JMMMU: A Japanese Massive Multi-discipline Multimodal Understanding Benchmark for Culture-aware Evaluation

Shota Onohara, Atsuyuki Miyai, Yuki Imajuku, Kazuki Egashira, Jeonghun Baek, Xiang Yue, Graham Neubig, Kiyoharu Aizawa


Anthology ID:
2025.naacl-long.43
Volume:
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Month:
April
Year:
2025
Address:
Albuquerque, New Mexico
Editors:
Luis Chiruzzo, Alan Ritter, Lu Wang
Venue:
NAACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
932–950
Language:
URL:
https://preview.aclanthology.org/moar-dois/2025.naacl-long.43/
DOI:
10.18653/v1/2025.naacl-long.43
Bibkey:
Cite (ACL):
Shota Onohara, Atsuyuki Miyai, Yuki Imajuku, Kazuki Egashira, Jeonghun Baek, Xiang Yue, Graham Neubig, and Kiyoharu Aizawa. 2025. JMMMU: A Japanese Massive Multi-discipline Multimodal Understanding Benchmark for Culture-aware Evaluation. In Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pages 932–950, Albuquerque, New Mexico. Association for Computational Linguistics.
Cite (Informal):
JMMMU: A Japanese Massive Multi-discipline Multimodal Understanding Benchmark for Culture-aware Evaluation (Onohara et al., NAACL 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/moar-dois/2025.naacl-long.43.pdf