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Abstract

Whilst large language models (LLMs) have
made significant advances in every natural lan-
guage processing task, studies have shown that
these models are vulnerable to small perturba-
tions in the inputs, raising concerns about their
robustness in the real-world. Given the rise of
misinformation online and its significant im-
pact on society, fact verification is one area in
which assessing the robustness of models de-
veloped for this task is crucial. However, the
robustness of LLMs in fact verification remains
largely unexplored. In this paper, we introduce
FACTEVAL, a novel large-scale benchmark for
extensive evaluation of LLMs in the fact verifi-
cation domain covering 16 realistic word-level
and character-level perturbations and 4 types of
subpopulations. We investigate the robustness
of several LLMs in zero-shot, few-shot, and
chain-of-thought prompting. Our analysis us-
ing FEVER, one of the largest and most widely-
used datasets for fact verification, reveals that
LLMs are brittle to small input changes and
also exhibit performance variations across dif-
ferent subpopulations.

1 Introduction

Large language models (LLMs) have marked a sig-
nificant milestone in the natural language process-
ing (NLP) field. However, despite their impressive
capabilities across a variety of tasks (Cao et al.,
2023; Zhang et al., 2024; Li et al., 2024a), it has
been shown that these models exhibit vulnerabil-
ities to adversarial samples – subtle alterations to
the input that can be easily understood by humans
(Wang et al., 2023). This has raised concerns about
the robustness of these models when deployed in
the real world.

In the era where vast amounts of information
are generated and shared rapidly, fact verification
has become an increasingly important area of re-
search in NLP as it is one of the key methods for
detecting misleading and false claims Guo et al.

(2022); Akhtar et al. (2023). Given the widespread
influence of misinformation, which can have sig-
nificant political, societal, and economic impact,
assessing the robustness of fact verification sys-
tems and having a comprehensive understanding of
these models’ failures becomes crucial.

Numerous efforts have been made to evaluate the
robustness of NLP models in a variety of tasks, in-
cluding sentiment analysis and natural language in-
ference (Wang et al., 2022; Mamta and Ekbal, 2022;
Goyal et al., 2023). While there have been some
studies examining adversarial attacks on fact veri-
fication models by manipulating either the claims
(Thorne et al., 2019; Hidey et al., 2020; Atanasova
et al., 2020) or the evidence (Abdelnabi and Fritz,
2023), their scope remains limited to traditional
task-specific fine-tuned models.

In this paper, we propose FACTEVAL1, a novel
benchmark for evaluating the robustness of LLMs
for fact verification. To the best of our knowledge,
we are the first to study LLM-based fact verifi-
cation models; prior studies have been limited to
traditional BERT style models.

FACTEVAL evaluates the robustness of fact veri-
fication models through perturbations and subpop-
ulations applied to the claims, leaving the evidence
unchanged. This allows us to focus on evaluat-
ing the model’s ability to handle variations in the
claims without adding noise to the evidence.

We introduce 16 word-level and character-level
perturbations used to create adversarial datasets.
We incorporate visual perturbations (Boucher et al.,
2022; Eger et al., 2019), expanding the scope of
attacks on fact verification models. Recognizing
that regional accents and the influence of native lan-
guages impact the writing style of non-native En-
glish speakers in informal conversations (Le et al.,
2022), we integrate phonetic perturbations for a
comprehensive evaluation.

1Code and data available at https://github.com/
TRAI-group/FactEval
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Furthermore, we designed subpopulations based
on demographic factors, temporal information, sen-
timent, and named entities. These subpopulations
consist of distinct subgroups of data that may dif-
fer in specific properties. Subpopulation analysis
helps ensure that the model is not only accurate on
the overall dataset but also performs consistently
across all subgroups. This is not only important for
fairness but also crucial for enhancing the overall
reliability and effectiveness of the systems.

With FACTEVAL, we examine the robustness
of LLM models for fact verification under zero-
shot, few-shot, and chain-of-thought prompting.
We evaluate three LLMs: Llama3 8B (Dubey et al.,
2024), Mistral 7B (Jiang et al., 2023), and Gemma
7B (Mesnard et al., 2024). For comparison, we also
investigate the robustness of transformer-based pre-
trained language models (PLMs) such as BERT
(Devlin et al., 2019).

Our experiments on the FEVER dataset, one
of the largest and most widely-used benchmarks
for fact verification (Thorne et al., 2018a), reveal
that PLMs and LLMs based fact verification sys-
tems severely lack robustness against even simple
perturbations, raising concerns about the trustwor-
thiness of these systems and emphasizing the need
for more robust methodologies. Addressing these
challenges is essential for ensuring the reliability
and effectiveness of fact verification models in real-
world applications.

To summarize, our contributions are:

1. We propose FACTEVAL, a novel large-scale
benchmark for comprehensive evaluation of
the robustness of fact verification systems,
covering 16 realistic word-level and character-
level perturbations and 4 types of subpopula-
tions.

2. We evaluate the performance of PLMs and
LLMs, specifically Llama, Gemma, and Mis-
tral, in zero-shot, few-shot, and chain-of-
thought prompting.

3. Our comprehensive evaluation shows that
PLMs and LLMs based fact verification sys-
tems are not resilient to minor perturbations.

Many perturbations in FACTEVAL can be ap-
plied to tasks other than fact verification, making
it easy to incorporate in evaluations beyond just
reporting standard metrics on held-out data.

2 Related Work

2.1 Robustness of NLP models
Despite having achieved great progress on standard
benchmarks, NLP models still struggle in the pres-
ence of small changes to the input. Several works
have shown that high-performing transformer-
based models are brittle to adversarial attacks and
small perturbations to the inputs (Alzantot et al.,
2018; Lin et al., 2021; Neerudu et al., 2023).
Recent studies on robustness of LLMs investi-
gated out-of-distribution datasets (Yuan et al., 2023;
Gupta et al., 2024) as well as challenge test sets,
behavioral testing, contrast sets, and adversarial
inputs (Gupta et al., 2024).

Various tasks have been explored in studies on
NLP robustness, including sentiment analysis (Jin
et al., 2020; Kiela et al., 2021; Yuan et al., 2023;
Mamta et al., 2023), toxic content detection (Li
et al., 2019; Yuan et al., 2023), argument mining
(Sofi et al., 2022; Mayer et al., 2020), machine
translation (Sai et al., 2021a; Wang et al., 2021;
Morris et al., 2020), question answering (Goel
et al., 2021; Moradi and Samwald, 2021; Kiela
et al., 2021; Yuan et al., 2023; Gupta et al., 2024),
natural language inference (Wu et al., 2021; Mor-
ris et al., 2020; Li et al., 2021; Yuan et al., 2023),
and dialogue generation (Sai et al., 2020; Li et al.,
2023). Perturbations are applied at character-level,
word-level, or sentence-level (Wang et al., 2022).

Few works created test sets by constructing sub-
populations based on various input characteristics
(Mille et al., 2021; Goel et al., 2021). These sub-
populations were defined by features such as topic,
entity names, input length, presence of pronouns
for a particular gender. allowing for a more granu-
lar analysis of model performance across different
subsets of data.

2.2 Robustness of Fact Verification Systems
There have been few attempts to assess the robust-
ness of fact verification systems against adversarial
attacks. The majority of these works manipulate
the claims to create adversarial examples. Niewin-
ski et al. (2019) introduced a generative enhanced
model (GEM), a modified and fine-tuned GPT-2
language model used to generate adversarial claims.
Other works (Thorne et al., 2019; Hidey et al.,
2020) evaluated the robustness of the BERT model
(Devlin et al., 2019). Thorne et al. (2019) evaluated
three adversarial attacks by altering the claim and
without modifying the evidence. The attacks in-
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clude rules-based meaning-preserving transforma-
tions to induce classification errors, hand-crafted
rules exploiting common patterns and constructions
in the FEVER claims and a paraphrase model to
generate new instances. Hidey et al. (2020) created
an adversarial dataset of 1000 examples that tar-
geted models’ weaknesses in (i) multi-hop reason-
ing by augmenting existing claims with conjunc-
tions or relative clauses, (ii) temporal reasoning
by manipulating claims using date-alteration rules,
and (iii) named entity ambiguity and lexical varia-
tion using the using the lexical substitution method
of Alzantot et al. (2018).

Atanasova et al. (2020) evaluated the robustness
of the RoBERTa model (Liu et al., 2019) using
gold evidence from the dataset. They constructed
universal adversarial triggers which are n-grams
that, when appended to the actual claim, can change
the model’s prediction from the source to a target
class. These trigger tokens were generated using
the HotFlip algorithm (Ebrahimi et al., 2018) which
updates the embeddings of the trigger tokens to
minimize the loss for the target class.

Some works (Du et al., 2022; Abdelnabi and
Fritz, 2023) modified the evidence repository to
mislead the retrieval system by adding, removing,
or altering evidence, and evaluated their attacks on
BERT and RoBERTa-based models.

Prior studies on robustness for fact verification
have focused on traditional task-specific fine-tuned
models (e.g. BERT style models). There is a notice-
able gap in the literature regarding the investigation
of the robustness of LLMs within the context of
fact verification, which we address in this paper.

2.3 Fact Verification

Recent efforts have leveraged LLMs to solve the
fact verification task (Vykopal et al., 2024). Lee
et al. (2021) used GPT-2 (Radford et al., 2019)
to assess the factuality of the claim based on the
perplexity of evidence-conditioned claim genera-
tion. Tang et al. (2024) used GPT models to cre-
ate synthetic training data to enhance the perfor-
mance of LLMs in fact verification tasks, whereas
Li et al. (2024b) proposed a self-sufficient approach
to claim verification using prompting instructions
across multiple language models. Zeng and Gao
(2023a) leveraged a consistency mechanism to im-
prove the performance of fact verification models
by constructing 3 variants of the original prompt
based on three logical relations (confirmation, nega-

tion, uncertainty) and fine-tuned the model on these
variants. Yao et al. (2023); Ni et al. (2024) lever-
aged chain-of-thought prompting to effectively ver-
ifying complex claims using reasoning steps.

3 FACTEVAL

We present FACTEVAL, a framework for evaluat-
ing the robustness of fact verification models. Our
framework incorporates word-level and character-
level perturbations, as well as visual and phonetic
perturbations. Furthermore, we design subpopu-
lations of the data based on demographic factors,
temporal information, sentiment, and named enti-
ties. FACTEVAL contains 16 realistic perturbations
and 4 types of subpopulations.

3.1 Task Definition

Given a claim and some evidence, the aim of a fact
verification model is to determine whether the evi-
dence supports, refutes, or does not provide enough
information to reach a verdict.

To verify the robustness of a fact verification
model, we assume no black-box or white-box ac-
cess to the model. Hence, we modify the input
by applying perturbations before passing it to the
model. In particular, for a claim C consisting of
n tokens c1, c2, c3, ..., cn, m pieces of evidence
E = E1, E2, ..Em with label y, the objective is
to apply label-preserving perturbations to C and
test whether these mislead the target model FV ,
i.e., FV (C ′, E) ̸= y. Perturbations are applied to
the claims, while the evidence remains unchanged
in order to evaluate how well the model can handle
variations in the claims without introducing noise
into the evidence.

3.2 Perturbations

FACTEVAL contains several adversarial datasets
obtained using word-level and character-level per-
turbations. Examples are presented in Table 1.

3.2.1 Word-Level Perturbations
Contractions/Expansions Contractions are
words obtained by shortening and combining two
words, often using an apostrophe (e.g. do not →
don’t). Expansions are the opposite, where a con-
traction is written out in its full form (e.g. don’t
→ do not). These perturbations help evaluate how
well models handle linguistic variations and main-
tain meaning across different writing styles, such
as formal and informal language. For this pertur-
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Perturbation Original Claim Perturbed Claim
Contractions Oscar Isaac did not act in X-Men Oscar Isaac didn’t act in X-Men
Expansions Henry Cavill didn’t play Superman. Henry Cavill did not play Superman.
Jumbling Oscar Isaac did not act in X-Men Oscar Isaac not did act in X-Men
Num to Words Southern Hospitality fell to number 23 on the Top

40.
Southern Hospitality fell to number twenty-three
on the Top 40.

Repeat Phrases South Island is sometimes referred to as the ""main-
land"" of New Zealand.

South Island is sometimes referred to as the “ main-
land ” of New Zealand . South Island is sometimes

Subject Verb Disagreement One Dance was by Drake. One Dance were by Drake.
Typos Richard Kuklinski is a innocent man. Richard Kuklinski is ainnocent man.
Word Repetitiom Trouble with the Curve is a cat Trouble with the Curve Curve is a cat
Synonyms A good Day to Die Hard stars Bruce Willis as John

McClane
A nice Day to Die Hard stars Bruce Willis as John
McClane

Tautology Benjamin Franklin was a person. Benjamin Franklin was a person. and true is true.
and true is true. and true is true.

Character Swap LinkedIn is based in Russia. Liknedin is based in russia.
Character Repetition The Burj Khalifa contains zero escalators The Burj Khalifa contaains zero escalators
Character Insertion Trouble with the Curve is a cat. Trouble wtith the Curve is a cat .
Character Deletion The Catcher in the Rye is a young adult novel. The Catcher in the Rye is a young adult novl.
Phonetic Spider-Man 2 was written by Donald Trump. Spiderman 2 wasss written by Donald Trump.
Homoglyph Annie is the title of a work. Aññie is the title of a work.
LEET Scandal is a Mexican band. 5candal is a M3xican band.

Table 1: Perturbation examples.

bation, we use a dictionary containing all possible
expansions and contractions (Sai et al., 2021b).
Jumbling Word Order We perturb the claim by
randomly changing the order of its words. This per-
turbation tests how well models handle variations
in syntax and word arrangement.
Numbers to Words In real-world data, numbers
can appear as numerals or words. To evaluate the
versatility of a model, we convert all numbers (e.g.
"2") to their word equivalents (e.g. "two").
Repeat Phrases To test how robust a model is
to repetitive patterns, we perturb a sentence by
adding the first quarter of the claim to the end of
the original claim.
Subject Verb Disagreement As grammar errors
occur frequently in real-world data, we evaluate the
robustness of models in understanding grammatical
structure. We follow Sai et al. (2021b) and create
syntactically incorrect sentences based on subject-
verb disagreement (i.e. singular vs plural).
Typos We introduce a typographical error (typo)
into a claim by swapping adjacent characters. This
perturbation simulates realistic typing errors, which
is essential for creating more resilient applications
capable of handling noisy or imperfect data.
Word Repetition We randomly select a word
from a sentence and insert it immediately after the
selected word.
Synonym Adjectives We select the adjectives
in a claim and replace them with their synonyms
from WordNet (Fellbaum, 1998). The goal is to
create semantically equivalent but lexically varied
versions of the claims.
Addition of Tautology To create this adversarial

dataset, we append and true is true three times at
the end of the claim.
Phonetic Perturbations Non-native English
speakers may pronounce words differently as they
apply the speech rules of their first language. This
may also affect their writing style. Using a dictio-
nary of human-written phonetic perturbations (Le
et al., 2022), we introduce phonetic perturbations
using 25% and 50% budget values (x% budget
value means perturbing x% words of the claim).

3.2.2 Character-Level Perturbations
Character Swapping For this perturbation, we
randomly swap adjacent characters within a word.
Character Repetition We randomly select a
character (except the first/last characters) from a
random word in the claim and insert it directly after
the selected character. This mimics common typo-
graphical errors where a key is accidentally pressed
twice in quick succession. This perturbation intro-
duces subtle noise into the text while preserving
the readability of the word.
Character Insertion We select a random charac-
ter (except the first/last characters) from a randomly
chosen word of at least three characters in the claim.
We then insert the caracter into a randomly chosen
position within the word. The insertion occurs
at any position except the first and last, mimick-
ing typographical errors such as unintentional key
presses during typing.
Character Deletion We randomly select a char-
acter (except the first/last characters) from a ran-
dom word in the claim and delete it. This simulates
common typing errors where characters are acci-
dentally omitted. This perturbation preserves the

10650



general structure of the word and sentence, intro-
ducing noise in a controlled way.
Homoglyph Perturbations Homoglyphs are
characters that look similar or identical to other
characters (e.g. n and ñ). We perturb characters
based on the dictionary from Unicode Security.2

We experiment with various perturbation budgets
(i.e. k = 25% and 50%) to evaluate the robustness
of models against these changes.
LEET Perturbations LEET perturbations
amount to replacing letters with their visually simi-
lar counterparts (i.e. numbers, special characters,
or other symbols) and are often used as a distinct
writing style online. For example, ‘A’ can be re-
placed with ‘4’, ‘E’ with ‘3’, and ‘I’ with ‘1’. We
use a pre-defined dictionary (Eger et al., 2019; Eger
and Benz, 2020) to perturb claims and experiment
with character perturbation ratios of 25% and 50%.

3.3 Subpopulations

Subpopulations represent distinct subgroups of
data. We design four types of subpopulations to en-
sure that models perform robustly and fairly across
diverse groups of data.
Demographic We create subpopulations based
on nationality, ethnicity, and gender to analyze
a model’s behavior across different demographic
groups. We identify person entities and retrieve
their ethnicity, gender, and nationality from their
corresponding Wikipedia pages, if available. If a
claim contains multiple nationalities, we include it
in all relevant subpopulations.
Temporal Information We design temporal sub-
populations based on the presence or absence of
date entities (i.e. calendar dates, years, months,
days, and general time expressions such as "the
90s"). This is useful to assess how well the model
handles claims that rely on accurate temporal un-
derstanding.
Sentiment Similarly to Mamta et al. (2020)
where sentences are annotated based on the event
described, we create subpopulations related to the
claim’s sentiment (i.e. positive, negative, or neu-
tral) using VADER (Hutto and Gilbert, 2014). This
allows us to evaluate whether the model correctly
classifies claims with positive sentiments more ef-
fectively than those with negative or neutral senti-
ments.
Named Entities We design subpopulations re-
lated to person, location, and organization entities

2www.unicode.org/Public/security/latest/confusables.txt

Supported Refuted NEI
Train 80,035 29,775 35,639
Test 3,333 3,333 3,333

Table 2: Data distribution in FEVER.

to evaluate model performance on claims mention-
ing persons compared to those mentioning organi-
zations or locations.

4 Experiments

4.1 Dataset

For our experiments, we use FEVER, one of the
largest and most widely-used benchmarks for fact
verification (Thorne et al., 2018a,b). As one of
the first large-scale datasets for fact verification
(Guo et al., 2022), FEVER contains 185,000 anno-
tated claims, each accompanied by evidence from
Wikipedia. The claims are classified as supported,
refuted or not enough information (NEI). FEVER
provides gold evidence for supported and refuted
classes only. We follow Zeng and Gao (2023b) to
provide evidence for samples in the NEI class.

Table 2 shows the data distribution in FEVER.
We further split the training data into train (80%)
and development (20%) sets to fine-tune pre-
trained language models.

4.2 Models

We experiment with pre-trained language models
which can be directly fine-tuned, as well as large
language models.

Pre-trained Language Models. We perform
task-specific fine-tuning of BERT (Devlin et al.,
2019) by adding an output layer on top of these
models. The input sequence is constructed by sep-
arating the claim C and the evidences E using a
separator token. This input sequence is passed to
the model and the final sentence representation is
fed into an output layer for the classification task.

Large Language Models. We evaluate Llama3
8B (base model) (Dubey et al., 2024), Mistral 7B
Instruct (Jiang et al., 2023), and Gemma 7B In-
struct (Mesnard et al., 2024) models using zero-
shot, few-shot, and chain-of-thought prompting.

Zero-Shot Prompting Zero-shot prompting
relies solely on the pre-trained knowledge and gen-
eralization abilities of LLMs. We provide task in-
structions and class definitions to ensure that LLMs
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understand the task at hand. The instructions clar-
ify the expected input (the claim and supporting
evidence) and the required answer (classification
into one of the predefined classes).

Few-Shot Prompting In the few-shot setting,
the model is provided with a small set of labeled ex-
amples to guide its response, leveraging in-context
learning (Xun et al., 2017). The model observes
a few labeled instances from the dataset and uses
these examples to infer the class at inference time.
We provide task instructions and randomly select
two examples from each class to include in the
prompt.3

Chain-of-Thought Prompting We use Chain-
of-Thought (CoT) along with the task definition in
zero-shot setting. We follow Wei et al. (2022) for
CoT and add Think step by step at the end of each
zero-shot prompt.

5 Results and Discussion

To evaluate the robustness of LLMs and PLMs
in different attack settings, we compute accuracy,
F1, and Attack Success Rate (ASR). Accuracy and
F1 are calculated on the FEVER test set as well
as the adversarial test sets. ASR is calculated as
the percentage of adversarial examples that can
successfully attack the target model.

5.1 Adversarial Robustness

Which model is more/least robust among LLMs?
Table 3 shows the results for zero-shot and few-shot
learning across Llama, Mistral, and Gemma mod-
els. In the zero-shot setting, Gemma outperforms
both Llama and Mistral on the FEVER test set, in-
dicating that Gemma has a stronger ability to gener-
alize in the absence of labeled examples. However,
all models, despite their good performance on the
FEVER test set, are vulnerable to small perturba-
tions in the input data, as indicated by their ASR.

Among the models, Llama is the most vulner-
able (i.e. having a higher ASR when exposed to
adversarial perturbations). It is interesting to note
that even character swapping in the input text sig-
nificantly affects the performance of all models.
While few-shot models perform notably better than
zero-shot models in terms of accuracy, they still
remain vulnerable to adversarial examples.

In the few-shot setting, Llama has a higher ASR
than both Mistral and Gemma in most perturba-
tions. Gemma, on the other hand, is the most ro-

3The prompts are provided in the Appendix.

bust model across the majority of perturbations.
For example, in homoglyph and LEET perturba-
tions, Gemma demonstrates a lower ASR than both
Llama and Mistral, showing its resilience against
these types of adversarial attacks.

We also investigate whether CoT makes the best
two models, Mistral and Gemma, more robust to
perturbations. The results in Table 4 indicate that
both models remain vulnerable to perturbation in
the CoT setting. Gemma has a higher ASR than
Mistral for the majority of perturbations, suggest-
ing that Mistral is more resilient to perturbations
compared to Gemma in this setting. However,
Gemma has lower ASR for LEET perturbations
compared to Mistral.
How do LLMs compare to PLMs in terms of
robustness? Table 5 shows that BERT performs
better compared to LLMs, highlighting the impor-
tance of task-specific fine-tuning. However, despite
its good performance, BERT remains vulnerable to
all types of adversarial perturbations. While BERT
shows greater robustness than the Llama zero-shot
and few-shot (base model) variants, the instruction-
tuned models, Mistral and Gemma, have even
higher resilience compared to BERT.
Which perturbations are more challenging? The
LLama zero-shot model is highly vulnerable to al-
most all types of perturbations, with ASR ranging
from 13% to 37%. Homoglyph and LEET pertur-
bations have the highest ASR across all zero-shot
and few-shot models, indicating that these models
are particularly susceptible to such attacks. Addi-
tionally, all models show increased vulnerability to
perturbations involving typos, tautology, phonetic
variations, and character swapping. Zero-shot mod-
els, in particular, are more affected by phonetic
perturbations than their few-shot models. Interest-
ingly, the few-shot LLama model has a higher ASR
in the presenece of tautology perturbations com-
pared to its zero-shot variant. This also indicates
that the presence of tautology in in-context learn-
ing (ICL) can confuse the Llama model about the
patterns it has learned from the few-shot samples,
leading to a higher ASR.

5.2 Subpopulations

Table 6 shows the results for different subpopula-
tions in zero-shot, few-shot, and CoT setting for
Llama, Mistral, and Gemma. We present the data
distributions for subpopulations in Section C.
How do models behave across demographic sub-
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Zero-shot Few-shot
Perturbation Llama Mistral Gemma Llama Mistral Gemma

Acc F1 ASR Acc F1 ASR Acc F1 ASR Acc F1 ASR Acc F1 ASR Acc F1 ASR
None 57.43 54.88 – 72.73 69.8 — 77.44 74.82 – 66.63 60.69 – 83.82 83.18 – 61.25 59.03 –
Contractions 47.55 42.7 17.21 70.32 67.18 2.94 75.74 72.61 2.19 63.25 55.91 4.58 81.87 81.14 2.13 49.54 46.52 7.11
Expansions 47.3 42.29 17.64 70.38 67.29 2.85 75.89 72.85 2 63.44 56.28 4.28 81.92 81.2 2.07 49.41 46.39 7.36
Jumbling 35.71 26.69 37.82 60.33 53.47 17.05 65.04 57.37 16 48.69 38.64 26.81 59.85 56.1 28.59 45.02 40.55 15.58
Number to Words 47.21 42.27 17.8 70.22 67.08 2.07 74.7 71.59 3.25 63.18 55.91 4.68 81.8 81.07 2.21 49.2 46.14 7.5
Repeat Phrases 42.12 36.52 26.66 68.48 65.32 5.47 74.88 71.52 3.31 58.55 50.17 11.77 80 79.26 4.46 48.86 45.41 8.73
SVD 44.38 38.97 22.72 68.16 65.47 4.91 74.01 70.76 4.14 61.33 53.54 7.52 80.3 79.49 4.01 47.78 44.46 10.42
Typos 44.22 38.66 22.99 66.98 63.17 7.53 72.1 68.15 6.72 59.03 51.89 10.96 78.18 77.2 6.53 49 45.91 8.12
Word Repetition 43.21 37.69 24.76 68.1 64.53 6 72.66 69.27 5.59 60.38 53.47 9.39 79.28 78.63 5.03 47.97 44.66 10.06
Synonyms 46.82 41.78 18.48 69.72 66.5 3.76 74.26 71.16 3.68 63.19 56.03 4.66 81.22 80.46 2.91 49 45.91 8.12
Tautology 44.73 40.04 22.1 66.51 61.9 7.81 74.14 70.44 4.3 41.18 32.45 38.17 77.51 76.29 7.33 56.66 53.98 7.48
Phonetic (0.25) 42.61 36.79 25.81 66.46 62.33 7.87 71.35 69.59 7.28 61.58 54.45 6.58 79.01 78.3 4.96 57.69 55.2 5.16

W
or

d

Phonetic (0.50) 39.64 32.45 30.96 64.96 60.45 10.3 70.4 65.49 9.09 60.85 53.87 7.17 78.04 77.33 5.93 55.86 53.41 6.89
Char Swap 39.05 31.57 31.99 65.68 61.05 9.69 70.42 65.67 9.08 47.59 38.71 28.58 74.63 73.27 10.77 56.37 53.01 7.96
Char Repetition 42.84 37.18 25.4 68.26 64.55 6.15 73.12 69.74 5.29 58.91 52.84 11.09 79.62 78.92 4.82 57.98 55.14 5.33
Char Insertion 42.27 36.44 26.39 66.64 62.74 8.01 73.32 69.62 5.31 58.71 51.53 11.45 78.47 77.67 6.18 57.72 54.87 5.75
Char Deletion 42.67 36.91 25.7 66.37 61.33 7.37 72.88 69.21 5.88 57.73 50.5 12.35 78.21 77.44 6.49 57.18 54.37 6.63
Homoglyph (0.25) 49.75 45.76 13.37 65 60.11 10.25 71.12 67.06 7.01 55.56 46.9 16.62 76.22 75.08 9.06 56.35 53.77 8
Homoglyph (0.50) 47.53 42.73 17.24 62.58 57.27 13.96 66.66 60.68 14.01 51.18 41.79 23.18 69.65 67.68 16.9 54.24 51.69 11.44
LEET (0.25) 41.85 36.07 27.13 53.49 48.37 26.46 58.45 51.39 24.51 39.8 28.82 40.26 51.72 47.87 38.29 49.66 47.44 18.91

C
ha

ra
ct

er

LEET (0.50) 37.45 31.5 35.01 46.58 41.58 35.94 50.89 43.52 34.28 38.2 26.57 42.66 42.98 36.23 48.72 44.3 42.71 27.66

Table 3: Results on adversarial perturbations in zero-shot and few-shot setting. Here, SVD: Subject Verb Disagree-
ment, ASR: Attack Success Rate, Acc: Accuracy. None denotes accuracy on the original FEVER test set. The top 5
perturbations in terms of ASR are highlighted for each setting.

Perturbation Mistral Gemma
Acc F1 ASR Acc F1 ASR

None 81.11 80.85 – 72.07 71.51 –
Contractions 75.99 75.54 6.3 66.39 65.77 7.24
Expansions 76.33 75.89 5.88 66.47 65.86 7.13
Jumbling 58.08 56.18 28.38 52.22 49.88 27.05
Number to Words 75.9 75.46 6.42 66.27 65.65 7.41
Repeat Phrases 75.79 75.43 6.55 64.14 63.55 10.39
SVD 75.5 75.09 6.91 64.4 63.85 10.02
Typos 73.5 73.11 9.38 62.87 62.12 12.16
Word Repetition 75.08 74.72 7.43 63.78 63.25 11.47
Synonyms 75.12 74.68 7.39 65.42 64.79 8.59
Tautology 76.05 76.61 6.03 65.76 65.06 8.75
Phonetic (0.25) 76.05 75.61 6.12 66.54 65.92 7.66

W
or

d

Phonetic (0.50) 74.23 73.41 8.34 65.41 64.75 8.85
Char Swapping 71.89 71.42 11.35 62.87 62.1 12.76
Char Repetition 74.37 73.96 8.31 62.33 61.86 13.04
Char Insertion 73.68 73.22 9.16 62.07 61.43 13.23
Char Deletion 73.17 72.69 9.77 61.42 60.85 14.14
Homoglyph (0.25) 70.49 69.95 13.08 61.94 61.16 14.06
Homoglyph (0.50) 65.25 64.06 19.54 57.05 55.65 20.85
LEET (0.25) 52.22 46.71 39.35 49.11 47.07 31.86

C
ha

ra
ct

er

LEET (0.50) 42.7 37.78 47.35 44.26 41.73 38.58

Table 4: Results on adversarial perturbations in CoT
zero-shot setting. Here, SVD: Subject Verb Disagree-
ment, ASR: Attack Success Rate, Acc: Accuracy. None
denotes accuracy on the original FEVER test set.

populations? The models exhibit varying perfor-
mance across different demographic groups, sug-
gesting that models do not treat each group equally,
as certain subgroups achieve higher accuracy com-
pared to others. For instance, the zero-shot Llama
model has the lowest classification performance on
the Mexican subgroup, whereas the few-shot Llama
model underperforms on the Spanish subgroup.
How does temporal information affect the per-
formance of the models? All models exhibit supe-
rior performance when claims do not contain any
mention of temporal information. This indicates
that the models struggle to interpret and reason
about temporal information.
How does sentiment affect the performance of
the models? The models’ performance is signif-
icantly influenced by the sentiment of the claims.

Perturbation BERT
Acc F1 ASR

None 94.01 94 –
Contractions 81.36 81.22 13.45
Expansions 81.82 81.69 12.96
Jumbling 73.15 72.1 22.18
Number to Words 81.58 81.44 13.22
Repeat Phrases 78.81 78.62 16.16
SVD 81.57 81.42 13.23
Typos 75.03 74.5 20.18
Word Repetition 81.16 81.03 13.65
Synonyms 81.35 81.21 13.46
Tautology 80.26 80.17 14.61
Phonetic (0.25) 69.06 68.14 23.11

W
or

d

Phonetic (0.50) 64 63.56 28.48
Char Swapping 71.94 70.74 23.47
Char Repetition 75.55 75.1 19.63
Char Insertion 75.42 74.9 19.77
Char Deletion 75.46 74.98 19.73
Homoglyph (0.25) 75.58 74.96 19.6
Homoglyph (0.50) 70.87 69.97 24.61
LEET (0.25) 51.67 46.66 45.03

C
ha

ra
ct

er

LEET (0.50) 48.65 42.71 48.24

Table 5: Results on adversarial perturbations for BERT
model. Here, SVD: Subject Verb Disagreement, ASR:
Attack Success Rate, Acc: Accuracy. None denotes
accuracy on the original FEVER test set.

Claims with positive sentiments achieve higher ac-
curacy compared to those with negative or neutral
sentiments across all the models.
How do models perform on named entities sub-
populations? The results indicate that the models
can effectively handle various types of named en-
tities mentioned in claims. Both the zero-shot and
few-shot Llama models perform significantly better
on claims that include location information com-
pared to those mentioning person and organization
entities.

5.3 Qualitative Analysis

Figure 1 shows a few examples for the zero-shot
setting where models fail to correctly classify ad-
versarial samples. When the input text is perturbed,
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Llama Mistral Gemma
Zero-shot CoT Few-shot Zero-shot CoT Few-shot Zero-shot CoT Few-shot

Type Subpopulation Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

G
en Male 58.07 54.18 47.49 42.54 67.78 61.13 73.2 70.33 81.67 81.33 85.84 84.93 63.83 65.09 72.71 71.89 79.95 76.18

Female 57.01 53.36 46.46 42.04 67.8 60.07 72.4 68.05 81.95 81.44 88.08 87.29 65.09 61.42 76.65 76.27 78.11 75.62

N
at

io
na

lit
y

Chinese 45.71 47.43 37.14 32.72 45.71 45.13 65.71 66.62 68.57 70.71 80 80.13 45.71 47.51 82.85 82.53 71.42 72.07
British 60.86 56.43 48.06 41.67 69.08 62.28 73.18 70.25 83.57 83.18 80.43 80.43 65.94 3.04 74.15 73.24 79.22 74.91
Spanish 46.87 39.58 53.12 45.79 59.37 45.64 68.75 65.05 78.12 72.54 75 69.51 53.12 48.92 68.75 67.79 65.62 59.87
Indian 61.9 52.28 49.2 44.48 70.63 64.34 78.57 75.33 80.95 78.9 89.68 88.42 63.49 60.25 73.01 71.67 82.53 79.16
American 58.18 53.53 46.92 41.87 68.14 60.46 73.41 69.6 82.43 82.05 87.31 86.26 65.36 61.88 73.75 72.84 79.85 75.78
Australian 50.01 43.8 56.66 56.65 71.66 66.93 75.01 75.25 83.33 82.87 88.33 87.99 61.66 59.9 86.66 86.46 83.33 80.94
Mexican 36.58 23.67 51.21 47.1 58.52 54.85 65.85 67.57 80.48 80.41 85.36 85.06 65.85 65.91 75.6 73.72 80.42 76.32
Canadian 60.37 59.51 37.73 36.05 58.49 51.99 83.01 82.65 88.67 88.55 88.67 88.61 67.92 66.74 83.01 83.05 90.56 90.41
French 58.52 53.46 54.87 49.8 70.73 58.8 78.04 69.42 73.17 68.92 81.7 77.99 67.07 60.21 80.48 78.89 76.82 67.49

E
th

ni
ci

ty

English 65.78 61.74 39.47 34.83 71.05 59.89 76.31 71.76 78.94 72.45 92.1 92.2 65.78 62.62 81.57 81.29 81.57 81.29
British American 55.17 42.73 37.93 26.15 62.06 47.17 72.22 71.6 75.86 72.25 79.31 75.19 55.17 53.25 68.96 65.41 82.75 77.05
African American 61.11 49.56 52.77 45.43 80.55 75.94 80.55 81.81 86.11 86.14 88.88 88.15 66.66 65.47 72.22 70.71 88.87 88.45
Ashkenazi Jews 53.7 47.28 42.59 41.47 52 38.88 75.92 73.2 79.62 79.68 90.74 90.42 55.55 54.42 77.77 77.68 81.48 79.67
Chinese 47.61 49.89 33.33 28.87 42.85 41.81 66.66 67.59 80.95 82.14 90.47 90.7 42.85 42.35 76.19 75.79 66.66 67.97
Mexican Americans 57.14 36.98 47.61 27.35 80.95 55.1 66.66 50.28 71.42 65.07 90.47 86.34 71.42 51.55 85.71 86.9 90.47 89.28

Te
m Yes 54.65 53.53 45.31 40.97 57.54 53.22 72.61 68.72 80.41 79.99 77.87 76.23 61.79 58.21 69.15 69.06 78.91 78.48

No 58.06 55.11 47.62 45.04 68.68 62.4 73.29 72.92 84.19 84.37 83.59 83.73 59.44 57.56 72.73 72.03 77.11 73.71

Se
nt

Negative 54.16 53.69 40.83 38.39 59.93 57.3 66.17 66.21 80.58 79.09 82.89 83.28 54.77 55.66 71.72 71.71 72.49 72.1
Neutral 56.7 53.86 45.74 41.8 66.4 60.18 73.22 70.18 80.13 79.85 83.68 82.94 61.63 59.16 72.75 72.19 78.1 75.45
Positive 62.43 58.71 49.16 43.93 72.2 64.44 75.55 70.61 81.38 80.03 84.99 83.34 64.38 60.29 69.83 68.09 78.46 73.5

N
E

R Person 57.69 54.3 46.53 42.06 66.79 60.29 72.08 68.9 81.44 81.11 85.32 84.53 63.35 60.81 73.25 72.66 78.34 75.12
Location 59.32 56.42 45.99 41.19 69.62 63.4 73.13 69.79 81.35 80.98 83.88 82.94 60.91 58.44 71.21 70.47 77.3 74.28
Organization 58.79 56.79 45.55 41.46 67.32 61.77 72.59 69.54 81.22 80.97 83.75 83.35 59.67 57.32 71.42 71.07 77.68 75.4

Table 6: Subpopulation Performance across Zero-Shot, Few-Shot, and Chain-of-Thought (CoT) Setting for Llama,
Mistral and Gemma models. Here, Gen: Gender, Temp: Temporal, Sent: Sentiment, Acc: Accuracy.

Orig Claim Adv Claim Gold
Llama 
Orig / Adv

Mistral 
Orig / Adv

Gemma 
Orig / Adv

Matches were contested 
at SummerSlam.

Maţcℎes ẇere contested 
at SummerSlam. S S / NEI S / NEI S / NEI

Annie is the title of a 
work.

Anռiѐ is the title of a 
work. S S / R S / NEI S / NEI

The Wonder Years was 
only a book.

Thḙ Wөnđer Years was 
only a book. R R / NEI R / NEI R / S

Benjamin Franklin was 
born in 1790.

Beռjαmiה Franklin was 
born in 1790. R R / NEI R / NEI R / NEI

Spider-Man 2 was 
destroyed in 2004.

Spἰdѐr-Ṃan 2 was 
destroyed in 2004. NEI NEI / R R / NEI NEI / NEI

Figure 1: Predictions for homoglyph in the zero-shot
setting on the orig(inal) and adv(ersarial) claims.

the models often misclassify supported/refuted
classes as NEI (first 3 rows), suggesting that the
models struggle to maintain their understanding of
the original input when we apply subtle changes.
Gemma and Mistral are more robust compared to
Llama – example 5 illustrates a case where Gemma
and Mistral models show resilience to homoglyph
perturbations as opposed to Llama.

Figure 2 shows a few examples of character
swapping perturbations for few-shot setting. We
can see that (i) Llama and Mistral are fooled by
character swaps, while Gemma is robust (examples
1 and 5); (ii) all models are misled by character-
swap perturbations (examples 2 and 4); (iii) only
Mistral is robust (example 3).

5.4 Adversarial Training
To investigate the impact of adversarial training on
PLMs and LLMs, we conduct several experiments
on BERT and Mistral using the perturbations with
a high success rate. For BERT model, we generate
adversarial data by applying perturbations to the
training data. The adversarial data is then com-
bined with the original training data, and the model

Orig Claim Adv Claim Gold
Llama 
Orig / Adv

Mistral 
Orig / Adv

Gemma 
Orig / Adv

John S. McCain Jr. went 
to school.

jhon .s mccain jr. went 
to school. S S / NEI S / NEI S / S

1997 was the year No 
Way Out was released.

1979 aws the year no 
way out aws released. S S / R S / NEI S / R

Ares is a Senator. aers si a senator. NEI NEI / R NEI / NEI NEI / R
LinkedIn is based in 
Russia.

liknedin si based in 
russia. R R / S R / NEI R / NEI

2 Hearts is a song by 
Nirvana.

2 herats si a song by 
nirvana. R R / S R / S R / R

Figure 2: Predictions for character swap in the few-shot
setting on the orig(inal) and adv(ersarial) claims.

is re-trained on the augmented dataset. Table 7
shows the results for BERT. We observe that adver-
sarial training improves the robustness of the BERT
model. For example, in the case of LEET, phonetic,
and homoglyph perturbations, there is a significant
improvement compared to other perturbations.

Similarly, for the Mistral model, we incorporate
adversarial examples for each selected perturbation
in the prompts, along with their corresponding ex-
amples. A total of 12 adversarial examples were
added to the few-shot prompt, consisting of 6 orig-
inal examples and 6 adversarial examples. Table
8 shows the results for Mistral. It can be seen
that the addition of adversarial prompts increases
the robustness of the Mistral model against only a
few of the perturbations (highlighted). There is an
increase in ASR for the remaining perturbations,
which can be attributed to the added noise in the
prompts.

6 Conclusion

We introduced FACTEVAL, a novel large-scale
benchmark designed to evaluate the robustness of
large language models in the fact verification do-
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Acc F1 ASR w/o Adv. Acc. TS
W

or
d Phonetic (0.25) 78.99 78.7 15.89 23.11 93.93

Phonetic (0.50) 78.56 78.23 16.35 28.48 93.12
C

ha
ra

ct
er

Char Swapping 71.85 70.64 23.56 23.47 93.41
Char Repetition 76.32 75.93 18.74 19.63 93.56
Char Insertion 76.09 75.71 18.99 19.77 93.48
Char Deletion 76.07 75.22 19.01 19.73 93.89
Homoglyph (0.25) 78.65 78.33 16.04 19.6 93.69
Homoglyph (0.50) 75.93 75.29 18.95 24.61 93.7
LEET (0.25) 78.96 78.68 15.1 45.03 93.27
LEET (0.50) 77.12 76.76 17.08 48.24 93.01

Table 7: Results on adversarial perturbations using
BERT after adversarial training on augmented data.
Here w/o Adv is ASR without adversarial training, TS:
accuracy on actual test set.

Perturbation Mistral w/o Adv. Acc. TS
Acc F1 ASR ASR

Contractions 80.71 80.11 3.71 2.13 87.4
Expansions 80.67 80 3.76 2.07 87.46
Jumbling 69.01 67.34 17.67 28.59 85.21
Number to Words 80.45 79.84 4.02 2.21 87.35
Repeat Phrases 79.5 79.01 5.14 4.46 87.44
SVD 80.22 79.63 4.3 4.01 87.73
Typos-1 77.98 77.43 6.96 6.53 87.03
Word Repetition 78.18 77.82 6.72 5.01 86.92
Synonyms 79.89 79.28 4.68 2.91 87.37
Tautology 74.55 73.24 11.06 7.33 77.41
Phonetic (0.25) 77 76.5 8.14 4.96 82.55

W
or

d

Phonetic (0.50) 76.95 75.76 8.19 5.93 82.67
Char Swapping 76.34 75.56 8.92 10.77 82.88
Char Repetition 76.46 76.17 8.78 4.82 85.1
Char Insertion 74.25 74.11 11.42 6.18 83.18
Char Deletion 74.64 74.42 10.95 6.49 82.95
Homoglyph (0.25) 76.82 75.79 8.35 9.06 86.64
Homoglyph (0.50) 70.88 69.2 15.43 16.9 85.55
LEET (0.25) 64.18 63.44 23.42 38.29 86.6

C
ha

ra
ct

er

LEET (0.50) 51.08 51.08 39.05 48.72 85.74

Table 8: Results on adversarial perturbations for Mistral
after adding adversarial prompts.

main. We developed 16 word-level and character-
level perturbations, along with 4 types of subpop-
ulations. Our comprehensive evaluation covered
zero-shot, few-shot, and chain of thought prompt-
ing methods across Llama, Mistral, and Gemma
models. Our analysis revealed that LLMs are not
robust to these perturbations, with the Llama model
being the least robust compared to Mistral and
Gemma. Furthermore, our experiments show that
these models show varying performance on subpop-
ulations such as demographic groups, sentiment,
entity types, and temporal information. This indi-
cates that more work needs to be done to improve
the robustness of the models.

In future work, we plan to extend our framework
to other monolingual and code-mixed languages, al-
lowing for a more comprehensive evaluation of ro-
bustness across diverse linguistic contexts. We also
aim to explore providing explanations for model
failures through model explainability techniques,
which can offer valuable insights into the model’s
behavior and help identify areas for improvement.

Limitations

Like many studies, this research has certain lim-
itations that future investigations could address.
Specifically, our current work is focused exclu-
sively on the English language and textual inputs.
Multi-lingual and multi-modal data ought to be
also investigated. In addition, we have assumed no
white-box or black-box access to the model, and
thus, adversarial samples were generated by ran-
domly selecting words in the claim. This approach
may have perturbed words that are not critical to
the classification task. In future work, this lim-
itation can be addressed by assuming black-box
access and applying perturbations only to words
which are crucial for the model’s decision-making.
Moreover, all subpopulation subsets are derived
from a single, existing dataset, limiting the range
of subpopulations we could analyze. Some sub-
populations (demographic) with a small number of
samples were excluded from this analysis.

Ethics Statement

We utilize publicly available datasets for our experi-
ments. These datasets are used solely for academic
purposes and in full compliance with their licensing
agreements.
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A Implementation Details

All models were implemented using PyTorch and
HuggingFace’s (Wolf, 2019) for Llama, Mistral,
Gemma, and BERT models. The BERT-base model
has 12 transformer layers, a hidden size of 768, and
12 self-attention heads, with a total of 110 mil-
lion trainable parameters. We optimized the BERT
model using the Adam optimizer, with weight up-
dates computed based on categorical cross-entropy
loss. All computations were performed on an
NVIDIA A100-SXM4 GPU with 40 GB of mem-
ory. Named entities are extracted using spaCy
Named Entity Recognition.4

B Prompts

The zero-shot and few-shot prompts are presented
in Figure 3.

C Subpopulations

We include the dataset distribution across each sub-
population in Table 9. Our findings from Section

4https://spacy.io/api/entityrecognizer
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The claim is given in the form Claim: [claim], Evidence: [evidence], Answer: [answer]. You
need to give an answer in the [Answer] slot. Your task is to classify the Claim based on the

Evidence. There are three available answers that you can choose to fill the slot:
SUPPORTED, REFUTED, NOT_ENOUGH_INFO.

"SUPPORTED": If the evidence supports the claim.
"REFUTED": If the evidence contradicts the claim.

"NOT_ENOUGH_INFO": If the evidence does not provide sufficient information to determine
the claim's validity.

Only choose one class from above mentioned classes.
Here are some examples:

Claim: [Claim 1]
Evidence: [Claim 2]
Answer: [Answer 1]

....
Claim: [Testing instance]

Evidence: [Testing instance]
Answer: 

The claim is given in the form Claim: [claim], Evidence: [evidence], Answer: [answer]. You are
an intelligent fact checker trained on Wikipedia. You need to give an answer in the [Answer]
slot. Your task is to verify the Claim based on the given Evidence. There are three available

answers that you can choose to fill the slot:

            "SUPPORTED": If the evidence supports the claim.
            "REFUTED": If the evidence contradicts the claim.

            "NOT_ENOUGH_INFO": If the evidence does not provide sufficient information to
determine the claim's validity. 

      
Claim: [Testing instance]

Evidence: [Testing instance]
Choose one answer from the three classes: SUPPORTED, REFUTED

or NOT_ENOUGH_INFO. 
Answer:

Figure 3: Prompt in the few-shot (left) and the zero-shot setting (right).

5.2 indicate that the performance of LLMs mod-
els on various subpopulations is influenced by the
pre-training dataset used for each model. Since
we are not fine-tuning these models on specific
fact-checking datasets such as FEVER, their per-
formance is impacted by the biases and composi-
tion of their pre-trained corpora, which can vary
across models. For example, the sensitivity to sen-
timent or demographic factors in these models may
be more pronounced due to the representation (or
lack thereof) of certain sentiments or demographic
groups in their pre-training data.

Subpopulation Samples
Male 2657

Female 848
LOC 1824
PER 4614
ORG 2733

Positive 1824
Negative 4614
Neutral 2733

Temporal (Yes) 1835
Temporal (No) 8150

Chinese 35
British 414
Spanish 32
Indian 126

American 2050
Australia 60
Mexico 41
Canada 53
France 82

English people 38
British America 29

African American 36
Ashkenazi Jews 54
Chinese People 21

Mexican Americans 21

Table 9: Data distribution across subpopulations.
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