V2, where ambiguous examples always lead to a
decline in accuracy, highlighting the importance
of high-quality examples for effective few-shot
prompting. Gemma2 appears less sensitive to the
quality of in-context examples, as evidenced by
minimal variations in its accuracy.
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6 Conclusion

This work introduced the AnaScore metric de-
signed to measure the strength of parallelism in
analogies at the conceptual level. The underlying
meaning of each sentence is represented using Con-
ceptNet. The differences between the conceptual
representations of two terms reify the transforma-
tions expressed by a ratio. AnaScore consists in
computing the similarity between the conceptual
transformations expressed by two ratios.

We used AnaScore to annotate four analogy
datasets, categorizing analogies in terms of par-
allism strength, by quantifying the number of pos-
sible formalized explanations. We then sampled
analogies from these datasets and conducted few-
shot prompting experiments in solving sentence
analogies using three expert LLMs. The experi-
mental results revealed that analogies with evident
explanations, typically reflecting more structurally
coherent relationships, enable models to deliver
more accurate and meaningful answers. In addition,
the quality of examples has a significant impact
on analogy inference. Explainable analogies can
strengthen the ability to solve sentence analogies,
whereas ambiguous ones always disrupt in-context
learning.

Limitations

Hard alignment of concepts AnaScore com-
putes exact matches of concept nodes when com-
paring transformations across two sentences. This
strict comparison cannot recognize synonymous or
conceptually similar concepts that express the same
meaning with different words. Next, we would like
to compute semantic similarity between concepts
by leveraging spatial distance in contextual embed-
ding spaces or by measuring the depths to their least
common ancestor as in (Wu and Palmer, 1994).

Overlooking compositional meaning in concep-
tual representations The way we represent sen-
tences using ConceptNet focuses on aggregating
conceptual descriptions of individual words, which
overlooks the full meaning of sentences. This limi-
tation becomes apparent when dealing with com-
plex sentence structures, as crucial relational pat-
terns arising from the combined meaning of word
groups or phrases may be missed. Further work
should capture the compositional meaning of sen-
tences more effectively, allowing for a more accu-
rate evaluation using AnaScore.

Lack of human validation AnaScore follows
the intuitive idea about how analogy works, mea-
suring the repetition of structure mappings on the
concepts in sentences. While it checks whether
conceptual transformations from C to D follow the
same patterns as those from A to B, human evalua-
tion could be incorporated to assess the alignment
between AnaScore’s measures and human percep-
tions.
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A Data Curation Details

A.1 Preprocessing

The sentences in four datasets, drawn from vari-
ous sources exhibit strcutal diversity, with some
using contractions (e.g., don’t) and others opting
for more formal expressions (e.g., do not). This
variation can complicate analogy verification, as
analogies are expected to hold at the formal level,
but inconsistencies in sentence forms may lead to
failures in identifying correct analogical relation-
ships. To address this, we standardize the sentences
by replacing informal contractions with their for-
mal counterparts.

Next, we apply deduplication to eliminate redun-
dant analogies that may appear in multiple equiva-
lent forms. Since each analogy can be represented
in eight equivalent permutations of its four terms,
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only one representative form is retained to ensure
the uniqueness of each analogy within the dataset.

A.2 Formulaic criteria for evaluating
analogies at the formal level

The formal criteria involve verifying the equali-
ties of differences in sentence lengths, token occur-
rences, and edit operations:

• sentence length constraint: evaluates the
equivalence of sentence lengths using the for-
mula |A| − |B| = |C| − |D|.

• token distribution postulate: Computes the
equivalence of occurrences for each token a
in the four terms as |A|a−|B|a = |C|a−|D|a,
for all a ∈ A.

• edit distance system of equalities: computes
the equivalence of the edit distance between
two terms in the ratios as d(A,B) = d(C,D)

In line with the principles of analogy, the ex-
change of terms and symmetry of conformity stip-
ulate that the relational structure of an analogy re-
mains consistent when two ratios or the middle
terms are swapped. We apply formal criteria in
two forms for each analogy: A : B :: C : D and
A : C :: B : D. An analogy is considered formal if
it satisfies all three criteria in both forms.

A.3 Examples of annotated sentence analogies
We present examples of sentence analogies anno-
tated with different types of parallelism encapsu-
lated in two forms, organized into Tables 3–6.

A.4 Statistics for the SATS set
Table 7 reports the statistics for each subset of
SATS analogies constructed based on specific re-
lational patterns, detailing the proportion of analo-
gies categorized into various annotation types.

A.5 Distribution of AnaScore scores
Figure 3 shows the distribution of analogies based
on their AnaScore values computed in two configu-
rations.

B LLM Prompting

B.1 Retrieval of few-shot examples
Few-shot examples are randomly selected from
a collection of analogies annotated with target
AnaScore values across four datasets. To prevent
the models from copying answers from the input

prompts, we ensure that the selected examples con-
tain no overlapping sentences with the query anal-
ogy.

B.2 Prompt template
Each test query is integrated with retrieved exam-
ples into the following template:

Your task is to solve the following analogy by
generating the fourth term (D) such that the
relationship between A and B is similar to the
relationship between C and D.
Only provide the solution for D without any
extra symbols or explanations

# EXAMPLE(S)
Question: A : B :: C : D
A = {EXAMPLE_A}
B = {EXAMPLE_B}
C = {EXAMPLE_C}
D = ?
Answer: {EXAMPLE_D}

# THE TASK
Question: A : B :: C : D
A = {QUERY_A}
B = {QUERY_B}
C = {QUERY_C}
D = ?
Answer:

The template provides specific instructions to
guide the models in generating solutions for sen-
tence analogies in a question-answering manner.

B.3 Configurations
We use the default decoding parameters in the Ol-
lama API, where the temperature is set to 0.8, with
top_p 0.9 and top_k 40 for generating responses
from LLMs. For each test case, the evaluation
metrics are averaged across two runs, where the
missing term D is generated using two different
analogy forms of A : B :: C : D and A : C :: B : D.
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Analogy A : B :: C : D A : C :: B : D

I just want to be prepared. : I like to be prepared. :: I just want to talk. : I like to talk. formal formal

That is exactly what i
want.

: That is not what i hear. :: That is exactly what i
needed.

: That is not what i heard. semantic semantic

I do not need it anymore. : We do not need it anymore. :: You do not need me any-
more.

: They do not need me any-
more.

semantic -

I do not want to handle it. : I do not want to stop. :: I want to do it. : I want to go. - semantic

I do not have a snowmo-
bile.

: I do not have a boyfriend. :: I do not have a cent. : I do not have a girlfriend. - -

Table 3: Examples of sentence analogies in the Semantico set.

Analogy A : B :: C : D A : C :: B : D

He speaks a refined
langage only spoken in
Colombia

: He spoke in that refined
Colombian

::
He speaks a refined lan-
gage only spoken in India : He spoke in that refined In-

dian
formal formal

Let me introduce to you my
boy :

Let me introduce to you my
girl ::

Let me introduce to you my
grandson :

Let me introduce to you my
granddaughter semantic semantic

His sister went to Indi-
anapolis : His sister went to Indiana :: His sister went to Cincin-

nati
: His sister went to Ohio semantic -

Several people are protest-
ing in front of a controver-
sial construction site in Ar-
lington

:

Several people are protest-
ing in front of a contro-
versial construction site in
Texas

::

Several people are protest-
ing in front of a contro-
versial construction site in
Akron

:

Several people are protest-
ing in front of a contro-
versial construction site in
Ohio

- semantic

Its bank in Irving also re-
ported an increased loss
for the quarter

:
Its bank in Texas also re-
ported an increased loss
for the quarter

::
Its bank in Boston also re-
ported an increased loss
for the quarter

:
Its bank in Massachusetts
also reported an increased
loss for the quarter

- -

Table 4: Examples of sentence analogies in the MixGoogle set.

Analogy A : B :: C : D A : C :: B : D

The kitten is not playing
with a toy :

The kitten is playing with
a toy ::

The women are not danc-
ing outside : The women are dancing

outside
formal formal

The man is not playing an
acoustic guitar :

The man is playing an
acoustic guitar ::

The woman in a red cos-
tume is not leaning against
a brick wall and is not
playing an instrument

:

The woman in a red cos-
tume is leaning against a
brick wall and playing an
instrument

semantic semantic

There is no cold cyclist cel-
ebrating :

A cold cyclist is celebrat-
ing :: There is no lady cutting up

some meat
:

Some meat is being cut
into pieces by a woman semantic -

There is no man playing
the piano : A man is playing the piano ::

A dog with a blue collar is
not playing with the ball
outside

:
A dog with a blue collar is
playing with the ball out-
side

- semantic

A horse is being ridden by
a man

: The person is riding the
horse

:: The man is slicing a potato :
The person is slicing the
potato - -

Table 5: Examples of sentence analogies in the MulNLIs set.

Analogy A : B :: C : D A : C :: B : D

My parents turned on the
TV.

: My parents turned the TV
on.

::
They will need to put out
that fire. :

They will need to put that
fire out. formal formal

Hoping is no use. : It is no use hoping. ::
Really, that there is cor-
ruption cannot be de-
duced.

:
Really, it cannot be de-
duced that there is corrup-
tion.

semantic semantic

He neglected to call her. : He did not call her. ::
They were not allowed to
hop. : They did not hop. semantic -

Boundaries are frequently
used by researchers to
help define identity.

:
Boundaries are frequently
used by researchers to
help define what?

::
Liszt shows to have ele-
ments of Chopin in his
work.

:
What other musician
shows to have elements of
Chopin in his work?

- semantic

A dress (also known as a
frock or a gown) is a gar-
ment traditionally worn by
women or girls consist-
ing of a skirt with an at-
tached bodice (or a match-
ing bodice giving the effect
of a one-piece garment).

:

Clothing (also known as
clothes, apparel, and at-
tire) are items worn on the
body.

::

The lemon (Citrus limon)
is a species of small ever-
green trees in the flower-
ing plant family Rutaceae,
native to Asia, primar-
ily Northeast India (As-
sam), Northern Myanmar
or China.

:

In botany, a fruit is the
seed-bearing structure in
flowering plants that is
formed from the ovary af-
ter flowering.

- -

Table 6: Examples of sentence analogies in the SATS set.
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Relational pattern # Evident explanation (%) Vague explanation (%)
Formal Semantic Semantic No criterion
A : B :: C : D ∧ A : C :: B : D A : B :: C : D A : C :: B : D (sum)

Lexical
present-past 1,225 3 1 0 60 60 36
present-future 1,225 8 1 0 45 45 46
past-future 1,225 3 2 0 53 53 42
idiom-literal 1,225 0 0 0 8 8 92
numeral-spelled 1,225 0 2 0 74 74 24
numeric-approximation 1,225 3 2 0 76 76 19

Syntactic
because-so 1,225 28 67 0 5 5 0
canonical-extraposition 1,225 24 60 0 15 15 1
qa2d-declarative-howmany 1,225 0 19 1 75 76 5
qa2d-declarative-when 1,225 0 3 0 78 78 19
qa2d-declarative-who 1,225 0 0 0 82 82 18
qa2d-declarative-what 1,225 0 0 0 73 73 27
active-passive 1,225 2 6 0 63 63 29
verb-particle-movement 1,225 87 5 0 8 8 0
qa2d-declarative-howmuch 1,225 0 25 11 46 57 18
qa2d-declarative-where 1,225 0 0 0 60 60 40

Semantic
informal-formal 1,225 0 1 0 21 21 78
sentence-opposite 1,225 0 0 0 23 23 76
sentiment-good-bad 1,225 0 0 0 39 39 61
phrasal-implicative-entail. 1,225 0 3 4 11 15 82
cause-effect 1,225 0 0 0 12 12 87
description-state 1,225 0 0 0 12 12 87
home-outdoors 1,225 0 1 0 55 55 44
simple-implicative-entail. 1,225 0 2 7 16 23 75

Encyclopedic
hypernym-animal 1,225 0 0 3 1 4 96
misc-hypernym 1,174 0 0 2 2 4 96
person-occupation 1,225 0 0 1 1 2 98
meronym-substance 1,216 0 0 0 2 2 98
capital-country 1,225 0 0 3 2 5 94
country-language 1,225 0 0 11 0 11 89
invention-creator 1,225 0 0 0 2 2 98
member-band 1,225 0 1 4 4 8 91

Table 7: Statistics for annotated analogies constructed based on various relational patterns in the SATS set.

Figure 3: Distributions of semantic analogies with evident (left) and vague (right) explanations based on their
AnaScore values computed in two forms (A : B :: C : D and A : C :: B : D).
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