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Abstract

Dynamical system modeling is a crucial area
of research in machine learning with exten-
sive applications in physics and social science.
Recent data-driven approaches often employ
graph neural networks (GNNs) to learn rela-
tionships in dynamical systems using message
passing mechanisms. Despite their advance-
ments, these methods often suffer from perfor-
mance degradation when it comes to potential
environmental change with distribution shifts
in real-world applications. In this work, we pro-
pose a new perspective which leverages large
language models (LLMs) to enhance the gener-
alization capabilities of dynamical system mod-
eling. In particular, we develop a novel frame-
work named LLM Judge with Graph Mixture-
of-expert (LEGO), which incorporates multiple
graph experts to learn diverse dynamics within
the systems. More importantly, LEGO uti-
lizes LLMs with hierarchical prompts at object,
edge, and system levels as a context-aware rout-
ing function to determine which experts carry
the most relevant information to different envi-
ronments. The whole framework is optimized
by updating the weights and expert parame-
ters in an alternative fashion. Extensive experi-
ments across various datasets demonstrate the
effectiveness of our proposed LEGO in com-
parison to extensive baselines.

1 Introduction

Dynamical system modeling and forecasting play
a crucial role in understanding how systems evolve
across various domains, including fluid mechan-
ics (Pfaff et al., 2021; Rajani et al., 2020; Wang
et al., 2024a), climate change (Choi et al., 2023;
Zlatev et al., 2020), and molecular science (Zeng
et al., 2020; Ishiai et al., 2024). To capture in-
teractions between different objects within these
systems, people construct geometric graphs where
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edges are from prior information or Euclidean dis-
tances. Recent advancements (Kipf and Welling,
2017a; Xu et al., 2019; Zheng et al., 2022; Li et al.,
2022; He et al., 2022) in this field focus on develop-
ing graph neural networks (GNNs) to extract spatio-
temporal relationships within the system. These
GNNs employ a message passing mechanism (Kipf
and Welling, 2017a; Hamilton et al., 2017) to gen-
erate predictions of future system states.

In real-world scenarios, there could be envi-
ronmental changes accompanied by distribution
shifts in dynamical systems (Dagan et al., 2023;
Huang et al., 2024; Kulinski and Inouye, 2023).
These varying environments could result from dif-
ferent stages of evolution and varying system pa-
rameters. On the one hand, the state distributions
could vary at different stages, especially in peri-
odic vibrations (Koch et al., 2014; Chen et al.,
2018). On the other hand, different system pa-
rameters and properties such as different elastic
coefficients would result in different laws of evo-
lution (Sanchez-Gonzalez et al., 2020; Li et al.,
2023b). Current data-driven approaches (Pfaff
et al., 2021; Huang et al., 2020) typically strug-
gle with significant performance degradation due
to poor generalizability when it comes to environ-
mental changes and distribution shifts (Goyal and
Bengio, 2022). To address this issue, our paper
focuses on the problem of dynamic forecasting un-
der environmental changes, which aims to enhance
the generalizability of dynamical system modeling
across diverse environments.

Due to the strong zero-shot capability of large
language models (LLMs) (Achiam et al., 2023;
Dubey et al., 2024; Luo et al., 2025), this work
intends to incorporate LLMs to enhance dynamic
forecasting under environmental changes. How-
ever, this task is non-trivial, which requires us to
solve two challenges. Firstly, LLMs usually output
discrete texts in a decoder-only generative man-
ner (Wei et al., 2022; Ma et al., 2023), which limits
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their ability to accurately generate complex tensors.
While recent research demonstrates the potential of
LLMs in generating numerical lists for time series
forecasting (Gruver et al., 2024; Yu et al., 2023b;
Jin et al., 2024), these efforts focus on simple one-
dimensional sequences and fail to model interac-
tions between different agents. When requiring
LLMs to output complicated predictions, LLMs
may generate unrelated results. Secondly, dynami-
cal systems comprise numerous objects with intri-
cate interactions (Pfaff et al., 2021; Huang et al.,
2020; Han et al., 2022), making it challenging to
summarize the context of these systems as input
for LLMs. Potential environmental changes even
make the problem more challenging.

In this paper, we propose a new approach named
LLM Judge with Graph Mixture-of-expert (LEGO)
for dynamic forecasting. The core of our LEGO is
to utilize LLMs as a context-aware routing function
to select appropriate graph experts under hierarchi-
cal prompt engineering. In particular, our LEGO
first transforms hierarchical context into prompts
from three levels i.e., system level, object level,
and edge level, which are then fed to pre-trained
LLMs. Instead of directly generating future pre-
dictions, our LEGO employs a graph mixture-of-
experts framework (Cai et al., 2024), where several
GNN-based experts are optimized. We generate
the predictions based on each graph expert and
LLMs are leveraged to select the reasonable one
based on the context, which can seamlessly reduce
the impact of environmental change. The param-
eters of graph experts and weights are updated in
an alternative manner. To mitigate potential errors
in LLM judgments, we adopt the label smoothing
strategy (Müller et al., 2019), which can ensure a
smooth optimization procedure. Extensive experi-
ments on various benchmark datasets validate the
superiority of the proposed LEGO in comparison
to various state-of-the-art approaches.

The contribution of our LEGO can be summa-
rized as follows: (1) New Perspective. We are the
first to connect LLM-as-a-judge with the mixture-
of-expert framework, which can effectively incor-
porate environment contexts into dynamic forecast-
ing. (2) Novel Methodology. Our LEGO first trans-
forms hierarchical context in dynamical systems
into prompts, which guides the selection of GNN
experts in the MoE framework to enhance the gen-
eralizability across different environments. (3) tex-
titComprehensive Experiments. Extensive experi-
ments on various benchmark datasets validate the

effectiveness of our proposed LEGO.

2 Related Work

2.1 Dynamical System Modeling

In recent years, learning from dynamical systems
has become a prominent topic with real-world ap-
plications in opinion dynamics (Li et al., 2023a;
Chuang et al., 2024), physical simulations (Pfaff
et al., 2021; Rajani et al., 2020), and epidemi-
ology (Cury et al., 2021; Mutuvi et al., 2020).
Current approaches typically construct geometric
graphs and employ message passing neural net-
works to learn from interactions (Kipf and Welling,
2017a; Xu et al., 2019; Zheng et al., 2022; Li et al.,
2022; He et al., 2022; Zhao et al., 2024). These
methods generate predictions for the next times-
tamp and feed them back as input in an autoregres-
sive manner for long-term forecasting. In addition,
recent approaches consider equivalence in graph
representation learning (Satorras et al., 2022; Xu
et al., 2024), which incorporates both node repre-
sentations and position information during neigh-
borhood aggregation. However, these approaches
often heavily rely on training data and struggle
with significant performance degradation when it
comes to potential environmental changes with dis-
tribution shifts (Goyal and Bengio, 2022). Towards
this end, this paper proposes LEGO, which lever-
ages LLMs to understand the environmental con-
text with enhanced generalizability in dynamical
system modeling.

2.2 Large Language Models

Recent studies have demonstrated the strong capa-
bilities of large language models (LLMs) (Achiam
et al., 2023; Dubey et al., 2024) with extensive pa-
rameters in various tasks such as question answer-
ing (Kamalloo et al., 2023; Nguyen et al., 2023)
and sentiment analysis. Among various LLM ap-
proaches, in-context learning (Wei et al., 2022; Ma
et al., 2023) has become popular for utilizing LLMs
in specific tasks, which aims to incorporate key
signals in prompts without additional training. Be-
sides in-context learning, reinforcement learning
from human feedback and instruction tuning (Bai
et al., 2022; Akyurek et al., 2023) are another
way to adapt LLMs to different scenarios. LLMs
have also shown potential in analyzing time series
data (Gruver et al., 2024; Khadanga et al., 2019;
Liu et al., 2024; Yu et al., 2023a), which enjoy ex-
cellent zero-shot capabilities for one-dimensional
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Figure 1: An overview of our proposed LEGO. Our LEGO feeds the initial state of the system into a mixture-of-
expert framework, where each expert is an equivalent graph neural network. Then, we input the hierarchical contexts
into an LLM from system, link and object levels. The LLM serves as a routing function with label smoothing to
judge which expert is more suitable under the context, outputting the final predictions.

time series. However, the application of LLMs to
dynamical systems remains underexplored, which
is more complex than 1D time series. To close
this gap, our work combines LLMs with dynami-
cal system modeling in a graph mixture-of-expert
framework and achieves strong generalizability un-
der environmental changes.

3 Methodology

Problem Definition. We are considering a dy-
namical system consisting of N interacting objects.
Denote the interaction graph as G = {V, E} where
V denotes the node set with |V | = N , and E de-
notes the edge set. Following (Satorras et al., 2022),
given the initial state matrix X(0) ∈ R|V|×d, where
d is the dimension of input features, which is 3 in
3D dynamics, we aim to predict the future state at
any given timestamp t > 0, i.e., X(t) = Fθ(X

(0)).
Note that dynamic forecasting could be deterio-
rated by environmental changes resulting from
varying system parameters and initial states.

3.1 Framework Overview

In this paper, we introduce a new perspective of
marrying LLMs with dynamic forecasting seam-
lessly and then develop a novel framework named
LEGO for dynamic forecasting under environment
changes. The core of LEGO is to utilize LLMs as a
context-aware routing function for the graph MoE
framework. In particular, we first extract hierarchi-
cal context into prompts across three levels, i.e.,
system level, object level, and edge level, which
are then fed into pre-trained LLMs. Then, LEGO

utilizes LLMs to select the most suitable experts
in the graph MoE framework based on the context,
which can mitigate the impact of environmental
changes. The whole framework is optimized in
an alternative fashion across routing weights and
the parameters of graph experts. The overview of
LEGO can be found in Figure 1.

3.2 Hierarchical Prompt Engineering

The target of this work is to utilize LLMs to en-
hance the performance of dynamic forecasting
across different environments. To achieve this,
the preliminary is to summarize the context in-
formation into texts as the input of LLMs, espe-
cially those related to environmental changes. Here,
we design hierarchical prompts containing context
from three views, i.e., system level, object level,
and edge level.

In particular, we first introduce the general infor-
mation. Then, from the system level, we describe
the dynamical systems with the basic background
and system parameters, which can provide the most
environmental information. Detailed explanation
is also provided such as "The force on the balls
are significant, and forces between them result in
strong accelerations". From the object level, we
provide the state of each object in a row, including
the initial position and velocity vectors. Here, we
consider the numerical digit as tokens following
(Gruver et al., 2024). From the edge level, we con-
vent edge information into more comprehensive
descriptions such as "ball 2 connects ball 0, ball 1,
ball 3". An overview of our prompt design can be
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found in Figure 1.
However, when requiring LLMs to directly out-

put the predictions in a generative manner, they
always output unreliable results or even wrong for-
mats (not matrix style). Our solution is to leverage
LLMs as a judge instead of a predictor, which will
be introduced as below.

3.3 Graph Mixture-of-expert

To leverage LLMs as a judge, we are required
to generate candidate predictions. Towards this
end, we introduce a graph mixture-of-expert (MoE)
framework (Cai et al., 2024; Wang et al., 2024b)
consisting of a range of equivariant graph neural
networks (EGNNs) (Satorras et al., 2022) with dif-
ferent weights and their predictions would then be
evaluated using LLMs with environmental context.

In detail, each graph expert is an EGNN with the
same architecture, which updates node represen-
tations using its neighborhood and coordinates in
an iterative manner. In formation, given the object
representations hl

i and coordinates xl
i at the l-th

layer, we have:

elij = ϕ(hl−1
j ,xl−1

j ,hl−1
i ,xl−1

i ) (1)

hl
i = COMH(hl−1

i ,AGG(elij |j ∈ N (i)), (2)

xl
i = COMX(xl−1

i ,AGG(elij |j ∈ N (i))), (3)

where N (i) denotes the neighbor of the object
i and ϕ is a neural network to learn the interac-
tion between two objects. AGG(·) is the aggre-
gation operator whereas COMH and COMX are
two combination operators. After stacking GNN
layers for L layers, we output the final hidden rep-
resentations H = [hL

1 , · · · ,hL
|V|] = fθ(G,X(0)).

In our mixture-of-expert framework, we utilize K
graph experts with the same architecture but differ-
ent parameters, i.e., θ1, · · · , θK . with the output
H1, · · · ,HK . For each object, we utilize a MoE
routing function followed by a decoder to generate
the final output, i.e.,

x̂
(t)
i = Decoder(

K∑

k=1

ω(k)hk
i ), (4)

where hk
i is the object representation from Hk

and ω(k) is the weight for different experts for
combination.

3.4 LLM Judge for Context-aware Routing
Traditional MoE framework usually utilizes a learn-
able routing function (Cai et al., 2024; He et al.,
2021), which is a function of the input, i.e., ω =
[ω(1), · · · ,ω(K)] = ψ(G,X(0)). However, in
our scenarios, different environments (e.g., system
coefficients) could generate different trajectories,
which are hard to identify from data only. Even
worse, potential distribution shifts would further
degrade the performance of GNN models (Goyal
and Bengio, 2022). To incorporate abundant text-
based contexts, we propose to utilize an LLM judge
for context-aware routing, which first generates the
predictions from different experts, and then selects
the most reliable one with the reasoning ability.
The whole framework can be optimized by updat-
ing routing weights from LLMs and the parameters
of graph experts in an alternative manner.

In particular, we define the one-hot routing
weights, i.e., [1, 0, · · · , 0], · · · , [0, · · · , 0, 1] for
different experts. In other words, the candidate
prediction for each expert can be formulated as:

x̂
(t),k
i = Decoder(

K∑

k′=1

ek(k′)hk′
i ) (5)

= Decoder(hk
i ), (6)

where ek is one-hot vector with the k-th element be-
ing 1. Then, we incorporate these predictions into
LLMs and require them to select the most possible
one. Since we include hierarchical context infor-
mation in prompts, LLMs can evaluate different
experts based on environments automatically. To
reduce the potential error accumulation, we utilize
the label smoothing strategy (Müller et al., 2019),
which assigns smaller weights to unselected ex-
perts in our MoE framework. In other words, the
weight vector can be written as:

êk =

{
α if k is chosen,
1−α
K−1 if k is not chosen,

(7)

where α ∈ (0, 1) is a coefficient to control label
smoothing. In other words, Eqn. 5 would be up-
dated into:

x̂
(t),k
i = Decoder({

K∑

k′=1

êk(k′)hk′
i |i ∈ N(i)}),

(8)
where Decoder(·) is implemented by another
EGNN layer with different parameters.
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Diversity-enhanced Objective. To ensure that dif-
ferent experts can explore various dynamics, we
introduce a diversity-enhanced objective, which
maximizes the similarity of activated representa-
tions from the same expert in comparison to the rep-
resentations from the other experts (Chuang et al.,
2020; Mustafa et al., 2022; Luo et al., 2024).

In particular, define the set of activated i-th node
representations for the k-th graph expert in the
training data as Sk

i , and we have Si = ∪K
k=1Sk

i .
The loss objective for the i-th graph expert is for-
mulated as follows:

ℓki = − 1

C

∑

hk
i ̸=h̃k

i ∈Sk
i

log
exp(hk

i · h̃k
i /τ)

∑
˜̃h
k

i ∈Si

exp(hk
i · ˜̃h

k

i /τ)

(9)
where C is a constant to normalize the loss ob-
jective and τ is a coefficient. The final diversity-
enhanced objective is formulated as:

Ldiv =
1

KN
∗

K∑

k=1

N∑

i=1

ℓki . (10)

The final loss objective is then summarized as:

L = Lmse + Ldiv, (11)

where Lmse = ||X(t)−X̂(t)|| calculates the mean
square error of the predictions and X̂(t) collects
the predicted state at the future timestamp.
Alternative Optimization. To train the model, we
update the routing weights generated from LLM
as well as the parameters of graph experts. To
enhance the efficiency and reduce the cost of ac-
cessing LLMs, we utilize an alternative manner,
which updates the routing weights every several
epochs and then optimizes the parameters of the
graph MoE framework. The whole updating algo-
rithm of our LEGO can be found in Algorithm 1.
Our model can be built on any basic graph neural
network model. We utilize EGNN (Satorras et al.,
2022) as our default graph expert model and also try
EGNO (Xu et al., 2024) and Radial Field (Köhler
et al., 2019) as the basic model in our experiments.

4 Experiment

4.1 Setup

Datasets. To evaluate the performance of LEGO,
we utilize four dynamic system datasets, i.e.,
Spring, Charged (Kipf et al., 2018), MD17
(Chmiela et al., 2017) and Motion (CMU, 2003).

Algorithm 1 Learning Algorithm of LEGO

Input: The training set, the pre-trained LLM.
Output: The parameters in our graph MoE
framework.

1: Initialize the parameters in our model;
2: while not convegence do
3: Extract hierarchical prompts from three

views;
4: Generate the predictions of graph experts;
5: Feed prompts into the pre-trained LLM;
6: Update routing weights from each sample

using Eqn. 7;
7: for epochs = 1,2,· · · do
8: Generate the prediction using Eqn. 8;
9: Calculate the loss in Eqn. 11;

10: Optimize θ1, · · · , θK using gradient de-
scent;

11: end for
12: end while

Spring and Charged are both synthetic N-body sys-
tem datasets, where the positions of particles are
governed by simple interaction rules. In Spring,
the particle dynamics are determined by the forces
exerted by the springs. Each edge represents a
spring connecting two nodes. In Charged, particles
attract or repel each other based on their charges.
We are provided with their respective charges. Fol-
lowing recent work (Satorras et al., 2022), we ex-
tend the two datasets into three-dimensional space.
MD17 (Chmiela et al., 2017) is used to assess the
performance of LEGO in capturing molecular dy-
namics when we transfer from salicylic to naph-
thalene and they share the same number of nodes
in the dataset. Here nodes represent atoms and
edges depict bonds between them. We also test
our LEGO on Motion (CMU, 2003), which tracks
human motion movements for 3-dimensional tra-
jectories. In this dataset, joints are represented as
edges, while their intersections form the nodes. We
first train our model on Subject #35 (Walk) and test
the performance on Subject #9 (Run). More details
can be found in the Appendix.
Baselines. We compare the performance of
our LEGO with several baselines, including Lin-
ear (Satorras et al., 2022), Dynamics (Satorras et al.,
2022), GNN (Kipf and Welling, 2017a), Radial
Field (Köhler et al., 2019), EGNN (Satorras et al.,
2022), and EGNO (Xu et al., 2024).
Implementation Details. For each trajectory, ini-
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Hard Soft Temporal Shift
Model qx qy qz q qx qy qz q qx qy qz q

Spring

Dynamic 14.665 12.658 18.497 15.273 16.771 13.333 18.064 16.057 19.348 16.664 22.151 19.388
Linear 12.507 11.614 15.053 13.058 14.089 11.800 14.968 13.619 11.705 10.013 13.011 11.577
GNN 0.090 0.082 0.107 0.094 0.113 0.107 0.149 0.124 0.096 0.090 0.111 0.099
Radial Field 0.082 0.078 0.105 0.089 0.121 0.101 0.148 0.124 0.105 0.091 0.125 0.110
EGNN 0.110 0.103 0.110 0.112 0.117 0.095 0.141 0.118 0.116 0.107 0.109 0.115
EGNN + LEGO 0.070 0.080 0.080 0.078 0.110 0.107 0.120 0.114 0.071 0.070 0.074 0.072
EGNO 0.080 0.080 0.100 0.089 0.110 0.091 0.129 0.111 0.107 0.094 0.105 0.102
EGNO + LEGO 0.078 0.071 0.080 0.076 0.092 0.077 0.107 0.093 0.104 0.093 0.101 0.097

Charged

Dynamic 8.531 8.805 8.763 8.700 9.803 9.795 8.067 9.222 9.201 10.440 12.438 10.693
Linear 7.484 7.404 7.692 7.527 8.134 8.248 7.471 7.951 8.193 9.585 10.774 9.518
GNN 1.560 2.337 2.254 2.051 1.788 2.220 2.111 2.040 2.077 3.332 2.983 2.798
Radial Filed 1.304 1.590 2.215 1.704 1.346 1.967 2.173 1.829 1.631 1.896 2.362 1.964
EGNN 0.644 1.292 0.989 0.976 0.787 1.269 1.315 1.124 1.039 1.134 1.644 1.273
EGNN + LEGO 0.595 0.902 0.687 0.728 0.695 0.918 0.837 0.817 0.755 0.960 1.491 1.069
EGNO 0.510 0.626 0.710 0.615 0.632 0.618 0.681 0.644 0.816 0.986 1.214 1.005
EGNO + LEGO 0.506 0.623 0.643 0.590 0.568 0.603 0.677 0.616 0.660 0.643 1.078 0.793

Table 1: The MSE (×10−2) of various models on Spring and Charged. qx refers to the x axis, qy refers to the y axis
and qz refers to the z axis. The best results are shown in boldface.

(a) Linear (b) GNN (c) EGNO (d) Ours (e) Ground Truth

Figure 2: Visualization of different methods and ground truth on Charged. We utilize different colors to show the
trajectories of different balls.

tial physical positions are given with their initial
velocities. For Spring and Charged, we follow the
experimental settings in (Satorras et al., 2022) by
setting the time window to 10 and 3000/2000/2000
for train/validation/test sets. To model the envi-
ronmental change, our test data are with greater
strength marked as ’hard’ and are with lower
strength marked as ’soft’. To model temporal shift,
we use the test data where start and end states are
different from those used during the training pro-
cess. For MD17, we follow the setup in (Xu et al.,
2024) and choose the time window as 50. For Mo-
tion Capturing dataset, we also follow the setup
in (Xu et al., 2024) and choose the time window
as 30. We refer to (Satorras et al., 2022) to imple-
ment different baselines. For LEGO, we use the
8B version Llama3.1 (Dubey et al., 2024) as the
LLM Judge. Note that our LEGO can be built on
any model. Here we choose EGNN and EGNO
as the basic models on Spring and Charged since

Model qx qy qz q Reduction

Dynamics 0.35 0.37 1.02 0.581 67.99%
Linear 0.35 0.37 0.93 0.549 66.12%
GNN 0.21 0.48 0.33 0.371 49.86%
EGNN 0.18 0.60 0.38 0.320 41.88%
EGNO 0.18 0.66 0.33 0.388 52.06%
Radial Field 0.12 0.17 0.35 0.214 13.08%
Radial Field + LEGO 0.15 0.15 0.26 0.186 -

Table 2: The MSE (×10−2) of different methods under
out-of-distribution shift on MD17.

they perform the best empirically. In addition, we
build our LEGO on Radial Field on MD17 and Mo-
tion. We calculate the Mean Square Error (MSE)
between the prediction and the ground truth at the
target time step.

4.2 Performance Comparison

The compared results of different approaches on
Springs and Charged are presented in Table 1.
From the results, we can have the following obser-
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Model qx qy qz q Reduction

Dynamics 1.02 6.74 254.40 87.39 72.28%
Linear 19.20 263.93 202.52 161.88 85.03%
GNN 1.00 6.08 94.88 33.98 28.72%
EGNN 1.26 6.42 161.28 56.32 56.99%
EGNO 1.68 8.42 120.22 43.44 43.73%
Radial Field 1.18 10.95 68.43 26.86 9.15%
Radial Field + LEGO 1.99 10.2 57.84 24.22 -

Table 3: The MSE (×10−2) of different methods under
out-of-distribution shift on Motion.

vations. Firstly, deep approaches generally perform
better than shallow methods, i.e., Dynamic and Lin-
ear, validating the strong capacity of deep learning.
Secondly, EGNN and EGNO perform much better
than the other methods, which indicates that equiv-
alence is an important property for dynamical sys-
tem modeling in 3D space. Thirdly, our LEGO can
bring in huge performance increasement for both
EGNN and EGNO, which achieve the best perfor-
mance in all cases. In particular, there is an average
performance improvement of 23.70% in terms of
MSE reduction on Charged. The huge performance
increasement results from two attributes: (1) Intro-
duction of hierarchical prompt engineering, which
can make the best of context information to over-
come the issue brought by environmental change;
(2) Introduction of context-aware routing, which
can understand contexts using LLMs to decide the
most reliable expert under different environments.

We further conduct performance comparison
on MD17 and Motion. The compared results are
recorded in Table 2 and Table 3. By combining
LEGO with the base model Radial Field, we can
achieve a significant performance improvement
compared with other baselines. In particular, our
LEGO achieves 13.08% MSE reduction on MD17.
Note that there are serious distribution shift on
these two datasets due to different molecules and
motions. Our LEGO still achieves superior perfor-
mance in challenging tasks, which further validates
the strong generalization ability of our LEGO un-
der environmental changes.

4.3 Further Analysis

Ablation Study. To emphasize the effectiveness
of our hierarchical prompts, we compare three
variants of our LEGO: (1) V1, which removes
both edge-level and object-level information in the
prompts. (2) V2, which removes the object-level in-
formation in the prompts. (3) V3 (Our full model),
which utilizes the information in all three levels in
the prompt design. We show the compared perfor-

s e o qx qy qz q

V1 ✓ ✗ ✗ 0.624 0.936 0.722 0.761
V2 ✓ ✓ ✗ 0.602 0.898 0.703 0.735
V3 ✓ ✓ ✓ 0.595 0.902 0.687 0.728

Table 4: Ablation studies of hierarchical prompt engi-
neering for our LEGO. s refers to the system level, e
refers to the edge level and o refers to the object level.

Method qx qy qz q t

LLM Forecasting 5.6321 6.9262 4.8482 6.4201 1.270
EGNN + LEGO 0.0059 0.0090 0.0068 0.0072 0.438

Table 5: The MSE of different methods under out-
of-distribution shift on Motion t refers to the time (s)
needed per sample.

mance between different model variants in Table
4. From the results, we have the following observa-
tions. Firstly, by comparing the performance of V1
and V2, we can observe that the removal of edge in-
formation leads to a significant performance drop,
which indicates that LLMs can make the best of
edge information for enhanced dynamical system
modeling. Secondly, V3 outperforms V2 in most
cases, which validates the importance of object-
level information for dynamical system modeling.
Overall, our hierarchical prompts can provide the
most information with the best performance.
LLM Judge vs LLM Forecasting. In Table 5,
we present a performance comparison between our
method and LLM forecasting, which directly lever-
ages LLM to generate future state prediction. From
the results, we can observe a significant perfor-
mance gap, demonstrating the limitations of rely-
ing solely on LLM predictions. Moreover, LLM
forecasting needs more time for generation tasks.
This motivates our decision to employ LLM Judge
in combination with a graph mixture-of-experts
framework, rather than using LLM alone for fore-
casting future states.
Performance with respect to Different Agents.
The performance of our LEGO highly depends on
the choice of LLMs. A more powerful LLM will
make better decisions, which will lead to a better
overall performance. In Figure 3 (a), we present
the results of using various LLMs as the judge. The
findings demonstrate that a large-scale LLM can
present a better performance and a small LLM can
still have a fair performance with a faster inference
pace.
Parameter Sensitivity. We begin with evaluating
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Figure 3: The MSE (×10−2) of our proposed LEGO
with respect to (a) different LLMs and (b) different
numbers of experts.

Figure 4: (a) The MSE (×10−2) of our LEGO and (b)
choice proportion of five graph experts (A, B, C, D, E)
respect to different LLM temperatures.

how the number of experts affects the performance
of our LEGO with the basic model EGNO. Here,
we fix the other hyperparameters and vary the num-
ber of experts in {3,5,10,15,20}. The compared
performance Figure 3 (b). From the results, we
can observe that increasing the number of experts
generally improves the performance of our LEGO
before saturation. However, when the number of
experts becomes too large, the current LLM judges
struggle to make effective decisions, leading to a
decline in performance. Therefore, we set the num-
ber of experts to 5. After that, we explore the effect
of the temperature coefficient in LLMs. Large tem-
peratures will bring more randomness during both
training and inference. Here, we vary the tem-
perature coefficient in {0, 0.25, 0.5, 0.75, 1}. The
results are shown in Figure 4 (a). We can observe
that a lower temperature will more likely result in
a better performance in the inference stage. The
potential reason is that low randomness would gen-
erate more stable and reliable experts. Furthermore,
Figure 4 (b) shows the choice preparation of five
experts marked by A, B, C, D, and E. From the re-
sults, it can be observed that a higher temperature
will encourage LLMs to choose the expert with
more potential while a lower temperature encour-
ages the LLMs to focus on the expert with better
performance.

4.4 Case Study
To deepen our understanding of how LLMs Judge
makes its choices, we directly ask LLMs how it an-
alyzes the dynamics system. The complete output
is shown in Appendix F. The summarized results
can be found in Figure 5. From the results, we
can see that LLMs are capable of analyzing the
dynamics system and predictions from each agent
in a step-by-step manner. First, the LLM Judge
analyzes the initial conditions of each object and
the predictions provided by each expert to gain a
comprehensive understanding of the system. Next,
based on the given motion rules of the dynamic
system, the LLM Judge carefully evaluates the con-
sistency of each prediction by raising the question:
“are the objects moving in the expected directions,
and are the predictions within a reasonable range?"
Finally, after thorough analysis, the LLM Judge
selects the most appropriate prediction.

All in all, when it comes to new environments,
our LLM judge can reason step by step about the
provided environmental context from the system
level, object level, and edge level, which can under-
stand the changing environment evidenced by Fig-
ure 5. In this way, LLM judge adaptively adjusts
the weights to the environment, thus enhancing
the generalizability. In contrast, previous methods
learn the weight based on the training data with
poor generalizability.

5 Conclusion

In this paper, we study the problem of dynamical
system modeling under environmental changes and
propose a new approach LEGO which connects
LLM-as-a-judge with the mixture-of-expert frame-
work. Our LEGO first extracts hierarchical prompts
from three views to infer environmental informa-
tion. Then, they are fed into LLMs as a routing
function to determine which experts are most rel-
evant to different environments. The framework
is optimized by alternating the updates of the rout-
ing weights and expert parameters to achieve robust
performance. Extensive experiments across various
benchmark datasets demonstrate the effectiveness
of LEGO compared to numerous baseline methods.

6 Limitations

Although our proposed LEGO has achieved defi-
nite progress, it still has several limitations. Firstly,
there could be more challenges in real-world sci-
entific applications such as molecular dynamics
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Figure 5: An illustration of how LLMs analyze dy-
namical systems. We can find that LLM Judge makes
decisions by thinking in a step-by-step way.

simulations. In future works, we aim to extend our
LEGO to these complicated scenarios with domain
knowledge. Secondly, our work only focuses on the
problem of dynamic forecasting. More dynamical
system modeling problems such as interaction rea-
soning (Xu et al., 2023a) and system control (Chen
et al., 2023) will be explored in the future.
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A Explanation of Environmental Shift

In dynamical systems, the distribution shift prob-
lem studies the prediction performance of models
under parameter distributions or environments not
seen during training. In formulation, the evolution
of dynamical systems is defined by

dX

dt
= F (X, ξ),

where X is the observation, and ξ is the system
parameter. If these parameters come from a distri-
bution ξ ∼ P (ξ), assume we learn a state mapping
f from time X0 to Xt under the parameter ξ, i.e.,

Xt = f(X0, ξ).

We could have different distributions across train-
ing and test datasets, i.e., Ptrain(ξ) ̸= Ptest(ξ),
which results in Ptrain(X

0, ξ) ̸= Ptest(X
0, ξ).

B Dataset Details

Spring In Spring (Satorras et al., 2022), every
ball does not interact with each other with equal
probability. The interactions are based on the Hook
theory: F = k × x, where k refers to the strength
of the spring.

Charge In Charged (Satorras et al., 2022), every
charge interacts with each other in an equal prob-
ability. The interactions between the charges are
based on the Coulomb theory: F = k q1×q2

r2
, where

k represents the interaction strength between the
different charges, r represents the distance between
two charges and q1, q2 denote the charges carried
by each item.

MD 17 MD17 (Chmiela et al., 2017) data consist
of eight small molecules with their molecular dy-
namics trajectories. The whole data is divided into
three sets with 500/2000/2000 groups of states and
future trajectories, respectively. We only use train
and validation sets for salicylic and test sets for
naphthalene. The time window is set to ∆T = 50
as the interval between the input and the last times-
tamps. Following the same setup as (Xu et al.,
2024), we construct the node features using veloc-
ity norms and atom types. The hydrogen atoms are
also removed following previous works (Xu et al.,
2024).

Motion Motion (CMU, 2003) tracks human mo-
tion movements for 3-dimensional trajectories. We
consider Subject #35 (Walk) and Subject #9 (Run)

as in (Xu et al., 2024). We use 200 trajectories from
Subject #35 for training and 240/240 trajectories
from Subject #9 for validation and testing. The
joints and intersections are considered as edges and
nodes, respectively. The time window is set to 30.

C Implementation Details

C.1 Baselines

Here are the details of the baselines we used in the
experiments.

• Dynamics A dynamics model which simply
assumes the motion formulation as p(t) =
p(0) + v(0)∆T , where p(0) is the initial po-
sition, p(t) is the position of the target state,
v(0) is the initial velocity and ∆T is the time
window between the initial state and target
state.

• Linear A Linear Model is a simple single-
layer perceptron.

• GNN (Kipf and Welling, 2017b). GNN is a
neural network model that captures the depen-
dence of graphs via message passing between
the nodes of graphs.

• Radial Field (Köhler et al., 2019) Radial
Field is E(n) equivariant. It only operates
on the positions of each node and the node
features are not interacted.

• EGNN (Satorras et al., 2022) EGNN is a
new graph neural network architecture that
is equivariant to several translation operators.

• EGNO (Xu et al., 2024) EGNO combines
equivariant message passing with Fourier neu-
ral operators to capture 3D dynamics.

C.2 Training Details

We use 8B version Llama3.1 as the LLM Judge.
The batch size is set to 100 and the model is training
with Adam optimizer. The learning rate is fixed to
0.0005.

C.3 Settings for the Spring and Charge
System

In both Charged and Springs, we train our model
on a dataset with strength as 1.0, start state as 30
and end state as 40. For the performances shown
in Table 1.
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System Hard Soft Temporal Shift

Spring 1.10 0.90 s:20 t:30 strength=1.10
Charge 1.01 0.99 s:25 t:35 strength=1.01

Table 6: Settings for the Spring and Charged shown in
Table 1.

D More Experiment Results

In this section, we show more experiment results
with a setting not shown in Table 6 to fully under-
stand the performance of our method on 5 particle
charge system.

D.1 Performance Without Environmental
Shift

In Table 7, we can see that there is a significant
MSE reduction when we combine the base model
with our method.

No environmental shift
Model qx qy qz q

Dynamic 10.380 6.398 9.496 8.333
Linear 8.072 5.674 7.980 6.781
GNN 1.591 1.775 1.758 1.708
Radial Field 1.133 1.164 1.249 1.182
EGNN 0.671 0.662 0.681 0.617
EGNN+LEGO 0.526 0.649 0.574 0.583

EGNO 0.515 0.544 0.498 0.519
EGNO+LEGO 0.425 0.478 0.432 0.445

Table 7: The MSE (×10−2) of various models on
Charged without environmental shift.

D.2 Environmental Shift between Molecular
with Different Atom Numbers

In Table 8, we show the performance comparison
of the environmental shift between the molecular
with different numbers of atoms.

Model EGNO Radial Field Ours

MSE (×10−2) 1.630 1.859 1.340

Table 8: Performance under different numbers of atoms.

D.3 More Baseline Results on MD17

In Table 9, we show more results of baseline model
Se3-Transformer (Fuchs et al., 2020) and TFN
(Thomas et al., 2018).

Model Se3-Transformer TFN Ours

MSE (×10−2) 0.615 0.786 0.186

Table 9: More baseline results of MD17.

D.4 Performance Comparison on ETH-UCY
In Table 10, we show the performance comparison
between LEGO and Eq-Motion (Xu et al., 2023b)
on ETH-UCY (Li et al., 2016).

Method Eq-Motion Ours

ADE 11.04 10.53
FDE 17.57 16.83

Table 10: Performance comparison between our method
and Eq-Motion on ETH-UCY.

D.5 Performance under More Environmental
Shift

We show more performance comparison in Tabel
11. The results show that our method have a stable
performance boost under different environmental
shifts.

E Prompt

In Figure 6, we show the prompt design for
Charged. In Figure 7 we show the prompt design
for molecular in MD17.

Figure 6: Hierarchical Prompt Design for charged sys-
tem.

F Case Study

In Figure 8, we show the complete output of how
LLM Judge makes decisions.

G Source Code

The source code can be found at https://github.com/
jdp22/LEGO.git.
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Strength=1.005 Strength=0.995 Temporal Shift
Model qx qy qz q qx qy qz q qx qy qz q

Dynamic 8.795 8.828 9.874 9.166 8.084 9.227 9.003 8.771 7.815 9.088 8.274 8.393
Linear 7.162 7.329 7.319 7.468 6.671 5.575 7.365 7.204 6.748 7.286 7.216 7.263
GNN 2.151 2.165 1.756 2.024 2.006 2.200 1.992 2.066 1.715 1.921 1.701 1.779
Radial Field 1.508 1.623 1.511 1.547 1.386 1.627 1.572 1.528 1.206 1.398 1.228 1.277
EGNN 0.863 0.966 0.857 0.895 0.798 0.979 0.911 0.896 0.701 0.693 0.663 0.686
EGNN+LEGO 0.825 0.934 0.804 0.854 0.726 0.781 0.781 0.763 0.638 0.607 0.625 0.624

EGNO 0.680 0.702 0.666 0.683 0.632 0.630 0.700 0.654 0.547 0.469 0.516 0.511
EGNO+LEGO 0.632 0.676 0.629 0.646 0.593 0.623 0.688 0.635 0.486 0.483 0.469 0.479

Table 11: The MSE (×10−2) of various models on Charged with respect to different environmental shifts.

Figure 7: Hierarchical Prompt Design for molecular
dynamics dataset.

Figure 8: Complete output for the case study.
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