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Abstract

Assertions have been the de facto collateral
for hardware verification for over a decade.
The verification quality, i.e., detection and di-
agnosis of corner-case design bugs, is criti-
cally dependent on the assertion quality. There
has been a considerable amount of research
to generate high-quality assertions from hard-
ware design source code and design execu-
tion trace data. With the recent advent of
generative Al techniques such as Large Lan-
guage Models (LLMs), there has been a re-
newed interest in deploying LLMs for asser-
tion generation. However, there is little ef-
fort to quantitatively establish the effective-
ness and suitability of various LLMs for as-
sertion generation. In this paper, we present
AssertionBench, a novel benchmark to evalu-
ate LLMs’ effectiveness for assertion genera-
tion quantitatively. AssertionBench contains
100 curated Verilog hardware designs from
OpenCores and formally verified assertions for
each design, generated from GOLDMINE and
HARM. We use AssertionBench to compare
state-of-the-art LLMs to assess their effective-
ness in inferring functionally correct assertions
for hardware designs. Our experiments com-
prehensively demonstrate how LLMs perform
relative to each other, the benefits of using more
in-context examples in generating a higher frac-
tion of functionally correct assertions, and the
significant room for improvement for LLM-
based assertion generators.

1 Introduction:

System-on-Chip (SoC) designs are the building
blocks for many safety-critical computing systems,
including vehicular systems, infrastructure, mili-
tary, and industrial automation. It is crucial to es-
tablish that the SoCs are functionally correct, safe,
and secure to ensure that the SoC designs function
as intended and are free from errors and vulnerabil-
ities.
*SD and DP jointly supervised this work.

Assertions or design invariants are mathemati-
cal encoding (in Boolean logic) of desired design
properties that should hold True for the hardware
design. Assertion-based Verification (ABV) (With-
arana et al., 2022) has long emerged as the de facto
standard to verify the security and functional cor-
rectness of SoCs. However, crafting a succinct
set of assertions for hardware designs is a tedious
and time-consuming task, often requiring consid-
erable human ingenuity. Too many assertions can
negatively affect verification performance with a
prolonged verification closure, whereas too few as-
sertions may result in insufficient design coverage
causing corner case design bugs to escape to pro-
duction and mass manufacturing. Consequently,
it is crucial to develop automated and scalable
techniques to rapidly generate a succinct set of
hardware design properties targeting design func-
tionality, safety, and security.

There has been a considerable amount of re-
search work for assertion generation using two dif-
ferent paradigms — lightweight static analysis of
design source code and formal verification (Tiwari
et al., 2001; Pasareanu and Visser, 2004), and data-
driven statistical analysis, e.g., data mining (Ernst
et al., 2000; Hangal et al., 2005; Pinter and Majzik,
2005; DeOrio et al., 2009; Chang and Wang, 2010;
Wang et al., 1998; Hekmatpour and Salehi, 2005;
Rogin et al., 2008; DeOrio et al., 2009; Chang and
Wang, 2010; Chung et al., 2011). GOLDMINE, for
the first time developed a static analysis guided sta-
tistical analysis-based technique to generate hard-
ware assertions (GoldMine, 2024; Hertz et al.,
2013) in Linear Temporal Logic (Pnueli, 1977)
in a fully automated way. While GOLDMINE and
follow-up research (Hertz et al., 2019; Pal et al.,
2020; Malburg et al., 2017; Reza Heidari Iman
et al., 2024; Heidari Iman et al., 2021; Danese
et al., 2017; Germiniani and Pravadelli, 2022a; Hei-
dari Iman et al., 2022; Germiniani and Pravadelli,
2022b; Deutschbein et al., 2021; Witharana et al.,
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2023; Ayalasomayajula et al., 2024; Pal et al.,
2020; Heidari Iman et al., 2022; Ghasempouri and
Pravadelli, 2015) made assertions accessible be-
yond the hardware verification engineers, most of
those methods still failed to scale to large industry-
scale designs due to the algorithmic complexity of
the underlying static analysis.

With recent advances in generative Al models,
especially Large Language Models (LLMs), there
is a renewed interest in the research community
to harness the power of LLMs for assertion gen-
eration task. Most recent assertion generation ap-
proaches (Liu et al., 2023; Orenes-Vera et al., 2023;
Kande et al., 2023; Fang et al., 2024; Mali et al.,
2024; Pei et al., 2023) treat LLMs as black-box
and use prompt engineering to iteratively refine the
set of generated assertions. However, there is no
in-depth study nor a dataset to evaluate how well
different state-of-the-art (SOTA) LLMs perform
on generating the correct set of assertions without
designer developed prompts.

To address this gap, we propose AssertionBench:
the first comprehensive benchmark to quantify the
efficacy of SOTA LLMs for the assertion genera-
tion task. The benchmark contains 100 curated
designs of varying complexity encompassing a
broad spectrum of design types, including encoders,
decoders, and arithmetic operations such as addi-
tion, multiplication and 2’s complement in Floating
Point Units, along with their formally verified as-
sertions facilitating future research in exploring
the applicability of LLMs in assertion generation.
In this work we quantify the quality of the LLM-
generated assertions prompted with a collection of
labeled designs (and their formally verified asser-
tions) as in-context learning (ICL) examples.

2 The AssertionBench Benchmark

AssertionBench! contains ICL example designs
and and test designs from OpenCores (OpenCores,
2024). The benchmark contains combinational and
sequential hardware designs containing up to 1250
lines of codes (LoCs) (Danial, 2021) excluding
comments and blank lines.

In our benchmark, each ICL example consists
of a Verilog design and its formally verified asser-
tions, generated from GOLDMINE (Pal et al., 2020)
and HARM (Germiniani and Pravadelli, 2022b),
and verified using Cadence JasperGold (Cadence,

1https ://github.com/achieve-lab/assertion_
data_for_LLM.

2024). AssertionBench primarily contains Verilog
designs for benchmarking for the following rea-
sons.

(a) The most recent work on LL.M-assisted hard-
ware designs focuses on Verilog, the predomi-
nant language for hardware design in industry
and academia. For example, recent works such
as VerilogEval (Liu et al., 2023), MG-Verilog
(Zhang et al., 2024), Isadora (Deutschbein
et al., 2021) and HARM (Germiniani and
Pravadelli, 2022b) solely focus on Verilog.
Our work aligns with the predominant and
widely used hardware design language (HDL)
in the state-of-the-art research and practice.

(b) To our knowledge, no public domain assertion
generation tool is available to generate asser-
tions for VHDL/SystemC designs. The only
work that mines assertions from SystemC that
we can find is Liu et al. (2011). However, we
could not find the actual implementation of the
tool in the public domain. Such assertions are
necessary as ICL examples. This emphasizes
the value of AssertionBench in complement-
ing existing research and in future work we
plan to augment it with VHDL/SystemC de-
signs and corresponding assertions.

The key research question (RQ) that
AssertionBench aims to address is whether
we can effectively leverage state-of-the-art
(SOTA) deep learning (DL) tools, such as LLMs,
to assist verification engineers in crafting assertions
for large hardware designs and overcome the
shortcomings of the classical static and dynamic
analysis based techniques. There are ongoing
efforts to leverage LLMs to alleviate the shortcom-
ings. Our effort in designing AssertionBench is
the first step towards ensuring that as we develop
LLM-assisted techniques for assertion generation,
we remain aware of the insights garnered by this
work and avoid pitfalls. This benchmark and the
framework will allow us to quantitatively and
systematically compare the fitness of existing and
future closed and open-sourced LLMs for the
assertion generation task.

The ICL example set comprises fundamental se-
quential designs (aka designs with a clock) such
as Arbiter, T Flip-Flop, and combinational designs
(aka designs without a clock) such as Half Adder,
Full Adder, and Full Subtractor. We consider
the corresponding concurrent assertions (sequence
subset of SVA) for ICL, and the which contain
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Figure 1: Our evaluation framework. JG: JasperGold
Formal Property Verification Engine.

overlapped and non-overlapped implication oper-
ators (SystemVerilog, 2024). Our test design set
consists of highly curated 100 Verilog designs (both
sequential and combinational designs) of varying
complexity that are up to 20x bigger than those
in the ICL examples in term of LoCs, to evaluate
LLMs’ 1-shot and 5-shot assertion generation abil-
ity. We wanted to understand if LLMs can learn
about an assertion and how it relates an assertion
to the design source code using simple examples.
Our main goal was to evaluate if the LLMs can
transfer the learned knowledge successfully to
much bigger designs. A successful demonstration
of such transfer of the learned knowledge would
pave the path that LLMs can be an effective tool for
assertion generation at scale, likely for industrial-
scale designs even when learned and/or trained
using smaller design source codes. We also wanted
to understand if LLMs would excel or struggle for
the restricted subset of assertion classes. Our re-
sults (c.f., Section 4) show that LLMs struggle to
generate correct assertions for this restricted sub-
set. Hence it is futile to delve further into more
complex assertion constructs unless we have clear
insight into why LLMs are failing for the restricted
subcases. In this effort, we develop those insights.

3 Experimental Setup

Figure 1 shows our evaluation framework.
We evaluated four SOTA LLMs GPT-3.5 (Ye
et al.,, 2023), GPT-40 (OpenAl et al., 2024),
CodeLLLaMa 2 (Roziere et al.,, 2024), and
LLaMa3-70B (Meta, 2024) using the proposed
AssertionBench on the task of predicting correct or
valid assertions.

Compute Platform: We use UIUC NCSA’s public
Delta Cluster (NCSA, 2024) for our experiments.
We use GPU nodes containing 1-way, 4-way, and
8-way NVIDIA A40 (with 48GB GDDR6) and
A100 (with 40GB SXM) GPUs to perform k-shot
learning and inference. Each 1-way and 4-way
GPU computing node has 256 GB RAM, and each
8-way GPU computing node has 2 TB RAM.

Hyperparameters: We use default hyperparame-

You are an expert in SystemVerilog
Assertions.

Your task is to generate the list of
assertions to the given verilog
design. An example is shown below.
Generate only the list of assertions

for the test program with no
additional text.

Program 1: module arb2(clk, rst, reql,
req2, gntl, gnt2); input clk, rst;
Assertions 1: (state == 1 & req2 == 1)

|-> (gntl == 0@);...

5 Test Program:

module fifo_mem #(parameter DEPTH=8,
DATA_WIDTH=8, PTR_WIDTH=3) ( input
wclk, w_en, rclk, r_en, input [
PTR_WIDTH:0] b_wptr,

Test Assertions:

Figure 2: An example of the prompt for 1-shot learn-
ing. The example consists of a tuple, a Verilog design
(Program 1) and a set of formally verified assertions for
the design (Assertions 1). The Test Program is the
Verilog design for which we generate assertions using
the trained LLM.

ters for all the LLM models under consideration.
Specifically, the number of maximum output to-
kens has been set at 1024, employing a greedy
decoding strategy and maintaining a temperature
of 1.0, top_p of 0.95. The random seed has been
configured to 50.

Pre-trained Models and Verification Tool:
We use pre-trained LLMs from the Hugging-
Face model repository (HuggingFace, 2024) for
AssertionBench evaluation. We have also used
Python 3.11 and Cadence JasperGold (JG) version
2022.06p002 for formally verifying the assertions
generated from the test Verilog designs. We use
two SOTA classical tools GOLDMINE (Pal et al.,
2020) and HARM (Germiniani and Pravadelli,
2022b) to generate example assertions from dif-
ferent Verilog designs in the IC set. Below, we
summarize the four LLMs that we evaluate using
AssertionBench.

e GPT-3.5 is a commercial autoregressive LLM
(from OpenAl) based on the GPT architecture, pre-
trained on extensive text corpora and fine-tuned for
NLP tasks.

o GPT-40 is a unified multimodal transformer
model processing text, vision, and audio, with en-
hanced reasoning and programming capabilities
over previous iterations.

e Codel.LaMa 2 is a suite of autoregressive trans-
former models for code and text generation, in-
cluding a 70B parameter variant that uses Grouped-
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Query Attention for scalable inference.

o LLaMa3-70B is a 70B-parameter transformer
with an 8,192-token context window, pre-trained on
15 trillion tokens from publicly available datasets.

Evaluation Protocol: To evaluate effectiveness of
the different LLMs, the few-shot testing regime
consists of 1-shot and 5-shot ICL examples. Each
example is a tuple consisting of a Verilog design
source code and a set of formally verified assertions
containing up to 10 assertions. Figure 2 shows our
prompt consisting of four parts — (i) an English
language description of the task, (ii) the Verilog
design, (iii) an assertion in SystemVerilog Asser-
tion (SVA) (SystemVerilog, 2024) format, and (iv)
a test Verilog design. Next, we prompt each LLM
with the ICL examples and evaluate them on 100
test Verilog designs to infer assertions. In our ex-
periments, we have found all of the LLMs generate
syntactically erroneous assertions, i.e., each LLM
fails to learn the SVA syntax from the ICL exam-
ples. Consequently, we use a syntax corrector (SC)
using GPT-3.5 and feed the output of the SC to JG
to evaluate the quality of the generated assertions.
Any other SVA-compatible formal property verifier
(FPV) will work as well.

Metrics: We evaluate the assertions generated for
the test programs using the following three metrics
for each LLM - (i) Pass quantifies the fraction
of generated assertions that FPV attests as valid
for the design; (ii) Fail quantifies the fraction of
generated assertions that FPV attests as wrong with
a counterexamples trace (CEX); and (iii) Error
quantifies the fraction of generated assertions for
which the FPV identifies syntactic errors even after
syntax correction. We have not reported any other
metric, e.g., assertion coverage (Athavale et al.,
2014), as that is meaningful only when an assertion
is valid and one wants to quantify the quality of
the assertion or would like to induce a ranking
on assertions (Pal et al., 2020). In current work,
we did not target to quantify the quality of the
assertions neither did we want to induce a rank
on them. Rather we focused on the ability of the
SOTA LLMs on generating correct assertions.

4 Experimental Results

We show our overall experimental results in Fig-
ure 3. We make following observations.

Observation 1: Most LLMs generate valid asser-
tions with an increasing number of ICL exam-
ples (c.f., Figure 3a-3d). GPT-3.5, GPT-40, and

CodelLLaMa 2 show on average an improvement
of 2x, 1.2x, and 1.12x for valid assertion genera-
tion, respectively, when moved from 1-shot learn-
ing to 5-shot learning. However, LLaMa3-70B
model loses accuracy from 31% to 24% on the
same dataset. Our analysis shows in many cases,
LLaMa3-70B either fails to generate assertions or
generates syntactically wrong assertions or tries to
generate codes in a new programming language
(e.g., Java). This experiment shows that there is
considerable scope for improving the LLaMa3-70B
model for this task, likely via fine-tuning the pre-
trained LLaMa3-70B model.

Observation 2: An enhanced model does not
necessarily ensure a better semantic or syntac-
tic understanding. For GPT-3.5 (c.f., Figure 3a),
with an increase in the number of ICL examples,
the LLM was able to produce more syntactically
correct assertions, however, majority of corrected
assertions (on average up to 24%) generated a
CEX when verified with JG. For GPT-40, the re-
sults were more consistent in terms of syntactically
correct and failing assertions from 1-shot and 5-
shot learning (c.f., Figure 3b). For CodeLLLaMa 2
and LLaMa3-70B, with increase in the number of
ICL examples, the fraction of failed assertions de-
creased (on average up to 12% for CodeLLaMa 2
and LLaMa3-70B, c.f., Figure 3c and Figure 3d),
however, both models generated more syntacti-
cally wrong assertions (on average up to 19%
more for LLaMa3-70B). Our analysis shows that
with 1-shot, the variation in types of assertions
in the ICL examples were limited. Consequently,
LLaMa3-70B learned the syntax. However, in 5-
shot learning, we have more variations in assertion
syntax which made LLaMa3-70B’s learning task
difficult. This experiment shows that increasing
the number of ICL examples will not necessarily
improve LLM’s consistency in generating passing,
failing, and syntactically correct assertions. Fur-
ther, our analysis shows that LLMs that are more
performant on standard LLM benchmarks does not
necessarily have a better semantic understanding
when it comes to assertion generation.

Observation 3: GPT-4o0 is relatively more con-
sistent and superior for assertion generation
task (c.f., Figure 3e-3f). Our experiment shows
that GPT-40 generates on an average up to 15.6%
more valid assertions as compared to other LLMs
for both 1-shot and 5-shot learning. Addition-
ally, GPT-40 produced fewer CEX generating as-

8076



= Pass = CEX = Error
0.6 0.5
0.4
0.3
0.2
0.1
0.0

0.4

0.2

Accuracy
Accuracy

0.0
1-shot

()

= Pass = CEX = Error
0.6

5-shot

0.8
0.4

0.2

Accuracy
Accuracy

0.6
0.4
0.2
0.0
1-shot 0.0

(d)

5-shot
Pass

= Pass = CEX = Error

1-shot

(b)

= GPT3.5 = GPT 40 " CodeLLaMa 2 = LLaMa 3

il L

(¢!

(e)

= Pass = CEX = Error

Accuracy

5-shot 1-shot

(©

5-shot

= GPT3.5 = GPT 40 ~ CodeLLaMa 2 = LLaMa 3
0.6

I
IS

Accuracy

o
N

0.0

Error Pass CEX Error

Figure 3: Comparison of accuracy of generated assertions. (a) Assertion accuracy comparison for GPT-3.5. (b)
Assertion accuracy comparison for GPT-40. (c) Assertion accuracy comparison for CodeLLaMa 2. (d) Assertion
accuracy comparison for LLaMa3-70B. (e) £ = 1-shot assertion accuracy. (f) £ = 5-shot assertion accuracy. CEX:

Counterexamples trace.

sertions and syntactically incorrect assertions as
compared to other LLMs. This experiment shows
that GPT-40 is more beneficial for assertion gener-
ation as compared to the other LLMs.

Observation 4: All LLMs need considerable
improvement for assertion generation task
(c.f., Figure 3). Our analysis shows that none of
the LLM models can generate valid assertions an
average of no more than 44% accuracy whereas
up to 63% generated assertions produce CEX and
on average up to 33% of generated assertions are
syntactically wrong. Clearly, for LLMs to be of
practical usage for any realistic industrial-scale de-
sign, considerable improvement needs to be made.
Specifically, the LLMs need to capture the semantic
meaning of the Verilog designs for automatically
producing a higher fraction of valid assertions with-
out iterative human prompting.

Remarks: In this work, we have refrained from re-
porting the coverage of assertions. We emphasize
that unlike code-based coverage metrics, e.g., line
/ statement coverage, branch coverage, condition
coverage, FSM coverage, etc., there is no well-
defined notion of assertion coverage. To the best of
our knowledge, the only work that connects asser-
tion’s coverage of the design code is by Athavale
et al. (2014). They defined correctness-based cov-
erage of an assertion as identifying the design state-
ments / codes that contribute to its non-vacuous
satisfaction. However, such coverage, i.e., asser-
tion coverage as defined by Athavale et al. (2014),
only makes sense when an assertion is correct (i.e.,
valid) and one wants to quantify the quality of the
correct assertion or would like to induce a ranking
on assertions, e.g., Pal et al. (2020); Ghasempouri

and Pravadelli (2015). In current work, we did not
target to quantify the quality of the generated as-
sertions and neither did we want to induce a rank
on generated assertions; rather we focused on the
fitness of the current and future commercial and
open-source LLMs on generating correct assertions.
Such coverage (and ranking) would make perfect
sense if we pursue the overarching goal of devel-
oping task-specific LLMs for assertion generation
to quantify the quality of the LLM-generated asser-
tions which in turn would quantify the quality of
the task-specific LLMs.

5 Conclusion and Future Work

This work introduces AssertionBench to evaluate
the current and future commercial and open-source
LLMs for the assertion generation task. No prior
work comprehensively benchmarks SOTA LLMs
for assertion generation, especially for HDLs.
To our knowledge, AssertionBench is the first
such benchmark to quantitatively compare various
LLMs in terms of goodness for the task of asser-
tion generation. Although there is no LLM that
consistently outperforms other LLMs, we notice
several promising trends and research directions
to enhance the practical applicability of LLMs for
assertion generation task, which will further ac-
celerate SoC and hardware design verification. As
LLM research is growing at a tremendous pace both
in commercial and academic research, we plan to
maintain the benchmark and augment its learning
and test set with more complex designs and their
formally verified assertions to further stress test
models.
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6 Limitations

We identify the following limitations of this work
in terms of the dataset and the evaluation method-

ology.

* Dataset: In the scope of this study, our pri-
mary focus is on Verilog designs, given its
status as the predominant hardware design
language. Moving forward, it will be intrigu-
ing to develop benchmarks for assertions in
alternative hardware languages, e.g., VHDL,
SystemVerilog, and SystemC, thereby expand-
ing the scope of our analysis to encompass
a broader range of design paradigms. Addi-
tionally, AssertionBench considers only a few
temporal assertions with shallow temporality.
It would be interesting to increase the tem-
poral depth to capture design behaviors that
cut across multiple clock cycles and evaluate
LLM'’s ability to learn and generate assertions
to capture such behaviors succinctly.

* Assertion Objective: In this work, we pri-
marily focused on the assertions that capture
design functionality. It would be interesting
to enhance and augment AssertionBench with
security assertions to evaluate the LLM’s abil-
ity to capture and summarize security viola-
tions/concerns from hardware design source
code.

* Quantitative Assertion Ranking: In this
work, we primarily focused on correctness
of an assertions without quantifying and rank-
ing the subtlety of the captured design behav-
ior (Pal et al., 2020). It would be interesting
to include such rankings in the ICL examples
and evaluating LLM’s capability to automat-
ically rank generated assertions to quantify
captured design behavior.

* Modeling: In this paper, we assessed the few-
shot assertion generation capabilities of SOTA
language models. In future work, it will be
interesting to fine-tune language models for
assertion generation and evaluate their perfor-
mance on AssertionBench.

* Evaluation: In future work, it will be valu-
able to conduct a more detailed evaluation of
model errors to better understand the specific
limitations of each LLM for assertion genera-
tion.
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