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Abstract
The rapid development of Large Multimodal
Models (LMMs) has significantly advanced
multimodal understanding by harnessing the
language abilities of Large Language Mod-
els (LLMs) and integrating modality-specific
encoders. However, LMMs are plagued by
hallucinations that limit their reliability and
adoption. While traditional methods to detect
and mitigate these hallucinations often involve
costly training or rely heavily on external mod-
els, recent approaches utilizing internal model
features present a promising alternative. In this
paper, we critically assess the limitations of
the state-of-the-art training-free technique, the
logit lens, in handling generalized visual hal-
lucinations. We introduce ContextualLens, a
refined method that leverages contextual token
embeddings from middle layers of LMMs. This
approach significantly improves hallucination
detection and grounding across diverse cate-
gories, including actions and OCR, while also
excelling in tasks requiring contextual under-
standing, such as spatial relations and attribute
comparison. Our novel grounding technique
yields highly precise bounding boxes, facilitat-
ing a transition from Zero-Shot Object Segmen-
tation to Grounded Visual Question Answering.
Our contributions pave the way for more reli-
able and interpretable multimodal models.

1 Introduction

Recent advancements in multimodal understand-
ing have been significantly driven by Large Mul-
timodal Models (LMMs), which capitalize on the
language capabilities of Large Language Models
(LLMs) and integrate modality-specific understand-
ing by training adapters that connect LLMs to pre-
trained modality-specific encoders (Jin et al., 2024).
However, critical issues inherent to LLMs, such as
the tendency to produce highly confident incor-
rect answers—known as hallucinations—are also
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Figure 1: Visual Hallucination Detection. Logit lens,
which only verifies the presence of the token "Green" in
the image, mistakenly considers the answer correct. In
contrast, ContextualLens assigns a low score to "Green"
as it correctly contextualizes the color to the jacket
rather than the hair.

transferred to LMMs (Bai et al., 2024). Moreover,
LMMs introduce additional hallucinations specific
to the integrated modalities (Liu et al., 2024a). Ad-
dressing these hallucinations, both by detecting
their occurrence and mitigating their effects, as
well as by providing evidence to support the gen-
erated responses, is crucial for fostering user trust
and facilitating the widespread adoption of these
technologies (Bohnet et al., 2022).

Detecting and mitigating hallucinations has been
extensively explored in both language (Tonmoy
et al., 2024) and vision domains (Liu et al., 2024a).
In the context of language, attribution and citation
have been proposed as approaches for providing
evidence to support model output (Gao et al., 2023;
Huo et al., 2023). In computer vision, similar meth-
ods are typically studied under Grounded Visual
Question Answering (Zhang et al., 2024; Khosh-
sirat and Kambhamettu, 2023). However, many
existing techniques necessitate either training from
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Figure 2: (a) We extract latent representations of image patches and answer tokens from intermediate layers, (b)
compute the cosine similarity between each image patch and the average embedding of the answer tokens to score
patches for hallucination detection, and (c) ground the answer in specific image patches.

scratch or fine-tuning (Jiang et al., 2024), and fre-
quently rely on external models such as retrievers
or object detectors. These requirements impose
significant training costs or result in increased la-
tency during inference, posing challenges to their
practical deployment in real-world scenarios.

Recent studies have increasingly leveraged in-
ternal model features, such as latent representa-
tions, logits, and attention weights, to tackle the
objectives of detecting hallucinations (Azaria and
Mitchell, 2023; Varshney et al., 2023) and ensur-
ing the grounding of generated outputs in LLMs
(Phukan et al., 2024; Qi et al., 2024). Notably, one
such study demonstrates the efficacy of a training-
free interpretability technique, known as the logit
lens, in identifying and mitigating object halluci-
nations within Visual-Language Models (VLMs)
(Jiang et al., 2024).

The logit lens technique, originally introduced
in the context of language models, involves directly
mapping intermediate activations to the vocabulary
space using the unembedding layer, allowing for
an interpretable view of token predictions at differ-
ent layers (nostalgebraist, 2020). By applying this
technique to VLMs, the authors probe each image
patch to determine the presence of objects.

However, we identify several fundamental limi-
tations with the application of the logit lens in this
context, which hinder its effectiveness in address-
ing more general forms of visual hallucinations
as categorized by Yan et al. (2024). We contend
that the reliance on token embeddings from the
unembedding layer—which are neither contextual
nor easily combinable to form multi-token con-

cepts—results in its failure to handle more general-
ized hallucination scenarios. Consequently, we pro-
pose leveraging token embeddings from the middle
layers, which have been shown to be contextual
(Phukan et al., 2024) and effective in representing
concepts (Wendler et al., 2024).

By employing contextual answer token embed-
dings, we are able to detect hallucinations in cat-
egories that were previously near random perfor-
mance and improve detection accuracy in other cat-
egories. Additionally, this method enables a transi-
tion from Zero-Shot Object Segmentation using the
logit lens technique to performing the more general
Grounded Visual Question Answering task. This
advancement underscores the potential of our ap-
proach in enhancing the reliability and interpretabil-
ity of multimodal models while operating in the
training-free paradigm.

Our contributions are threefold:

• We investigate the robustness of a SOTA
training-free VLM Object Hallucination De-
tection and Segmentation method on VQA
datasets. We find that the method does not
generalize well to actions and OCR, also com-
pletely failing on tasks requiring contextual
understanding such as attributes, spatial rela-
tions, and comparisons.

• We extend the method by introducing Con-
textualLens, which replaces the use of the
logit lens with contextual embeddings from
the middle layers of the VLM, leading to suc-
cessful hallucination detection in categories
that previously performed near random and
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improving detection accuracy in other cate-
gories.

• We propose a novel grounding technique that
returns highly precise bounding boxes, en-
abling a transition from Zero-Shot Object Seg-
mentation to performing the more general
Grounded Visual Question Answering task.

2 Related Work

2.1 Hallucination Detection and Mitigation in
Large Foundation Models

Recent advancements in hallucination detection
within LLMs have been driven by studying output
logits (Varshney et al., 2023), activations (Chen
et al., 2024a), and latent representations (Azaria
and Mitchell, 2023; Su et al., 2024). Despite the
progress in detection, predominant strategies for
hallucination mitigation encompass Retrieval Aug-
mented Generation (Gao et al., 2022; Peng et al.,
2023a), Iterative Prompting (Ji et al., 2023), Super-
vised Fine-tuning (Tian et al., 2023), and Alterna-
tive Decoding Strategies (Shi et al., 2023; Chuang
et al., 2023), requiring specific training or external
models.

Additionally, VLMs necessitate distinct ap-
proaches to tackle issues inherent to the vision
modality. Effective methods span increasing visual
resolution (Bai et al., 2023; Li et al., 2024), integrat-
ing segmentation and depth maps (Jain et al., 2024),
enhancing connection modules (Chen et al., 2024b),
and optimizing the decoding process (Huang et al.,
2024). Jiang et al. (2024) propose an innovative,
training-free method, using the logit lens to probe
individual image patch embeddings for the detec-
tion and mitigation of object hallucinations.

2.2 Attribution and Grounded Visual
Question Answering

In the language domain, citing or attributing gen-
erated texts to the sources are commonly studied
for building user trust. Methods fall into three ma-
jor categories: attribution using fine-tuned/trained
models (Gao et al., 2023; Sun et al., 2022), attri-
bution using external retrievers or auxiliary mod-
els (Huo et al., 2023; Lee et al., 2019; Ramu
et al., 2024; Sancheti et al., 2024), and methodolo-
gies that harness internal model features directly
(Phukan et al., 2024; Qi et al., 2024). Phukan
et al. (2024) leverage contextual embeddings from
the intermediate layers of LLMs to pair answer

tokens with document tokens by utilizing embed-
ding similarity. Similarly, Qi et al. (2024) employ
KL-divergence measures between logits with and
without contextual information to pinpoint context-
sensitive output tokens.

In the vision-language domain, the task of pro-
viding evidence for model outputs has been ex-
tensively explored under Grounded Visual Ques-
tion Answering (GVQA). Prior to the development
of LMMs, GVQA relied on custom, end-to-end
trained architectures (Tan and Bansal, 2019; Zhang
et al., 2021) or specialized attention mechanisms
(Urooj et al., 2021; Khoshsirat and Kambhamettu,
2023). More recent advancements have given rise
to grounding LMMs (Peng et al., 2023b; Rasheed
et al., 2024), which generate segmentation masks or
bounding boxes for objects and attributes in related
tasks such as Grounded Conversation Generation
(GCG), Grounded Image Captioning (GIC), and
Reference Expression Segmentation (RES). No-
tably, GROUNDHOG (Zhang et al., 2024) is a
grounding LMM capable of performing GVQA.

ContextualLens is inspired by the training-
free object hallucination detection and mitigation
method proposed by Jiang et al. (2024), but with
a crucial distinction. We utilize output token em-
beddings from intermediate layers instead of em-
ploying the logit lens probe. This modification
enables us to overcome several limitations of the
previous work, particularly by enhancing the rep-
resentation of multi-token concepts and contextual
relationships (§4.2).

3 Preliminaries

3.1 Vision Language Model Architecture

Vision-Language Models (VLMs) such as Llava
(Liu et al., 2024b) use the following general recipe
to blend visual and textual inputs. Formally, let
Mvl denote a VLM, comprising three primary
components: a vision encoder V , a connection
module C, and a Large Language Model (LLM)
Ml. Given an input image I , the vision encoder V
processes this image to produce n image features,
each corresponding to a distinct patch within the
image. These features are then projected by the
connection module C into the d-dimensional input
embedding space of the LLM Ml. Subsequently, a
textual prompt p is concatenated with the projected
image features to generate a sequence of m text fea-
tures. This combined sequence traverses through
the L layers of Ml, where each layer refines and
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(a) Big Ben (b) Chart

Figure 3: Qualitative examples for Grounded Visual Question Answering. Here is a GUI where we pass an image
and ask a question. After the answer is generated, we select the span and click "Generate Attribution". Observe, the
bounding boxes correctly ground the selected span to the image.

integrates the multimodal information. For a given
input embedding x, we denote the latent represen-
tation at layer l as hl(x). Lastly, at the final layer,
these latent representations are mapped back to the
vocabulary space using the Unembedding Matrix
WU ∈ R|V |×d, where V represents the vocabulary
of Ml.

3.2 Interpreting Latent Representations

The logit lens technique involves applying the Un-
embedding Matrix WU to intermediate latent rep-
resentations hl(x) in order to obtain logit distribu-
tions over the entire vocabulary. Jiang et al. (2024)
utilized this technique to estimate the probability
of individual image patches aligning with specific
tokens in the vocabulary by performing WU ·hl(ti),
where ti represents the intermediate representation
of an image patch.

Phukan et al. (2024) highlighted how to map an-
swers tokens to document tokens using contextual
embeddings from intermediate latent representa-
tions. Given a span of tokens, the embedding for
the entire span is computed by averaging the em-
beddings of the individual tokens within that span.

To compare the similarity between spans, co-
sine similarity is employed. The scoring enables
the effective comparison of contextual embeddings
derived from different spans, facilitating the iden-

tification of semantically related segments within
the text.

3.3 Grounded Visual Question Answering

Grounded Visual Question Answering (GVQA) ex-
tends traditional VQA by incorporating the explicit
requirement for the answers to be justified with
visual evidence from the image. Given an input
image I , a textual question Q, and a VLM Mvl,
the model generates an answer A and a ground-
ing map G. The grounding map G identifies the
regions within the image I that correspond to the
elements of the answer A. The critical challenge in
GVQA lies in ensuring that the grounding map G
faithfully represents the visual basis for each part
of the generated answer A.

4 Proposed Work

4.1 Motivation

Hallucination detection and mitigation in both lan-
guage and vision modalities have mostly involved
extensive re-training or fine-tuning, substantially
increasing computational costs and latency, which
hampers their real-world applicability. The logit
lens methodology, which probes individual image
patches using token embeddings from the unem-
bedding layer, marks a step forward by offering
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a training-free alternative in the vision-language
domain.

However, as demonstrated in our analysis (§6.1),
the logit lens method exhibits significant perfor-
mance degradation when applied to more complex
hallucination scenarios, such as those involving at-
tributes, comparisons, and relations among objects.
This limitation is primarily due to its reliance on
non-contextual embeddings, which are incapable of
effectively representing multi-token concepts and
contextual elements such as spatial relationships
and attribute-based discrepancies.

We aim to address the shortcomings of the logit
lens by leveraging middle-layer, contextual embed-
dings known for their ability to encapsulate richer
semantic information. By doing so, we hope to
enhance hallucination detection across a more com-
prehensive range of categories and provide precise
visual grounding, while maintaining the compu-
tational efficiency and training-free nature of the
logit lens.

4.2 Methodology

4.2.1 Hallucination Detection
To perform hallucination detection, we utilize the
contextual embeddings from intermediate layers of
the VLM. Our method proceeds as follows:

Given the answer tokens generated by the model,
we compute the average embedding at a spe-
cific layer lT , denoted as hAns,lT . Formally, let
{t1, t2, . . . , tk} be the sequence of answer tokens,
and hlT (ti) be the embedding of token ti at layer
lT . The average embedding hAns,lT is computed
as:

hAns,lT =
1

k

k∑

i=1

hlT (ti)

Next, we evaluate the similarity between
the answer embedding hAns,lT and each image
patch embedding from a specific layer lI . Let
{p1, p2, . . . , pn} denote the set of image patches,
and hlI (pj) be the embedding of patch pj at layer
lI . We compute the score for each patch pj as the
cosine similarity:

Score(pj) = CosineSim(hAns,lT , hlI (pj))

The resulting scores, denoted as Scores, repre-
sent the relevance of each image patch with respect

to the answer embedding. To determine the confi-
dence for hallucination, we consider the maximum
score in Scores:

Confidencemax = max(Scores)

A high Confidencemax indicates a low likelihood
of hallucination, as it suggests a strong correspon-
dence between the answer and at least one image
patch. Conversely, a low Confidencemax signals
potential hallucination, implying that the answer
may not be visually supported by any segment of
the image.

4.2.2 Grounded Visual Question Answering
To effectively ground the generated answers in cor-
responding image regions, we introduce two tech-
niques: a refined version of (Jiang et al., 2024)
based on contextual embeddings and an alternative
approach that directly returns bounding boxes for
visual grounding.

Basic Technique: In our first approach, we com-
pute the average embedding of the answer tokens
across all layers, denoted as hAns, with a shape of
(L, d), where L represents the number of layers
and d the embedding dimension. Formally, given
the sequence of answer tokens {t1, t2, . . . , tk}, the
answer embedding hAns is computed as follows:

hAns,l =
1

k

k∑

i=1

hl(ti), l∈{1,2,...,L}

This results in a layer-wise answer embedding
hAns = (hAns,1, hAns,2, . . . , hAns,L). Simultane-
ously, for each image patch pj , we extract its
embedding across all layers, denoted as hpj =
(h1(pj), h2(pj), . . . , hL(pj)).

For each layer, we compute the cosine simi-
larity between the layer-specific answer embed-
ding hAns,l and the corresponding image patch
embedding hl(pj). This gives us a set of
scores for each patch across layers: Scoresl =
{Scorel(p1),Scorel(p2), . . . ,Scorel(pn)}.

The final score for each patch pj is determined
by taking the maximum score across all layers:

FinalScore(pj) = max
l∈{1,...,L}

(Scorel(pj))

This method allows us to evaluate the relevance
of each image patch to the answer tokens, providing
a grounding map based on the similarity score. This
map is resized to the original image dimensions.
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Category InternlmVL-7B Qwen2VL-7B
Random LL Out Probs CL (Ours) Random LL Out Probs CL (Ours)

Action 0.776 0.795 0.787 0.796 0.604 0.636 0.710 0.752
Attribute 0.796 0.786 0.820 0.825 0.812 0.830 0.839 0.911
Comparison 0.576 0.580 0.563 0.623 0.548 0.558 0.567 0.685
Count 0.856 0.898 0.946 0.885 0.804 0.860 0.956 0.889
Environment 0.748 0.771 0.835 0.811 0.600 0.465 0.633 0.682
Relation 0.656 0.668 0.755 0.755 0.592 0.572 0.647 0.655
OCR 0.740 0.769 0.856 0.772 0.740 0.793 0.860 0.871

Table 1: Comparison of mAP scores across different hallucination categories in the HQH dataset. The best-
performing method in each category is bolded if it is significantly better than the second-best, and underlined if the
difference is marginal.

Bounding Box Technique: In our second ap-
proach, we directly identify bounding boxes that
correspond to answer tokens, bypassing the need
for thresholding each patch. This approach is more
robust for practical applications.

Given the average embedding of the answer to-
kens at a specific layer lb, denoted as hAns, we
aim to identify the most relevant bounding box
from a set of potential bounding boxes S. Let W
and H be the number of image patches across the
width and height of the image, respectively. Thus,
|S| = W 2 ×H2, representing all possible bound-
ing boxes within the image.

For each bounding box s ∈ S, we define the
embedding hs as the average embedding of all the
image patches within the bounding box at layer lb:

hs =
1

|Ps|
∑

pj∈Ps

hlb(pj)

where Ps is the set of patches contained in the
bounding box s, and hlb(pj) represents the embed-
ding of patch pj at layer lb.

Next, we compute the cosine similarity between
the answer embedding hAns and the embedding of
each bounding box hs. The bounding box s∗ that
maximizes this cosine similarity is selected as the
grounded region:

s∗ = argmax
s∈S

CosineSim(hAns, hs)

This method harnesses the average embeddings
of the answer tokens and bounding boxes to directly
locate the most relevant region within the image
that corresponds to the generated answer.

5 Experimental Setup

5.1 Datasets
We conducted experiments on three datasets to eval-
uate methods for both tasks outlined in §4.2. More

details can be found in Appendix A.
Hallucination Detection: We experimented on
High-Quality Hallucination Benchmark (HQH)
(Yan et al., 2024) dataset, comprising 4,000 image-
question pairs accompanied by ground-truth an-
swers and categorized into eight distinct types of
potential hallucination scenarios, allowing us to
test for the generalization of methods.
Grounded VQA: Experiments on two datasets
TextVQA-X (Rao et al., 2021) and VizWiz-G
(Chen et al., 2022) highlight the capability of our
method’s grounding performance on GVQA task.
The datasets have 3,620 and 1,131 image-question
pairs respectively.

5.2 Metrics

We use the Mean Average Precision (mAP) metric
for hallucination detection and plot the Precision-
Recall Curve to evaluate the grounding aspect of
GVQA. More details can be found in Appendix B.

5.3 Baselines

5.3.1 Hallucination Detection
We employ two primary baselines for compara-
tive evaluation. The first baseline leverages the
maximum probability across the generated answer
tokens, referred to as Output Probabilities (Out
Probs). The second baseline is the work by Jiang
et al. (2024) (LL). They evaluate the hallucination
likelihood by taking the maximum value of the
softmax-normalized output token logits over all
layers. Logit computation is described in §3.2.

5.3.2 Grounded Visual Question Answering
We adapt the method proposed by (Jiang et al.,
2024) for zero-shot segmentation, which to the best
of our knowledge is the only training-free ground-
ing technique for VLMs. We take the mean internal
confidence for tokens comprising the answer, sim-
ilar to how they perform hallucination detection.
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We resize the set of internal confidence values per
image patch back to the size of the image.

6 Results and Analysis

We perform experiments for our approach with
the following VLMs: Qwen2-VL-7B (Wang et al.,
2024) and internlm-xcomposer2-vl-7b (Dong
et al., 2024). All of our experiments were run on a
A100 machine with 4 80GB GPUs.

6.1 Hallucination Detection

The performance of ContextualLens (§4.2.1) and
the baseline methods (§5.3.1) on the HQH dataset
is summarized in Table 1. Each category com-
prises 500 image-question pairs. To select the best
layer combination for our method, we created a
test and validation split with 250 examples each.
The scores in Table 1 are reported for the test split.
Further details on how to perform layer selection
in real-world settings, including a robustness anal-
ysis using adversarial validation, are provided in
Appendix C.

Notably, the logit lens technique, although effec-
tive for object hallucination detection as shown
by (Jiang et al., 2024), performs nearly at ran-
dom in the Attribute, Comparison, and Relation
categories across both models. Further investiga-
tion into the types of questions in these categories
reveals that the Attribute category often involves
questions about the color of objects, the Compar-
ison category includes questions comparing two
objects (e.g., which is larger), and the Relation cat-
egory consists of questions about objects’ spatial re-
lations. The logit lens technique falls short in these
scenarios because it relies on non-contextual em-
beddings and thus can only determine the presence
of objects or features, not their spatial relationships
or comparative attributes.

For instance, in the Attribute category, if the
question is about the color of an object (e.g., "What
is the color of the ball?") and the model answers
"blue," the logit lens can only verify the presence
of the color blue in the image but not whether the
color pertains to the ball or another object like the
sky. This underscores the limitation of using non-
contextual embeddings for complex hallucination
detection tasks.

Our method, which employs contextual embed-
dings, fares significantly better in these categories
compared to the logit lens approach and often out-
performs even output probabilities, sometimes by

a substantial margin. We refer readers to Figures 6
and 7 for some qualitative examples.

For categories such as Action and OCR, where
grounding actions (e.g., "Looking at the Televi-
sion") or text (e.g., "Melrose Ave.") is necessary,
the logit lens technique performs better than ran-
dom but still falls short compared to output prob-
abilities. This is likely due to the logit lens’s poor
handling of multi-token objects. While objects
which are usually single token may align rela-
tively well, the complexity of representing actions
or texts across multiple tokens poses challenges.
Our approach, leveraging middle-layer embeddings
known to better represent multi-token concepts
(Wendler et al., 2024), consistently outperforms
the logit lens and, in many instances, surpasses
output probabilities. See Figure 8 for a qualitative
example.

Interestingly, output probabilities excel in the
Count category compared to both ContextualLens
and the logit lens. This category involves ques-
tions about the number of instances of a specific
object. The inherent challenge for our approach
and the logit lens is that visual elements often have
low semantic overlap with numerical tokens (e.g., a
"car" in the image is unlikely to semantically match
"two" in the text). Consequently, output probabili-
ties provide more accurate hallucination detection
in such scenarios. A failure case is illustrated in
Figure 9.

6.2 Grounded Visual Question Answering
The performance of our methods (§4.2.2) and
the baseline method (§5.3.2) on the TextVQA-X
dataset and VizWiz-G dataset is summarized in
Figure 4 and 5 respectively.

From the plots, it is evident that our adaptation
of Jiang et al. (2024)’s method for object segmen-
tation, by replacing the logit lens with contextual
middle layer representations, consistently leads to
better grounding for VQA across the tested models
and datasets. The TextVQA-X dataset is analogous
to the OCR category in the HQH dataset, while
VizWiz-G encompasses attributes, OCR, and gen-
eral object segmentation. Our method’s improved
grounding performance highlights the utility of us-
ing contextual and conceptual embeddings, which
also elucidates why we achieve superior hallucina-
tion detection.

An essential use case of grounded VQA is not
only to understand what image features contribute
to answer generation but also to guide users to the
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Figure 4: PR Curves on the TextVQA-X dataset.

Figure 5: PR Curves on the VizWiz-G dataset.

general location of the evidence within the image.
This need parallels the concept of attribution ex-
plored in LLMs and textual domains. We term
this broader application in VLMs as multimodal
attribution, where precision is more critical than re-
call. Users prioritize accurate identification of the
general evidence location over highlighting every
relevant pixel. This is precisely where our bound-
ing box method proves valuable.

As illustrated in Figures 4 and 5, the precision
of the bounding box method is often significantly
higher than what can be achieved by navigating
the PR-Curve for the basic version. This precision
makes it particularly useful for multimodal attri-
bution, providing users with accurate general loca-
tions of evidence, which they can then verify. The
higher precision and comparatively lower recall
is because we identify the optimal bounding box,
which perfectly encloses the relevant evidence. The
recall is higher on TextVQA-X since we ground
text, and the optimal bounding box often encloses
the entire textual element. In VizWiz-G, however,
questions about object attributes like color could
be satisfied by highlighting a small patch of that
color on the object, leading to a lower recall.

6.2.1 Qualitative Examples
Some qualitative results of our bounding box vi-
sual grounding technique are showcased in Figure
3. For instance, in Figure 3a, we ground the phrase
"Big Ben" to its corresponding location in the im-
age. Our method effectively highlights the relevant
portion by leveraging the latent conceptual repre-
sentation of "Big Ben" intrinsic to the LMM, facil-
itating the mapping between textual descriptions
and visual concepts. Another example is depicted
in Figure 3b. Remarkably, our method proficiently
grounds answers within charts and infographics,
a novel capability within the community to the
best of our knowledge, achievable in a training-
free manner. Additional qualitative examples are
available in Appendix D.

7 Discussion & Conclusion

In this paper, we presented ContextualLens, an ap-
proach for detecting hallucinations in LMMs by
leveraging contextual token embeddings from in-
termediate layers. We identified limitations in the
state-of-the-art training-free technique, the logit
lens, notably its poor handling of complex visual
hallucinations involving attributes, comparisons,
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and spatial relations due to its reliance on non-
contextual embeddings. Our proposed method
employs contextual embeddings known to capture
richer semantic information, improving hallucina-
tion detection across diverse categories.

Our experimental results on the HQH benchmark
showed that ContextualLens enables detection in
categories that previously performed near random
and improves detection for multi-token concept rep-
resentation. Furthermore, by introducing a novel
grounding technique with highly precise bound-
ing boxes, we advanced Zero-Shot Object Segmen-
tation to a more general GVQA task, validating
our approach’s effectiveness on TextVQA-X and
VizWiz-G datasets.

Our method’s precision and training-free
paradigm circumvent the computational costs of
re-training or fine-tuning, promoting its practical
applicability in real-world multimodal attribution
tasks. Our contributions pave the way for more
reliable and user-trustworthy LMMs.

8 Limitations & Future Work

While our work significantly advances the state-of-
the-art in training-free hallucination detection and
grounding in LMMs, it has some limitations that
provide exciting avenues for future research.

Firstly, the validation of both hallucination detec-
tion and grounding has been conducted primarily
on factual short answer VQA datasets. Extending
this to more diverse and complex datasets remains
an area for exploration. Secondly, Contextual-
Lens is outperformed by output probabilities in the
Count category. Future work could explore exten-
sions to the method for abstractive scenarios such
as counting. Lastly, although our method excels at
highlighting precise evidence regions sufficient for
human verification, improving recall remains an
open challenge. Subsequent research could investi-
gate leveraging our scoring mechanisms as priors
for pre-trained segmentation models or improving
the evaluation metrics for grounded visual question
answering.
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A Datasets

High-Quality Hallucination Benchmark (HQH)
(Yan et al., 2024): This dataset comprises 4,000
image-question pairs accompanied by ground-truth
answers and is categorized into eight distinct types
of potential hallucination scenarios: Attribute, Ac-
tion, Counting, Environment, Comparison, Re-
lation, OCR, and Existence. The questions in
HQH are open-ended, eliciting concise and di-
rect answers. Evaluation within this benchmark
is conducted using GPT-3.5 prompting, which has
demonstrated high reliability and validity. This
benchmark allows us to assess the generalization
capabilities of our proposed strategies across multi-
ple hallucination categories. Notably, we exclude
the existence category from our evaluation, as our
focus is on determining the presence of objects in
the image, rather than assessing exhaustive object
enumeration.
TextVQA-X (Rao et al., 2021): This dataset fea-
tures human-annotated multimodal explanations,
including ground truth segmentation maps and
multiple references for textual explanations con-
taining text within images. For our experiments,
we utilize the validation split, which consists of
3,620 image-question pairs related to scene-text, ac-
companied by corresponding ground-truth answers.
This dataset enables the assessment of grounding
performance on GVQA task.
VizWiz-G (Chen et al., 2022): This dataset focuses
on visually grounding answers to visual questions
posed by individuals with visual impairments. An-
other GVQA dataset, VizWiz-G’s validation split
includes 1,131 image-question pairs, each paired
with a ground-truth answer and a corresponding
segmentation mask.

B Metrics

B.1 Hallucination Detection
Mean Average Precision (mAP): We measure hal-
lucination detection by framing it as a binary classi-
fication task. mAP provides a comprehensive evalu-
ation by considering the precision-recall trade-offs
across various threshold values.

B.2 Grounded Visual Question Answering
Precision-Recall Curve: To evaluate the ground-
ing aspect of GVQA, we use Precision-Recall (PR)
curves. For methods yielding a confidence score
for grounding, we compute precision and recall at
various threshold levels and plot the corresponding

PR curve. This provides insights into the trade-offs
between precision and recall across different set-
tings, offering a detailed evaluation of grounding
performance. For methods that directly output a
segmentation mask, precision and recall are com-
puted, and the corresponding point is plotted on the
PR curve for comparison.

C Optimal Layer Selection

We use the hallucination detection task to discuss
optimal layer selection, as its diverse categories
make it ideal for evaluating robustness. The re-
sults in Table 1 were obtained using category-
specific validation sets (250 examples per cat-
egory). To test robustness, we conducted ex-
periments with adversarial validation sets, where
the category being tested was excluded from the
validation data (1,500 examples: 250 × 6 cate-
gories). For InternLM-VL, we observed that Im-
age layer embedding 13 and Text layer embedding
27 consistently ranked among the top two combi-
nations across all categories. These results, sum-
marized in Table 2, demonstrate that for all cat-
egories—except OCR—the performance closely
matches that achieved with task-specific validation,
indicating the robustness of layer selection. In the
absence of task-specific data, a robust method for
selecting optimal layers would be to identify those
that rank highest during adversarial validation for
available categories.

Category Task Specific Adversarial
Action 0.796 0.792
Attribute 0.825 0.833
Comparison 0.623 0.638
Count 0.885 0.896
Environment 0.811 0.813
Relation 0.755 0.752
OCR 0.772 0.744

Table 2: InternLM-VL mAP scores on HQH dataset for
task-specific and adversarial validation.

D Additional Qualitative examples for
Grounded Visual Question Answering

Figure 10 shows some scenarios in which our
bounding box based multimodal attribution system
could be used.
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(a) Question: What is the color of the doll? Answer: Brown (b) Question: What is the color of the pillow? Answer: Brown

Figure 6: Top 20 image patches while detecting hallucination in attribute category using ContextualLens. We see
that text tokens "Brown" are contextualized by the objects they refer to.

(a) Question: What is the older boy holding? Answer: Ball (b) Question: What is the younger boy holding? Answer: Ball

Figure 7: Top 5 image patches while detecting hallucination in comparison category using ContextualLens. We see
that image patches corresponding to the younger boy’s hand are also highlighted in the second case.
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(a) Question: What is written on the bus? Answer: Michigan (b) Question: What is written on the bus? Answer: New York

Figure 8: Top 100 image patches while detecting hallucination in OCR category using ContextualLens. We see that
image patches corresponding to multi-token "Michigan" are highlighted in the first case.

(a) Question: How many people are in this picture? Answer: 3 (b) Question: How many people are in this picture? Answer: 2

Figure 9: Top 20 image patches while detecting hallucination in count category using ContextualLens. We see that
image patches highlighted in both cases are similar and the score for the second case is higher (0.891 < 0.892).
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(a) The image shows a direction board with Chinese text. The
red box highlights the Chinese phrase, linking it to the English
translation.

(b) The image shows a hand-filled bank cheque. The red box
highlights the word “PAY,” linking it to the phrase “made out
to,” which means “to pay someone.”

(c) The image shows a timetable sheet. The red box highlights
the square with the schedule for the date corresponding to the
school holiday.

(d) The image shows a snapshot of luggage being packed. The
red box highlights the notes associated with the packed lug-
gage.

Figure 10: Additional qualitative examples for Grounded Visual Question Answering.
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