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Abstract

The advancement of large language models
(LLMs) has predominantly focused on high-
resource languages, leaving low-resource lan-
guages, such as those in the Finno-Ugric fam-
ily, significantly underrepresented. This paper
addresses this gap by focusing on Võro, Livo-
nian, and Komi. We cover almost the entire
cycle of LLM creation, from data collection to
instruction tuning and evaluation. Our contri-
butions include developing multilingual base
and instruction-tuned models; creating evalua-
tion benchmarks, including the SMUGRI-MT-
BENCH multi-turn conversational benchmark;
and conducting human evaluation. We intend
for this work to promote linguistic diversity,
ensuring that lesser-resourced languages can
benefit from advancements in NLP.

1 Introduction

Large language models (LLMs) have recently
demonstrated unprecedented flexibility in respond-
ing to unstructured text queries (OpenAI et al.,
2024; Touvron et al., 2023, etc). However, their
development requires high amounts of training ma-
terial: while the (continued) pre-training stage only
needs raw text, instruction tuning relies on sets of
instructions, which are much more expensive to ob-
tain. The challenge is exacerbated for endangered
languages, where both the availability of data as
well as the number of speakers are severely limited.

We present a case study in developing LLMs
for extremely low-resource (XLR) languages, fo-
cusing on three Finno-Ugric (SMUGRI1) languages:
Livonian, Võro and Komi. According to Joshi et al.
(2020), Livonian is in the lowest category out of 6
(0 / The Left-Behinds) while Võro and Komi are in

*Equal contribution
1Finno-Ugric translates to Estonian as soome-ugri, to

Finnish as suomalais-ugrilaiset, to Võro as soomõ-ugri, and
to Livonian as sūomõ-ugrõ, which is why we refer to it as
SMUGRI.

Script Code Class Speakers Status

Livonian Latin liv 0/5 ~30† CE
Võro Latin vro 1/5 ~100K DE
Komi Cyrillic kpv 1/5 ~160K DE

Table 1: Language statistics of the targeted languages.
The class column indicates the amount of data available
(on a scale from 0 to 5) as defined by Joshi et al. (2020).
Status according to Moseley (2010): DE - definitely
endangered; CE - critically endangered. †- people able
to communicate in Livonian2.

the second-lowest (1 / The Scrabing-Bys). Devel-
oping LLMs and other tools for these languages is
thus a significant challenge, as well as a vital step
for ensuring their digital survival and support.

Our contributions cover the full cycle of LLM
development, including continued pre-training and
instruction tuning, as well as benchmark creation,
and both automatic and manual evaluation. Dur-
ing pre-training and instruction-tuning, we make
use of cross-lingual transfer from related higher-
resourced languages and parallel translation data.
Additionally, we rely on the small amounts of avail-
able parallel data for the included languages in
order to develop intermediate translation function-
ality, which is then applied to machine-translate
instructions into the target languages.

We also describe our significant manual effort.
First, this includes extending two existing bench-
marks to these target languages (multiple-choice
question-answering and topic classification), one of
which required additional manual translation. Sec-
ond, it involves creating a new parallel multi-turn
benchmark for these XLR target languages. The
extended benchmarks enable automatic evaluation
of language models on the target languages, while
the multi-turn benchmark allows us to assess the
real-life usefulness of instruction-tuned models.

We use the multi-turn benchmark to conduct
2www.livones.net/en/valoda/the-livonian-language
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extensive human evaluation, comparing our models
to GPT-3.5-turbo. Translation, benchmark creation,
and human evaluation were all carried out by native
speakers of Komi and Võro. As there are no native
speakers of Livonian, this work was handled by
fluent speakers.

Evaluation on multiple-choice QA benchmarks
indicates that our instruction-tuned models either
outperform or are on par with strong proprietary
baselines (GPT-3.5-turbo and GPT-4-turbo), for
Livonian and Komi. Extensive human evaluation
on the multi-turn benchmark further supports these
findings. However, both automatic and human
evaluations reveal that our models slightly under-
perform on Võro compared to proprietary mod-
els, likely due to Võro’s close similarity to Esto-
nian, a language in which proprietary models ex-
cel. Nonetheless, human evaluation shows that our
models significantly outperform proprietary ones in
terms of naturalness for Võro, Komi, and Livonian.

We publish the training implementation, evalua-
tion benchmarks, and models3.

2 Background and Related Work

2.1 Finno-Ugric Languages
Finno-Ugric languages belong to the Uralic lan-
guage family and are spoken primarily in regions
surrounding the Baltic Sea and the Ural Moun-
tains. Most of these morphologically complex lan-
guages are considered low-resource or extremely
low-resource (XLR), with Finnish, Hungarian, and
Estonian being the most well-resourced. In this
work, we focus on three XLR Finno-Ugric lan-
guages: Võro, Komi, and Livonian. These lan-
guages differ in both script and resource availabil-
ity (see Table 1), which includes not only textual
data but also the number of speakers. For example,
Livonian has only 30 speakers, yet its community
is highly active in preserving and revitalizing the
language, exemplified by the establishment of the
UL Livonian Institute in 2018.

The communities of Finno-Ugric language
speakers have actively contributed to the develop-
ment of modern NLP tools for their languages, in-
cluding core NLP technologies, such as foundation
models (Tanvir et al., 2020; Kuulmets et al., 2024;
Luukkonen et al., 2023, 2024), which underpin
many advanced NLP applications. Additionally,
practical tools like machine translation systems
(Yankovskaya et al., 2023; Tars et al., 2022, 2021;

3https://github.com/TartuNLP/smugri-llm

Rikters et al., 2022) and speech synthesis technolo-
gies (Rätsep and Fishel, 2023) have been developed
to further support the use of these languages.

Supporting languages. To address the extreme
data scarcity during continued pre-training, we in-
clude additional languages into the training data.
First, we include Estonian and Finnish, which be-
long to the same Balto-Finnic subgroup as Võro
and Livonian. Second, Latvian, due to its signifi-
cant influence on Livonian and the fact that many
Livonian speakers also speak Latvian. Third, Rus-
sian, because of its strong influence on Komi and
the proficiency of many Komi speakers in Russian.

2.2 Multilingual LLMs
Multilingual LLMs are widely explored to ex-
pand the language coverage of LLMs. Tradi-
tional approaches involve training models from
scratch (Luukkonen et al., 2024, 2023; Wei et al.,
2023; Kudugunta et al., 2023). However, adapt-
ing pre-trained English-centric models to other
languages through continued pre-training has also
yielded promising results across various languages
(Csaki et al., 2024; Dou et al., 2024; Rijgersberg
and Lucassen, 2023; Lin et al., 2024; Anders-
land, 2024; Basile et al., 2023; Owen et al., 2024;
Cui et al., 2024; Cui and Yao, 2024; Zhao et al.,
2024; Etxaniz et al., 2024b). In the context of
Finno-Ugric languages, the most relevant works to
ours include Kuulmets et al. (2024), who adapted
LLaMA-2 7B for Estonian, and Luukkonen et al.
(2023), who adapted BLOOM (Workshop et al.,
2023) for Finnish. Additionally, Luukkonen et al.
(2023) demonstrate that continued pre-training of
BLOOM outperforms Finnish models trained from
scratch, emphasizing the advantages of this ap-
proach.

The development of multilingual LLMs often
employs techniques that enhance model quality.
Common practices include incorporating parallel
data into the pre-training phase (Luukkonen et al.,
2024; Owen et al., 2024; Wei et al., 2023) and
utilizing curriculum learning (Wei et al., 2023).

2.3 Instruction Tuning
Previous works have also explored a variety of
cross-lingual techniques for teaching the models
to follow instructions (Li et al., 2023; Zhu et al.,
2023; Zhang et al., 2024; Chai et al., 2024; Ranaldi
and Pucci, 2023; Chen et al., 2023). Zhang et al.
(2024) creates model answers to instructions in
a high-resource/high-quality language, which are
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then translated and code-switched. Adding trans-
lation data during instruction-tuning has also been
widely explored (Cui et al., 2024; Kuulmets et al.,
2024; Zhu et al., 2023; Zhang et al., 2024; Ranaldi
and Pucci, 2023; Chen et al., 2023). Kuulmets et al.
(2024) find that using a diverse set of instructions
in English can increase performance in Estonian
tasks.

2.4 Evaluation
Common approaches to evaluating the multilingual
capabilities of LLMs include using existing cross-
lingual benchmarks (Ahuja et al., 2023a,b) or trans-
lating English benchmarks into target languages
through either machine translation (Lai et al., 2023)
or manual translation (Shi et al., 2022). However,
extending the evaluation of conversational capa-
bilities to other languages is more complex, as a
gold standard requires the involvement of human
annotators (Touvron et al., 2023). Human annota-
tors are essential for both the recently popularized
method of ranking models using the Elo rating sys-
tem (Zheng et al., 2024) and the traditional method
of pairwise comparison of answers from different
models to predefined prompts (Zheng et al., 2024;
Touvron et al., 2023).

An alternative line of research explores using
LLMs as potential replacements for human anno-
tators (Zheng et al., 2024; Kim et al., 2023, 2024).
While strong LLMs can effectively serve as substi-
tutes for human annotators in English, their capa-
bilities in non-English languages remain unclear.
Hada et al. (2024) investigate this across eight high-
resource non-English languages, finding a bias in
GPT-4-based evaluators toward assigning higher
scores. To our knowledge, the behavior of LLM
judges on XLR languages, including Finno-Ugric
languages, has not been systematically studied.

3 Experimental Setup

Lang Characters Sampled Characters

Stage 1 Stage 2 Total Ratio

LIV 2.6M - 10.3M 10.3M 4.00
VRO 14.0M - 56.1M 56.1M 4.00
KPV 578.9M - 1.4B 1.4B 2.48
LV 27.8B 3.0B 300.0M 3.3B 0.12
ET 32.6B 8.2B 300.0M 8.5B 0.26
FI 114.0B 7.6B 300.0M 7.9B 0.07
RU >1T 2.7B 300.0M 3.0B <0.01
EN >1T 2.7B 300.0M 3.0B <0.01

Table 2: Training dataset composition. All of the data
for Livonian is sentence-level, for other languages, the
data is document-level.

3.1 Continued Pre-training

We take the approach of adapting the English-
centric Llama-2 7B model (Touvron et al., 2023) to
the target languages through full fine-tuning. Given
our computational budget limitations, we employ
a two-stage training strategy. In the first phase,
we continue pre-training Llama-2 7B on higher-
resource languages Finnish, Estonian, Russian and
Latvian. In the second phase, we focus on teaching
the model the XLR target languages resulting in
Llama-SMUGRI. The training hyperparameters
are detailed in Appendix B.

Stage 1: Learning supporting languages. In
the first step, we continue pre-training Llama-2 7B
(Touvron et al., 2023) on higher-resource languages
Estonian, Finnish, English, Latvian, and Russian.
We allocate a training budget of 10 billion tokens
and sample documents from CulturaX (Nguyen
et al., 2023), with 32%, 32%, 12%, 12%, and 12%
probability of choosing the document from the re-
spective language.

Stage 2: Learning Võro, Komi and Livonian.
The second stage of continued pre-training focuses
on enhancing the understanding and generative
capabilities for XLR languages. We employ a
character-based budget to ensure a balanced repre-
sentation of languages in the training dataset. This
budget is set at 3 billion characters, with 50% al-
located to sampling Võro, Komi, and Livonian us-
ing Unimax with N=4 (Chung et al., 2023), and
the remaining 50% uniformly distributed among
the supporting languages to maintain the quality
achieved in Stage 1. The N was chosen based on
perplexity from the held-out validation set (see Ap-
pendix C). The Komi documents are sourced from
FU-LAB’s Komi corpus4. The Livonian dataset
consists of sentence-level data from Rikters et al.
(2022), while Võro dataset is compiled from var-
ious pre-existing corpora as well as data we have
scraped. A more detailed overview of Võro dataset
can be found in Appendix E.

Stage 2 + parallel: making use of parallel
translation data. To investigate the role of par-
allel translation examples in the pre-training data,
we incorporate translation examples formatted into
various templates, accounting for up to 1% of the
Stage 2 character budget (159,712 sentence pairs).
We use Unimax with N=1 to balance the budget
between language pairs. For further details on the

4http://wiki.fu-lab.ru/index.php/Электронная_
база_коми_текстов
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parallel data, we refer the reader to Appendix H.
This stage yields the final base model we refer to
as Llama-SMUGRI.

3.2 Instruction-tuning

Supporting instructions. We utilize existing
instruction-tuning datasets across multiple lan-
guages. For English, Russian, and Finnish, we
use Aya (Singh et al., 2024), and the highest-rated
conversation paths of OASST-2 (Köpf et al., 2023).
Additionally, we sample 20,000 Estonian instruc-
tions from Alpaca-est (Kuulmets et al., 2024). Fol-
lowing Kuulmets et al. (2024), we include 5,000
instructions from the FLAN-V2 (Longpre et al.,
2023) TULU mixture (Wang et al., 2023) and
20,000 examples from Alpaca-GPT-4 (Peng et al.,
2023), to improve cross-lingual knowledge transfer
from high-quality English instructions. We refer to
this instruction mixture as SupInst (Supporting In-
structions). Further details are listed in Appendix F.

XLR Language Instructions. Due to LLMs’
insufficient capabilities in XLR languages, it is
not feasible to create Alpaca-style instructions di-
rectly. Consequently, we create instruction datasets
for Võro, Livonian and Komi by translating 1000
examples per language from Alpaca-style instruc-
tion datasets into these languages. An external
system, Neurotõlge5 (Yankovskaya et al., 2023),
is used for translation. While Võro and Livonian
are translated directly from Alpaca-est (Kuulmets
et al., 2024), Komi is generated by first translat-
ing Alpaca-GPT-4 (Peng et al., 2023) into Russian
using GPT-3.5-turbo, and then translating that re-
sult into Komi with Neurotõlge. We refer to this
dataset as TrAlpaca.

To investigate a scenario where a translation
model is unavailable, we explore handling trans-
lating Alpaca instructions to XLR languages by
fine-tuning our base model (Llama-SMUGRI) for
the translation task (discussed in §3.3) resulting in
LLMTrAlpaca instructions. This is similar to self-
translate-train (Ri et al., 2024) and self-translate
(Etxaniz et al., 2024a) concepts with the difference
that we add a fine-tuning step to obtain an LLM
specialized for translation. Further instruction-
translation details and human evaluation of transla-
tions are discussed in Appendix G.

Translation instructions. We augment the gen-
eral instructions with translation task instructions
for Võro, Livonian, and Komi, using 250 examples

5https://neurotolge.ee/

per direction. We refer to these translation task
instructions as TrInst (see Appendix H for dataset
overview).

3.3 Translation-tuning
Adapting general-purpose LLMs for the machine
translation task has been shown to yield compet-
itive results compared to dedicated MT systems
(Xu et al., 2023; Kuulmets et al., 2024). Therefore,
we fine-tune our base model on available transla-
tion data by sampling up to 100,000 sentence pairs
from each language pair (see Appendix H for fur-
ther details) to compare the quality of our model
to using an MT system. We call this configuration
TrTuning.

4 Benchmarks

Benchmark Size Type

MT-bench-SMUGRI [new] 80 multi-turn questions
Belebele-SMUGRI [extended] 127 multi-choice QA
SIB-SMUGRI [extended] 125 topic classification
FLORES-SMUGRI Yankovskaya et al. (2023) 250 translation

Table 3: Test benchmarks for Komi, Võro, and Livonian.

4.1 Automatic Evaluation
Existing benchmarks. From the existing bench-
marks we use FLORES-SMUGRI (Yankovskaya
et al., 2023) machine translation benchmark. It
includes the first 250 sentences of FLORES-200
(NLLB-Team et al., 2022; Goyal et al., 2022) trans-
lated into several Finno-Ugric languages.

New benchmarks. We extend the topic classi-
fication benchmark SIB-200 (Adelani et al., 2024)
and the multiple-choice QA benchmark Belebele
(Bandarkar et al., 2023) to include Livonian, Võro,
and Komi. Both SIB-200 and Belebele build on top
of FLORES-200 and, therefore, can be extended
to Livonian, Võro, and Komi using translations by
Yankovskaya et al. (2023). We align these trans-
lations with sentences in SIB-200 and with para-
graphs in Belebele. We then manually translate the
questions and answer choices in Belebele into the
target languages, as FLORES-200 does not contain
these components. Table 3 shows the details of all
evaluation benchmarks.

4.2 A Novel Multi-turn Benchmark
4.2.1 Requirements
We formulate the following desiderata for a human-
evaluation benchmark considering the XLR use-
case.
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1) Questions should cover real-life usage sce-
narios to reflect real-life usefulness. The easiest
and most likely way for speakers of low-resource
Finno-Ugric languages to benefit from LLMs is
through interaction via a chat-like interface. Our
novel Finno-Ugric benchmark is designed to cover
such real-life use cases. Consequently, it should
consist of user prompts similar to real-life queries.
Another benefit of using real-life data is that it helps
quickly reveal the model’s usefulness and potential
weaknesses in practical scenarios, which standard
NLP benchmarks typically do not cover.

2) Questions should be challenging enough
for LLMs to differentiate the models accurately.
Zheng et al. (2023) show that challenging prompts
from real-life conversations reveal larger perfor-
mance gaps between different models compared
to a manually designed benchmark of high-quality
challenging questions.

3) Answering questions should not require
expert knowledge. A key requirement for the
benchmark is that it should comprise questions
that are challenging for language models. However,
such questions are often challenging for humans as
well, requiring expert-level knowledge in various
domains. For example, Zheng et al. (2024) uses
graduate students as labelers, considering them
more knowledgeable than average crowd work-
ers. Requiring expert-level knowledge from evalu-
ators shrinks the potential evaluator pool, making
it nearly impossible to find them from the commu-
nities of XLR language speakers.

4) Translating the benchmark into a new lan-
guage should be feasible in terms of time and
content (i.e., should not require expert knowledge).
Since no data on human interactions with chat
LLMs exists for XLR languages, we collect the
data in English and translate it. Given the limited
availability of translators, we carefully select exam-
ples that are straightforward to translate.

4.2.2 Constructing the Dataset
We manually collect the initial dataset from
LMSYS-Chat-1M (Zheng et al., 2023), which con-
sists of real-world user interactions with LLMs.
First, we extract all two-turn English conversa-
tions that have not been redacted or flagged by
OpenAI moderation API. We only allow conver-
sations with user prompts no longer than 50 to-
kens to ease the translation process. We then use
all-MiniLM-L12-v2 model from SentenceTrans-
formers (Reimers and Gurevych, 2019) to compute

the sentence embedding and apply fast clustering
implemented in sentence-transformers which
finds local groups of texts that are highly similar.
We manually examine a few examples from each
cluster and pick user prompts that fill the criteria
specified in Chapter 4.2.1. Finally, we removed
the observed clusters from the dataset and recluster
the remaining examples with a smaller similarity
threshold until we had collected 248 multi-turn
conversations in total.

We organize conversations into four categories:
math, reasoning, writing, and general. As we
wanted similarly to Zheng et al. (2024), the final
dataset to consist of 80 questions — 20 from each
category (potentially with follow-ups) — the initial
dataset had to be filtered. For that purpose, we
asked GPT-4 to rate the difficulty of each question
as was done by Zheng et al. (2023). However, we
observed no correlation between the difficulty of
the question and the quality of the answer given
by ChatGPT when quality was assessed by GPT-4.
Therefore, the final dataset was also picked man-
ually by removing near duplicate questions and
— after looking at the generated answers — also
questions where judging the answer still seemed to
require too specific knowledge. The final dataset
consists of 80 real-life prompts among which 42 are
multiturn. It was then translated into Võro, Komi,
and Livonian by fluent speakers with a linguistic
background or previous experience in translation.
The translators were asked to preserve any infor-
mality of the text in the translations, e.g. missing
uppercase and punctuation.

Instead of human translators, one could use a
machine translation system or a proprietary LM
for test data generation or translation. We explore
both options and find that proprietary models strug-
gle to generate text in our target languages, while
even the best machine translation systems produce
translations that are often judged inferior to human
translations (see Appendix J for further details).

5 Results

5.1 Pre-training

Stage 1 continued pre-training on high-resource
supporting languages shows notable improvements
in SIB-SMUGRI for Võro and Livonian compared
to Llama-2-7B (see Stage 1 in Table 4). There is
also a clear reduction in perplexity (see Table 5)
for Võro and Livonian, while no such improve-
ment is observed for Komi. Similarly, the Llama
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Model
SIB-SMUGRI BELEBELE-SMUGRI FLORES-SMUGRI

5-shot, acc 3-shot, acc 5-shot, BLEU

VRO LIV KPV VRO LIV KPV ET-VRO ET-LIV RU-KPV VRO-ET LIV-ET KPV-RU

Llammas-base 78.4 (3.7) 69.6 (4.1) 64.0 (4.3) 30.7 (4.1) 28.4 (4.0) 32.3 (4.2) 11.5 (0.9) 4.3 (0.5) 1.7 (0.4) 28.7 (1.5) 8.0 (0.8) 2.2 (0.3)
Llama-2-7B 57.6 (4.4) 60.0 (4.4) 58.4 (4.4) 29.1 (4.1) 29.9 (4.1) 36.2 (4.3) 11.1 (1.0) 4.6 (0.6) 1.5 (0.3) 11.3 (0.9) 4.4 (0.6) 2.4 (0.3)

Llama-SMUGRI (ours)
Stage 1 80.8 (3.5) 75.2 (3.9) 65.6 (4.3) 32.3 (4.2) 26.8 (3.9) 26.0 (3.9) 11.5 (1.0) 4.2 (0.5) 2.6 (0.6) 29.6 (1.4) 7.2 (0.7) 4.1 (0.7)
Stage 2 78.4 (3.7) 65.6 (4.3) 74.4 (3.9) 31.5 (4.1) 26.0 (3.9) 28.4 (4.0) 26.5 (1.1) 3.4 (0.4) 15.7 (1.0) 45.3 (1.5) 10.6 (0.9) 18.6 (0.9)
Stage 2 + parallel 84.0 (3.3) 66.4 (4.2) 76.8 (3.8) 35.4 (4.3) 27.6 (4.0) 29.1 (4.1) 29.1 (1.2) 4.3 (0.5) 16.0 (1.0) 48.7 (1.4) 17.6 (1.0) 22.1 (1.3)

Table 4: Pre-training results for extremely low-resource Finno-Ugric languages. Standard errors are reported
for the scores in parentheses: score (stderr). For comparison, we report Llama-2 7B and Llammas-base (Kuulmets
et al., 2024). Stage 1 consists of pre-training with high-resource related languages while Stage 2 additionally
includes Võro, Livonian and Komi. Stage 2 + parallel incorporates additional parallel translation data into training.

Model byte-PPL

VRO LIV KPV

Llammas-base 3.3548 12.1081 3.1959
Llama-2-7B 6.1528 14.8055 3.1198

Llama-SMUGRI (ours)
Stage 1 3.4895 11.4210 3.1341
Stage 2 2.1885 3.8351 1.4055
Stage 2 + parallel 2.1837 3.7615 1.4050

Table 5: Pre-training perplexity for extremely low-
resource Finno-Ugric languages. For comparison, we
report Llama-2 7B and Llammas-base (Kuulmets et al.,
2024).

model fine-tuned for Estonian (Llammas-base) ex-
hibits lower perplexity than Llama for Livonian and
Võro, which are closely related to Estonian. The
lack of improvement for Komi may result from
its more distant relationship (see Appendix I) to
the other Finno-Ugric languages in the dataset, as
well as its use of a different script. These results
suggest that related languages generally improve
benchmark scores for XLR languages that were not
included in the training. For Belebele-SMUGRI,
there is no improvement compared to Llama-2-
7B, while FLORES-SMUGRI shows improvement
only when translating from the XLR languages into
the higher-resourced languages.

Stage 2 pre-training, which targets XLR Finno-
Ugric languages, further enhances both perplex-
ity and, with the exception of ET-LIV transla-
tion, FLORES-SMUGRI scores, indicating that the
model has acquired generative capabilities for these
languages. The performance improvements on the
SIB-SMUGRI benchmark are modest for Komi,
while Livonian and Võro show a slight decrease
from the previous stage. This stage of training has
also failed to improve the Belebele scores.

Stage 2 + parallel data results in minimal im-
provements in benchmarks and perplexity, with the
exception of translation tasks from the XLR lan-

guages showing larger gains. This indicates that
the inclusion of parallel data has a limited impact
or that our benchmarks are insufficiently sensitive
to capture these effects. Nevertheless, due to the
slightly positive influence observed, we will use
this setup as the basis for subsequent instruction
tuning.

Benchmarks. The current benchmarks may
not effectively differentiate between models at this
stage, as their small size and high standard errors
limit our ability to draw fine-grained conclusions
about training strategies. Additionally, the low
scores on the Belebele benchmark suggest it may
be too challenging for the models. In contrast, the
relatively high scores on the SIB-200 benchmark
could result from its simplicity, allowing the mod-
els to classify texts based on single-word clues
rather than a deeper understanding of the language.
Designing automatic benchmarks with an appropri-
ate difficulty level and relevant context for these
languages is an important challenge for future re-
search.

5.2 Instruction-Tuned Models

Examining the scores of commercial systems in
Table 6, we observe that these models exhibit at
least some understanding of Võro, Livonian, and
Komi. Based on benchmark scores, they seem to
understand Võro and Livonian better than Komi.
This could be explained by the linguistic similarity
between these languages and Estonian – an average
Estonian speaker can understand most of a Võro
text and some of a Livonian text, but not much
Komi, as it is more distantly related and written
in a different script. The performance of GPT-
4-turbo and GPT-3.5-turbo aligns with this trend,
with scores typically following this order. For in-
stance, GPT-4-turbo achieves 92% accuracy on the
Belebele Estonian benchmark, so it is unsurprising
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Model
BELEBELE-SMUGRI SIB-SMUGRI

0-shot, acc 5-shot, acc

VRO LIV KPV VRO LIV KPV

GPT-3.5-turbo 45.7 (4.4) 37.8 (4.3) 34.6 (4.2) 81.6 (3.5) 73.6 (4.0) 68.8 (4.2)
GPT-4-turbo 70.1 (4.1) 40.2 (4.3) 44.1 (4.4) 92.0 (2.5) 72.0 (4.0) 67.2 (4.2)
Llammas (Kuulmets et al., 2024) 36.2 (4.3) 32.3 (4.2) 27.6 (4.0) 80.8 (3.5) 78.4 (3.7) 63.2 (4.3)

Llama-SMUGRI-Instruct
SupInst 42.5 (4.4) 30.7 (4.1) 44.1 (4.4) 86.4 (3.1) 79.2 (3.6) 88.8 (2.8)
SupInst+LLMTrAlpaca 39.4 (4.3) 35.4 (4.3) 42.5 (4.4) 85.6 (3.1) 81.6 (3.5) 84.8 (3.2)
SupInst+TrAlpaca 35.4 (4.2) 32.3 (4.2) 40.2 (4.3) 85.6 (3.1) 79.2 (3.6) 85.6 (3.1)
SupInst+LLMTrAlpaca+TrInst 44.9 (4.4) 40.9 (4.4) 44.1 (4.4) 86.4 (3.1) 76.0 (3.8) 78.4 (3.7)
SupInst+TrAlpaca+TrInst 45.7 (4.4) 32.3 (4.2) 44.1 (4.4) 86.4 (3.1) 78.4 (3.7) 78.4 (3.7)

Table 6: Instruction-tuning evaluation results. Standard errors are reported for the scores: score (stderr).

that it also performs well on Võro.
Our models demonstrate comparable perfor-

mance to GPT-3.5-turbo on Võro and Livonian
and slightly outperform it on Komi. However,
GPT-4-turbo significantly surpasses our models
on Võro and matches our performance on Livo-
nian and Komi. A similar trend emerges in the
SIB benchmark: our models outperform GPT-4-
turbo on Livonian and Komi but underperform
on Võro. Meanwhile, GPT-3.5-turbo consistently
scores lower across all XLR languages.

We observe that the different instruction-tuning
strategies produce similar results. Given the small
size of our benchmarks and the associated high
standard errors, we cannot make definitive conclu-
sions about which strategy is superior.

LLM-translated instructions. Automatic met-
rics indicate that instructions translated using our
translation-tuned LLM achieve results compara-
ble to those produced by the external system Neu-
rotõlge. However, the results do not provide
enough clarity or confidence to definitively favor
one method over the other. These findings sug-
gest that even in the absence of external translation
systems, the translation-tuned LLM can serve as a
viable alternative.

Translation instructions. Incorporating a small
set of translation instructions (250 for each Võro,
Komi, and Livonian direction) does not lead to
clear and consistent improvements in the discrim-
inative benchmarks (see Table 6). Human evalua-
tion of conversations (Section 5.4) produces similar
findings. However, there is a notable improvement
in the translation benchmark, even with this mini-
mal data (see Table 7). We believe these translation
examples mainly help the model respond in the
correct language, while the underlying language
and translation capabilities are already present in
the base model.

Translation evaluation. When assessing lan-

guage generation using the FLORES translation
benchmark, the results in Table 7 show that GPT-
family models can translate from Estonian to Võro
quite effectively, suggesting that Võro might have
been included in their training data. In contrast, the
low BLEU scores for Livonian and Komi indicate
very limited translation capabilities. Our LLMs,
which were not exposed to translation examples
during instruction-tuning, struggle to translate into
Võro, Livonian, and Komi. However, they perform
better in the reverse direction, even surpassing GPT
models for Komi. A closer look reveals that they
copy the high-resource language sentences to the
output when translating to the low-resource lan-
guages. When the translated Alpaca instructions
(TrAlpaca and LLMTrAlpaca) were added, we ob-
served that when asked to translate from the low-
resource languages, the models often copied the
source text to the output as well, resulting in lower
BLEU scores. This can be addressed by including a
small amount of translation data during instruction-
tuning (TrInst).

5.3 Translation-tuning

Model ET-VRO ET-LIV RU-KPV

← → ← → ← →

GPT-3.5-turbo 34.0 15.1 7.7 2.7 6.7 0.5
GPT-4-turbo 47.5 20.5 9.9 3.7 8.7 3.1

Neurotõlge 48.5 21.2 29.7 10.2 31.5 17.7

Llama-SMUGRI-Instruct
SupInst 41.9 10.7 11.1 4.6 21.4 3.0
SupInst+TrAlpaca 16.8 10.6 9.7 4.7 17 3.2
SupInst+LLMTrAlpaca 23 10.8 9.2 4.6 13.5 2.9
SupInst+TrAlpaca+TrInst 45.3 19.1 19.9 5.5 21.4 15.2
SupInst+LLMTrAlpaca+TrInst 47.7 21.2 20.6 6.2 20.9 16.4

Llama-SMUGRI-translate 50.5 29.2 24.0 10.0 23.4 17.3

Table 7: BLEU scores on FLORES-SMUGRI (0-shot).
Translations are generated with beam size 4 for our
models.

We compare our LLM-based translation mod-
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Figure 1: Human evaluation scores for naturalness and helpfulness across different models.
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Figure 2: Helpfulness across languages and categories.

els with Neurotõlge, which supports low-resource
Finno-Ugric languages. Our translation-tuned mod-
els outperform Neurotõlge in both the VRO-ET
and ET-VRO translation directions (see Table 7).
For the ET-LIV and RU-KPV directions, our mod-
els achieve performance that is comparable to
Neurotõlge. However, in translations from low-
resource to high-resource languages – except for
Võro – our models do not perform as well.

5.4 Human Evaluation
We select 3 instruction-tuned models for human
evaluation: TrAlpaca, LLMTrAlpaca+TrInst and
TrAlpaca+TrInst. As a baseline, we use GPT-
3.5-turbo, which was freely accessible via a chat
interface6 at the time of the evaluation. For each
target language, we designed a survey where par-
ticipants rate the helpfulness of the answer from a
randomly selected model on a 5-point Likert scale.
Additionally, we ask participants to rate how natu-
ral the response sounds in the target language, as
Kuulmets et al. (2024) notes that model outputs
often sound unnatural in these languages. The sur-
veys were distributed within target language com-
munities via social media and direct outreach to
speakers (see Appendix A for the screenshot of the

6https://chatgpt.com/

survey). We did not collect any personal data from
respondents.

In addition to Võro, Livonian, and Komi, we
also gather and present human evaluation data for
Estonian, which is closely related to both Võro
and Livonian. At the same time, Estonian is
well-supported by GPT-3.5-turbo (Kuulmets et al.,
2024), providing a meaningful anchor point for
comparing our human evaluation results.

The results indicate that our models underper-
form in helpfulness compared to GPT-3.5-turbo
in Estonian, which aligns with previous findings
(Kuulmets et al., 2024). A similar disparity ex-
ists for Võro, where our models still lag behind.
However, for both Võro and Livonian, the helpful-
ness scores of our models are comparable to those
of GPT-3.5-turbo. In contrast, our system outper-
forms the commercial baseline for Komi. While
variations in annotator expectations may influence
results across different languages, it is noteworthy
that our models consistently achieve similar help-
fulness scores across various languages.

Comparisons by category (see Figure 2) reveal
that the scores for GPT-3.5-turbo are inflated by
examples in the maths and reasoning categories,
where our models demonstrate less helpfulness. In
contrast, our models perform comparably in the

6699

https://chatgpt.com/


general and writing categories. Notably, in Komi,
our models surpass GPT-3.5-turbo in both general
and writing tasks, while achieving similar scores in
the maths and reasoning tasks.

In terms of response naturalness, GPT-3.5-turbo
performs slightly better for Estonian; however, our
models demonstrate greater naturalness in all other
languages, especially in Komi, where the difference
is particularly pronounced.

When comparing our trained models, no clear
ranking emerges, reinforcing the findings from au-
tomatic benchmarks that incorporating translation
instructions does not produce significant advan-
tages. Additionally, there is little difference be-
tween using LLM-translated instructions and those
translated by an external system.

6 Conclusion

We implemented a comprehensive approach en-
compassing data collection, instruction tuning, and
human evaluation for three extremely low-resource
Finno-Ugric languages: Võro, Livonian, and Komi.
Our contributions include an exploration of pre-
training and instruction-tuning strategies, leading
to the development of open-source multilingual
base and instruction-tuned models for these lan-
guages. We also extend the automatic evalua-
tion benchmarks, Belebele and SIB-200, to in-
clude Komi, Livonian, and Võro, and we intro-
duce a novel multi-turn conversational benchmark,
SMUGRI-MT-BENCH. Human evaluation using
SMUGRI-MT-BENCH demonstrates that our mod-
els surpass GPT-3.5-turbo in terms of naturalness
and achieve higher helpfulness for Komi, while
maintaining comparable levels for the other low-
resource languages.

Limitations

There are several limitations that may affect the
robustness and generalizability of our findings.
Firstly, the automatic benchmarks used are small
and exhibit high standard errors, making fine-
grained comparisons difficult. This issue is com-
pounded by our reliance on the FLORES-200
dataset, which limits the scope of our evaluation
to the specific topics and set of sentences it cov-
ers. Furthermore, our automatic evaluation utilized
only three tasks, which constrains the comprehen-
siveness of our assessment. From these three, only
one (translation) measured generative performance,
as no other suitable benchmarks exist for these lan-

guages. This narrow focus on translation might
not fully capture the generative capabilities of the
models across different tasks. However, human
evaluation addresses these concerns to some extent,
providing a more detailed and reliable assessment
of the model’s quality in a multi-turn chat assistant
scenario.

The heavy reliance on the FLORES-200 dataset
is caused by the difficulties related to creating new
datasets. Creating high-quality benchmarks for
XLR languages is tricky because the data can not
be obtained by machine translating benchmarks
from other languages, as the machine translation
systems are potentially too weak. Additionally, hir-
ing professional translators is difficult due to the
scarcity or absence of individuals experienced in
translating these languages, particularly when the
languages are not officially recognized. Finally,
since finding human annotators for XLR languages
in itself is challenging, finding expert-level anno-
tators becomes almost impossible, and thus, the
set of prompts used for human evaluation must be
constructed so that assessing the quality of the an-
swer would not require any specific expert-level
knowledge.

A limitation of our instruction-tuning process is
that we only used machine-translated instructions
for the XLR languages. As a result, some of these
instructions were of low quality, potentially affect-
ing the overall performance and reliability of the
fine-tuned models.

Our emphasis on Finno-Ugric languages means
that our findings might not apply to other language
families, which could present different challenges
or yield different results in a more diverse multilin-
gual context. To address these limitations, future
research should aim to develop larger and more di-
verse benchmarks and apply similar methodologies
to a broader range of low-resource languages to
validate and extend our findings.

Ethics Statement

Our models have not been extensively tested for the
generation of harmful content. Furthermore, we
were unable to check the training and instruction-
tuning data for harmful content due to their sheer
volume. Thus, we can not guarantee the models’
harmlessness and advise them to be used with this
in mind only for research purposes. Furthermore,
our models still make many mistakes when gener-
ating the responses, and their output should not be
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considered an accurate representation of the low-
resource languages without manual verification.
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Hesslow, Roman Castagné, Alexandra Sasha Luc-
cioni, François Yvon, Matthias Gallé, Jonathan
Tow, Alexander M. Rush, Stella Biderman, Albert
Webson, Pawan Sasanka Ammanamanchi, Thomas
Wang, Benoît Sagot, Niklas Muennighoff, Albert Vil-
lanova del Moral, Olatunji Ruwase, Rachel Bawden,
Stas Bekman, Angelina McMillan-Major, Iz Belt-
agy, Huu Nguyen, Lucile Saulnier, Samson Tan, Pe-
dro Ortiz Suarez, Victor Sanh, Hugo Laurençon,
Yacine Jernite, Julien Launay, Margaret Mitchell,
Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor
Soroa, Alham Fikri Aji, Amit Alfassy, Anna Rogers,
Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou,
Chris Emezue, Christopher Klamm, Colin Leong,
Daniel van Strien, David Ifeoluwa Adelani, Dragomir
Radev, Eduardo González Ponferrada, Efrat Lev-
kovizh, Ethan Kim, Eyal Bar Natan, Francesco De
Toni, Gérard Dupont, Germán Kruszewski, Giada
Pistilli, Hady Elsahar, Hamza Benyamina, Hieu Tran,
Ian Yu, Idris Abdulmumin, Isaac Johnson, Itziar
Gonzalez-Dios, Javier de la Rosa, Jenny Chim, Jesse
Dodge, Jian Zhu, Jonathan Chang, Jörg Frohberg,
Joseph Tobing, Joydeep Bhattacharjee, Khalid Al-
mubarak, Kimbo Chen, Kyle Lo, Leandro Von Werra,
Leon Weber, Long Phan, Loubna Ben allal, Lu-
dovic Tanguy, Manan Dey, Manuel Romero Muñoz,
Maraim Masoud, María Grandury, Mario Šaško,
Max Huang, Maximin Coavoux, Mayank Singh,
Mike Tian-Jian Jiang, Minh Chien Vu, Moham-
mad A. Jauhar, Mustafa Ghaleb, Nishant Subramani,
Nora Kassner, Nurulaqilla Khamis, Olivier Nguyen,

6704

https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/W18-6319
https://doi.org/10.18653/v1/2023.mrl-1.14
https://doi.org/10.18653/v1/2023.mrl-1.14
https://doi.org/10.18653/v1/2023.mrl-1.14
https://aclanthology.org/2023.nodalida-1.73
https://aclanthology.org/2023.nodalida-1.73
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2407.00454
https://arxiv.org/abs/2407.00454
https://github.com/Rijgersberg/GEITje
https://github.com/Rijgersberg/GEITje
https://doi.org/10.18653/v1/2022.acl-short.55
https://doi.org/10.18653/v1/2022.acl-short.55
https://arxiv.org/abs/2011.04784
https://arxiv.org/abs/2011.04784
https://aclanthology.org/2022.wmt-1.33
https://aclanthology.org/2022.wmt-1.33
https://arxiv.org/abs/2105.13065
https://arxiv.org/abs/2105.13065
https://arxiv.org/abs/2105.13065
http://jmlr.org/papers/v9/vandermaaten08a.html
https://openreview.net/forum?id=w4zZNC4ZaV
https://openreview.net/forum?id=w4zZNC4ZaV
https://openreview.net/forum?id=w4zZNC4ZaV
https://arxiv.org/abs/2307.06018
https://arxiv.org/abs/2307.06018


Omar Espejel, Ona de Gibert, Paulo Villegas, Pe-
ter Henderson, Pierre Colombo, Priscilla Amuok,
Quentin Lhoest, Rheza Harliman, Rishi Bommasani,
Roberto Luis López, Rui Ribeiro, Salomey Osei,
Sampo Pyysalo, Sebastian Nagel, Shamik Bose,
Shamsuddeen Hassan Muhammad, Shanya Sharma,
Shayne Longpre, Somaieh Nikpoor, Stanislav Silber-
berg, Suhas Pai, Sydney Zink, Tiago Timponi Tor-
rent, Timo Schick, Tristan Thrush, Valentin Danchev,
Vassilina Nikoulina, Veronika Laippala, Violette
Lepercq, Vrinda Prabhu, Zaid Alyafeai, Zeerak Ta-
lat, Arun Raja, Benjamin Heinzerling, Chenglei Si,
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Figure 3: Screenshot of the survey that was used to
collect human annotations.

Zhuohan Li, Zi Lin, Eric Xing, et al. 2023. Lmsys-
chat-1m: A large-scale real-world llm conversation
dataset. arXiv preprint arXiv:2309.11998.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.
Judging llm-as-a-judge with mt-bench and chatbot
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Preprint, arXiv:2308.04948.

A Collecting Data for Human Evaluation

The screenshot of the survey is shown in Figure 3.
For Võro, Livonian, and Estonian, the instructions
were given in Estonian, while for Komi, they were
given in Russian.

B Training Details

The hyperparameters of pre-training stages 1 and
2 are listed in Table 8. The instruction-tuning
and translation-tuning parameters are in Table 9.
The first epoch was used for evaluating instruction-
tuned models.

All the models were trained using 4 AMD
MI250x GPUs (acting as 8 units) on the LUMI
supercomputer. We report GPU-hours elapsed for
model training in Table 10.

Parameter Stage 1 Stage 2 (translate)

updates 19073 2985 (3013)
LR 4.00e-5 2.00e-5
LR-schedule cosine decay to 10%
context length 2048
batch size 256
warmup ratio 0.01
weight decay 0.05
precision bfloat16
optimizer AdamW
packing yes

Table 8: Pre-training hyperparameters.

Parameter Value

LR 2.00e-5
LR-schedule cosine decay to 10%
context length 2048
batch size 256
epochs 2
warmup ratio 0.01
weight decay 0.05
precision bfloat16
optimizer AdamW
packing no

Table 9: Instruction-tuning and translation-tuning hy-
perparameters.

Model GPU-hours

Base:
Stage 1 2008
Stage 2 308
Stage 2 + translate 316

Instruction:
LLMTrAlpaca+TrInst 39

TrTuning 39

Table 10: GPU-hours elapsed for training the models.
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Sampling byte-PPL Epochs Proportion

VRO LIV KPV VRO LIV KPV VRO LIV KPV

Unimax
N=1 2.3072 4.1986 1.4508 1 1 1 2.4% 0.4% 97.2%
N=4 2.1885 3.8351 1.4055 4 4 2.5 3.7% 0.7% 95.6%
N=8 2.5983 4.7250 1.4159 8 8 2.4 7.5% 3.3% 81.0%

Proportional 2.1983 3.8352 1.4065 2.5 2.5 2.5 2.4% 0.4% 97.2%

Table 11: The effect of Unimax N (max data repeat epochs) on held-out validation set byte perplexity.

C Choice of Unimax N

We chose the Unimax N according to the byte per-
plexity on our held-out validation set, with the best
value for our setup being 4 (see Table 11).

Muennighoff et al. (2023) found that repeating
data for 4 epochs is almost as good as new data
with improvements continuing beyond 4 epochs
for pre-training LLMs. We find that for continued
pre-training with very small datasets and small data
budgets, 4 epochs of repetition (Unimax N=4) pro-
vides an improvement in perplexity over 1 epoch of
data for Stage 2. However, already at 8 epochs, the
perplexity drops, suggesting overfitting (see Ap-
pendix C). Thus we keep the maximum repetitions
at 4 and conclude that the number of repetitions
of smaller datasets should be carefully chosen to
avoid over- or underfitting.

ET VRO LIV KPV

surveys submitted 45 17 6 27
answers graded 1708 836 279 1306
grades per question 2.8 1.74 0.58 2.7

Table 12: Human evaluation data collection statistics.

D Evaluation details

The base models are evaluated with
lm-evaluation-harness (Gao et al., 2023).
For instruction-tuned models’ SIB-SMUGRI
outputs that do not conform to the expected format,
we use GPT-4-turbo to verify that the prediction
matches the ground truth. We calculate standard
errors using bootstrap resampling implemented
in lm-evaluation-harness (Gao et al., 2023).
The evaluation prompts are listed in Figure 9. For
Belebele, the instruction-tuned models’ zero-shot
evaluation method is based on Bandarkar et al.
(2023).

GPT-4-turbo version used in evaluations was
gpt-4-turbo-2024-04-09 and GPT-3.5-turbo
version used was gpt-3.5-turbo-0125.

We evaluate translations quality using BLEU

(Papineni et al., 2002) calculated with sacreBLEU7

(Post, 2018).
The held-out validation set (see Table 13) used

to calculate perplexity is sampled from our pre-
training data.

Language Characters Examples

LIV 86842 1246
VRO 131373 110
KPV 1308290 500

Table 13: Held-out validation set sizes. Examples for
Livonian are sentences. For other languages they are
documents.

E Võro Data Collection

We collect Võro data from Võro language
Wikipedia dump (Foundation), Corpus of Fiction
in Võro and Seto languages8, Additionally, we
scraped Võro language newspaper articles from
Uma Leht9. Since the Seto dialect is similar to
Võro, we do not filter it out of our Võro datasets
that contain it, and additionally include "Setomaa"
newspaper corpus10 which is also in Seto dialect.
The collected Võro dataset composition is shown
in Table 14.

Name Documents Characters Sentences

Võro
Wikipedia (2024.02.20) 6385 3879212 88550
Fiction corpus 399 1987446 32121
Umaleht (scraped) 3392 6280588 93958

Seto dialect
Fiction corpus 8 76361 869
Setomaa corpus 397 1791268 20693

Table 14: Võro data composition by source.

7signature: nrefs:1|case:mixed|eff:no|tok:13a
|smooth:exp|version:2.4.2

8https://metashare.ut.ee/repository/browse/corpus-of-
fiction-in-voro-and-seto-languages/2cf454fca0d411eebb47
73db10791bcf485f3f9e7dee447b983f21b074ad3835

9https://umaleht.ee/
10https://metashare.ut.ee/repository/browse/setomaa-

newspaper-corpus/3303e60ca0d411eebb4773db10791b
cf2d01e0b55ce2419db34ef402460a1c99/
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Dataset LIV VRO KPV ET FI EN RU

Supporting language instructions:
Aya (Singh et al., 2024) 742 3944 423
OASST-2 (Köpf et al., 2023) 5 3514 681
FLAN-V2 (Longpre et al., 2023) 5000
Alpaca-GPT-4 (Peng et al., 2023) 20000
Alpaca-est (Kuulmets et al., 2024) 20000

TrAlpaca (ours) 1000 1000 1000

TOTAL 1000 1000 1000 20000 747 32458 1104

Table 15: Instruction-tuning data with the number of sentences sampled

F Instruction-tuning details

The composition of our instruction-tuning dataset
is listed in Table 15. Instructions are formatted into
a chat-format shown in Figure 5. The translation-
tuning data format is shown in Figure 6. The fine-
tuning loss is calculated on target (assistant) tokens
while the rest of the prompt is masked.

G Instruction translation details

When using our translation-tuned models for trans-
lating instructions (for LLMTrAlpaca), the models
sometimes leave sentences untranslated in an un-
predictable manner. Consequently, we removed
examples where the BLEU (Papineni et al., 2002)
score between the original and translated text ex-
ceeds 70. This process may also eliminate some
valid examples, as identical texts can occur in some
cases.

In preliminary experiments, we observed that the
model sometimes struggles with multi-line or multi-
sentence inputs, which are essential for accurately
translating instructions that often consist of entire
texts from Alpaca-style examples. To address this
issue, we concatenate 50% of the training sentences
into chunks of 2 to 6 sentences, training the model
to handle longer inputs effectively. We refer to
this configuration TrTuningConcat and the regular
translation instructions as TrTuning.

We find that this concatenation does not harm
model translation quality (see Table 17). Addition-
ally, we observed more consistent outputs when
translating whole instructions.

To get a glimpse into the quality of the transla-
tions, we conducted a small-scale human evalua-
tion with native speakers or, in the case of Livo-
nian a fluent speaker, due to the lack of native
speakers. Given the original and the translation
of 20 randomly chosen instructions, which stay the
same across translation models, the evaluators were
asked to rate the Fluency (How fluent and natural
does the translation sound in the target language?)

and Consistency (Does the translation preserve
the meaning and intent of the source text?) on a
5-point Likert scale (see Table 18 for evaluation
guidelines). We also asked them to report if the
resulting instruction-input-output triplet does not
form a correct instruction, e.g. the output does not
satisfy the instruction.

We report the evaluation summary in Table 19
for Neurotõlge and Llama-SMUGRI-translate. In
general, Llama-SMUGRI-translate produces better
results for Võro and Livonian, achieving higher
fluency and consistency scores than Neurotõlge on
average. For an acceptable instruction translation,
we would like the fluency and consistency to be at
least 3, and the resulting instruction should still be
correct. We see that for Neurotõlge, this is only
achieved for 45% of evaluated instructions in Võro
and Livonian, while for Komi 80% of instructions
are acceptable. For Llama-SMUGRI-translate, we
see this condition is satisfied for 70%, 80%, and
65% of translation for Komi, Võro, and Livonian,
respectively. While this shows that machine trans-
lation can be a feasible option in some cases, it
is far from ideal for instructions. We also report
histograms of human ratings in Figure 4.

H Parallel data

Composition of the parallel data is shown in Ta-
ble 16.

I Llama-SMUGRI Representations

The CKA scores (Kornblith et al., 2019) in Table 7
indicate that the more closely related Finno-Ugric
languages – Estonian, Võro, and Livonian – written
in the Latin script exhibit more similar representa-
tions in the intermediate layers. Meanwhile, Komi
shows the highest CKA score with Russian, the
only other language in our experiments that uses
the Cyrillic script, while having a lower similar-
ity score with languages for which the model has
seen the most training data, such as English and
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Dataset VRO-ET LIV-ET LIV-LV LIV-EN KPV-ET KPV-FI KPV-RU KPV-EN KPV-LV TOTAL

TrInst 500 500 500 493 500 500 500 500 500 4493
TrTuning 28505 14215 11608 493 3876 7273 100000 7288 5020 178278
Stage 2 + parallel 28504 14212 11606 492 3835 7272 81487 7286 5018 159712

Table 16: Number of sentences of parallel data used in various training configurations. In all cases, the
language pair data is split equally; for instance, in ET-LIV, 50% of the reported sentences are for ET→LIV and the
remaining 50% for LIV→ET. The data is sourced from Yankovskaya et al. (2023); Rikters et al. (2022); Tars et al.
(2022, 2021).

Model ET-VRO ET-LIV RU-KPV

← → ← → ← →

Neurotõlge 48.5 21.2 29.7 10.2 31.5 17.7

Llama-SMUGRI-translate
TrTuning 50.5 29.2 24.0 10.0 23.4 17.3
TrTuningConcat 51.7 28.7 22.9 9.7 23.5 17.4

Table 17: BLEU scores on FLORES-SMUGRI (0-shot).
Translations are generated with beam size 4 for our mod-
els. TrTuningConcat uses concatenated sentences from
multiple examples in a single translation instruction.

Fluency
5 The translation is perfectly fluent, with no grammatical errors,

unnatural phrasing, or awkward expressions.
4 The translation is mostly fluent, with minor grammatical or

stylistic issues that do not affect readability.
3 The translation is somewhat fluent, but noticeable issues (e.g.,

awkward phrasing or grammatical errors) hinder smooth read-
ing.

2 The fluency of the translation is poor, with significant issues
that make it difficult to understand in parts.

1 The translation is completely unnatural or ungrammatical, mak-
ing it incomprehensible.

Consistency
5 The translation fully preserves the meaning of the source text,

with no omissions, additions, or distortions.
4 The translation preserves the overall meaning, but there are

minor inaccuracies or nuances lost.
3 The translation conveys the general meaning, but there are no-

ticeable issues (e.g., omissions or slight distortions).
2 The translation distorts the meaning significantly or omits im-

portant details, making it partially inaccurate.
1 The translation fails to convey the meaning of the source text

entirely.

Table 18: Instruction translation human evaluation
guidelines.

Lang Fluency Consistency Incorrect Both≥ 3

Neurotõlge

KPV 3.55 3.5 5% 80%
VRO 2.75 3.2 0% 45%
LIV 2.8 2.85 15% 45%

Llama-SMUGRI-translate

KPV 3.35 3.35 5% 70%
VRO 3.5 3.9 0% 80%
LIV 3.2 3.2 20% 65%

Table 19: Average fluency and consistency ratings of
instruction translation (out of 5). Incorrect - the transla-
tion does not form a correct instruction-input-response
triplet. Both ≥ 3 - the percentage of translated instruc-
tions where the Fluency and Consistency are at least 3,
and the instruction is correct.
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Figure 4: Neurotõlge and Llama-SMUGRI-translate
instruction translation human evaluation scores.

<|user|>

Tere!

<|assistant|>

Tere! Kas saaksin teid kuidagi aidata?</s>

<|user|>

Kuidas alustada kirja kirjutamist?

<|assistant|>

Figure 5: Chat format following Wang et al. (2023)
and Kuulmets et al. (2024). The model responds after
<|assistant|>.

Estonian.
The t-SNE (van der Maaten and Hinton, 2008)

plots in Figure 10 show that quite expectedly, the
lexically similar languages Võro, Estonian, and
Finnish are close or overlapping in the input embed-
dings, with the other embeddings being language-
specific. In the middle layers, the embeddings be-
come more language-agnostic. In the later layers,
each language forms a separate cluster. t-SNE plots
of Layer 16 embeddings at the end of different train-
ing stages suggest representations becoming more
language-agnostic as the training progresses.
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<|system|>

Translate the following {src_lang} text into

{tgt_lang}.

<|user|>

{src_text}

<|assistant|>

{tgt_text}</s>

Figure 6: Translation-tuning data format based on Fig-
ure 5.

vro_Latn kpv_Cyrl liv_Latn est_Latn fin_Latn eng_Latn rus_Cyrl lvs_Latn
Target Language

vro_Latn

kpv_Cyrl

liv_Latn

est_Latn

fin_Latn

eng_Latn

rus_Cyrl

lvs_Latn

So
ur
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1.0000 0.6679 0.7838 0.9342 0.7072 0.6330 0.6797 0.6673

0.6679 1.0000 0.6428 0.6698 0.7149 0.6196 0.7996 0.6622

0.7838 0.6428 1.0000 0.7682 0.7097 0.6353 0.6398 0.6122

0.9342 0.6698 0.7682 1.0000 0.7237 0.6465 0.6987 0.6730

0.7072 0.7149 0.7097 0.7237 1.0000 0.7220 0.7193 0.6989

0.6330 0.6196 0.6353 0.6465 0.7220 1.0000 0.7230 0.6860

0.6797 0.7996 0.6398 0.6987 0.7193 0.7230 1.0000 0.7510

0.6673 0.6622 0.6122 0.6730 0.6989 0.6860 0.7510 1.0000
0.65
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Figure 7: Llama-SMUGRI (Stage 2 + parallel) CKA
scores (Kornblith et al., 2019) of mean-pooled layer 16
embeddings.

J Do We Still Need Human Translations?

We evaluate the applicability of the best proprietary
LLMs for creating an MT-Bench-like evaluation
dataset for XLR Finno-Ugric languages by asking
the models to translate English or Estonian prompts
from MT-bench-SMUGRI to the target languages.
Table 20 shows that the best OpenAI models have
not yet learned to translate to XLR Finno-Ugric
languages. From that it can be concluded that they
could also not generate synthetic data for our target
languages with sufficiently good quality.

EST→VRO EST→LIV ENG→KPV

gpt-4o-mini-2024-07-18 9.3 5 4.6
gpt-4o-2024-08-06 4.5 5.6 4.2
gpt-4-turbo-2024-04-09 18.9 5.9 3.6
Neurotõlge 24.7 21.4 31.7
Llama-SMUGRI-translate 26.4 25.3 19.1

Table 20: BLEU scores of translating MT-bench-
SMUGRI.

We then compare translations from the best trans-
lation models with human translations using pair-
wise comparison where we ask human annotators

to choose a better translation from the two alter-
natives (ties allowed). We gather 3 sets of an-
notatios for Livonian, 2 sets for Võro and 1 for
Komi. Figure 8 shows that Komi and Livonian
speakers mostly prefer human translations over ma-
chine translated data, however, Võro speaker prefer
surprisingly often machine translated data suggest-
ing a good quality of Võro machine translation.
The average agreement between the pairs of Livo-
nian annotations were 67.5% while between Võro
annotations 42.5%.

0% 25% 50% 75% 100%

võro

livonian

komi

47.5% 26.3% 26.3%

6.0% 20.0% 74.0%

15.0% 22.5% 62.5%

model tie human

Figure 8: Preferred translations according to pairwise
comparison.
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PRE-TRAINED MODELS

FLORES-SMUGRI
{src_lang}: {src}\n{tgt_lang}:

BELEBELE-SMUGRI (prompt from Bandarkar et al., 2023)

P: {passage}\nQ: {question}\nA: {answer_1}\nB: {answer_2}\nC: {answer_3}\nD: {answer_4}\nAnswer:

SIB-SMUGRI (prompt from Lin et al., 2024; Csaki et al., 2024)

Topic Classification: science/technology, travel, politics, sports, health, entertainment,

geography.\n\nThe label of [{sentence}] is

INSTRUCTION-TUNED MODELS

FLORES-SMUGRI
Translate the following {src_lang} text into {tgt_lang}.\n{src}

BELEBELE-SMUGRI (prompt from Bandarkar et al., 2023)

Given the following passage, query, and answer choices, output the letter corresponding

to the correct answer.\n###\nPassage:\n{passage}\n###\nQuery:\n{query}\n###\nChoices:\n(A)

{answer_1}\n(B) {answer_2}\n(C) {answer_3}\n(D) {answer_4}\n###\nAnswer:

SIB-SMUGRI (prompt from Adelani et al., 2024)

Is this a piece of news regarding science/technology, travel, politics, sports, health,

entertainment, or geography?\n{sentence}

GPT-4-turbo as a Fallback Evaluator (for SIB-200)

Your task is to verify if the given model output classifies a text correctly. Answers in

other languages should be allowed if they meaning matches closely with the expected class (e.g.

\See on teadusuudis\" is correct when expected output is \"science/technology\"). If the model

output does not choose a specific class, then the output is incorrect.\n\n### Expected class:

{expected_answer}\n\n### Model output: {output_text}\n\n### Respond with Yes or No:

Figure 9: Prompts used for evaluation. Pre-trained models were evaluated with Language Model Evaluation Harness
(Gao et al., 2023).
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Figure 10: Llama-SMUGRI (Stage 2 + parallel) t-SNE (van der Maaten and Hinton, 2008) plots of mean-pooled
embeddings. Layer 0 is the output of the embedding layer.
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Figure 11: t-SNE (van der Maaten and Hinton, 2008) plots of mean-pooled 16th layer embeddings in different
stages of model development.
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