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Abstract

Despite being pretrained on multilingual cor-
pora, large language models (LLMs) exhibit
suboptimal performance on low-resource lan-
guages. Recent approaches have leveraged mul-
tilingual encoders alongside LLMs by introduc-
ing trainable parameters connecting the two
models. However, these methods typically fo-
cus on the encoder’s output, overlooking valu-
able information from other layers. We pro-
pose Layer-Wise Adaptive Fusion and Align-
ment Strategy (LayAlign), a framework that
integrates representations from all encoder lay-
ers, coupled with the adaptive fusion-enhanced
attention mechanism to enable layer-wise inter-
action between the LLM and the multilingual
encoder. Extensive experiments on multilin-
gual reasoning tasks, along with analyses of
learned representations, show that our approach
consistently outperforms existing baselines.

1 Introduction

Large Language Models (LLMs) are predominantly
trained on corpora emphasizing a select group of
high-resource languages, enabling them to demon-
strate strong reasoning capabilities in tasks such
as mathematics (Yu et al., 2024; Azerbayev et al.,
2024; Luo et al., 2023; Mitra et al., 2024) and com-
monsense reasoning (Finch and Choi, 2024; Fang
et al., 2024). However, most of these LLMs are de-
rived from English-centric models and fine-tuned
using English-specific downstream data. Conse-
quently, their performance in low-resource lan-
guages remains significantly limited, leading to
pronounced disparities between high-resource and
low-resource language capabilities.

While multilingual pretrained models attempt to
bridge this gap by supporting a broader set of lan-
guages, they often exhibit limited reasoning abil-
ities due to constrained training data and model

*Equal Contribution.
†Corresponding Author.

parameters (Xue et al., 2021; Team et al., 2022).
In contrast, English-centric LLMs display strong
reasoning skills but struggle with multilingual un-
derstanding, leading to poorer performance in low-
resource languages. Inspired by multimodal ap-
proaches (Alayrac et al., 2022; Liu et al., 2023;
Chen et al., 2024a; Zhou et al., 2024), works like
LangBridge (Yoon et al., 2024) and MindMerger
(Huang et al., 2024) aim to enhance multilingual
reasoning by integrating a multilingual encoder
(Xue et al., 2021) with an LLM via a trainable
adapter. However, these methods focus only on
the top multilingual encoder layer, overlooking the
potential richness of intermediate representations.

In this paper, we introduce Layer-Wise Adap-
tive Fusion and Alignment Strategy (LayAlign),
a framework that integrates representations from
all multilingual encoder layers by applying dis-
tinct fusion ratios for each LLM layer. This ap-
proach enables the model to leverage both low-
and high-level representations effectively. To in-
corporate the fused multilingual representations
into the decoder-only LLM, we propose a adaptive
fusion-enhanced attention mechanism combining
cross-attention and self-attention. This mechanism
uses representations from the layer-wise aligner
to generate key-value pairs, with learnable gate
parameters modulating cross-attention intensity.

LayAlign is optimized with a two-stage finetun-
ing scheme, keeping both the multilingual encoder
and LLM backbone frozen. LayAlign encourages
the model to select representations from appropri-
ate encoder layers, facilitating a shared multilin-
gual representation space across all LLM layers.
We evaluate the effectiveness of LayAlign on math-
ematical and commonsense reasoning tasks. Our
experimental results and analyses of the learned
representation space demonstrate that LayAlign
significantly improves reasoning performance for
low-resource languages while maintaining strong
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results for high-resource languages.1

2 Related Work

2.1 Multilingual Large Language Models

To address the demand for supporting global
linguistic diversity, researchers have expanded
into multilingual LLMs (Qin et al., 2025). Ad-
vanced models like Qwen2 (Yang et al., 2024) and
LLaMA3 (AI@Meta, 2024) support multiple lan-
guages, showcasing robust multilingual capabil-
ities. However, these models are trained from
scratch, which incurs substantial computational
costs and requires extensive datasets for relevant
languages, often leading to inadequate support
for low-resource languages. These meticulously
trained models frequently face challenges in scal-
ing to other languages, particularly those with
lower representation in the training data.

Recently, LangBridge (Yoon et al., 2024) and
MindMerger (Huang et al., 2024) feature an
English-centric LLM backbone, a multilingual en-
coder that offers multilingual information, and an
adapter that facilitates interoperability between
the multilingual and English languages. How-
ever, these approaches are limited to representa-
tions from the topmost encoder layer, neglecting
potentially valuable insights from other layers. Our
LayAlign framework follows this line and explores
to better leverage the multilingual information of
different encoder layers to enhance the multilingual
reasoning abilities of LLMs.

2.2 Aligning Pretrained Representations

The integration of encoders with large language
models (LLMs) has been widely studied in the
cross-modal domain (Liu et al., 2023; Chen et al.,
2024a; Zhou et al., 2024). Many approaches uti-
lize vision-to-language adapter modules to align
visual and textual modalities, mapping the output
of vision encoders to the soft prompt inputs of
LLMs. Other works employ cross-attention mecha-
nisms to enable more direct interaction between im-
age and text representations (Alayrac et al., 2022;
Chen et al., 2024b). Drawing inspiration from these
cross-modal strategies, our method enhances mul-
tilingual reasoning by integrating a multilingual
encoder with an LLM. To bridge the gap between
these components, we introduce an aligner that
enables efficient interaction via cross-attention.

1Our code and models are publicly available at https:
//github.com/sustech-nlp/LayAlign.

3 Method

We introduce LayAlign, which facilitates the di-
rect interaction between all layers of the LLM
and the representations of the multilingual encoder
through a layer-wise aligner and adaptive fusion-
enhanced attention. This approach allows for a
more comprehensive integration of language com-
prehension information from the encoder, thereby
enhancing the multilingual reasoning capabilities
of LLM. In the subsequent sections, we provide
a detailed overview of our framework, focusing
on the model architecture (Section 3.1), adaptive
fusion-enhanced attention (Section 3.2), and train-
ing methodology (Section 3.3).

3.1 Model Architecture

As depicted in Figure 1, the adapter and layer-wise
aligner are designed to align a multilingual encoder
with n layers to the representation space of an LLM
with m layers. The input multilingual text Iin is
processed by the encoder, producing a series of rep-
resentations {H1, H2, . . . ,Hn}, where Hi denotes
the output of the i-th encoder layer. Following prior
work (Yoon et al., 2024), an adapter is employed
to map the final layer’s representation Hn to the
soft prompt input Imap for the LLM, thereby en-
hancing multilingual reasoning capabilities, where
Imap = Adapter(Hn).

However, this approach only utilizes the final
layer representation Hn, disregarding the inter-
mediate representations from the embedding H0

through the encoder layers H1, . . . ,Hn−1. To fully
harness the multilingual potential of the encoder,
we propose a novel layer-wise aligner that explic-
itly integrates both low-level and high-level rep-
resentations from multiple layers of the multilin-
gual encoder, rather than relying solely on the final
layer’s output.

For each LLM layer, the layer-wise aligner gen-
erates a fused representation by assigning distinct
weights to different multilingual encoder layers.
This mechanism allows the model to learn the op-
timal combination of low-level and high-level fea-
tures across encoder layers, establishing a corre-
spondence between the multilingual encoder and
each LLM layer. While the adapter leverages the
final layer representation of the encoder, the layer-
wise aligner integrates information from the embed-
ding layer and intermediate encoder layers, enrich-
ing the LLM with additional multilingual context.
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Figure 1: Overview of LayAlign. A multilingual encoder is aligned with the target LLM with an adapter and
the layer-wise aligner. We keep the multilingual encoder and LLM frozen, whereas the adapter and layer-wise
aligner are optimized in two stages. For simplicity, shifted output tokens were omitted from the input representation.
Left: (1) Translation stage. In this stage, LayAlign is fine-tuned using translation data, where the data consists of
translations from other languages into English. Right: (2) Task Stage. In this stage, LayAlign is fine-tuned using
specialized downstream task data, where the input is multilingual and the output is in English.

Formally, the fusion process is defined as:

HK
i , HV

i = fi(H0, ...,Hn−1), (1)

where fi (·) is the fusion function for i-th layer of
LLM, responsible for fusing {H0, ...,Hn−1} into
the fused representations {HK

i , HV
i }. Specifically,

fi (·) consists of two linear layers with a ReLU ac-
tivation in between. The resulting HK

i and HV
i are

then fed into the i-th layer of the LLM as keys and
values for cross-attention computing. The detailed
procedure is provided in Section 3.2.

3.2 Adaptive Fusion-Enhanced Attention

We denote the hidden states in the i-th LLM de-
coder layer as Ti, where i ∈ [0,m] and T0 denotes
the concatenation of the output from the decoder’s
embedding layer with the output from the adapter
module. The final representation Tm is utilized
to generate the next token. In these transformer
layers, standard self-attention (SA) is employed.
However, it can not directly interact with the fused
representations from the multilingual encoder. To
address this limitation, we replace the vanilla at-
tention mechanism in all transformer layers with
adaptive fusion-enhanced attention, which incor-
porates self-attention, cross-attention, and a gate
module, as shown in Figure 2.

Specially, for the i-th LLM layer representation,

......

Key Value Query Key Value

Scaled Dot-product Cross-attention Scaled Dot-product Self-attention

Output Output

+Gate🔥

Aligner Representation

Adapter Representation Other Input Hidden State
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  Skip Connection  
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Figure 2: The illustration of our proposed Adaptive
Fusion-Enhanced Attention. It consists of self-attention
(right), cross-attention (left), and a gate module. Both
cross-attention and self-attention modules share the
same linear weights as that of the backbone LLM.

the attention mechanism is computed as follows:

GA(Ti−1, H
K
i , HV

i ) = SA(Ti−1)

+gi · CA(Ti−1, H
K
i , HV

i ) (2)

Here, keys HK
i and values HV

i represent the fused
multilingual encoder representations generated by
the layer-wise aligner for the i-th layer of the LLM.
Ti−1 is the output of the i− 1-th layer of the LLM,
while SA and CA denote self-attention and cross-
attention, respectively. A learnable gate, gi, is intro-
duced to regulate the incorporation of fused infor-
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mation into the i-th layer automatically. This gate
is initialized to 0 to ensure smooth training at the
initial stages. The cross-attention module shares
the same linear parameters WQ, WK , W V , and
WO as the self-attention module, thus eliminating
the need for additional parameters. These parame-
ters remain frozen during training. For clarity, the
output linear matrix WO is omitted in Figure 2.

3.3 Two-stage Training

The training process is structured into two distinct
phases, as illustrated in Figure 1. The first phase,
referred to as the translation stage, concentrates
on aligning the representation spaces between the
multilingual encoder and the LLM. During this
stage, LayAlign is fine-tuned using parallel corpora
from the many-to-English machine translation task.
The input to the LLM is derived from the adapter’s
output Imap, denoted as X = [⟨bos⟩; Imap; ⟨sep⟩].

The second phase termed the task stage, is de-
signed to enhance the model’s performance on
specific downstream tasks within a multilingual
context. In this phase, LayAlign is fine-tuned
on specialized downstream task data, where the
input is multilingual and the output is in En-
glish. Here, the LLM’s input combines both the
adapter’s output and the original user input text
Iin (as shown in Figure 1), represented as X =
[⟨bos⟩; Imap; ⟨sep⟩; embed(Iin)]. Unlike baseline
approaches such as LangBridge (Yoon et al., 2024),
which rely solely on the adapter’s output Imap as
the LLM input, this approach incorporates addi-
tional context, fostering task-specific adaptation
and improved multilingual performance. The im-
pact of the additional LLM input Iin is further ex-
amined in Section 5.2.

4 Experiments

We compare LayAlign with baselines on mathe-
matical reasoning, commonsense reasoning, and
language understanding tasks following prior stud-
ies (Huang et al., 2024; Yoon et al., 2024).

4.1 Mathematical Reasoning

4.1.1 Experimental Setup
Evaluation Dataset. In line with Huang et al.
(2024), we employ two datasets for evaluating
LayAlign: MGSM (Shi et al., 2023) and MSVAMP
(Chen et al., 2023a). MGSM contains multilingual
grade school-level mathematical word problems,
while MSVAMP serves as an out-of-domain eval-

Method Backbone Training Data Source
English-Only Data Baselines
MetaMath LLaMA2-7B MetaMathQA Official checkpoint2

LangBridge-EN mT5-xl+MetaMath MetaMath-200k Yoon et al. (2024)
Translate NLLB+MetaMath None Reimplementation
Multi-lingual Data Baselines
MetaMath-Mul MetaMath MultilingualMath Reimplementation
MathOctopus LLaMA2-7B MGSM8KInstruct Official checkpoint3

LangBridge mT5-xl+MetaMath Lego-MT+MultilingualMath Reimplementation
MindMerge mT5-xl+MetaMath Lego-MT+MultilingualMath Official checkpoint4

Table 1: Comparisions of baselines. LangBridge and
MindMerge are trained with the same two-stage data as
LayAlign.

uation set, providing a broader assessment of the
multilingual mathematical reasoning capabilities.
Models are evaluated using a zero-shot approach.

Training Datasets. Consistent with the setup in
MindMerger (Huang et al., 2024), we leverage the
same training data for LayAlign. In the first stage,
the model is trained on translation data from the
Lego-MT corpus (Yuan et al., 2023), which trans-
lates multilingual inputs into English. In the sec-
ond stage, we employ the composite multilingual
mathematical data, referred to as MultilingualMath
(Yu et al., 2024; Chen et al., 2023a), consisting of
30,000 samples per language across ten languages.
This dataset supports comprehensive training for
robust multilingual mathematical reasoning.

Baselines. We compare our approach against
seven baselines.
• MetaMath: MetaMath is fine-tuned from
LLaMA2-7B on MetaMathQA, a mathematical
dataset derived from GSM8K (Cobbe et al., 2021)
and MATH (Hendrycks et al., 2021). We further
train MetaMath on our second phase multilingual
task data, resulting in MetaMath-Mul.
• Translate (Shi et al., 2023): a training-free
method that translates the prompt into English
for MetaMath. We utilize NLLB-200-3.3B (Team
et al., 2022) as the translator followed MindMerger.
• MathOctopus (Chen et al., 2023b): fine-tuned
from LLaMA2-7B on a custom multilingual math-
ematical reasoning dataset. We utilize their best-
performing checkpoint xRFT-MathOctopus.
• LangBridge (Yoon et al., 2024): aligns mT5-xl
with MetaMath by projecting the final-layer hid-
den states of mT5-xl into MetaMath’s input via an
adapter. We compare against both LangBridge-
EN, the original model trained on the English
dataset MetaMath-200k, and LangBridge, which
we trained on the same datasets as LayAlign using

2
https://huggingface.co/meta-math/MetaMath-7B-V1.0

3
https://huggingface.co/Mathoctopus/Parallel_xRFT_7B

4
https://github.com/CONE-MT/MindMerger
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our two-stage training process for a fair compari-
son.
• MindMerger (Huang et al., 2024): it shares
a similar architecture with LangBridge. While
LangBridge feeds multilingual math prompts ex-
clusively into mT5-xl, MindMerger processes the
prompts in parallel through both mT5-xl and Meta-
Math at the second stage.

Model and Training Details. We utilize the en-
coder of mT5-xl as the multilingual encoder, com-
prising 1.6 billion parameters, with MetaMath (Yu
et al., 2024) serving as the LLM. The training pro-
cedure is conducted in two stages. During the first
stage, the learning rate is set to 4 × 10−5, with a
batch size of 128, over 3 epochs, and a warmup ra-
tio of 0.05. In the second stage, the learning rate is
adjusted to 3× 10−5, while maintaining the batch
size at 128, the number of epochs at 3, and the
warmup ratio at 0.05. All experiments are executed
on 8 NVIDIA L40 GPUs, with the first and second
stages taking 9 and 8 hours, respectively.

4.1.2 Results
Table 2 presents the results of the mathematical
reasoning tasks. As shown, LayAlign significantly
surpasses all baselines, outperforming the current
state-of-the-art, MindMerger, by 1.6% on MGSM
and 1.1% on MSVAMP in terms of average accu-
racy across all languages. These results highlight
the effectiveness of LayAlign on English LLM.

For methods that directly finetune LLMs, such
as MetaMath, MetaMath-Mul, and MathOctopus,
it is challenging to achieve strong performance
across both high-resource and low-resource lan-
guages simultaneously. Training exclusively in
English (e.g., MetaMath) generally results in high
performance for high-resource languages like En-
glish, but poor results in low-resource languages.
Conversely, methods trained on multilingual data
(e.g., MetaMath-Mul and MathOctopus) often suf-
fer from a significant performance drop in high-
resource languages. For instance, MetaMath-Mul’s
performance declines by 11.8 and 21.6 points
on high-resource languages in the MGSM and
MSVAMP datasets, respectively. This demon-
strates the difficulty of achieving consistently high
performance across both high-resource and low-
resource languages in LLM-based models.

This challenge can be significantly alleviated
by models such as LangBridge, MindMerger, and
LayAlign, which share a common architecture

that integrates a multilingual encoder with LLMs.
All three models demonstrate substantial improve-
ments over traditional LLM-based approaches in
both high- and low-resource languages. Among
them, LayAlign achieves the best performance on
the MGSM and MSVAMP benchmarks, highlight-
ing its ability to effectively leverage the represen-
tations from the multilingual encoder through the
layer-wise aligner and adaptive fusion-enhanced
attention mechanisms.

We further compare LayAlign with Translate.
LayAlign surpasses Translate by a substantial mar-
gin, showing improvements of 15.9 points on
MGSM and 10.1 points on MSVAMP. Additional,
Translate suffers from longer inference times and
reliance on external translation systems due to its
need to translate multilingual prompts into English.

4.2 Commonsense Reasoning and Language
Understanding

4.2.1 Experimental Setup
Evaluation Datasets. We evaluate commonsense
reasoning and language understanding capabilities
using X-CSQA (Lin et al., 2021) and XNLI (Con-
neau et al., 2018), respectively.

Training Datasets. For both tasks, we adopt the
same dataset setup as MindMerger (Huang et al.,
2024). The Lego-MT translation dataset (Yuan
et al., 2023) is utilized in the first training stage,
while the translated X-CSQA training set (Huang
et al., 2022, 2024) and the official development set
of XNLI are used in the second training stage for
the commonsense reasoning and language under-
standing tasks, respectively.

Baselines. We compare LayAlign with two LLM-
based baselines:
• LLaMAX2 (Lu et al., 2024): fine-tuned from the
powerfull multilingual model LLaMAX2-7B on an
English task dataset, with LLaMAX2-7B covering
all the languages examined in this study. We utilize
the official checkpoints.5.
• LLaMAX2-Mul: fine-tuned from LLaMAX2
using the same multilingual task dataset as ours.

We also include LangBridge and MindMerger
in our comparisons. To ensure a fair evaluation,
all models, including LangBridge, MindMerger,
and LayAlign, utilize LLaMAX2 as the LLM and

5Commonsense reasoning: https://huggingface.co/
LLaMAX/LLaMAX2-7B-X-CSQA; Language understanding:
https://huggingface.co/LLaMAX/LLaMAX2-7B-XNLI
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MGSM Avg. Lrl. Hrl. Bn Th Sw Ja Zh De Fr Ru Es En
MetaMath 37.9 5.9 51.6 6.4 6.4 4.8 34.8 39.2 56.4 55.6 51.6 55.2 68.4
LangBridge-EN 50.2 45.5 52.3 42.8 50.4 43.2 40.0 45.2 50.8 52.4 56.4 58.0 63.2
Translate 43.1 36.1 46.1 46.4 27.2 34.8 28.4 34.8 48.8 44.0 42.4 55.6 68.4
MetaMath-Mul 38.4 35.1 39.8 32.0 36.8 36.4 35.2 40.0 40.8 41.2 39.6 40.8 41.2
MathOctopus 40.0 33.5 42.8 30.4 35.2 34.8 38.0 45.6 41.6 38.4 39.6 46.0 50.4
LangBridge 54.0 50.1 55.6 48.8 49.2 52.4 50.0 53.6 56.0 54.0 58.0 58.0 59.6
MindMerger 57.4 54.8 58.6 51.2 56.8 56.4 50.8 54.4 60.0 55.2 62.4 59.6 67.6
LayAlign 59.0 56.4 60.2 51.6 59.2 58.4 52.0 56.0 62.0 61.6 61.6 61.6 66.4
MSVAMP Avg. Lrl. Hrl. Bn Th Sw Ja Zh De Fr Ru Es En
MetaMath 47.5 15.5 61.2 13.5 16.1 16.9 53.9 56.2 63.7 64.9 57.8 64.6 67.6
LangBridge-En 52.0 45.1 54.9 46.8 46.3 42.1 45.5 50.4 58.1 57.0 55.8 56.9 60.6
Translate 49.0 44.5 50.9 49.3 44.2 40.1 42.0 48.0 46.5 49.5 45.1 57.9 67.6
MetaMath-Mul 37.8 33.7 39.6 30.0 35.1 36.0 38.3 37.9 39.1 41.4 39.0 41.7 39.8
MathOctopus 38.1 33.1 40.3 27.3 32.9 39.1 39.2 38.2 40.1 43.2 38.8 41.4 41.1
LangBridge 54.4 51.6 55.5 49.9 52.2 52.7 53.3 54.1 56.0 56.4 54.7 56.1 58.1
MindMerger 58.0 53.1 60.2 52.2 53.2 53.9 57.3 57.0 61.3 60.2 58.1 62.9 64.3
LayAlign 59.1 54.6 61.1 51.8 55.1 56.9 59.3 58.7 62.5 62.1 58.8 62.0 64.0

Table 2: Experimental results on MGSM and MSVAMP datasets. ‘Lrl.’, ‘Hrl.’, and ‘Avg.’ represent the average
accuracy across low-resource languages, high-resource languages, and all languages, respectively. Referring to
Huang et al. (2024), we regard Bn, Th, and Sw as low-resource languages, and regard the remaining languages as
high-resource languages. Models above the line are trained in English, while those below are trained in multiple
languages. The languages corresponding to the abbreviations used in the tables are provided in Appendix B.

X-CSQA Avg. Sw Fr En
LLaMAX2 55.0 43.1 61.4 73.9
LLaMAX2-Mul 49.4 39.2 53.4 68.6
LangBridge 56.7 52.5 60.4 62.4
MindMerger 61.2 51.5 64.5 75.6
LayAlign 62.3 53.3 66.5 76.7
XNLI Avg. Sw Fr En
LLaMAX2 76.5 66.7 83.1 89.7
LLaMAX2-Mul 77.4 68.3 84.7 89.3
LangBridge 76.0 72.2 78.0 80.8
MindMerger 79.2 72.7 84.2 88.5
LayAlign 79.7 73.0 84.7 88.9

Table 3: Experimental results on X-CSQA and XNLI
datasets. Due to limited space, we list several represen-
tative languages in this table. The complete results is in
Table 12 and Table 13 of Appendix B.

mT5-xl encoder as the multilingual encoder, with
all models trained on the same two-stage dataset.

4.2.2 Results
The results for X-CSQA and XNLI are presented
in Table 3. As shown, LayAlign sets a new state-
of-the-art, outperforming LangBridge by 9.9% and
MindMerger by 1.8% on X-CSQA, and improving
by 4.9% and 0.6%, respectively, on XNLI. These
results demonstrate that LayAlign is effective not
only on English LLM backbones but also on multi-
lingual LLM backbones.

Since the LLM backbone is inherently multilin-

MGSM Avg. Lrl. Hrl.
w/o Adapter 44.1 15.9 56.2
w/o LLM Input 56.8 55.5 57.3
w/o Layer-Wise Aligner 56.9 53.1 58.6
w/o Translation Stage 52.0 38.9 57.5
w/o Task Stage 38.8 24.7 44.9
MetaMath 37.9 5.9 51.6
LayAlign 59.0 56.4 60.2

Table 4: Ablation experiments of LayAlign on the
MGSM dataset. The complete table of accuracy for
each language is in Table 15.

gual across all languages tested, fine-tuning it on
English task datasets already yields strong multilin-
gual task performance. For example, LLaMAX2
achieves scores of 55.0 on X-CSQA and 76.5 on
XNLI. This makes further improvements challeng-
ing, as both LLaMAX2-Mul, which is fine-tuned
on the multilingual task data, and LangBridge,
which integrates a multilingual encoder into LLa-
MAX2, show only marginal gains or even perfor-
mance declines. In contrast, LayAlign delivers
robust performance in both commonsense reason-
ing and language understanding, underscoring the
effectiveness of the layer-wise aligner, adaptive
fusion-enhanced attention, and LLM text input in-
tegration.
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MGSM Parm(M) Avg. Lrl. Hrl.
mGPT 1418 48.5 30.8 56.1
XGLM 1733 51.1 42.4 54.8
NLLB 1733 55.3 50.8 57.2
mT5-xl 1670 59.0 56.4 60.2

Table 5: Experiments on MGSM using MetaMath as
LLM and different multilingual models as encoders.
The complete table for each language is in Table 14.

4.3 Ablation Studies

We conduct ablation studies to examine the con-
tributions of key components in our method, in-
cluding the adapter, the layer-wise aligner, the
LLM input embedding Iin, and the two-stage train-
ing approach. Table 4 presents the ablation re-
sults. Note that the layer-wise aligner and adaptive
fusion-enhanced attention operate in conjunction,
so removing the layer-wise aligner also disables
adaptive fusion-enhanced attention. As shown in
Table 4, all components significantly contribute to
LayAlign’s overall performance. Since the adapter
receives the highest-level representations from the
encoder, its removal results in a substantial per-
formance drop of 7.0 points. The task fine-tuning
stage, which is directly related to downstream eval-
uations, also plays a critical role in the model’s
success. The layer-wise aligner and the transla-
tion stage are all integral to LayAlign, with their
absence leading to performance declines of 2.1,
2.2, and 7.0 points, respectively. Notably, even
without task-specific fine-tuning, LayAlign outper-
forms MetaMath by 33.0 points on low-resource
languages, demonstrating that aligning the multilin-
gual encoder with the LLM enhances task perfor-
mance in low-resource settings, even in the absence
of specialized training. To evaluate the role of the
gating mechanism in LayAlign, we also conduct an
ablation study by removing the gate. Without the
gate, we observe that the training loss of LayAlign
fails to decrease effectively. This highlights the gat-
ing mechanism’s critical role in ensuring smooth
and stable training.

5 Analyses

5.1 Multilingual Encoder

The LayAlign framework allows for the flexible se-
lection of various multilingual models as encoders
to extract multilingual representations. We eval-
uated several multilingual models on the MGSM
benchmark, including the encoder from the two
encoder-decoder multilingual models mT5-xl (Xue

et al., 2021) and NLLB-200-3.3B (Team et al.,
2022), as well as the decoder-only architectures
mGPT (Shliazhko et al., 2023) and XGLM (Lin
et al., 2022). As shown in Table 5, the encoder
from mT5-xl achieves the best performance, while
the encoders from the encoder-decoder multilin-
gual models generally outperform those using mul-
tilingual decoders as LayAlign’s encoder.

5.2 Training on English Task Data

In prior experiments, we demonstrated the effec-
tiveness of LayAlign under multilingual training
conditions. However, obtaining task-specific data
for low-resource languages remains a significant
challenge. To address this, we examine the per-
formance of LayAlign when trained exclusively
on English task-specific data by replacing the task-
stage training set with the English MetaMath-200k
dataset. Since both the input and output are in En-
glish, the LLM input could act as a shortcut for
the model, potentially harming the learning of the
multilingual aligner and adapter during finetuning.
This may lead to poor performance in low-resource
languages. Conversely, removing the LLM input
text forces the model to depend on the multilin-
gual encoder, encouraging cross-lingual general-
ization. To verify this, we evaluate three variants
of LayAlign on the MGSM benchmark: the full
LayAlign model, LayAlign without the LLM input
text Iin, and LangBridge, which serves as a base-
line equivalent to LayAlign without both the LLM
input and the layer-wise aligner.

As shown in Table 6, when trained in an English-
only setting, LayAlign tends to exploit the shortcut
by relying heavily on the English LLM input. As
a result, the multilingual information from the en-
coder is largely ignored during finetuning, leading
to poor performance on low-resource languages. In
contrast, the LayAlign variant without LLM input
text is forced to rely on the multilingual informa-
tion provided by the mT5 encoder during finetun-
ing. The superior performance of this variant un-
derscores the critical importance of the layer-wise
aligner, particularly in English-only downstream
finetuning. In this setting, the LayAlign variant
without LLM input text is recommended to en-
hance the model’s multilingual capabilities, as it
effectively leverages the multilingual encoder for
improved cross-lingual generalization.
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MGSM Avg. Lrl. Hrl.
LangBridge 49.1 44.4 51.1
LayAlign w/o LLM Input 51.8 45.7 54.5
LayAlign 38.1 5.3 52.1

Table 6: Experiments on MGSM using English-only
task data. The complete table of accuracy for each
language is in Table 16.

Qwen2 Qwen2Qwen1.5 Qwen1.5

Figure 3: Experimental results for the Swahili language
on the MGSM and MSVAMP datasets.

5.3 Empowering Multilingual LLM for
Low-Resource Languages

In Section 4, we applied LayAlign to both the
English-centric LLaMA2 backbone and its mul-
tilingual variant, LLaMAX2, which supports all
languages evaluated. Here, we further investi-
gate whether LayAlign can empower multilingual
LLMs to improve performance in low-resource
languages where they underperform. To this end,
we utilize the advanced LLMs Qwen1.5-7B-Chat
(Bai et al., 2023) and Qwen2-7B-Instruct (Yang
et al., 2024), which exhibit strong multilingual
capabilities but face challenges in scaling to less-
represented languages in their training data. We
conduct experiments on the MGSM and MSVAMP
benchmarks, focusing on Swahili (Sw), a less-
represented language.

Figure 3 presents the results, comparing
LayAlign with the vanilla Qwen models and Qwen-
SFT fine-tuned on the same multilingual math-
ematical dataset used in our study. As shown,
LayAlign consistently outperforms the baseline
methods on both the MGSM and MSVAMP tasks.
Comparing vanilla Qwen and Qwen-SFT, we ob-
serve that directly fine-tuning these LLMs on mul-
tilingual mathematical datasets containing Swahili
yields only marginal improvements and, in some
cases, even degrades performance. In contrast,
LayAlign significantly boosts model performance.
On MGSM, LayAlign improves Qwen1.5 and
Qwen2 by 41.6 and 21.2 points, respectively, while

Sw Bn Th Zh De Es Fr Ja Ru
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0.6

0.8

MetaMath
LayAlign
MindMerger
LangBridge

Figure 4: The cosine similarities of the final layer of
LLM pooled output representations of English with
other languages obtained with the FLORES-101 dataset.
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Figure 5: First two principal components of pooled
output representations obtained with the FLORES-101.

on MSVAMP, it enhances their performance by
33.2 and 5.1 points, respectively. These results
further underscore the potential of our method.

5.4 Analyses of Representation Space

To evaluate whether LayAlign effectively aligns
multilingual representations, we compute the co-
sine similarity between the mean-pooled represen-
tations of English and other languages in MGSM,
such as Chinese (Zh) and Swahili (Sw), from the
final layer of the LLM using the FLORES-101
dataset (Goyal et al., 2022). Figure 4 presents the
results for different methods, clearly demonstrating
that LayAlign achieves more effective alignment
of representations across languages compared to
baseline methods. This alignment contributes to
the superior performance of LayAlign.

We further illustrate this by visualizing the repre-
sentations of LayAlign and MetaMath using Princi-
pal Component Analysis, as shown in Figure 5. For
MetaMath, high-resource languages like Spanish
(Es) and German (De) align closely with English
(En), while low-resource languages like Swahili
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(Sw) are positioned much farther from English. In
contrast, LayAlign unifies all languages into a sin-
gle cluster, indicating more effective alignment of
multilingual representations.

6 Conclusion

In this paper, we introduce LayAlign, a simple
yet effective method designed to leverage multi-
lingual encoders for enhancing the multilingual
reasoning capabilities of LLMs. We demonstrate
that our approach yields consistent improvements
over existing baselines. Notably, LayAlign shows
effectiveness in improving cross-lingual reason-
ing when trained on English-only task data, and
LayAlign enables multilingual LLMs to scale to
less-represented languages in their training data.
Additionally, we provide analyses indicating that
LayAlign aligns the representations of various lan-
guages with English more effectively. We hope
these findings will benefit low-resource language
users and inspire further research in this field.

Limitations

While LayAlign can enhance the performance of
English-centric LLMs in low-resource languages
through multilingual task training, there remains a
performance gap compared to models specifically
pretrained and fine-tuned in the target languages.
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A Additional Analysis Experiments

A.1 Analysis of Representation across Layers
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(a) Embedding Layer
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Figure 6: Cosine similarity. (a) Cosine similarity be-
tween the i-th encoder layer and the embedding layer
in mT5, utilizing the FLORES-101 dataset. (b) Cosine
similarity between the i-th encoder layer and the last
layer in mT5, utilizing the FLORES-101 dataset.

Each encoder layer’s representation has differ-
ent levels of granularity information. As the depth
of the encoder layers increases, each layer pro-
duces increasingly coarse-grained descriptions of
the global context (Liu et al., 2022). As shown
in Figure 6, the cosine similarity between the final
layer and other encoder layers is markedly different,
and the cosine similarity between the i-th encoder
layer and the embedding layer decreases as i in-
creases. This reflects the shifting granularity of
information across different encoder layers. Fur-
thermore, prior studies suggest that intermediate
layers can be seen as noisy versions of the final
layer’s representation, improving model robustness
when using layer-wise representations (Wang et al.,
2020). Therefore, we use the layer-wise representa-
tion of the multilingual encoder to better utilize the
language understanding of the encoder to improve
the multilingual capabilities of LLM.

To further analyze the representation of different
encoder layers, Figure 7 shows the cosine simi-
larity of representations for Chinese and English

tokens across the first, twelfth, and final encoder
layers. In the first encoder layer, cosine similarity
is relatively low, with only token pairs like ‘五’ and
‘five,’ and ‘新’ and ‘new’ showing better alignment.
By the twenty-fourth layer, many tokens become
aligned, yet the similarity between ‘新’ and ‘new,’
and ‘地点’ and ‘site,’ is lower than in the twelfth
layer. This suggests that the twelfth layer can pro-
vide alignment information that supports the final
layer. Therefore, utilizing layer-wise representa-
tions is crucial for fully leveraging the multilingual
capabilities of the encoder.

To further assess whether utilizing representa-
tions from all layers of the multilingual encoder
can enhance the model’s multilingual capabilities,
we fed the final layer’s representation from the mul-
tilingual encoder into LayAlign’s adaptive fusion-
enhanced attention. We conducted experiments on
the MGSM dataset, and the results are presented
in Table 7. Compared to using only the final layer
representation from the multilingual encoder, Lay-
Align achieved a 1.5% improvement, indicating
that representations from other layers of the mul-
tilingual encoder also contribute to enhancing the
model’s multilingual performance.

A.2 Analysis of Adaptive Fusion-Enhanced
Attention

To validate the impact of cross-attention in the
adaptive fusion-enhanced attention mechanism,
we compute the ratio between the norm of the
gate-weighted cross-attention and that of the self-
attention across all layers of the LLM, utilizing the
FLORES-101 dataset for visualization. As shown
in Figure 8, the gate-weighted cross-attention sig-
nificantly influences the overall attention mecha-
nism, with a more pronounced effect in the deeper
layers of the LLM.

We also visualize the layer-wise aligner, as
shown in Figure 9. The layer-wise aligner effec-
tively integrates the representations from different
layers of the multilingual encoder, providing the
LLM with enriched multilingual information by
leveraging these fused representations.

LayAlign implements a layer-wise fusion gate
that is independent of the current hidden state. To
validate this approach, we compare it with a variant
called the dynamic gate, where the gate at each
layer is determined by the current hidden state. As
shown in Table 8, while the dynamic gate yields
competitive results, it slightly underperforms com-
pared to the fusion gate in LayAlign. Moreover,
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(a) 1th layer of Encoder (b) 12th layer of Encoder (c) 24th layer of Encoder

Figure 7: Visualization of the cosine similarity between representations of Chinese and English sentences in the
Encoder.

MGSM Avg. Lrl. Hrl. Bn Th Sw Ja Zh De Fr Ru Es En
LayAlign-LR 57.5 52.9 59.5 48.8 54.0 56.0 53.2 55.6 59.6 62.0 58.8 60.4 66.8
LayAlign 59.0 56.4 60.2 51.6 59.2 58.4 52.0 56.0 62.0 61.6 61.6 61.6 66.4

Table 7: Experimental results of LayAlign and LayAlign-LR on the MGSM dataset. LayAlign-LR refers to the
variant of LayAlign where only the final layer representation from the multilingual encoder is fed into the LLM’s
adaptive fusion-enhanced attention module.

Figure 8: Norm ratio between gate-weighted cross-
attention and self-attention across LLM layers using the
FLORES-101 dataset. Cross-attention shows a stronger
effect in deeper layers.

our fusion gate requires fewer gate parameters to be
trained, as each layer only requires a single scalar
gate parameter.

A.3 The Analysis of User’s Input Text
In our approach, during the translation stage, we
use only the output from the adapter as input to the
LLM, excluding any user text input. To assess the
impact of user text as LLM input during this stage,
we conduct experiments on the MGSM dataset.
The results are presented in Table 9.

Stage 1: Translation Stage The primary objec-
tive of Stage 1 is to align the representation space

Figure 9: Visualization of the layer-wise aligner

of the multilingual encoder to the LLM through
translation-based alignment. As shown in Table
9, it is consistently more effective to omit LLM
text input during the translation stage rather than
include it.

Stage 2: Task Stage In contrast, Stage 2 focuses
on leveraging both the multilingual encoder and the
LLM for task-specific reasoning. In multilingual
tasks, including the user’s input text in addition
to the adapter’s output maximizes the LLM’s rea-
soning potential. This configuration is particularly
effective for high-resource languages, as the LLM

1492



MGSM Avg. Lrl. Hrl. Bn Th Sw Ja Zh De Fr Ru Es En
LayAlign (Dgate) 58.8 54.5 60.6 49.6 55.6 58.4 54.4 56.4 59.2 62.0 61.2 64.4 66.8
LayAlign 59.0 56.4 60.2 51.6 59.2 58.4 52.0 56.0 62.0 61.6 61.6 61.6 66.4

Table 8: Experimental results of LayAlign with different gating mechanisms on the MGSM dataset. Dgate denotes
dynamic gate.

Settings User Input in Stage 1 User Input in Stage 2 Avg. Lrl. Hrl.

Multilingual Task Data
LayAlign + LLM Input at Trans

√ √
57.5 50.5 60.5

LayAlign - LLM Input at Task × × 56.8 55.5 57.3
LayAlign × √

59.0 56.4 60.2

English Task Data
LayAlign + LLM Input at Trans

√ √
37.8 6.3 51.4

LayAlign - LLM Input at Task × × 51.8 45.7 54.5
LayAlign × √

38.1 5.3 52.1

Table 9: Experiments of user input at different stages on
MGSM. ‘Lrl.’, ‘Hrl.’, and ‘Avg.’ represent the average
accuracy across low-resource languages, high-resource
languages, and all languages, respectively.

benefits from its existing high-resource knowledge.
However, for English tasks, including user input
in Stage 2 can act as a shortcut, causing the model
to rely excessively on the LLM’s inherent English
capabilities while neglecting the multilingual en-
coder. This is reflected in the performance drop
observed when user input is included in Stage 2
(e.g., 38.1% compared to 51.8%). The best results
are achieved when the LLM is forced to rely on the
multilingual encoder rather than directly leveraging
its internal English representations.

These results further validate our design choices,
demonstrating that LayAlign’s two-stage input
strategy effectively balances alignment and reason-
ing, leading to superior multilingual performance.

A.4 Analysis of Parameters

The adapter in LayAlign has 25.18M parameters,
and the layer-wise aligner contributes 8.39M pa-
rameters, resulting in a total of 33.57M trainable
parameters. This lightweight design ensures effi-
ciency while maintaining competitive performance.
As shown in Figure 10, our experiments demon-
strate that lightweight aligners are sufficient for col-
lecting and leveraging information from all encoder
layers. Notably, our findings align with the results
reported for LangBridge (Yoon et al., 2024), which
observed better performance with a simpler Linear
adapter compared to a more parameter-intensive
MLP design on the XCOPA benchmark (76.6% vs.
72.7%, respectively). This indicates that merely
increasing the number of parameters in the aligner
does not always yield performance improvements.
To evaluate whether larger aligners could enhance

performance, we experimented with a modified
aligner design, increasing the parameter count from
8.39M to 12.59M by introducing an additional Lin-
ear(2048, 2048) layer and a SiLU activation func-
tion. However, this modification led to a slight
performance drop, with the average accuracy on
MGSM decreasing from 59.0 to 58.4. Similarly, in-
creasing the parameters of MindMerger (e.g., from
25.18M to 37.76M) did not result in performance
gains, as the accuracy dropped from 57.4 to 57.3.
These findings suggest that merely increasing the
number of parameters is not a guaranteed path to
better performance.

A.5 Contribution of different Encoder Layers

In this section, we analyze which layers of mT5
contribute most to the performance improvements
observed with LayAlign. To investigate this, we
conducted experiments with various configurations
for the aligner’s input, exploring different ways of
extracting representations from the mT5 encoder.
Specifically, we tested using (1) the final hidden
layer, (2) the mean of all hidden layers, (3) the first
8 layers, (4) the middle 8 layers, and (5) the last 8
layers. The results are presented in Table 11.

Using only the last hidden states of the mT5
encoder led to an average performance drop of
1.5 points compared to LayAlign. This suggests
that leveraging hidden states from multiple lay-
ers, rather than relying solely on the final layer,
enhances the model’s capacity to comprehend mul-
tilingual text. The final layer alone appears insuf-
ficient for capturing the diverse and hierarchical
information encoded across all layers.

Similarly, employing the average hidden states
across all layers resulted in a 2.3-point decline in
performance compared to LayAlign. This indi-
cates that treating all hidden states as equally im-
portant is suboptimal, as it fails to fully exploit
the rich linguistic information embedded in the
multilingual encoder. In contrast, LayAlign’s adap-
tive strategy, which dynamically learns individual
layer-wise weights, enables the model to prioritize
layers based on their relevance to the task. This
adaptive weighting mechanism highlights the vary-
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Model Adapter’s Parameters(M) Layer-Wise Aligner’s Parameters(M) Total Train Parameters (M) Avg.
LayAlign 25.18 8.39 33.57 59.0
LayAlign + 25.18 12.59 37.77 58.4
MindMerger 25.18 0 25.18 57.4
MindMerger+ 37.76 0 37.76 57.3

Table 10: The performance and parameters of models comparison on MGSM. + denotes the experiments with
increased parameters.

MGSM Avg. Lrl. Hrl. Bn Th Sw Ja Zh De Fr Ru Es En
Last Hidden States 57.5 52.9 59.5 48.8 54.0 56.0 53.2 55.6 59.6 62.0 58.8 60.4 66.8
Avgerage Hidden States 56.7 52.5 58.5 49.6 50.4 57.6 49.2 52.4 60.4 58.0 58.4 64.4 66.8
First 8 Layers 58.4 54.8 60 51.6 54.8 58.0 51.6 55.6 60.8 59.2 60.8 63.6 68.4
Middle 8 layers 57.3 53.9 58.7 48.4 55.6 57.6 50.8 52.4 58.8 59.6 60.4 61.2 68.0
Last 8 layers 57.9 54.1 59.5 52.0 52.4 58.0 50.8 54.4 63.6 58.0 56.4 65.6 68.0
LayAlign 59.0 56.4 60.2 51.6 59.2 58.4 52.0 56.0 62.0 61.6 61.6 61.6 66.4

Table 11: Performance comparison of different mT5 encoder layer selections as inputs to the aligner on MGSM.

ing contributions of different layers in supporting
multilingual reasoning.

Moreover, when using hidden states from the
first 8 layers, middle 8 layers, and last 8 layers,
we observed that the first 8 layers yielded the best
performance, while the middle 8 layers performed
the worst. This suggests that the middle layers of
mT5 contribute relatively less information to the
LLM. Since the LLM already integrates the final-
layer representation of mT5 through the adapter,
incorporating the first 8 layers in the aligner pro-
vides additional shallow-layer information, further
enriching the LLM’s multilingual understanding.

B Complete Evaluation Results

In this paper, we utilize the following languages,
with their respective abbreviations in parentheses.
For clarity and ease of reference, these abbrevia-
tions are used throughout the text: Bengali (Bn),
Thai (Th), Swahili (Sw), Japanese (Ja), Chinese
(Zh), German (De), French (Fr), Russian (Ru),
Spanish (Es), English (En), Urdu (Ur), Hindi (Hi),
Arabic (Ar), Vietnamese (Vi), Polish (Pl), Flem-
ish (Nl), Italian (It), Portuguese (Pt), Turkish (Tr),
Greek (El), and Bulgarian (Bg).

Due to space limitations in the main text, the
complete results for different languages are pro-
vided in this section. Table 12 presents the com-
plete experimental results on the X-CSQA dataset,
while Table 13 reports the results on the XNLI
dataset. Table 14 illustrates the performance of
LayAlign when using different multilingual mod-
els as encoders and MetaMath as the LLM on the
MGSM dataset. Table 15 provides the ablation

study results for LayAlign on the MGSM dataset.
Finally, Table 16 shows the experimental results on
MGSM using English-only task data.
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X-CQSA Avg Ur Sw Hi Ar Vi Ja Pl Zh Nl Ru It De Pt Fr Es En
LLaMAX2-X-CSQA 55.0 38.9 43.1 44.3 45.5 54.1 49.4 54.6 58.1 58.5 56.9 59.1 58.9 61.1 61.4 62.7 73.9
LLaMAX2-X-CSQA-SFT 49.4 35.4 39.2 40.0 37.8 44.0 43.9 51.8 50.5 52.9 48.7 55.8 56.1 55.1 53.4 56.6 68.6
LangBridge-SFT 56.7 50.6 52.5 51.6 53.6 56.4 53.1 57.6 57.8 58.2 56.0 59.6 59.2 58.8 60.4 59.4 62.4
MindMerger 61.2 50.5 51.5 51.1 54.1 60.7 55.8 64.1 64.4 64.6 61.0 64.5 64.2 65.5 64.5 67.8 75.6
LayAlign 62.3 51.7 53.3 53.7 55.9 62.0 56.4 64.8 64.6 66.2 62.0 66.2 65.2 64.3 66.5 67.3 76.7

Table 12: The complete experimental results on X-CSQA datasets. Avg. represents the average accuracy across all
languages.

XNLI Avg Sw Ur Hi Th Ar Tr El Vi Zh Ru Bg De Fr Es En
LLaMAX2-XNLI 76.5 66.7 65.6 70.3 66.5 73.5 71.8 76.8 77.5 78.3 80.4 81.6 82.2 83.1 84.1 89.7
LLaMAX2-XNLI-SFT 77.4 68.3 68.3 72.1 66.7 71.7 73.2 74.3 78.5 80.3 81.9 82.7 83.7 84.7 85.1 89.3
LangBridge-SFT 76.0 72.2 72.2 73.4 74.3 75.0 74.5 77.2 75.4 75.9 77.1 78.2 77.4 78.0 78.5 80.8
MindMerger 79.2 72.7 71.5 74.8 73.3 77.0 76.3 78.8 80.4 80.5 80.8 82.4 83.0 84.2 84.5 88.5
LayAlign 79.7 73.0 71.0 74.7 74.1 77.6 76.0 79.6 80.8 80.8 81.8 83.4 83.9 84.7 84.8 88.9

Table 13: The complete experimental results on XNLI datasets. Avg. represents the average accuracy across all
languages.

MGSM parm(M) Avg. Lrl. Hrl. Bn Th Sw Ja Zh De Fr Ru Es En
m-GPT 1418 48.5 30.8 56.1 32.0 25.6 34.8 44.8 50.0 60.0 57.2 58.0 58.0 64.4
XGLM 1733 51.1 42.4 54.8 42.4 41.2 43.6 46.0 48.0 55.6 58.0 55.2 56.8 64.0
nllb-3.3B 1733 55.3 50.8 57.2 50.0 47.6 54.8 51.2 53.2 56.8 60.4 56.4 58.8 63.6
mT5-xl 1670 59.0 56.4 60.2 51.6 59.2 58.4 52.0 56.0 62.0 61.6 61.6 61.6 66.4

Table 14: LayAlign using different multilingual models as encoder and MetaMath as LLM on the MGSM dataset.
Parm(M) represents the number of parameters used in the external model. Lrl., Hrl., and Avg. represent the average
accuracy across low-resource languages, high-resource languages, and all languages, respectively.

MGSM Avg. Lrl. Hrl. Bn Th Sw Ja Zh De Fr Ru Es En
w/o Adapter 44.1 15.9 56.2 15.2 20.8 11.6 47.2 49.2 56.4 57.6 56.8 60.4 65.6
w/o LLM Input 56.8 55.5 57.3 50.4 59.6 56.4 49.6 54.0 56.4 60.8 60.0 58.0 62.4
w/o Layer-Wise Aligner 56.9 53.1 58.6 51.6 52.8 54.8 52.4 51.2 58.4 58.0 58.8 64.0 67.2
w/o Translation Stage 52.0 38.9 57.5 34.8 39.2 42.8 48.8 52.8 56.8 62.0 57.6 61.2 63.6
w/o Task Stage 38.8 24.7 44.9 22.8 22.8 28.4 30.8 32.0 51.6 46.4 42.8 49.6 60.8
MetaMath 37.9 5.9 51.6 6.4 6.4 4.8 34.8 39.2 56.4 55.6 51.6 55.2 68.4
LayAlign 59.0 56.4 60.2 51.6 59.2 58.4 52.0 56.0 62.0 61.6 61.6 61.6 66.4

Table 15: Ablation experiments of LayAlign on the MGSM dataset. Lrl., Hrl., and Avg. represent the average
accuracy across low-resource languages, high-resource languages, and all languages, respectively.

MGSM Avg. Lrl. Hrl. Bn Th Sw Ja Zh De Fr Ru Es En
LangBridge 49.1 44.4 51.1 38.0 49.6 45.6 32.8 43.6 52.4 54.8 52.8 59.6 61.6
LayAlign 38.1 5.3 52.1 7.2 5.2 3.6 33.2 44.8 57.2 53.2 52.4 56.8 67.2
LayAlign w/o LLM input 51.8 45.7 54.5 42.0 47.2 48.0 39.6 44.4 59.2 53.2 58.8 62.4 63.6

Table 16: Experiments on MGSM using English-only task data. Lrl., Hrl., and Avg. represent the average accuracy
across low-resource languages, high-resource languages, and all languages, respectively.

1495


