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Abstract

Retrieval-augmented generation (RAG) with
large language models (LLMs) is especially
valuable in specialized domains, where preci-
sion is critical. To more specialize the LLMs
into a target domain, domain-specific RAG has
recently been developed by allowing the LLM
to access the target domain early via finetuning.
The domain-specific RAG makes more sense
in resource-constrained environments like edge
devices, as they should perform a specific task
(e.g. personalization) reliably using only small-
scale LLMs. While the domain-specific RAG is
well-aligned with edge devices in this respect,
it often relies on widely-used reasoning tech-
niques like chain-of-thought (CoT). The rea-
soning step is useful to understand the given ex-
ternal knowledge, and yet it is computationally
expensive and difficult for small-scale LLMs to
learn it. Tackling this, we propose the Chain of
Rank (CoR) which shifts the focus from intri-
cate lengthy reasoning to simple ranking of the
reliability of input external documents. Then,
CoR reduces computational complexity while
maintaining high accuracy, making it particu-
larly suited for resource-constrained environ-
ments. We attain the state-of-the-art (SOTA)
results in benchmarks, and analyze its efficacy.

1 Introduction

The integration of retrieval-augmented generation
(RAG) with large language models (LLMs) (Lewis
et al., 2020) has emerged as a pivotal advance-
ment in mitigating the issue of factual hallucina-
tion (Ji et al., 2023)—an inherent limitation of
LLMs when generating knowledge-intensive re-
sponses. By leveraging external knowledge sources,
RAG enables LLMs to utilize relevant knowledge
dynamically, enhancing both the accuracy and reli-
ability of their outputs.
†Qualcomm AI Research is an initiative of Qualcomm Tech-
nologies, Inc. and/or its subsidiaries.

Figure 1: Performance for domain-specific RAG
on HotPotQA dataset on LLaMA3-8B with LoRA
adapter. The marginal effect of CoT (59.2% → 60.6%)
is because of the generated incorrect reasoning which
severely degrades the performance.

RAG is especially crucial in the context of spe-
cialized domains, where precision is paramount and
errors can be costly. Also, in RAG, LLMs must not
only incorporate the relevant external information
as the input, but also contextualize the information
within the nuances of the target domain. To opti-
mize the RAG-LLM for a specific domain, recently
domain-specific RAG (Tianjun Zhang, 2024) has
been developed where LLMs can early access the
target domain through finetuning. The practicality
of the domain-specific RAG is more noteworthy
when computational resources are limited such as
edge devices since with only a small-scaled LLM
some tasks should be performed reliably.

Despite the promise of the domain-specific RAG,
the input external knowledge (generally retrieved
information dubbed contexts) may consist of both
irrelevant and relevant contexts. Hence, reasoning
process such as chain-of-thought (CoT) (Wei et al.,
2022) is useful for understanding and focusing on
the relevant context. To this end, in RAFT (Tian-
jun Zhang, 2024), LLM learns the reasoning as
well as answering in finetuning. Also, in (Yu et al.,
2023), the reasoning is prompted to generate a sum-
mary of all the contexts. Elaborated reasoning is
beneficial, and yet obtaining this kind of reason-
ing dataset for domain-specific learning is time-
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consuming and costful, and also it incurs a large
testing cost.

Unreliability of reasoning is also a critical issue,
especially when the parameter-efficient fine-tuning
(PEFT) like LoRA adapters (Hu et al., 2021; Huang
et al., 2023; Bang et al., 2024) are used to reduce
the computational burden in training resource con-
straint environment. Namely, the PEFT adapters
are efficient but lack enough learning capacities,
and then struggle to learn the intricate reasoning
process. As shown in Fig. 1, LLaMA3-8B (Dubey
et al., 2024) with LoRA exhibits marginal gains
when learned with CoT. It means that the intricate
reasoning can become a hindrance (Shi et al., 2023)
in resource-constrained domain-specific RAG.

Instead of focusing the intricate reasoning pro-
cesses, we narrow the focus to the ranking of the
contexts’ relevance, then the LLM can streamline
its reasoning and reduce the cognitive load required
to generate accurate final answers. Building on this
insight, we propose the Chain-of-Rank (CoR) ap-
proach. In this method, the model is learned to
output just the ID of the contexts which are rele-
vant to the query, and the answer. Then, CoR not
only reduces computational complexity but also
enables the LLM to concentrate more fully on the
critical information, leading to more accurate and
domain-specific outputs. This focus on relevance
rather than elaborate reasoning aligns well with the
resource limitations of small-scale LLMs and edge
devices.

2 Related Works
Domain-specific RAG. In the existing training-
based RAG (Lin et al., 2024; Wang et al., 2024;
Asai et al., 2023), the LLM is learned for vari-
ous domains, and then applied to unseen domains.
However, for better contextualization or under con-
strained resource condition, it is beneficial for
LLM to be early accessed to the target domain via
training on the domain. To this end, RAFT (Tian-
jun Zhang, 2024) pioneered domain-specific RAG.
In RAFT, the LLM is learned by alternating two
loss functions which are designed to simulate open-
book and closed-book cases, respectively. The first
loss addresses both distracting and golden contexts,
while the second loss does only distracting ones.
However, for decent performance evenly across var-
ious datasets, they trained the LLM to learn how to
make the intricate reasoning as well as the answer.
Reasoning techniques in LLM. CoT (Wei et al.,
2022) reasoning has been shown to enhance per-

formance in LLMs, sparking numerous studies
aimed at improving its efficiency. To delve into
CoT, more complex approaches like CoT decoding
by sampling (Wang et al., 2023; Wang and Zhou,
2024) and analogous reasoning (Yasunaga et al.,
2023) have emerged. Considering the lengthy in-
puts which contain the retrieved contexts as well
as the query in RAG, sampling to find the op-
timal decoding path or generating reasoning ex-
amples by itself are too burden in terms of com-
putational cost. Tailored for RAG, methods like
RAFT (Tianjun Zhang, 2024) and CoN (Yu et al.,
2023) have demonstrated the effectiveness of rea-
soning in RAG. However, as highlighted in (Shi
et al., 2023), errors in reasoning can lead to incor-
rect answers. When using low-capability LLMs to
learn both reasoning and answering, these errors
become more pronounced. Since retrieved contexts
contain factual knowledge, focusing on simpler and
more efficient reasoning that just prioritizes rele-
vant contexts can mitigate this issue, making the
identification of relevant context alone sufficient.

3 Method

3.1 RAG Problem Set-up
In RAG, an LLM can be formalized as p(y|x) =∑

D p(y|x,D)p(D|x), where x denotes the input
query, y represents the LLM generated answer, and
D = {dk}Ki=1 contains the K individual contexts.
This formulation takes into account the joint prob-
ability of retrieving a set of contexts, rather than
assuming the contexts are selected independently.

As this sum over all the context sets is impracti-
cal, generally an off-the-shelf retriever selects the
top-K most relevant contexts. This leads to the
approximation: p(y|x) ≈ p(y|x,D). Furthermore,
when a reasoning step is considered, it becomes as
follows.

p(y|x) ≈
∑

R

p(y|x,D,R)p(R|x,D) (1)

where R represents the generated reasoning.

3.2 Chain-of-Rank
Framework. We streamline the reasoning process
by shifting the focus from complex reasoning to
identifying the IDs of the given contexts that cor-
respond to the most relevant ones for x. With just
this process, the model can reduce cognitive over-
head on less relevant information, and more pay
attention to the relevant information. As illustrated
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Figure 2: Illustration of the proposed chain-of-rank for domain-specific RAG. CoR streamlines the reasoning
step, which is easier to be learned.

in Fig. 2, each context is identified by its unique ID.
Then, CoR involves two main steps: (1) selecting
the ID of relevant contexts (i.e., R) and (2) gen-
erating the final answer y. Consequently, the CoR
framework significantly simplifies the reasoning
step, making it a practical solution for scenarios
with limited computational resources while enhanc-
ing performance in domain-specific applications.
Model training. We concatenate the instruction,
question, and retrieved documents into a single
prompt, allowing the model to learn in a standard
supervised manner. The model is trained to opti-
mize both the selection of relevant document IDs
and the accuracy of the generated answer by mini-
mizing a joint loss function.

L = −
∑

i=1

log p(yi|xi, Di, Ri)− log p(Ri|xi, Di)

(2)
We designed the top-k documents in Di to include
at least one positive document for a query xi during
training. Also, we employed LoRA to efficiently
fine-tune the model parameters assuming the low
resource constraint (details are in Appendix).

4 Experiments

We provide more details and analysis in Appendix.
Datasets. In our experiments, we use the follow-
ing datasets to evaluate the proposed method. We
selected these datasets to represent both popular
and diverse domains including Wikipedia and Cod-
ing/API documents.

In specific, we select HotPotQA (Yang et al.,
2018) and Gorilla API datasets (Patil et al.,
2023). The HotPotQA is the open-domain question-
answers based on Wikipedia, mainly focused on

common knowledge. In testing, we used ‘Hot-
potQA distractor dev. set’ which is designed to
provide ten contexts including at least one relevant
context for a query. TensorFlow, HuggingFace, and
TorchHub of the Gorilla API are to measure how
to generate the correct, functional, and executable
API calls based on the documentation. For each
of HuggingFace, TorchHub, and TensorFlow, train
and test splits are provided, which share the API
pool. Also, following the officially-released code1,
we utilized BM25 retriever.
Evaluation. We set K as 10 for the HotPotQA,
then all the available irrelevant contexts distract the
relevant ones for a query. For the Gorilla API, K
is set to 5. To minimize the influence of the quality
of the off-the-shelf retriever, we set up our exper-
iments to include at least one relevant context for
each input query. For the HotPotQA, we used two
standard metrics: Exact Match (EM) and F1 score,
following prior work (Chen et al.; Karpukhin et al.,
2020; Zhu et al., 2021). An answer is correct in the
EM if its normalized form, based on (Karpukhin
et al., 2020), matches exactly the ground-truth an-
swer. F1 score calculates token overlap between
the prediction and ground truth (Zhu et al., 2021).
For the Gorilla API, following the official bench-
mark, we perform AST sub-tree matching to iden-
tify which API the LLM is calling by matching key
arguments, and report AST accuracy.
Baselines. We consider the following baselines
for our experiments based on LLaMA3-8B: Naive
LLaMA3-8B, Domain-specific fine-tuning (DSF)
without reasoning, RAFT (DSF with CoT) (Tian-
jun Zhang, 2024), DSF + CoN (chain-of-note) (Yu

1https://github.com/ShishirPatil/gorilla
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Method
HotPotQA

TensorFlow HuggingFace TorchHub
EM F1 score

LLaMA3-8B 40.84 52.47 32.11 10.14 22.13

Domain-specific

DSF 44.98 59.15 83.91 87.42 70.08
RAFT (DSF-CoT) 46.79 60.59 88.98 89.68 74.05
DSF-CoN 48.60 62.04 84.52 79.05 76.21

DSF-CoR (Ours) 49.23 64.11 95.68 92.52 80.54

Table 1: Comparative results on domain-specific RAG. EM and F1 score for the HotPotQA, and AST sub-tree
matching accuracy scores (%) for the Gorilla API (TensorFlow, HuggingFace, TorchHub) are reported.

Method DSF-CoT DSF-CoN DSF-CoR

Reasoning Accuracy (↑) 68.21 69.02 72.31
Reasoning Tokens (↓) 90.15 143.18 8.00

Table 2: Analyses on reasoning. Accuracy (%) and cost
(used tokens) for reasoning are on the HotPotQA.

et al., 2023). In the DSF baselines, we commonly
used the LoRA adapter. And, all the baselines are
in the zero-shot setting. In addition, RAFT sug-
gested to alternating two losses of the irrelevant
contexts-only and the mixing irrelevant and rele-
vant contexts. For a fair comparison, we tried to
find the optimal combination ratio of the two losses
for this baseline.

4.1 Comparative Results
We evaluate our CoR and demonstrate the efficacy
in Table 1. The non-specified pre-trained LLM
(LLaMA3-8B) shows severely degraded scores in
the API datasets than in the natural questions of
HotPotQA, which proves the requirements and im-
portance of domain-specific RAG. The reasoning-
based methods, RAFT and CoN, attain better re-
sults than DSF. However, in F1 score, the effect of
CoT is marginal. Also, although the noting strategy
of CoN is tailored for RAG, it sometimes shows
lower performance than the straightforward DSF
as well as CoT (see TensorFlow and Huggingface
results). Whereas, we see that the proposed CoR
consistently and significantly outperforms the base-
lines in all the datasets. It means that learning the
complex reasoning can be a burden to the PEFT on
the smaller-scale LLM, and thus simply identifying
the IDs of the relevant contexts is more beneficial.
We also study the extension of the proposed CoR
to domain-agnostic RAG in Appendix.

4.2 Analysis
Reasoning quality. In RAG, the reasoning can
be utilized to support the answer. Therefore, the
quality of reasoning is also substantial, then we

quantitatively compare the reasoning of CoT, CoN,
and our CoR. We evaluate CoT and CoN using
a pre-trained LLM (e.g. GPT) in a massive scale.
Since CoT and CoR produce lengthy reasoning that
incorporates details of the retrieved contexts which
may lead to some errors in detail. Hence, to ensure
a fair comparison, we prompt the LLM evaluator
to assess whether the reasoning is related with the
relevant golden context. Nevertheless, in the top
row of Table 2, the proposed CoR attains clearly
higher reasoning accuracy.
Cost in reasoning. We also evaluate the proposed
method in terms of the cost for reasoning. To this
end, we compare CoT, CoN, and our CoR accord-
ing to the number of the tokens used for reasoning.
As shown in the bottom row of Table 2, CoR uses
significantly lower tokens for reasoning, which
shows the efficiency of the proposed approach.
Importance of correct ranking: To see this, we
obtain the answer giving incorrect ranking for DSF-
CoR. Despite domain-specific learning, it yields
severely degraded results, 24.20% EM and 32.34%
F1 score.

5 Conclusions
We proposed the Chain of Rank (CoR) to address
the limitations of the existing intricate reasoning
processes like chain-of-thought in training-based,
domain-specific RAG. For domain-specific RAG
training, annotation expense for the reasoning data
is required. Also, especially in testing on smaller
LLMs in resource-constrained environments, it
poses challenges in terms of the accuracy as well
as computational cost. We observed that the in-
accurate reasoning adversely affect the quality of
final answer. By shifting the focus from elaborate
reasoning to a simplified ranking of the reliability
of retrieved documents, CoR significantly reduced
computational complexity while attaining higher
accuracy. Our experimental results demonstrated
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that CoR achieves SOTA results on RAG bench-
marks, confirming its effectiveness in improving
the domain-specific RAG performance of small-
scale LLMs.

6 Limitations

This work acknowledges the significance of reason-
ing in domain-specific RAG models and presents
an efficient approach that reduces the need for com-
plex training data labeling and significantly lowers
reasoning costs during testing. However, we did
not thoroughly investigate whether the proposed
method would be equally effective in more general
RAG frameworks that do not rely on task-specific
training. That said, preliminary results presented
in the appendix indicate the potential for success
in general RAG settings, suggesting that this area
warrants deeper exploration in future work. There-
fore, our findings provide a promising foundation
for future research.

7 Ethical Consideration

In the field of domain-specific RAG, if the appli-
cations involve sensitive areas such as personal
information, special caution must be taken during
the model training process to ensure privacy and
data protection. Beyond this consideration, method-
ologically, our research focuses on improving the
accuracy and efficiency of RAG in LLMs, we do
not foresee any direct negative ethical concerns
stemming from our contributions. Nonetheless, it
is important to recognize that generative AI tech-
nologies, including those using LLMs, come with
potential risks. As such, careful consideration of
their broader ethical and societal implications is
necessary when these systems are applied in the
real world.

References
Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and

Hannaneh Hajishirzi. 2023. Self-rag: Learning to
retrieve, generate, and critique through self-reflection.
arXiv preprint arXiv:2310.11511.

Jihwan Bang, Juntae Lee, Kyuhong Shim, Seunghan
Yang, and Simyung Chang. 2024. Crayon: cus-
tomized on-device llm via instant adapter blending
and edge-server hybrid inference. In The 62nd An-
nual Meeting of the Association for Computational
Linguistics.

D Chen, A Fisch, J Weston, and A Bordes. Reading
wikipedia to answer open-domain questions. arxiv
2017. arXiv preprint arXiv:1704.00051.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Let-
man, Akhil Mathur, Alan Schelten, Amy Yang, An-
gela Fan, et al. 2024. The llama 3 herd of models.
ArXiv:2407.21783.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: low-rank adaptation of
large language models. International Conference on
Learning Representations.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu
Pang, Chao Du, and Min Lin. 2023. Lorahub: effi-
cient cross-task generalization via dynamic lora com-
position. arXiv preprint arXiv:2307.13269.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput-
ing Surveys, 55(12):1–38.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
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- Appendix -

Chain-of-Rank: Enhancing Large Language Models
for Domain-Specific RAG in Edge Device

A Prompt template for chain-of-rank

Prompt template for domain-specific RAG with CoR

Contexts and Question are given.

Let ’s think step by step to make
correct output.

First , reranking goal: select the
relevant contexts , important to answer
the question correctly.

Then , answering goal: Focusing on the
selected context , answer the question.

Question: {question}
Context1: {context_1}
Context2: {context_2}
...
ContextN: {context_N}

Output:
## Relevant Context ID: {IDs}
## Answer: {answer}

B Feasibility in task-agnostic RAG-LLM.

To identify the potential of the proposed chain-of-
rank as the general reasoning technique in RAG
beyond domain-specific RAG, we applied the pro-
posed method on the pre-trained model (LLaMA3-
8B). As shown in the Table 3, the CoR is compa-
rable to CoT. Further, we combined the reasoning
of the CoT and CoR. On top of the CoT-style rea-
soning, the reasoning of CoR makes meaningful
synergistic results using a small cost.

C Datasets

HotPotQA. HotPotQA is a large-scale question-
answering dataset designed to evaluate both fac-
tual reasoning and multi-hop question answering.
The training set with approximately 90,000 exam-
ples and development (dev.) set containing around
7,400 examples. For each question, ten contexts are
provided where a context consists of several sen-
tences and the key sentences (supporting facts to
the query) are annotated. We experimented with the
whole sentences in every context for a challenging
set-up.

Method EM F1 Score

LLaMA3-8B pre-trained 40.84 52.47
+ CoT 42.41 53.96
+ CoR 41.20 55.92
+ CoR&CoT 44.15 58.09

Table 3: Results on a pre-trained LLM by applying
the CoT, the proposed CoR, the mixture of CoT and
CoR. EM and F1 score are reported on the HotPotQA
dataset.

Gorilla API. Gorilla API is multi-faceted, com-
prising three domains: TensorFlow, HuggingFace,
TorchHub where training data includes 6190, 8191,
337 entries and testing data does 688, 911, 186
entries, respectively. Each entry of a domain con-
veys a detailed description for an API call. In
specific, it consists of the following fields: {do-
main, framework, functionality, api_name, api_call,
api_arguments, environment_requirements, exam-
ple_code, performance, and description}.
Reasoning dataset for baseline training. Gorilla
API dataset provides the explanation for every API
document, and hence we use that as the reason-
ing following (Tianjun Zhang, 2024) for domain-
specific training. In HotPotQA dataset which does
not include reasoning, we utilized a significant-
scale LLM to generate the intricate reasoning
dataset for domain-specific training. We used the
prompt of (Tianjun Zhang, 2024) to generate the
reasoning.

D Evaluation Metric

Exact Match. Exact Match (EM) evaluates
whether the model’s generated response is identical
to the ground truth answer. It is computed as the
percentage of predictions where the generated out-
put exactly matches the reference answer, including
the order and wording. EM is strict, meaning any
deviation results in a score of 0 for that prediction,
and only exact matches count as correct.
F1 score. F1 score is a measure that balances pre-
cision and recall. It is computed by comparing the
overlap of tokens between the generated response
and the ground truth. Precision is the ratio of cor-
rect tokens in the generated response to the total
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number of tokens in the response, while recall is
the ratio of correct tokens to the total number of
tokens in the ground truth. The F1 score is the har-
monic mean of precision and recall, allowing for
partial credit when the generated answer partially
overlaps with the correct answer.

AST accuracy. AST (Abstract Syntax Tree) accu-
racy is a metric used to evaluate the correctness of
generated API calls by comparing their structural
representation to reference APIs. The generated
API call is parsed into an AST, and its structure is
matched against the corresponding reference API
from the dataset. The accuracy is determined by
how well the generated API’s function names and
key arguments align with the reference. If the AST
of the generated call matches a subtree of the refer-
ence API, it is considered correct.

E Prompt template to evaluate the
reasoning

Prompt template to evaluate reasoning

You are an expert at evaluating
reasoning based on provided
information. Given a question , five
retrieved contexts , and reasoning ,
your task is to determine whether
the reasoning is based on the correct
context. The correct context is the
one that contains the most relevant
and accurate information to answer
the question.

Follow these steps:
1. Identify which retrieved context
contains the most accurate information
to answer the question (the "golden
context ").
2. Evaluate if the reasoning is based
primarily on this golden context.
3. Provide a clear answer (Yes or No).

### Question:
{question}

### Retrieved Contexts:
1. {context_1}
2. {context_2}
3. {context_3}
4. {context_4}
5. {context_5}

### Reasoning:
{reasoning}

### Evaluation:
Is the reasoning based on the correct
context? Answer with "Yes" or "No".

F LoRA-based training details

We implemented the proposed and baseline ap-
proaches based on the Huggingface PEFT li-
brary (Mangrulkar et al., 2022). We set the rank
r and scaling factor of a LoRA as 128 and 16,
respectively. In training, we use the AdamW opti-
mizer with a learning rate 0.0003 which is cosine
annealed. We also set the batch size as 128 and the
maximum epoch as 1. All the proposed and base-
line methods are implemented with PyTorch 2.0.1
and executed on two NVIDIA A5000 GPUs.
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