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Abstract

Retrieval-Augmented Generation (RAG) has
become a powerful paradigm for enhancing
large language models (LLMs) through exter-
nal knowledge retrieval. Despite its widespread
attention, existing academic research predom-
inantly focuses on single-turn RAG, leaving
a significant gap in addressing the complexi-
ties of multi-turn conversations found in real-
world applications. To bridge this gap, we
introduce CORAL, a large-scale benchmark
designed to assess RAG systems in realistic
multi-turn conversational settings. CORAL in-
cludes diverse information-seeking conversa-
tions automatically derived from Wikipedia and
tackles key challenges such as open-domain
coverage, knowledge intensity, free-form re-
sponses, and topic shifts. It supports three
core tasks of conversational RAG: passage re-
trieval, response generation, and citation la-
beling. We propose a unified framework to
standardize various conversational RAG meth-
ods and conduct a comprehensive evaluation of
these methods on CORAL, demonstrating sub-
stantial opportunities for improving existing ap-
proaches. Our dataset and code are available at
https://github.com/Ariya12138/CORAL.

1 Introduction

Retrieval-Augmented Generation (RAG) has
emerged as a promising approach in question an-
swering, leveraging large language models (LLMs)
alongside external knowledge retrieval to en-
hance the quality and accuracy of generated re-
sponses (Lewis et al., 2020; Guu et al., 2020;
Huang and Huang, 2024). While RAG has gained
traction both in academia and industry, a notable
gap exists between how it is studied in academic
settings and how it is implemented in real-world
systems. Academic research predominantly fo-
cuses on single-turn interactions (Tan et al., 2024b;
Jin et al., 2024; Wang et al., 2024; Dong et al.,

*Corresponding author.

2024a; Zhu et al., 2024; Li et al., 2025), whereas
most industrial RAG systems (OpenAI, 2022; An-
thropic, 2023; AI, 2023; Team, 2023) are designed
to handle multi-turn conversations. In practice,
multi-turn conversation is the norm, where RAG
systems must dynamically adapt to evolving con-
text and user intent across multiple turns.

The shift from single-turn to multi-turn conver-
sations introduces unique challenges for RAG. In
multi-turn settings, systems must deal with redun-
dant or irrelevant information from prior interac-
tions and cope with abrupt topic shifts (Ye et al.,
2024; Adlakha et al., 2022). This complexity can
degrade the retrieval and generation quality, espe-
cially as conversation histories grow, exacerbating
the “long context problem” (Ratner et al., 2023;
Ding et al., 2024). These issues highlight the need
for dedicated research into multi-turn conversa-
tional RAG to address the realities of interactive,
ongoing dialogue.

However, progress in this area is severely hin-
dered by the lack of a comprehensive benchmark
designed to evaluate conversational RAG systems.
To align with the diverse and complex real-world
applications of conversational RAG systems, we
identify several critical features such a benchmark
should satisfy: (1) open-domain coverage, allow-
ing the system to handle questions from a wide
range of topics; (2) knowledge-intensiveness, chal-
lenging systems to retrieve and generate responses
that require deep, contextual knowledge; (3) free-
form response generation, ensuring that models
can produce detailed, contextually rich answers;
(4) handling of topic shifts, evaluating the system’s
ability to manage sudden changes in dialogue con-
text without carrying over irrelevant information
from previous turns; and (5) citation labeling, pro-
moting transparency by requiring the system to cite
the sources of the information it retrieves.

Unfortunately, no existing dataset satisfies all
of these features. Although there are datasets for
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Dataset Open-domain Knowledge-Intensive Free-form Response Topic Shift Citation Labeling

CORAL (ours) ✓ ✓ ✓ ✓ ✓

Wizard of Wikipedia (Dinan et al., 2019) ✓ ✓ ✓ ✗ ✗
CoQA (Reddy et al., 2019) ✗ ✓ ✓ ✗ ✗
OR-QuAC (Qu et al., 2020) ✓ ✓ ✗ ✗ ✗
Doc2Dial (Feng et al., 2020) ✗ △ ✓ ✗ ✗
TREC CAsT19 (Dalton et al., 2020b) ✓ ✓ ✗ ✗ ✗
TREC CAsT20 (Dalton et al., 2020a) ✓ ✓ ✓ ✓ ✗
TREC CAsT21 (Dalton et al., 2021) ✓ ✓ ✓ ✓ ✗
QReCC (Anantha et al., 2021) ✓ ✓ ✓ ✗ ✗
TREC CAsT22 (Owoicho et al., 2022) ✓ ✓ ✓ ✓ ✗
KETOD (Chen et al., 2022) ✓ △ ✓ ✗ ✗
TopiOCQA (Adlakha et al., 2022) ✓ ✓ ✓ ✓ ✗
INSCIT (Wu et al., 2023) ✓ ✓ ✓ ✗ ✗
TREC iKAT23 (Aliannejadi et al., 2024) ✓ ✓ ✓ ✗ ✗
RAD-Bench (Kuo et al., 2024) ✓ ✓ ✓ ✗ ✗
MTRAG (Katsis et al., 2025) ✓ ✓ ✓ ✗ ✗

Table 1: Comparison of CORAL with other conversational search and conversational QA datasets. △ indicates that
only a portion of the dataset satisfies the property.

related tasks, such as conversational search and
question answering, they do not adequately address
the unique challenges of benchmarking multi-turn
conversational RAG systems that align with all of
the above features. For instance, datasets in con-
versational search like TREC CAsT (Dalton et al.,
2020b,a, 2021; Owoicho et al., 2022) primarily
focus on retrieval tasks and lack the capacity to
assess a system’s generative abilities in producing
free-form answers. Likewise, conversational QA
datasets, such as QReCC (Anantha et al., 2021)
and TopiOCQA (Adlakha et al., 2022), predomi-
nantly offer short, factual answers, falling short of
reflecting the nuanced, long-form responses often
required in practical applications. We summarize
the limitations of existing related datasets in Ta-
ble 1. These limitations highlight the pressing need
for a more comprehensive benchmark that meets
the full spectrum of requirements for evaluating
conversational RAG.

In this paper, we introduce a large-scale multi-
turn COnversational Retrieval-Augmented Gen-
eration Language Benchmark (CORAL) that ful-
fills the above critical features to systematically
evaluate and advance conversational RAG sys-
tems. In general, CORAL is derived from En-
glish Wikipedia web pages, containing a total of
8,000 diverse information-seeking conversations.
We propose a novel approach to automatically con-
vert Wikipedia content into conversational formats,
with each conversation generated through tailored
sampling from either a single page or multiple
related pages. Specifically, as depicted in Fig-
ure 1, we treat the (sub)titles of Wikipedia pages
as the source of questions, using the corresponding

human-written Wikipedia content serving as high-
quality free-form responses. The content itself is
originally well-cited and includes related passages
for retrieval, making Wikipedia a particularly suit-
able source for constructing conversational RAG
datasets. To ensure coherent and diverse conversa-
tion flow, we design four sampling strategies based
on the natural hierarchical properties of Wikipedia
pages to first create the conversation flow. We
then utilize powerful LLMs (e.g., GPT-4), to re-
fine the original Wikipedia titles into well-formed
conversational queries by incorporating contextual
dependencies, such as co-reference and omission,
resulting in the final conversation.

In CORAL, we evaluate conversational RAG
systems across three essential tasks: (1) Conversa-
tional Passage Retrieval, which assesses the sys-
tem’s ability to retrieve the relevant information
from a large document set based on multi-turn con-
text; (2) Response Generation, which tests the sys-
tem’s capacity to generate accurate, contextually
rich answers; and (3) Citation Labeling, which en-
sures that the generated responses are transparent
and grounded by requiring correct attribution of
sources. These tasks are fundamental for measur-
ing the core capabilities of conversational RAG
systems in real-world, multi-turn settings.

Additionally, we present a unified framework
that standardizes various conversational RAG base-
lines and conduct a comprehensive evaluation of
them on the CORAL benchmark. We find that the
fine-tuned open-source LLM outperforms the com-
mercial closed-source LLM in the retrieval stage,
and shortening the input length to filter noise can
not only maintain response quality but also improve
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Academic research related to deepfakes is split 
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<h2>Techniques</h2>
......

# Turn1
Q: What is deepfakes and how is it created?
R: Deepfakes (a portmanteau of 'deep learning' and 'fake'[1]) ...
# Turn2
Q: Can you tell me more about the history of this technology?
R: Photo manipulation was developed in the 19th century...
# Turn3
Q: What are the primary focus areas of academic research in this field?
R: Academic research related to deepfakes is split between...

 Extracting Title Tree Conversation Flow Sampling Contextualization of Questions 

Passage Corpus
[1] Terrifying high-tech porn: Creepy 'deepfake' videos are on the rise...

①

②

③

Passage
Summary

(a) Overview of the CORAL dataset construction process

(b) Overview of three conversation compression strategies 
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Conversation History
# Turn1
Q: What is deepfakes and how is it created?
R: Deepfakes (a portmanteau of ...)
# Turn2
Q: Can you tell me more about the history of this 
technology?
R: Photo manipulation was developed in the 19th 
century...

Current Question
What are the primary focus areas of 
academic research in this field?

Generated Response 
with Citation Labeling
Academic research on deepfakes prim-
arily focuses on detection techniques 
to identify manipulated content, ethical 
implications surrounding consent[1] 
and misinformation, and legal framew-
orks addressing issues like copyright 
and defamation.[2] Additionally, rese-
archers explore advancements in gene-
rative models that enhance realism, the 
societal impact on public trust and me-
dia consumption, and psychological 
effects on individuals’ perceptions of 
reality...

Retrieved 
Passages

Retrieved 
Passages

Figure 1: Part (a) is an overview of the CORAL dataset construction process. The red arrows show the sampled
conversation flow, with numerical labels on the nodes indicating the round of the sampled conversation turns.
The content under each sampled (sub)title serves as the conversational response in CORAL. Part (b) is the three
conversation compression strategies in conversational RAG.

citation labeling accuracy.
In summary, the contributions of our work are:
(1) We present an automatic and novel approach

for constructing large-scale conversational RAG
benchmarks from Wikipedia, leveraging its hierar-
chical structure and high-quality content to create
diverse information-seeking conversations.

(2) The CORAL benchmark itself is unique in its
comprehensive coverage of critical features, filling
a significant gap in the evaluation of conversational
RAG systems.

(3) We develop a unified framework for standard-
izing and evaluating various conversational RAG
baselines, facilitating systematic comparison and
advancement in this rapidly evolving field.

2 Related Work

2.1 Retrieval-Augmented Generation

Existing RAG studies (Tan et al., 2024a; Dong
et al., 2024b; Li et al., 2024b) primarily focus on
the optimization of individual components. The
rewriter (Li et al., 2024a; Wang et al., 2023a; Baek
et al., 2024) module interprets and reconstructs
user queries to align them more effectively with
the search process. The reranker (Ma et al., 2023;
Dong et al., 2024c; Xu et al., 2024) module inde-

pendently adjusts the ordering of retrieved docu-
ments based on their relevance. The post-retrieval
processing (Xu et al., 2023; Yang et al., 2023; Wang
et al., 2023b; Jiang et al., 2024; Jin et al., 2024)
module then reduces the volume of these docu-
ments, stripping away non-essential information to
focus solely on the content critical for generating
precise responses.

While these works have significantly advanced
single-turn RAG systems, gaps remain in multi-
turn conversational settings (Ye et al., 2024). We
address this by proposing a new benchmark and
framework specifically for conversational RAG.

2.2 Conversational Search

Conversational search enables users to interact with
retrieval systems through multi-turn dialogues (Mo
et al., 2024a). Two main approaches are conversa-
tional query rewriting (CQR) and conversational
dense retrieval (CDR). CQR transforms context-
dependent queries into fully rewritten versions for
ad-hoc retrieval, focusing on selecting relevant to-
kens from the conversation history (Voskarides
et al., 2020; Kumar and Callan, 2020; Lin et al.,
2021b) or using LLMs to generate rewrites (Lin
et al., 2020; Yu et al., 2020; Vakulenko et al., 2021;
Wu et al., 2022). CDR jointly encodes conversation
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Figure 2: Illustration of the four sampling strategies. The red arrows show the sampled conversation flow, with
numerical labels on the nodes indicating the round of the sampled conversation turns.

history and the current query for end-to-end dense
retrieval (Yu et al., 2021; Mao et al., 2024).

Challenges like limited training data are ad-
dressed through data augmentation (Lin et al.,
2021a; Mao et al., 2022b; Dai et al., 2022; Jin et al.,
2023; Chen et al., 2024; Mo et al., 2024c), and con-
text denoising (Mao et al., 2022a; Mo et al., 2023;
Mao et al., 2023b; Mo et al., 2024b) improves re-
trieval by filtering irrelevant conversation history.
However, a benchmark is still needed for evaluating
response generation and citation labeling.

3 CORAL

3.1 Data Source

We choose Wikipedia as our data source for the
following reasons, which align with the critical
features in Table 1. (1) Wikipedia pages are well-
structured and enriched by global volunteers, cov-
ering a broad range of topics; (2) The logically
interconnected titles provide a strong foundation
basis for generating diverse queries, with each rep-
resenting a distinct intent. (3) The human-authored
content under each title includes references that not
only allow for free-form responses with precise ci-
tation labeling but also serve as the golden retrieval
evidence for their respective titles.

However, the content may include noisy text,
and reference pages are often too long for effective
retrieval. We follow previous work (Qian et al.,
2023) to clean the Wikipedia pages. Specifically,
for content, we remove Wikipedia templates, spe-
cial symbols, and other invalid text. For references,

we first split the reference pages into smaller pas-
sages. Then, we exclude passages shorter than 16
words or with a non-English token ratio exceed-
ing 0.3, and then calculate term recall to identify
suitable passages. After these refinements, we gen-
erate a clean set of 20,000 high-quality pages for
subsequent conversations.

3.2 The CORAL Dataset Construction

We transform one or more related Wikipedia
web pages into information-seeking conversations
through a three-stage approach.

3.2.1 Extracting Title Trees
First, we extract all subheadings (i.e., titles) from
the raw HTML of the Wikipedia pages. These sub-
headings create a natural hierarchy for the content,
enabling us to construct a title tree, where the page
title (H1-level heading) serves as the root. Subse-
quent headings (e.g., H2 to H6) divide the content
into progressively detailed sections, with each level
corresponding to a node’s depth in the tree. The di-
rectional links between nodes will dictate the flow
of the generated conversations. Besides, to enhance
the complexity and diversity of conversations, we
also adjust the depth, breadth, multi-subtopic ex-
ploration, and topic shifts during the construction
of these title trees.

3.2.2 Conversation Flow Sampling
To generate coherent and diverse conversations, we
implement the following four sampling strategies
based on the extracted title trees:

1311



LDS SIDS STRW DTRW

Train Test Train Test Train Test Train Test

# Conversation 1800 200 1800 200 1800 200 1800 200

# Turns 5934 651 16082 1727 18165 1949 19411 2153

# Turns / Conversation 3.30 3.26 8.93 8.64 10.09 9.75 10.78 10.77

# Tokens / Question 13.70 13.89 12.62 12.64 12.72 12.88 14.15 14.75

# Tokens / Response 233.81 147.16 242.54 155.54 243.34 191.60 300.47 259.72

# Positive passages/ Turn 3.25 2.03 2.64 1.73 3.01 2.12 3.98 3.50

Table 2: Data statistics of four different conversation structures.

(1) Linear Descent Sampling (LDS): This strat-
egy begins at the root node and permits movement
only from parent nodes to their child nodes. LDS
serves as the most basic sampling path, emulating
the progressive logic typical of real conversational
information-seeking scenarios. As illustrated in
Figure 2(a), the title tree starts with the overall
theme of climate change and progressively narrows
down to specific impacts associated with this global
issue. Following the red arrow, the focus shifts to
the human aspects, particularly examining how cli-
mate change affects human health and food security.
This structure exemplifies a gradual deepening of
the query intent as the conversation unfolds.

(2) Sibling-Inclusive Descent Sampling (SIDS):
This strategy builds on LDS by introducing direc-
tional links between sibling nodes. This feature is
essential because conversational processes often en-
compass both in-depth and parallel explorations of
related subtopics. As shown in Figure 2(b), when
discussing the reception of Harry Potter, the subse-
quent three rounds of dialogue analyze it from three
distinct perspectives: commercial success, literary
criticism, and thematic critique. This enhancement
enriches the breadth of discussions within the con-
versation structure.

(3) Single-Tree Random Walk (STRW): This strat-
egy further enhances SIDS by incorporating inter-
connections among sibling nodes as well as be-
tween parent and child nodes. Essentially, it forms
a directed graph with bidirectional edges. As illus-
trated in Figure 2 (c), after an in-depth exploration
of Courtney Nevin’s club career, the focus shifts to
her international career.

(4) Dual-Tree Random Walk (DTRW): It mimics
the topic shifts that occur in real conversational
scenarios, allowing for greater flexibility. It enables
transitions between two different but somewhat
related trees, which are retrieved using the root title

as a query and employing the BM25 algorithm. As
illustrated in Figure 2(d), the conversation shifts
from sports in Albania to baseball in Germany.

3.2.3 Contextualization of Questions
As introduced in Section 3.1, we treat the subtitles
as the sources of questions, with their correspond-
ing contents serving as the responses. In this final
stage, we contextualize the keyword subtitles into
conversational questions to enhance the realism of
the conversation.

Specifically, for each turn, we first create a key-
word chain that includes the current node and all its
ancestor nodes. This keyword chain, along with the
response of the current node, is then used to prompt
GPT-41 to rewrite the original keyword title into
a natural language question. We then continue to
prompt GPT-4 to further contextualize the question
into a conversational format by incorporating lin-
guistic phenomena such as ellipses, references, and
omissions (Dalton et al., 2020b), which are preva-
lent in real conversational scenarios. The prompt
details are provided in Appendix A.

3.3 The Final Dataset Format and Statistics

The key statistics of CORAL are summarized in Ta-
ble 2. Our dataset consists of 8,000 conversations
with the four types introduced in Section 3.2.2.
These 8,000 conversations are evenly distributed
across four distinct structural types, with each type
containing 2,000 conversations. Specifically, the
LDS conversation type includes 3 to 6 turns per con-
versation. For the remaining types—SIDS, STRW,
and DTRW—each category consists of 1,600 sets
of conversations with 6 to 10 turns, along with an
additional 400 sets featuring 11 to 20 turns per con-
versation. The design of the longer conversation

1gpt-4-turbo-2024-04-09 from https://openai.com/api
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Category Method MRR MAP NDCG@3 Recall@20 Recall@100

CDR Models

Conv-ANCE-Q 19.8 28.6 20.5 39.1 51.0
KD-ANCE-Q 22.6 33.1 24.5 38.5 48.0

Conv-ANCE-C 20.5 29.6 21.1 39.8 53.4
KD-ANCE-C 23.2 33.6 24.9 40.3 49.6

CQR Models
LLM4CS (GPT-3.5) 21.2 31.1 23.0 35.5 44.4

Qwen2.5-1.5B 16.3 23.8 17.2 31.0 39.2
Qwen2.5-1.5B-SFT 23.1 33.6 25.1 39.4 48.6

Table 3: Retrieval performance comparisons. The best performance is bold. Conv-ANCE-Q denotes the Conv-ANCE
is trained on the QReCC dataset and Conv-ANCE-C denotes the Conv-ANCE is trained on CORAL training dataset.

intends to simulate real-world challenges encoun-
tered in conversational scenarios, such as redundant
information and the long context problem.

Our final dataset format is as follows: A conver-
sation C = {(qi, ri)}n

i=1 comprised of n turns. qi

is a contextualized query of the i-th turn generated
in Section 3.2.3, and ri is the i-th turn golden re-
sponse, which is the cleaned plain text under the
corresponding (sub-)title in the HTML. The sup-
porting web pages for ri, listed in the HTML Ref-
erence Section, can be processed as described in
Section 3.1 to serve as the golden relevant passages
P +

i = {pi,1, pi,2, . . .}. On average, each conversa-
tion turn has 3.17 related passages, and the average
golden response length is 255 tokens. Finally, we
obtain a passage corpus P , which contains 200K
passages from all the golden references P +

i .

3.4 Evaluation Tasks

CORAL mainly supports three fundamental con-
versational RAG tasks:

(1) Conversational Passage Retrieval: This task
evaluates a system’s capability to extract relevant
information from extensive document collections,
considering the context of multi-turn conversations.
Formally, given the k-th question qk and the cor-
responding conversation history Hk = {qi, ri}k−1

i=1 ,
where qi and ri respectively denote the question
and response of the i-th turn, the retriever R aims
to retrieve the relevant passages Pk from the pas-
sage corpus P . We use MRR, MAP, NDCG@3,
Recall@20 and Recall@100 as retrieval evaluation
metrics.

(2) Response Generation: This task challenges
the system’s ability to produce accurate, detailed,
and contextually appropriate answers. Given the
k-th question qk, the corresponding conversation
history Hk, and the relevant passages Pk, the
generator G needs to generate an informative re-
sponse to answer the question. We use rule-

based metrics BLEU-1 (Papineni et al., 2002), and
ROUGE-L (Lin, 2004) to evaluate the response
quality compared with rk. Given the lengthier re-
sponses in our benchmark, we additionally utilize
the model-based evaluation method proposed in
RichRAG (Wang et al., 2024).

(3) Citation Labeling: This task evaluates the
method’s ability to accurately attribute information
sources within the generated responses. Following
ALCE (Gao et al., 2023), the generated response rk

consists of n statements s1, s2, ..., sn. Each state-
ment si cites a list of passages Ci = {ci,1, ci,2, ...},
where ci,j ∈ Pk. We adopt Citation Recall and Ci-
tation Precision defined in ALCE (Gao et al., 2023)
to evaluate the accuracy of citation labeling.

4 Conversational RAG Framework

A conversational RAG system typically comprises
a retriever and a generator to handle the current
user query qk, the conversation history Hk, and
the retrieved passages Pk. As the conversation
progresses, both the growing conversation history
and the noisy retrieved passages can negatively
impact the system’s efficiency and effectiveness,
making it harder to generate accurate responses.
To solve the problem, we propose a simple com-
pression framework to efficiently manage these
inputs. Specifically, we introduce a conversation
compression function f to compress the conversa-
tion, and then use the compressed contents as the
real inputs of retrievers and LLM generators. In
addition to conversation compression, we also ap-
ply post-retrieval results compression. Following
existing approaches (Xu et al., 2023), we simply
take LLMs as the compression function fp, leaving
the exploration of more compression methods in
future work.

Formally, suppose f(Hk) is the compressed con-
versation context, Pk = R(f(Hk), qk) is list of
passages retrieved by querying f(Hk) with qk,
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Category # Tokens Model Generation Citation Labeling

BLEU-1 ROUGE-L Citation Recall Citation Precision

Raw Context 2226

Qwen2.5-7B 22.2 13.1 3.1 18.1
Mistral-7B 18.1 12.4 2.4 4.8
Llama-3.1-8B 21.5 12.9 0.9 2.1

Qwen2.5-7B-SFT 18.3 18.5 6.6 16.8
Mistral-7B-SFT 23.7 20.1 4.6 11.1
Llama-3.1-8B-SFT 24.2 19.7 4.2 9.8

Last Response 1474

Qwen2.5-7B 20.9 12.8 3.5 20.8
Mistral-7B 18.1 12.3 2.7 4.5
Llama-3.1-8B 20.4 12.7 1.3 3.1

Qwen2.5-7B-SFT 23.9 16.5 10.4 24.8
Mistral-7B-SFT 21.8 18.5 5.0 12.4
Llama-3.1-8B-SFT 26.1 18.1 3.5 8.7

Rewrite 1236

Qwen2.5-7B 21.1 12.8 2.4 9.4
Mistral-7B 18.8 12.3 2.5 3.8
Llama-3.1-8B 18.8 12.4 1.7 3.1

Qwen2.5-7B-SFT 18.9 16.4 7.4 16.8
Mistral-7B-SFT 24.8 18.5 5.9 14.8
Llama-3.1-8B-SFT 26.3 18.2 4.7 11.2

LLM Summarization 478

Qwen2.5-7B 21.0 12.7 2.9 13.0
Mistral-7B 19.5 12.3 5.6 6.7
Llama-3.1-8B 19.1 12.8 4.1 7.1

Qwen2.5-7B-SFT 23.5 16.8 14.1 31.1
Mistral-7B-SFT 16.9 17.1 8.3 19.8
Llama-3.1-8B-SFT 18.7 16.5 4.5 10.7

Table 4: The comparison of different LLMs on response generation and citation labeling. # Tokens denotes the
number of input tokens.

and fp(Pk) is the compressed results of the re-
trieval, the final generation task can be formulated
as: G(qk, f(Hk), fp(Pk)). The prompt for feeding
qk, f(Hk), fp(Pk) into the generator can be found
in Appendix B. Various existing conversational
RAG methods can be unified into our framework.
In this work, we mainly investigate the following
three methods for the conversation compression:

Last Response Strategy For the conversation
history, we heuristically select all previous con-
versational questions {qi}k−1

1 and the last turn’s
response rk−1 in the conversation history:

fLR(Hk) = {qi}k−1
1 , rk−1. (1)

Rewrite Strategy We adopt a conversational
query rewriting model Rewrite() to transform the
original query along with the conversation history
into a standalone question rewrite q̂k:

fRW
c (Hk) = q̂k = Rewrite (qk; Hk) . (2)

In this strategy, Pk = R(q̂k) is list of passages
retrieved by querying q̂k, and fp(Pk) is the com-
pressed results of the retrieval, the final generation
task can be formulated as: G(q̂k, fp(Pk)).

LLM Summarization Strategy Inspired by RE-
COMP (Xu et al., 2023), we use LLMs to generate
abstractive summary of the conversation history:

fSUM
c (Hk) = LLM(Hk). (3)

The prompt is shown in Appendix C.

5 Experiments

In this section, we discuss the performance of con-
versational RAG on our benchmark, and provide a
comprehensive analysis for each stage.

5.1 Evaluating Retrieval Performance
We concentrate on two main approaches in con-
versational search: conversational dense retrieval
(CDR) and conversational query rewriting (CQR).
For CDR, we use KD-ANCE and Conv-ANCE
with ANCE as the base retriever. KD-ANCE (Yu
et al., 2021) trains the session encoder by mim-
icking golden query embeddings, while Conv-
ANCE (Karpukhin et al., 2020; Lin et al., 2021a)
uses contrastive learning to train the session en-
coder, drawing it closer to relevant passages and
further from irrelevant ones. For CQR, we uti-
lize the LLM4CS (Mao et al., 2023a), which in-
corporates GPT-3.5, and an open-source LLM for
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Figure 3: The scaling analysis of generation and citation labeling performance.

generating query rewrites respectively to enable a
comparative analysis. Table 3 provides a detailed
comparison between these two categories. We have
the following observations:

(1) The performances of the CDR and CQR mod-
els are fairly comparable. Notably, the Qwen2.5-
1.5B-SFT shows a strong competitive edge, not
only surpasses the Qwen2.5-1.5B but also outper-
forms the advanced closed-source LLM GPT-3.5
across all evaluated metrics.

(2) KD-ANCE in the CDR category shows bet-
ter results compared to Conv-ANCE. This may
be attributed to the training methodologies: KD-
ANCE possibly leverages golden rewrite data more
effectively than Conv-ANCE, which uses in-batch
negatives that may not be sufficiently challenging
for optimal learning.
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Figure 4: The GPT-4 evaluation score.

5.2 Evaluation Response Generation with
Citation Labeling

We compare the raw context baselines with an-
other three conversation compression strategies in-
troduced in Section 4, selecting Qwen2.5, Mistral,
and Llama as generators. We prompt the generator
to generate the response along with the citations in
the response. The generation and citation labeling
performance is shown in Table 4, and the GPT-4
score is shown in Figure 4. We find that:

(1) By examining four methods of modeling con-
versation history, we observe an interesting trend:
as the input is progressively condensed (from 2226
input tokens in the raw context to merely 478 input
tokens in the LLM Summarization), the decrease in
performance is surprisingly minimal, and there is
even an observed improvement in terms of citation
labeling. This suggests that some content within
the dialogue history is irrelevant or redundant and
can be removed without negatively impacting the
model’s performance.

(2) Among three conversation compression
strategies, the Rewrite with SFT exhibits supe-
rior performance, which could be attributed to the
model’s enhanced capability to learn from the sim-
plified question-answer pattern. Intriguingly, al-
though the LLM Summarization strategy demon-
strates weaker performance in response generation,
it significantly enhances citation labeling. A possi-
ble explanation is that the summarization process
effectively filters noise, thereby optimizing the con-
tent for generating more reliable responses.

5.3 Scaling Analysis on Model Parameters

We scale the generator’s parameters from 500M to
7B, as shown in Figure 3. We find that:

(1) There is a pronounced improvement in gen-
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Figure 5: Generation results of different conversation history length. The curve in the figure represents the ROUGE-
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cases where the two responses are considered equally good, and Lose indicates cases where the golden responses
are considered better. The y-axis on the left represents the proportion of cases in the total number of cases.

eration as parameters increase from 500M to 1.5B,
evidenced by a significant rise in ROUGE-L scores.
However, beyond 3B parameters, the performance
gains plateau, indicating diminishing returns with
additional parameter scaling.

(2) Performance in citation labeling improves
markedly as the parameter count extends from 3B
to 7B. This suggests that a larger model capacity
is beneficial for tasks that require extensive knowl-
edge, such as accurate citation usage.

5.4 Quantitative Analysis on History Turns

To analyze the impact of conversation history
length, we randomly select 50 conversations and
vary the number of previous dialogue turns pro-
vided to the generator. This can be represented
as rm

k = G (qk; Hm
k ; Pk), where k = 12, Hm

k =
{qi, ri}k−1

k−m, and m ∈ {2, 4, 6, 8, 10}. Results are
shown in Figure 5. We find that:

(1) After fine-tuning, the performance improves
significantly, especially when using four history
turns, resulting in a notable 55% improvement in
the ROUGE-L. This demonstrates the effectiveness
of SFT in modeling history.

(2) Before fine-tuning, response quality de-
creases with six turns of history compared to four,
possibly due to the redundant information intro-
duced by the longer history. However, after fine-
tuning, response quality improves with six turns but
declines with eight, suggesting a trade-off between
richer information enriched by longer context and
irrelevant information introduced by conversation
history. These findings validate the challenges pre-
viously discussed in Section 1.

6 Conclusion

In this paper, we present an automatic approach
using LLMs to construct large-scale, information-
seeking conversations from Wikipedia pages. The
resulting benchmark, CORAL, supports three fun-
damental tasks for evaluating conversational RAG
systems. Additionally, we propose a unified frame-
work to standardize various conversational RAG
methods and conduct a comprehensive evaluation
of these methods on CORAL. We envision CORAL
as a valuable resource for advancing research in
conversational RAG, fostering innovation, and im-
proving real-world applications.

Limitations

Our work presents a conversational RAG bench-
mark named CORAL, which fills a notable void
in assessing conversational RAG methods. In this
benchmark, we examine the effects of compress-
ing conversational history on answer generation,
paving the way for future research in conversa-
tional RAG. However, since CORAL is built upon
Wikipedia and existing LLMs are typically trained
on corpora like Wikipedia and CommonCrawl, us-
ing these LLMs as generators could lead to con-
tamination in the conversational RAG process due
to the overlap in their training data. Additionally,
the three conversation compression strategies em-
ployed in CORAL are somewhat basic, focusing
solely on reducing the length of inputs rather than
modeling the conversation history in a granular
manner. Additionally, the use of the LLM Summa-
rization strategy for compressing both conversation
history and retrieved passages, while leveraging
advanced models such as GPT-4, could lead to con-
siderable expenses.
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Appendix

A Prompts of the Contextualization of
Questions

When contextualizing questions, two steps need
prompt. Firstly, we transform the node into the
complete question. Secondly, we convert the com-
plete questions into conversational questions. Ta-
ble 6 illustrates the prompt for generating a com-
plete question. Table 7 demonstrates the prompt
for creating conversational questions. Following
LLM4CS (Mao et al., 2023a), the prompt consists
of three components: Instruction, Demonstration,
and Input. The red section is designated for LDS
prompting, the blue section for SIDS and STRW
prompting, the green section for DTRW prompting,
and the orange section for LDS, SIDS, and STRW
prompting.

B Prompts of Generating Responses with
Citation Labeling

Table 6 provides the prompt template for generat-
ing a response with citation labeling. The red part
is for Raw Context and the Last Response strategy
prompting. The blue part is for Rewrite Strategy
prompting. The green part is for LLM Summariza-
tion Strategy prompting. The orange part is for
Raw Context, the Last Response Strategy, and the
LLM Summarization Strategy prompting.

C Prompts of LLM Summarization
Strategy

Table 8 provides a general illustration of the prompt
of generating a summary of conversation history.

D More Detailed Experimental Setting

D.1 Conversational Search Baselines

The conversational search baseline models are cho-
sen for their prevalence and effectiveness in the
field. We focus on two primary approaches: con-
versational dense retrieval (CDR) and conversa-
tional query rewriting (CQR). For CDR, we adopt
KD-ANCE and Conv-ANCE, where ANCE is a
base ad-hoc retriever. Following Yu et al. (2021),
KD-ANCE uses an ad hoc query encoder as the
teacher model, training the student session encoder
to imitate the embeddings derived from the golden
queries. Meanwhile, according to the methodol-
ogy outlined by (Karpukhin et al., 2020; Lin et al.,
2021a), Conv-ANCE is designed to implement

the classical ranking loss function. This function
strives to minimize the distance between the ses-
sion and its relevant passages while maximizing
the separation from irrelevant ones. Dense retrieval
is conducted using Faiss (Johnson et al., 2019). For
CQR, we choose LLM4CS (Mao et al., 2023a),
employing the proprietary commercial model GPT-
3.5 to generate rewrites. Additionally, we choose
an open-source LLM to generate rewrites as well,
allowing for a comparative analysis.

D.2 Generation with Citation Labeling
We compare the raw context baselines with an-
other three conversation compression strategies in-
troduced in Section 4. We choose Qwen2.5-7B-
Instruct (Yang et al., 2024; Team, 2024), Mistral-
7B-Instruct (Jiang et al., 2023), and Llama-3.1-8B-
Instruct (Dubey et al., 2024) as the generator. For
the scaling analysis, we use the Qwen2.5-Instruct
series, specifically the 0.5B, 1.5B, 3B, and 7B
models, as our generators for detailed examina-
tion. During the training process, we utilize the
LLaMA-Factory (Zheng et al., 2024) framework,
running on two A800 GPUs. The training parame-
ters are set as follows: we employ a learning rate
of 1.0e-5. The batch size is maintained at 1, and
the maximum token length for training instances
is set to 4096. Because of the lack of training data
of the LLM Summarization category, we use the
checkpoint of Raw Context.

During the inference process, we leverage the
vLLM (Kwon et al., 2023) framework to accelerate
inference. The maximum input length is set to
32,000, top_p is set to 0.9, and temperature is set
to 1.

D.3 More detailed Scaling Analysis
Table 5 provides detailed results of the generation
quality and citation labeling accuracy.

E Dataset Format

Table 10 provides an example of CORAL. Our
dataset CORAL has information-seeking questions,
free-form responses with citation labeling, golden
rewrites, and corresponding golden retrieval pas-
sage ID.
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Category Model Generation Citation Labeling

BLEU-1 ROUGE-L Citation Recall Citation Precision

Raw Context

Qwen2.5-0.5B 16.4 11.8 0.1 0.2
Qwen2.5-1.5B 20.8 12.9 0.3 1.2
Qwen2.5-3B 21.4 12.9 0.4 1.8
Qwen2.5-7B 22.2 13.1 3.1 18.1

Qwen2.5-0.5B-SFT 13.0 15.5 3.5 10.2
Qwen2.5-1.5B-SFT 20.9 17.5 3.6 10.0
Qwen2.5-3B-SFT 25.8 17.6 8.1 20.7
Qwen2.5-7B-SFT 18.3 18.5 6.6 16.8

Last Response

Qwen2.5-0.5B 15.6 11.7 0.2 0.5
Qwen2.5-1.5B 19.3 12.5 0.8 2.9
Qwen2.5-3B 21.1 12.6 0.6 3.4
Qwen2.5-7B 20.9 12.8 3.5 20.8

Qwen2.5-0.5B-SFT 19.8 15.5 6.5 18.0
Qwen2.5-1.5B-SFT 19.4 15.8 6.7 17.7
Qwen2.5-3B-SFT 21.8 15.8 7.4 17.1
Qwen2.5-7B-SFT 22.1 16.5 10.4 24.8

Rewrite

Qwen2.5-0.5B 17.3 12.0 0.4 0.8
Qwen2.5-1.5B 19.9 12.5 0.4 1.2
Qwen2.5-3B 20.8 12.5 4.0 14.9
Qwen2.5-7B 21.1 12.8 2.4 9.5

Qwen2.5-0.5B-SFT 21.4 16.1 6.5 16.5
Qwen2.5-1.5B-SFT 21.7 16.6 5.9 14.9
Qwen2.5-3B-SFT 23.3 16.8 7.2 16.5
Qwen2.5-7B-SFT 18.9 16.4 7.4 19.8

LLM Summarization

Qwen2.5-0.5B 13.2 11.6 0.2 0.4
Qwen2.5-1.5B 15.0 12.1 0.9 3.0
Qwen2.5-3B 20.2 12.7 2.5 10.6
Qwen2.5-7B 21.0 12.7 2.9 13.0

Qwen2.5-0.5B-SFT 21.4 14.6 6.5 17.4
Qwen2.5-1.5B-SFT 23.0 15.5 6.8 16.9
Qwen2.5-3B-SFT 17.6 15.6 14.6 36.0
Qwen2.5-7B-SFT 23.5 16.8 14.1 31.1

Table 5: The complete scaling analysis of generation and citation labeling performance. The best performance is
bold.
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Instruction

Given the keyword chain of the question and its response, generate the original
question. If the response is not informative enough to help you reconstruct the
question, please rely on the provided keyword chain to generate the question.
The keyword chain consists of terms where each term is a more specific or
detailed subset of the previous one, with the last term being the most specific or
important. The question you generate should focus on the last keyword in the
chain and include it explicitly.

Input

Given the following keyword chain and response:
Keyword Chain: 72nd Primetime Emmy Awards, ceremony information,
category and rule changes
Response: Several rule changes were announced in December 2019. first,
episodes that were scheduled to air after the eligibility period closed. . .
(Now, you should give me the original question given the keyword chain and
its response. The output format should always be: Question: $Question. Note
that you should always try to generate it. Never ask for clarification or say you
don’t understand it in the generated question. Go ahead!)

Model Output Question: What were the category and rule changes for the 72nd Primetime
Emmy Awards ceremony?

Table 6: An illustration of the prompt for question generation. The prompt consists of two parts: Instruction and
Input.
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Instruction

Given a topic and corresponding question and response pairs. The questions are
arranged in a logical, progressively deeper sequence, where each subsequent
question delves deeper into the topic based on the previous one. The questions
are organized in a logical sequence where they are interconnected and may delve
deeper into earlier topics, rather than following a direct, linear progression. The
questions initially follow a logical progression but may shift to another topic as
needed, reflecting a dynamic conversational flow rather than a strict linear order.
I would like you to convert the original question into a conversational form.
The goal is to rewrite it without any grammatical errors while preserving its
original intent as closely as possible. It is necessary to consider the omission and
reference to the previous question and response in the generated conversational
question.

Demonstration

I will give you one example multi-turn dialog, where each turn contains an
original question, a conversational question, a response, and the corresponding
analysis.
Example:
Topic: depression
Conversations:
Turn #1:
Original Question1: What are the mechanisms of depression?
Conversational Question1: What are the mechanisms of depression?
Response1: The major neurotransmitters are acetylcholine, norepinephrine,
dopamine, and serotonin. Many experts believe that an imbalance among the
different neurotransmitters is the cause of depression.
Analysis: The initial question addresses the mechanisms of depression, which
leads to an explanation of neurotransmitters and their role in depression.
Turn #2:
Original Question2: What is the role of serotonin in depression?
Conversational Question2: What is the role of serotonin?
Response2: When it comes to biological factors for depression, it is commonly
accepted that serotonin plays a crucial role. In the brain, this neurotransmitter
acts as a relay, transporting messages from one area to another. Given this
critical task, an imbalance in serotonin levels may influence our emotions.
Analysis: Since "depression" was already mentioned in the previous turn, it’s
redundant to repeat it in the subsequent question. Therefore, by omitting "in
depression", the question flows more smoothly and maintains coherence in the
conversation.
Turn #3:
Original Question3: How can I balance serotonin?
Conversational Question3: So how can I balance it?
Response3: You can create your own dopamine rewards by setting a goal, and
then take small steps toward it every day. This can be starting a new exercise
program, learning French, or challenging yourself to drive home from work a
different way every day, preferably without the use of your GPS.
Analysis: The use of "it" in the question effectively refers back to "serotonin"
from the question in the previous turn. This helps maintain coherence in the
conversation and avoids repetitive expressions. And we use "so" as a connecting
word to make the conversation look smoother.
Turn #4:
Original Question4: What foods boost dopamine?
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Conversational Question4: What foods boost it?
Response4: Bananas, especially ripe bananas, are an exceptional food for
regulating dopamine because they have a high concentration of tyrosine. Other
foods that increase dopamine through the conversion of phenylalanine to tyro-
sine include almonds, apples, watermelons, cherries, yogurt, beans, eggs, and
meats.
Analysis: Continuing the discussion on depression, the question asks about
foods that boost dopamine, with "it" referring back to "dopamine" from the
previous response.
. . .

Input

Now I will give you a topic and the corresponding question and response pairs:
Now I will give you the question and response pairs:
Topic: Solve Education

Id: 1
Question: What is Solve Education and what are its main objectives?
Response: solve education is a global technology non-profit organization
founded in 2015 by peng tsin ong and Janine teo. . .
Id: 2
Question: What is the history of the organization Solve Education! since its
inception?
Response: solve education was founded in December 2015 after peng tsin ong
attended the Africa Innovation Summit in Cape Verde in 2014 where he led a
plenary session on financing innovation. . .
Id: 3
Question: What is the purpose of the Dawn of Civilization game developed
by Solve Education, and how does it utilize its services to benefit education in
low-income countries?
Response: Dawn of Civilization is a city-building game which is based on
various subjects and itself contains mini-games.. . .
Id: 4
Question: What is Ed the Learning Bot and how does it contribute to the
services provided by Solve Education?
Response: It is an AI-based chatbot used by solve education! on telegram. it
helps underserved young people to learn about any subject with the help of
gamified pictures and text. . .
Id: 5
Question: What is the purpose of the Content+ service on the Solve Education
platform, and how do educational content providers interact with it?
Response: it is an open platform which facilitates educational content providers
to add their content in order to meet the needs of beneficiaries. . .
Id: 6
Question: What is Learnalytics and how does it function within Solve Educa-
tion services?
Response: It is a tool developed by solving education! which helps measure
the performance. additionally, learning portal analytics, provides context, the
learning progress, and the performance of the students as they learn. . .
. . .
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(Please consider the question and response from the previous text when gener-
ating the current conversational question, but there is no need to generate the
response. The output should be in the following format:
Turn #$turn_id
Original Question: $original question
Conversational Question: $conversational question
Reason: $reason)

Model Output

Turn #1
Original Question: What is Solve Education! and what are its main objectives?
Conversational Question: What is Solve Education and what are its main
objectives?
Reason: This is the first question in the series, so it introduces the topic and
organization directly, laying the foundation for the conversation. No reference
to prior questions is needed.
Turn #2
Original Question: What is the history of the organization Solve Education
since its inception?
Conversational Question: Could you share more about the history of Solve
Education since it started?
Reason: The conversational question transitions smoothly from the introduction
of the organization by asking for historical details. The phrase "since it started"
connects directly back to the organization introduced in Turn #1.
Turn #3
Original Question: What is the purpose of the Dawn of Civilization game
developed by Solve Education, and how does it utilize its services to benefit
education in low-income countries?
Conversational Question: Can you tell me about the Dawn of Civilization
game and how it benefits education in low-income areas?
Reason: This question builds on the previous introduction of Solve Education’s
initiatives. The phrase "the Dawn of Civilization game" is specific and follows
logically from learning about the organization’s history and broader objectives.
Turn #4
Original Question: What is Ed the Learning Bot and how does it contribute to
the services provided by Solve Education?
Conversational Question: What role does Ed the Learning Bot play in Solve
Education’s services?
Reason: The question uses "Ed the Learning Bot" directly and asks about its
role, making it clear and focused on this specific service. It follows naturally
after discussing another tool (Dawn of Civilization game) used by the organiza-
tion.
. . .

Table 7: An illustration of the prompt for generating conversational questions consists of three parts: Instruction,
Demonstration, and Input. The red section is designated for LDS prompting, the blue section for SIDS and STRW
prompting, the green section for DTRW prompting, and the orange section for LDS, SIDS, and STRW prompting.
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Instruction
Given the current question and the previous conversation history, summarize
the conversation history. The summary should contain relevant information to
help the agent provide a more informative response to the current question.

Demonstration

I will give you several example dialogs, where each example contains the
current question, the conversation history, the summarization, and the reason of
generating such summarization.
Example #1:
Current Question: What about their impact on battery longevity?
Question1: What are some of the key advancements in electric vehicle technol-
ogy lately?
Response1: There are improvements in battery technology for longer ranges,
faster charging methods, and the integration of solar panels to help extend
range.
Question2: Do any particular models feature these solar panels?
Response2: Yes, a number of new sedans and SUVs have solar roofs which
can significantly increase daily driving range.
Question3: What about the charging stations? Are they getting better too?
Response3: Indeed, ultra-fast charging stations are now available that can boost
a battery to 80% in as little as 20 minutes.
Summarization: The dialogue has highlighted advancements in electric vehicle
technology, especially in battery efficiency, solar panel integration, and faster
charging solutions. The conversation has particularly focused on the introduc-
tion of ultra-fast charging stations and briefly touched upon their efficiency in
reducing charging times.
Reason: The summary efficiently condenses prior discussions to provide con-
text specifically for the user’s current question about the impact of ultra-fast
charging on battery longevity.
. . .

Input

Given the following question and its conversation history:
Current Question: What are some other applications of this method, particu-
larly in solving constrained optimization problems?
Conversation History:
Question1: Can you explain what the multiplicative weight update method is
and how it’s used in decision making and prediction?
Response1: The multiplicative weights update method is an algorithmic tech-
nique most commonly used for decision making and prediction. . .
(Now, you should give me the summarization given the current question and
its conversation history. The output format should always be: “Summarization:
$Summarization”. Note that you should always try to generate it. Never ask for
clarification or say you can’t generate the summarization. Go ahead!)

Model Output

Summarization: The conversation has detailed the multiplicative weight up-
date method, describing its primary use in decision making and prediction,
particularly through the example of prediction from expert advice. It also
touched on its wide applications in fields like machine learning, optimization,
theoretical computer science, and game theory, which relates to its potential in
solving constrained optimization problems as queried in the current question.

Table 8: An illustration of the prompt for generating a conversation summary. The prompt consists of three
components: Instruction, Demonstration, and Input.
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Instruction

Based on the provided passages, please answer the current question while con-
sidering the context of the conversations history. If the current question lacks
complete information or contains omissions, use the conversation history to
enhance understanding and provide a response. please answer the question.
please answer the current question considering the summarization of the con-
versation history please. If the current question lacks complete information or
contains omissions, use the summarization of conversation history to enhance
understanding. Support your answer with citations in brackets. If the provided
passages are not informative, please generate the answer based on your own
knowledge. Don’t say you can’t answer the question.

Input

Current Question: . . .
Question: . . .
Conversation History: . . .
Summarization of Conversation History: . . .
Passages: . . .

Table 9: The prompt template of generating the response. The prompt consists of two parts, i.e., Instruction, and
Input. red part is for Raw Context and Last Response strategy prompting. The blue part is for Rewrite Strategy
prompting. The green part is for LLM Summarization Strategy prompting. The orange part is for Raw Context, Last
Response Strategy, and LLM Summarization Strategy prompting.
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Question1: What were the key details and outcomes of the 72nd Primetime Emmy Awards?
Response1: The 72nd Primetime Emmy Awards honored the best in American prime time
television programming from June 1, 2019, until May 31, 2020, as chosen by the Academy
of Television Arts & Sciences.[65215]. . .
Golden Retrieval Passages IDs: 65215
Golden Rewrite: What were the key details and outcomes of the 72nd Primetime Emmy
Awards?
URL: https://en.wikipedia.org/wiki/72nd_Primetime_Emmy_Awards

Question2: Could you tell me about the winners and nominees from this event?
Response2: The nominations for the 72nd Primetime Emmy Awards were announced on
July 28, 2020, by host Leslie Jones and presenters Laverne Cox, Josh Gad, and Tatiana
Maslany.[65226]. . .
Golden Retrieval Passage IDs: 65216, 65217, 65218, 65219, 65220, 65221, 65222, 65223,
65224, 65225, 65226, 65227, 65228, 65229, 65230, 65231, 65232
Golden Rewrite: Who were the winners and nominees at the 72nd Primetime Emmy
Awards?
URL: https://en.wikipedia.org/wiki/72nd_Primetime_Emmy_Awards

Question3: Who received the Governors Award and why were they chosen?
Response3: The Governors Award was presented to Tyler Perry and the Perry Foundation “in
recognition of their unparalleled contributions to shaping the television medium” and for their
“inclusion, engagement, employment and other philanthropic initiatives”.[65233][65234]
The award was moved to the main telecast from its usual presentation at the Creative Arts
Emmys.[65235]
Golden Retrieval Passage IDs: 65233, 65234, 65235
Golden Rewrite: Who received the Governors Award at the 72nd Primetime Emmy Awards
and for what reasons?
URL: https://en.wikipedia.org/wiki/72nd_Primetime_Emmy_Awards
. . .
. . .
. . .
Question10: Who performed during the in Memoriam Segment, and which notable figures
were mentioned?
Response10: The annual in Memoriam Segment featured H.E.R. performing “Nothing
Compares 2 U” on piano and electric guitar .[65284][65285]. . .
Golden Retrieval Passage IDs: 65284, 65285, 65286, 65287
Golden Rewrite: Who performed during the in Memoriam Segment at the 72nd Primetime
Emmy Awards, and which notable figures were mentioned?
URL: https://en.wikipedia.org/wiki/72nd_Primetime_Emmy_Awards

Table 10: A conversation from CORAL.
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