
Findings of the Association for Computational Linguistics:
NAACL 2025, pages 4109–4128

April 29 - May 4, 2025 ©2025 Association for Computational Linguistics

MojoBench: Language Modeling and Benchmarks for Mojo

Nishat Raihan1, Joanna C. S. Santos2, Marcos Zampieri1
1George Mason University, USA
2University of Notre Dame, USA

mraihan2@gmu.edu

Abstract

The recently introduced Mojo1 programming
language (PL) by Modular, has received sig-
nificant attention in the scientific community
due to its claimed significant speed boost over
Python. Despite advancements in code Large
Language Models (LLMs) across various PLs,
Mojo remains unexplored in this context. To
address this gap, we introduce MojoBench,
the first framework for Mojo code generation.
MojoBench includes HumanEval-Mojo, a
benchmark dataset designed for evaluating
code LLMs on Mojo, and Mojo-Coder, the
first LLM pretrained and finetuned for Mojo
code generation, which supports instructions
in 5 natural languages (NLs). Our results show
that Mojo-Coder achieves a 30-35% perfor-
mance improvement over leading models like
GPT-4o and Claude-3.5-Sonnet. Furthermore,
we provide insights into LLM behavior with
underrepresented and unseen PLs, offering po-
tential strategies for enhancing model adapt-
ability. MojoBench contributes to our under-
standing of LLM capabilities and limitations
in emerging programming paradigms fostering
more robust code generation systems.

1 Introduction

LLMs demonstrate exceptional capabilities in
both NLP and coding tasks, including generating
executable code snippets from NL descriptions.
While general-purpose models like GPT-4 (Ope-
nAI, 2024) and the LLaMA family (Touvron et al.,
2023a,b; Dubey et al., 2024) exhibit strong cod-
ing abilities, task-specific models such as CodeL-
LaMA (Roziere et al., 2023) and WizardCoder
(Luo et al., 2023), fine-tuned for code genera-
tion, often outperform them despite smaller model
sizes. More recent models like CodeGemma
(CodeGemma Team, 2024) and CodeStral (Mis-
tral AI, 2024) have expanded support to multiple

1modular.com/mojo/

PLs, moving beyond the predominantly Python-
focused earlier models. Similar trends are also
seen in existing code generation benchmarks, with
limited focus on non-Python PLs.

We argue that the disproportionate focus on
Python and a few other mainstream PLs overlooks
the critical need to create resources for emerging
and more specialized PLs. Some of these PLs,
despite limited online presence, often play major
roles in some sectors and domains. Mojo exem-
plifies this phenomenon, having rapidly ascended
to the Top 100 most utilized PLs and capturing
significant interest in the Machine Learning (ML)
community.2 Current LLMs fail to support Mojo
and similar emerging PLs, even for basic tasks
like code completion. For example, as illustrated
in Listing 1, Clause 3.5 Sonnet generates Python
code instead of Mojo code, as explicitly instructed.
This glaring disparity demands immediate atten-
tion and underscores the urgent need for more in-
clusive, diverse PL support in LLM development.

1 # A Mojo function to reverse a string
2
3 def reverse_string(input_string):
4 return input_string[::-1]
5
6 reverse_string("hello")

Listing 1: A Python code snippet, generated by
Claude-3.5-Sonnet when prompted to “write
a function in Mojo to reverse a
string”.

To address this need, we introduce MojoBench,
a comprehensive framework for Mojo code eval-
uation and generation. Within this framework,
we present the HumanEval-Mojo benchmark, de-
signed to assess model performance on Mojo, a PL
previously excluded from such evaluations. This
benchmark allows us to examine state-of-the-art
(SOTA) LLM performance on a PL largely unseen

2tiobe.com/tiobe-index/

4109

modular.com/mojo/
tiobe.com/tiobe-index/

in training data. Mojo, having been introduced re-
cently (2023) with a limited web presence, serves
as an ideal candidate for this investigation.

As a part of MojoBench, we also develop
Mojo-Coder, a specialized family of Code LLMs
trained for Mojo code generation from NL instruc-
tions. Our evaluations demonstrate that Mojo-
Coder outperforms SOTA models such as GPT-
4o (OpenAI, 2024) and CodeLLaMA (Roziere
et al., 2023). Through multilingual supervised
fine-tuning (SFT), Mojo-Coder supports instruc-
tions in five NLs: English, German, French, Span-
ish, and Bangla.

Our main contributions with MojoBench are:

• HumanEval-Mojo, the first benchmark de-
signed specifically for evaluating Code
LLMs on Mojo programming tasks.

• Mojo-Coder, a novel family of Code LLMs,
pretrained and finetuned to surpass SOTA
models in Mojo code generation, with sup-
port for five natural languages.

• The open-source release of the model, bench-
mark, two instruction-tuning datasets (Mojo-
SFT and multilingual Mojo-mSFT), and the
Mojo-Corpus to facilitate further research
and development3.

We use the suite of resources in MojoBench to
address two important research questions (RQs):

• RQ1: How do LLMs perform on coding
tasks in PLs that are either unseen or mini-
mally represented in their training data, and
what challenges are encountered?

• RQ2: How can LLMs be effectively adapted
to emerging or underrepresented PLs with
limited resources?

2 Background & Motivation

Mojo, introduced by Modular in 2023, is engi-
neered for high-performance computing and ma-
chine learning. With its static typing, manual
memory management, and SIMD (Single Instruc-
tion, Multiple Data) support, Mojo compiles di-
rectly to machine code, rivaling C++ performance
and outpacing Python by up to 68,000 times ac-
cording to Deo et al. (2024). At its core, the
MLIR (Multi-Level Intermediate Representation)

3github.com/mraihan-gmu/MojoBench

compiler framework enables advanced optimiza-
tions crucial for AI applications4.

A critical limitation of existing LLMs is the
the lack of support for emerging PLs like Mojo.
Most LLMs primarily serve established languages
such as Python, but this oversight hinders Mojo’s
adoption and optimization in AI-intensive applica-
tions where its performance edge is most needed.
Leading models including GPT-4 (OpenAI, 2024),
CodeLLaMA (Roziere et al., 2023), and Wizard-
Coder (Luo et al., 2023) still lack any Mojo sup-
port, despite its impressive capabilities. This defi-
ciency limits developers’ access to AI-driven tools
for enhancing productivity and optimizing Mojo
implementations. A dedicated Mojo-compatible
LLM as presented in MojoBench will help to
bridge this gap and equip developers with power-
ful tools.

3 Related Work

While there has been no specific work on Mojo,
related work has explored PL-specific models and
benchmarks.

PL-specific Corpora Code LLMs typically
train on a combination of large NL corpora like
Common Crawl (Patel and Patel, 2020) and multi-
PL corpora such as The Stack (Kocetkov et al.,
2022; Lozhkov et al., 2024) and CodeParrot (Tun-
stall et al., 2022). Although PL-specific corpora
are rare, they can be extracted from larger datasets,
albeit through a challenging process. However, us-
ing multi-PL corpora for specific PL tasks often
leads to suboptimal performance, as demonstrated
by the CodeGemma Team.

PL-specific Benchmarks Well-established
benchmarks like HumanEval (Chen et al., 2021),
MBPP (Austin et al., 2021), and CSEPrompts
(Raihan et al., 2024b) primarily evaluate Python
code generation. Recent extensions such as
HumanEval-XL (Peng et al., 2024) and mHu-
manEval (Raihan et al., 2024a) have expanded
language coverage to include Java, C, C++,
and others. Despite these advancements, many
important PLs from the over 100 languages with
substantial user bases remain underrepresented.

PL-specific LLMs Most of Code LLMs, such
as MagiCoder (Wei et al., 2023), are tailored for
Python, being fine-tuned primarily to generate

4github.com/tairov/llama2.mojo

4110

github.com/mraihan-gmu/MojoBench
github.com/tairov/llama2.mojo

Figure 1: The complete workflow of developing MojoBench and all of its components. See Section 4.3 for
HumanEval-Mojo.

Python code. PL-specific models like StarCoder-
Java (Rathinasamy et al., 2024) are exceptions. In
contrast, multi-PL models are more widespread,
with proprietary systems like GPT-4 (OpenAI,
2024) and the Claude-family standing out as
prominent examples.

4 MojoBench

This section provides an overview of our
MojoBench framework and its components. Fig-
ure 1 shows its complete workflow.

4.1 Mojo-Corpus: A Corpus of Mojo Code

MojoBench includes a task-specific corpus.
We curate data from publicly available sources,
including Modular’s official documentation5,
GitHub repositories, blogs, tutorials, and news ar-
ticles. As discussed in the Ethical Considerations
Section, we collect data from open repositories -
comprehensive list of these sources is in Appendix
A. We use BeautifulSoup6, a commonly used
Python library for data collection.

Following data collection, we implement a
comprehensive cleaning process to ensure corpus
quality. This process applies six sequential filters
(F1 through F6) to the initial Mojo corpus (MC),

5docs.modular.com/
6beautiful-soup-4.readthedocs.io/en

which contains 79,368,439 tokens. Table 1 dis-
plays the token count after each filtering stage.
More details about these filters are provided in Ap-
pendix B.

Filter Description # Tokens
None All Collected Contents 79,368,439
F1 Removes non-Apache 2.0 licensed sam-

ples.
42,245,342

F2 Removes Python-specific code snippets. 21,973,419
F3 Ensures samples have at least 3 meaning-

ful paragraphs.
15,410,741

F4 Removes samples with excessive internal
repetition.

10,112,466

F5 Removes duplicate samples across the
corpus.

7,145,333

F6 Filters non-English content using fast-
Text.

6,583,948

Table 1: Filtering all collected tokens following spe-
cific filtering criteria. For convenience, each filter is
denoted by Fi. The right-most column shows the token
count after applying each filter.

4.2 Mojo-SFT & Mojo-mSFT

MojoBench also includes two separate instruc-
tion datasets. Mojo-SFT, comprising instructions
exclusively in English, and Mojo-mSFT, encom-
passing instructions in Spanish, German, French,
and Bangla.

4111

https://www.anthropic.com/news/claude-3-5-sonnet
docs.modular.com/
beautiful-soup-4.readthedocs.io/en

Figure 2: The workflow of compiling Mojo-mSFT from Mojo-SFT. Similar to the approach adopted by (Raihan
et al., 2024a).

4.2.1 Mojo-SFT
We initiate by aggregating GitHub reposito-
ries for the Mojo-Corpus, MC∗. Let R =
{r1, r2, . . . , rn} be the repositories licensed under
Apache 2.0 that have undergone all transitions (T1

to T6) as detailed in Section 4.1. Repositories are
ranked by GitHub star count, s(ri), and the top 10
repositories, R = {r1, r2, . . . , r10}, are selected
such that:

∀ri ∈ R,∀rj ∈ R \R : s(ri) ≥ s(rj)

From these, we extract .mojo and . files,
yielding 968 code files. To maintain consistency,
we filter files by token count τ(f) as follows:

τ(f) =

{
1 if 5 ≤ token count(f) ≤ 500

0 otherwise

where f denotes a code file. Expert program-
mers review these, ultimately selecting 800 high-
quality samples, discarding any that are buggy or
too lengthy.

For prompt generation, we apply an AI-in-the-
loop approach using GPT-4o (OpenAI, 2024) via
the OpenAI API, producing three paraphrases per
prompt. This results in 3,200 prompt-code pairs,
with iterative expert refinement yielding four dis-
tinct prompts per snippet. Table 2 provides sum-
mary statistics for the Mojo-SFT dataset.

Feature Statistics

Code blocks 3200
Avg (Tokens) 216.53
Median (Tokens) 210.00
Std. Dev. (Tokens) 59.77
Range (Tokens) 89 to 510
Comments (Full-line) 16,598
Comments (Inline) 1,480
Definitions (Function) 6,368
Definition (Struct) 12

Table 2: Mojo-SFT - Dataset Card.

4.2.2 Mojo-mSFT

For the multilingual dataset Mojo-mSFT, we uti-
lize a synthetic approach across five languages,
following (Raihan et al., 2024a). We employ three
machine translation strategies: OpenAI’s GPT-4o
(OpenAI, 2024) via API, MetaAI’s NLLB (Costa-
jussà et al., 2022), and Google Translate. Figure 2
illustrates the workflow.

To assess translation quality, we apply a dual-
metric approach. BERTScore (Zhang et al., 2019)
measures similarity using contextual embeddings,
while CometKiwi (Rei et al., 2023) evaluates
based on human-judgment-trained metrics, captur-
ing both technical accuracy and linguistic natu-
ralness. These metrics, discussed further in Ap-
pendix C, provide a comprehensive evaluation of
translation quality. We choose the best candidate
translation from a set of 15 for each prompt.

4112

Listing 2: Code Lengths in both Mojo-SFT & Mojo-
mSFT.

4.3 HumanEval-Mojo
The original HumanEval benchmark (Chen et al.,
2021) includes 164 coding tasks, paired with test
cases, and initially supported only Python. While
support for a total of 43 other PLs have been pro-
vided with the works of Yan et al. (2023), Raihan
et al. (2024a) and Peng et al. (2024); none of them
include Mojo along with a quite a few other widely
used PLs.

1 def is_prime(n: int):
2 """
3 Return True if the input number n is
4 prime, else return False.
5 A prime number is a number greater
6 than 1 and has no divisors other than
7 1 and itself.
8 """

Listing 3: A sample prompt from HumanEval.

We extend the original HumanEval for each of
the 164 prompts to construct HumanEval-Mojo,
an evaluation benchmark under MojoBench. A
sample prompt is shown in Listing 3. We extract
the docstrings manually and two human experts
convert each of the Python function declarations to
Mojo syntax, paired with the extracted docstrings
(see Listing 4). To ensure correctness, they are
tested on both the local environment and the offi-
cial Mojo PlayGround7.

1 fn sum_squares(n: Int) -> Int:
2 """
3 Given an integer n, return the sum
4 of the squares of all integers from
5 1 to n (inclusive).
6 """

Listing 4: A sample prompt from HumanEval-Mojo.

Finally, we provide solutions for each prompt in
Mojo; hand-written by two experienced Mojo pro-
grammers. While we can not make sure that each

7https://docs.modular.com/mojo/
playground

solution is the most optimal one for the task, we
do make sure that they pass all the test cases. One
such solution is shown in Listing 5.

1 fn count_vowels(s: String) -> Int:
2 """
3 Given a string s, return the number
4 of vowels (a, e, i, o, u) in the
5 string.
6 """
7 let vowels = "aeiouAEIOU"
8 var count: Int = 0
9 for char in s:

10 if char in vowels:
11 count += 1
12 return count

Listing 5: A sample hand-crafted solution from
HumanEval-Mojo.

Unlike Yan et al. (2023), Peng et al. (2024) or
other benchmarks that cover more PLs, but follow
an automated pipeline or use machine-generated
contents, which are often prone to oversights, ours
follow the original workflow, incorporating man-
ual approach with a human-expert in the loop, en-
suring better quality and more authenticity.

Annotator Details HumanEval-Mojo involves
four expert volunteers. Two of these volun-
teers handle the conversion of the original Python
prompts into Mojo prompts, while the other two
focus on crafting canonical Mojo solutions for
each prompt. All four volunteers have a back-
ground in computer science, possess extensive
coding experience, and are particularly skilled in
the Mojo programming language.

4.4 Mojo-Coder

4.4.1 Base Model Selection
Since our goal is to train a Code LLM that
will be generating output in a new PL and
should be able to support instructions in multi-
ple NLs, we start by considering 3 candidates;
including code-finetuned models like CodeL-
LaMA (Roziere et al., 2023) and CodeGemma
(CodeGemma Team, 2024), both trained on multi-
ple PLs and NLs and the recent version of Mistral
(v0.3), proficient on multiple NLs with moderate
performance on non-Python PLs. Due to the lim-
ited training content, we consider the 7B variants
for each.

4.4.2 Pretraining
Following transformations F1 through F6, we uti-
lize the refined Mojo corpus MC∗ for additional
pre-training of our selected base models.

4113

https://docs.modular.com/mojo/playground
https://docs.modular.com/mojo/playground
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3

Let θ0 represent the initial parameters of a base
model. We aim to find θ∗ as follows:

θ∗ = argmin
θ

L(θ;MC∗) (1)

where L is the language modeling loss over the
cleaned Mojo corpus MC∗.

Pre-training Setup For the pretraining phase,
we utilize a cluster of 8 NVIDIA A100 GPUs,
each with 40 GB memory, provided by Lambda
Labs8. This configuration yields a total of 320 GB
GPU memory, complemented by 512 GB system
memory and 2 TB disk space. The pretraining pro-
cess spans approximately 32 hours on this high-
performance cluster.

Our custom training pipeline, based on the Hug-
ging Face Transformers framework (Wolf, 2019),
includes:

D = argmin
D

L(D;MC∗) (2)

τ = argmin
τ

L(τ ; T (Mi)) (3)

M(θ) = argmin
θ

L(θ;F(Mi)) (4)

Here, D denotes the custom dataset from MC∗,
τ represents the tokenizer T , and M(θ) is the pre-
trained model F using bfloat16 precision. Both
T and F derive from model family Mi, ensuring
tokenizer-model compatibility. Training hyperpa-
rameters are detailed in Appendix ??.

Figure 3: Step vs. Loss graph during pretraining on
Mojo-Corpus.

8https://lambdalabs.com/

Training Architecture The effective batch size
Be is calculated as:

Be = Bd ×Ga ×Nd (5)

where Bd = 32 (per-device batch size), Ga = 8
(gradient accumulation steps), and Nd (number of
GPUs). The training steps per epoch Se are given
by:

Se =

⌊ |MC∗|
Be

⌋
(6)

where |MC∗| is the total sample count in the
Mojo corpus.

Monitoring and Evaluation We log the train-
ing loss Ls every 100 steps via a custom callback
function C(s,Ls). Evaluation occurs every 250
steps on a 10% subset, MC∗

eval ⊂ MC∗.
Our checkpointing strategy Ψ(s, θs,Ls) is:

Ψ(s, θs,Ls) =





save(θs), if s mod 250 = 0

save(θs), if Ls = min (L1, . . . ,Ls)

∅, otherwise
(7)

Checkpoints are saved every 250 steps, retain-
ing the model with the lowest evaluation loss. Fig-
ure 3 illustrates the decreasing loss over time.

4.4.3 Finetuning
Finetuning Setup The finetuning stage is con-
ducted on a single NVIDIA A100 GPU with 40
GB memory, accessed through Google Colab9.
This setup is augmented with 80 GB system mem-
ory and 256 GB disk space. The finetuning pro-
cess requires approximately 9 hours to complete
on this configuration. This more modest setup is
sufficient for the task-specific adaptation of our
pretrained models.

We finetune our three pretrained models using
Mojo-SFT (English-only) and Mojo-mSFT (mul-
tilingual) instruction datasets. Implementing Low-
Rank Adaptation (LoRA) (Hu et al., 2021), a
Parameter Efficient Finetuning (PEFT) technique
(Xu et al., 2023), which optimizes memory usage
while preserving performance. We choose LoRA
for its ability to significantly reduce the number
of trainable parameters, enabling efficient finetun-
ing of large language models without compromis-
ing their performance (Hu et al., 2021). For each

9https://colab.research.google.com/

4114

https://lambdalabs.com/
https://colab.research.google.com/

model Mi (i ∈ 1, 2, 3), we define:
FE(Mi) = LoRA(Mi,Mojo− SFT, r = 64)

FM (Mi) = LoRA(Mi,Mojo−mSFT, r = 64)
(8)

where FE and FM are English-only and multilin-
gual finetuning functions, respectively. The LoRA
rank r = 64 balances parameter efficiency and
model capacity.

Figure 4: Step vs. Loss graph during finetuning on
Mojo-SFT.

Using Flash Attention (Kundu et al., 2024), we set
key parameters: 2048 token maximum sequence
length, batch size of 8, 4 gradient accumulation
steps, and 3 epochs. Learning rate (5 × 10−5),
weight decay (0.02), and 10% warm-up steps en-
sure stable convergence. Total training steps T are
calculated as:

T =

⌊
N

B ×G

⌋
× E (9)

where N is training samples, B is batch size, G
is gradient accumulation steps, and E is epochs.
Evaluation and model saving occur every 50 steps,
with the best model selected by lowest evalua-
tion loss. A cosine learning rate scheduler and
8-bit Adam optimizer (Kingma, 2014) further en-
hance efficiency without compromising perfor-
mance. Table 9 in Appendix D lists complete hy-
perparameters. Figure 4 demonstrates consistent
loss decrease during finetuning.

5 Results and Analysis

5.1 Evaluation
Selecting Optimal Models After pretraining
and finetuning, we evaluate nine models: three
pretrained on Mojo-Corpus, three finetuned on
Mojo-SFT (English-only), and three on Mojo-
mSFT (multilingual). Using HumanEval-Mojo,
we select the best-performing model from each
category. Table 3 compares their performance.

We observe poor performance in all three base
models. Performance improves significantly af-
ter pretraining on Mojo-Corpus and further with
Mojo-SFT finetuning. However, Mojo-mSFT
finetuning leads to a slight performance decline.

Candidates HumanEval-Mojo pass@1

CodeGemma 5.1%
CodeLLaMA 4.7%
Mistral 1.3%

CodeGemma-pt 36.7%
CodeLLaMA-pt 34.4%
Mistral-pt 23.1%

CodeGemma-ft 66.4%
CodeLLaMA-ft 54.2%
Mistral-ft 26.9%

CodeGemma-mft 61.5%
CodeLLaMA-mft 49.6%
Mistral-mft 17.3%

Table 3: Candidate Model Selection after pretraining
and finetuning. pt, ft, and mft stand for ’pretrained’
and ’finetuned,’ respectively. (Pass@1) is chosen as
the accuracy metric. The darker the shade, the better
the performance.

Mojo-Coder family We release the three best
performer models as the members of the Mojo-
Coder family. One pretrained model, Mojo-
Coder (CodeGemma-pt), allowing practitioners to
further develop models with their own instruc-
tion datasets and two finetuned models- one as
English-only, Mojo-Coder-it (CodeGemma-ft) and
one multilingual Mojo-Coder-it-m (CodeGemma-
mft); both SOTA models for Mojo code genera-
tion. Appendix E illustrates some code snippets
generated by Mojo-Coder.

Comparison We evaluate the Mojo-Coder fam-
ily of models on HumanEval-Mojo using the
pass@1 metric. The results demonstrate (Table 4)
that our models significantly outperform existing
state-of-the-art (SOTA) models in this benchmark.

5.2 Insights and Observations

In this section, we describe some key insights ob-
tained from the experiments and revisit our re-
search questions.

Code LLMs vs New PLs Existing code LLMs
struggle to generate Mojo code. They often gen-
erate non-executable and buggy code snippets.
Some examples are given in Appendix F. We also
include responses from other SOTA models like

4115

Models Type Param Pass@1

Mistral Open 7B 1.3%
CodeLLaMA Open 7B 4.7%
CodeGemma Open 7B 5.1%
MagiCoder Open 7B 7.3%
WizardCoder Open 34B 9.2%
Codestral Open 23B 9.2%
Code-Qwen Open 7B 9.9%
DeepSeek-Coder Open 33B 10.2%
GPT-4o Close – 25.5%
Mojo-Coder Open 7B 36.7%
Claude-3.5-Sonnet Close – 39.8%
Mojo-Coder-it-m Open 7B 61.5%
Mojo-Coder-it Open 7B 66.4%

Table 4: Performance evaluation of Mojo-Coder fam-
ily and other Code LLMs on HumanEval-Mojo using
Pass@1.

GPT-4o (OpenAI, 2024), Claude-3.5-Sonnet, and
WizardCoder (Luo et al., 2023). From these re-
sults, we gather a key observation to answer our
first research question:
RQ1 How do LLMs perform on coding tasks in

PLs that are either unseen or minimally rep-
resented in their training data, and what
challenges are encountered?

When prompted to write code in Mojo, the mod-
els often get the algorithm right for the tasks but
the syntax wrong. This is likely due to their ex-
posure to lots of PLs but just not Mojo.

Moreover, when the prompt is in any non-English
language (i.e., French), these models underper-
form even more with mostly unexplainable and
poor-quality code snippets (Appendix F).

Language Modeling for Emerging Program-
ming Languages This work extends beyond the
finetuning approaches employed by (Wei et al.,
2023) and WizardCoder (Luo et al., 2023) by in-
corporating an additional pretraining phase uti-
lizing a corpus of 6 million tokens. While this
corpus is substantially smaller than established
programming language datasets (Lozhkov et al.,
2024; Tunstall et al., 2022), our results demon-
strate significant performance improvements. This
outcome underscores the critical importance of
acquiring domain-specific knowledge, even from
limited data sources. Furthermore, our finetuning
dataset, comprising only 3,200 instructions— in
contrast to WizardCoder’s 77,000 — accentuates
the necessity of targeted, domain-specific learn-
ing. These findings directly address our second
research question:

RQ2 How can LLMs be effectively adapted to
emerging or underrepresented PLs with lim-
ited resources?

LLMs can be effectively adapted for new
or underrepresented PLs through domain-
specific pretraining corpora (even a small one)
and targeted instruction finetuning, prioritizing
data quality over quantity to quickly capture
language-specific features.

5.3 Ablation Study

For analysis purposes, we also experiment with
different sizes of corpora and instruction datasets
with all three models from the Mojo-Coder family,
and the results further support our approaches and
gathered insights.

0 1M 2M 3M 4M 5M 6M

0 5.1∗ 12.3 14.8 16.1 21.9 30.1 36.7∗∗

500 15.3 15.6 15.3 17.9 32.1 35.5 38.8
1000 19.6 21.3 20.1 25.7 37.7 39.3 41.6
1500 20.3 27.8 25.3 35.6 41.2 46.7 44.5
2000 22.7 34.9 36.7 38.5 42.3 51.4 53.7
2500 33.3 37.2 39.8 43.1 53.4 59.4 60.1
3000 42.1 43.9 49.1 56.7 55.1 60.2 64.9
3200 42.3 45.3 51.2 53.4 57.9 65.1 66.4∗∗∗

Table 5: Pretrained and/or finetuned on varied number
of tokens (top-most row) and/or instructions (left-most
column). The values represent the model’s Pass@1
scores. Here, ∗ denotes CodeGemma, ∗∗ denotes Mojo-
Coder, and ∗∗∗ denotes Mojo-Coder-it.

We derive several hypotheses from the results pre-
sented in Table 5:

• The performance of the model exhibits a pos-
itive correlation with both the duration of pre-
training and the extent of finetuning.

• A model subjected only to finetuning can po-
tentially outperform a model that has only
undergone pretraining, suggesting the critical
importance of task-specific adaptation.

• The synergistic application of both pretrain-
ing and finetuning appears to be crucial for
achieving optimal performance, indicating a
complementary relationship between general
knowledge acquisition and task-specific opti-
mization.

It is important to note, however, that these three
conclusions are drawn from a specific experimen-
tal context. Further empirical investigation across
diverse datasets and model architectures would
be necessary to establish the generalizability of

4116

https://www.anthropic.com/news/claude-3-5-sonnet

these findings. We present these observations
as promising directions for future research rather
than definitive claims.

6 Conclusion

In this work, we presented MojoBench. While
most attention have been given to Python and
other popular languages, with MojoBench we
emphasize the importance of supporting underrep-
resented PLs, which are often newly developed
or with limited online presence, fulfilling specific
roles in niche and specialized domains. We fo-
cused our work on one such PL - Mojo, which,
despite being recently introduced, has been gain-
ing popularity. The paper further contributes by
addressing two important RQs on LLMs and code
generation.
MojoBench bridges this important gap

through the development of the Mojo-Coder
family of models, the creation of the HumanEval-
Mojo benchmark, and the compilation of two
instruction datasets: Mojo-SFT and Mojo-mSFT.
Our models demonstrated superior performance,
even when compared to much larger proprietary
models. Furthermore, we explored potential
methods for adapting small Code LLMs to such
emerging PLs. We expect that our methodolo-
gies and insights would encourage the research
community to devote more attention to PLs that
are often overlooked but nonetheless maintain a
substantial user base.

Limitations

This study introduces MojoBench, the first
benchmark for Mojo. It includes multiple datasets,
benchmarks, and models. While we prioritized
quality over quantity for Mojo-Corpus, Mojo-SFT,
and Mojo-mSFT, the limited availability of Mojo
content on the web significantly constrained our
dataset sizes. As discussed in Section 6, in this
work, only open source publicly available data
was used which, in turn, reduced the datasets’
scope and size. This limitation directly impacts
the diversity and richness of the data used for train-
ing and evaluation, potentially affecting the mod-
els’ generalization capabilities.

Furthermore, our models are confined to the
∼7B parameter range, a decision influenced by
two primary factors. First, the relatively modest
size of our datasets aligns better with smaller mod-
els, as larger models might overfit on limited data.

Second, the computational intensity of pretraining
favors more manageable model sizes, allowing us
to iterate and experiment within our resource con-
straints. While this approach may limit the mod-
els’ capacity compared to larger counterparts, we
believe it strikes a balance between resource effi-
ciency and model performance.

Ethical Considerations

The datasets and models introduced in this paper,
including Mojo-Corpus, Mojo-SFT, Mojo-mSFT,
and the resulting language models, strictly adhere
to the ACL Ethics Policy. We have prioritized
ethical data collection practices, using only pub-
licly available sources and respecting intellectual
property rights. To ensure safety and reliabil-
ity, we strongly recommend executing code gener-
ated using prompts from HumanEval-Mojo or our
Mojo-Coder models in a contained virtual envi-
ronment. This precaution helps prevent potential
issues related to infinite execution loops, mem-
ory management, system crashes, and excessive
resource consumption. We believe this approach
allows researchers and practitioners to maintain a
secure and controlled testing environment while
confidently exploring and innovating with our re-
sources. We remain committed to ongoing ethical
evaluation and welcome community feedback to
address any unforeseen concerns.

References
Jacob Austin, Augustus Odena, Maxwell Nye, et al.

2021. Program synthesis with large language mod-
els. arXiv preprint arXiv:2108.07732.

Piotr Bojanowski, Édouard Grave, Armand Joulin,
et al. 2017. Enriching word vectors with subword
information. Transactions of the Association for
Computational Linguistics.

Mark Chen, Jerry Tworek, , et al. 2021. Evaluat-
ing large language models trained on code. arXiv
preprint arXiv:2107.03374.

Google CodeGemma Team. 2024. Codegemma: Open
code models based on gemma. arXiv preprint
arXiv:2406.11409.

Marta R Costa-jussà, James Cross, et al. 2022. No lan-
guage left behind: Scaling human-centered machine
translation. arXiv preprint arXiv:2207.04672.

Anuj Kumar Aditya Deo, Swayam Gupta, Roumo
Kundu, Piyush Jaiswal, Taha Fatma, and Mohan Ku-
mar Dehury. 2024. Performance and metrics analy-
sis between python3 via mojo. In 2024 2nd Inter-

4117

https://www.aclweb.org/portal/content/acl-code-ethics

national Conference on Sustainable Computing and
Smart Systems (ICSCSS).

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Diederik P Kingma. 2014. Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia
Li, Chenghao Mou, et al. 2022. The stack: 3 tb of
permissively licensed source code. Preprint.

Achintya Kundu, Rhui Dih Lee, Laura Wynter, and
Raghu Kiran Ganti. 2024. Enhancing training ef-
ficiency using packing with flash attention. arXiv
preprint arXiv:2407.09105.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, et al.
2024. Starcoder 2 and the stack v2: The next gener-
ation. arXiv preprint arXiv:2402.19173.

Ziyang Luo, Can Xu, Pu Zhao, and Qingfeng Sun.
2023. Wizardcoder: Empowering code large lan-
guage models with evol-instruct. arXiv preprint
arXiv:2306.08568.

Mistral AI. 2024. Announcing codestral: Unleashing
the power of code models with mistral’s latest inno-
vation. https://mistral.ai/news/codestral/.

OpenAI. 2024. Gpt-4 omni: A comprehensive mul-
timodal model for language, vision, and beyond.
arXiv preprint arXiv:2408.01234.

Jay M Patel and Jay M Patel. 2020. Introduction to
common crawl datasets. Getting structured data
from the internet: running web crawlers/scrapers on
a big data production scale.

Qiwei Peng, Yekun Chai, and Xuhong Li. 2024.
Humaneval-xl: A multilingual code generation
benchmark for cross-lingual natural language gen-
eralization. In Proceedings of the 2024 Joint In-
ternational Conference on Computational Linguis-
tics, Language Resources and Evaluation (LREC-
COLING 2024).

Nishat Raihan, Antonios Anastasopoulos, and Mar-
cos Zampieri. 2024a. mhumaneval–a multilingual
benchmark to evaluate large language models for
code generation. arXiv preprint arXiv:2410.15037.

Nishat Raihan, Dhiman Goswami, Sadiya Sa-
yara Chowdhury Puspo, Christian Newman,
Tharindu Ranasinghe, and Marcos Zampieri. 2024b.
Cseprompts: A benchmark of introductory com-
puter science prompts. In International Symposium
on Methodologies for Intelligent Systems.

Kamalkumar Rathinasamy, Ankush Kumar, Gagan Ga-
yari, Rajab Ali Mondal, Swayam Singh, et al. 2024.
Narrow transformer: Starcoder-based java-lm for
desktop. arXiv preprint arXiv:2407.03941.

Ricardo Rei, Nuno M Guerreiro, Daan van Stigt, Mar-
cos Treviso, et al. 2023. Scaling up cometkiwi:
Unbabel-ist 2023 submission for the quality estima-
tion shared task. In Proceedings of the Eighth Con-
ference on Machine Translation.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle,
et al. 2023. Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950.

Hugo Touvron, Thibaut Lavril, et al. 2023a. Llama:
Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971.

Hugo Touvron, Louis Martin, et al. 2023b. Llama 2:
Open foundation and fine-tuned chat models. arXiv
preprint arXiv:2307.09288.

Lewis Tunstall, Leandro Von Werra, and Thomas Wolf.
2022. Natural language processing with transform-
ers. ” O’Reilly Media, Inc.”.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2023. Magicoder: Source code is
all you need. arXiv preprint arXiv:2312.02120.

T Wolf. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Lingling Xu, Haoran Xie, Si-Zhao Joe Qin, Xiaohui
Tao, and Fu Lee Wang. 2023. Parameter-efficient
fine-tuning methods for pretrained language mod-
els: A critical review and assessment. arXiv preprint
arXiv:2312.12148.

Weixiang Yan, Haitian Liu, Yunkun Wang, Yunzhe Li,
et al. 2023. Codescope: An execution-based mul-
tilingual multitask multidimensional benchmark for
evaluating llms on code understanding and genera-
tion. arXiv preprint arXiv:2311.08588.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

4118

A Data Sources

As mentioned in Section 4.1, we carefully select a
set of GitHub repositories with mojo code exam-
ples. Upon filtering, only the ones with Apache
2.0 licenses are kept. During extraction, we use
BeautifulSoup10, a commonly used Python library
for such purposes, to parse and extract relevant
code snippets efficiently. This approach enables us
to maintain consistency and accuracy in our data
collection process. Table 6 includes all the reposi-
tory names.

GitHub Repositories

kojunseo/mojo-wav
MoSafi2/MojoFastTrim
mattfaltyn/mojomics
igorgue/firedis
vietanhdev/chess.mojo
mzaks/mojo-prefix-sum
HJLebbink/quine-mccluskey-mojo
Deftioon/Quojo
mzaks/mojo-sort
HJLebbink/sort-networks-mojo
alainrollejr/mocodes
lrmantovani10/Stable-Diffusion.mojo
isuckatcs/advent-of-code
Sharktheone/arch-mojo
msaelices/py2mojo
PriNova/MojoPkgWorkflow
mojopaa/menv
guidorice/mojo-pytest
joelflaig/mojo-syntax
Lynet101/Mojo community-lib
lsh/shims
mzaks/mojo-hash
rd4com/mojo-console-style-print
thatstoasty/gojo
tairov/llama2.mojo
automata/mojograd
andresnowak/Micro-Mojograd
MadAlex1997/Mojo-Arrays
endia-org/Endia
erfanzar/EasyDeL
StijnWoestenborghs/gradi-mojo
dorjeduck/momograd
basalt-org/basalt
thatstoasty/prism
thatstoasty/mog
sa-/mo-time
mojoto/morrow.mojo
Moosems/Mojo-Types
mzaks/mojo-trees
rd4com/mojo-magiclist
Benny-Nottonson/mojoDataStructures
mzaks/compact-dict
crisadamo/mojo-libc
ihnorton/mojo-ffi
thatstoasty/stump
msteele/mojo-sdl
rectalogic/mojo-qt
helehex/infrared
leandrolcampos/specials
gabrieldemarmiesse/mojo-stdlib-extensions
saviorand/lightbug http
taalhaataahir0102/Jpeg-Decoder
rd4com/mojo-learning
VMois/mojo-gym

Table 6: List of GitHub repositories for Mojo-related
projects

Additional resources include webpages with
documentation, tutorials, and blogs. Again, we
only consider the publicly available ones for scrap-
ing. Table 7 includes the other resources used dur-
ing the compilation of Mojo-Corpus.

10https://beautiful-soup-4.readthedocs.
io/en/latest/

Webpages that feature Mojo

modular.com/mojo-programming
docs.modular.com/mojo-manual
github.com/modularml/mojo
codecademy.com/learn/mojo-programming
en.wikipedia.org/wiki/Mojo_(programming_language)
datacamp.com/community/tutorials/mojo-programming
blog.logrocket.com/getting-started-mojo-programming
modular.com/products/mojo
docs.modular.com/get-started-with-mojo
tutorialspoint.com/mojo_programming/index.htm
learnmojo.org
medium.com/tag/mojo
freecodecamp.org/news/what-is-mojo-programming-language
geeksforgeeks.org/mojo-programming-language
mojo.programming.docs.example.com
udemy.com/course/mojo-programming
coursera.org/specializations/mojo-programming
edx.org/course/introduction-to-mojo
lynda.com/Mojo-tutorials/Welcome-to-Mojo/2816042-2.html
khanacademy.org/computing/mojo-programming
academy.modular.com/mojo-programming
stackoverflow.com/questions/tagged/mojo-programming
dzone.com/articles/an-introduction-to-mojo-programming
realpython.com/mojo-pythonic-programming
pluralsight.com/courses/mojo-fundamentals
dev.to/t/mojo
hackerrank.com/domains/tutorials/mojo-programming
codewars.com/kata/search/mojo
vimeo.com/ondemand/mojoprogramming
ibm.com/cloud/learn/mojo-programming
oracle.com/mojo-programming
mojo.developer.com
guru99.com/learn-mojo-quick-guide.html
mojolanguage.school
news.ycombinator.com/item?id=31259347
linkedin.com/learning/mojo-programming-essentials
mojodojo.dev/guides/builtins/BuiltinList.html
mojohub.io/docs/tutorial
fossbytes.com/mojo-programming-tutorial
mozilla.org/mojo-learn
programiz.com/mojo-programming
packtpub.com/product/mojo-programming-cookbook
tutorialsteacher.com/mojo-programming
learnprogramming.com/mojo-language
freecodingcamp.org/mojo-programming
tutorialguru.com/intro-to-mojo-programming
coursehero.com/mojo-language-programming

Table 7: List of Mojo Programming Resources

B Filltering Steps

F1 Ensures licensing compliance by removing
non-Apache 2.0 content, reducing the corpus to
42,245,342 tokens.

F2 Focuses on Mojo-specific content by exclud-
ing Python-related snippets (e.g., '''python or
def), resulting in 21,973,419 tokens. This step
is necessary as Python and Mojo are frequently
compared online.

F3 Enforces structural integrity by retaining sam-
ples with at least 3 code/text blocks, each con-
taining at least 3 characters, reducing the cor-
pus to 15,410,741 tokens.

F4 Addresses repetition by filtering out samples
with over 30% duplicate paragraphs or 20% du-
plicate characters, leaving 10,112,466 tokens.

F5 Removes inter-sample duplicates to ensure
uniqueness and reduce bias, further reducing
the corpus to 7,145,333 tokens.

F6 Applies language filtering using fastText (Bo-
janowski et al., 2017), retaining English text
with a confidence threshold of 0.4, yielding the
final corpus, MC*, with 6,583,948 tokens.

4119

https://beautiful-soup-4.readthedocs.io/en/latest/
https://beautiful-soup-4.readthedocs.io/en/latest/
modular.com/mojo-programming
docs.modular.com/mojo-manual
github.com/modularml/mojo
codecademy.com/learn/mojo-programming
en.wikipedia.org/wiki/Mojo_(programming_language)
datacamp.com/community/tutorials/mojo-programming
blog.logrocket.com/getting-started-mojo-programming
modular.com/products/mojo
docs.modular.com/get-started-with-mojo
tutorialspoint.com/mojo_programming/index.htm
learnmojo.org
medium.com/tag/mojo
freecodecamp.org/news/what-is-mojo-programming-language
geeksforgeeks.org/mojo-programming-language
mojo.programming.docs.example.com
udemy.com/course/mojo-programming
coursera.org/specializations/mojo-programming
edx.org/course/introduction-to-mojo
lynda.com/Mojo-tutorials/Welcome-to-Mojo/2816042-2.html
khanacademy.org/computing/mojo-programming
academy.modular.com/mojo-programming
stackoverflow.com/questions/tagged/mojo-programming
dzone.com/articles/an-introduction-to-mojo-programming
realpython.com/mojo-pythonic-programming
pluralsight.com/courses/mojo-fundamentals
dev.to/t/mojo
hackerrank.com/domains/tutorials/mojo-programming
codewars.com/kata/search/mojo
vimeo.com/ondemand/mojoprogramming
ibm.com/cloud/learn/mojo-programming
oracle.com/mojo-programming
mojo.developer.com
guru99.com/learn-mojo-quick-guide.html
mojolanguage.school
news.ycombinator.com/item?id=31259347
linkedin.com/learning/mojo-programming-essentials
mojodojo.dev/guides/builtins/BuiltinList.html
mojohub.io/docs/tutorial
fossbytes.com/mojo-programming-tutorial
mozilla.org/mojo-learn
programiz.com/mojo-programming
packtpub.com/product/mojo-programming-cookbook
tutorialsteacher.com/mojo-programming
learnprogramming.com/mojo-language
freecodingcamp.org/mojo-programming
tutorialguru.com/intro-to-mojo-programming
coursehero.com/mojo-language-programming

C Prompt Translation and Evaluation

The pseudocode version of the workflow is pre-
sented in Figure 2.

Algorithm 1 Prompt Translation and Evaluation
Workflow
1: for each extracted prompt from the HumanEval dataset

do
2: for each translation system do
3: for each target language do
4: if the language is supported then
5: Generate 5 translated candidate prompts
6: Perform back translation for each candidate
7: Compute BERT Score and Comet Kiwi for

all candidates
8: Calculate the average score of BERT Score

and Comet Kiwi
9: Select the best prompt based on the highest

average score
10: else
11: Perform back translation
12: Compute only the BERT Score
13: Select the best prompt based on BERT Score
14: end if
15: end for
16: end for
17: end for

C.1 Evaluation Metric 1: BERTScore

BERTScore leverages pre-trained BERT embed-
dings to quantify similarity between candidate and
reference translations. For a candidate sentence C
and a reference sentence R, let EC and ER denote
their respective token embedding sets. The simi-
larity score S(i, j) between tokens i and j is de-
fined by the cosine similarity of their embeddings:

S(i, j) =
eCi · eRj

∥eCi∥∥eRj∥
(10)

Precision P , recall R, and F1-score F1 are
computed as follows:

P =
1

|EC |
∑

eCi
∈EC

max
eRj

∈ER

S(i, j) (11)

R =
1

|ER|
∑

eRj
∈ER

max
eCi

∈EC

S(j, i) (12)

F1 = 2 · P ·R
P +R

(13)

Here, P represents the average maximum simi-
larity of each token in C to any token in R, while
R denotes the average maximum similarity of each
token in R to any token in C. The F1 score is de-
rived as the harmonic mean of precision and recall.

C.2 Evaluation Metric 2: CometKiwi
CometKiwi (Knowledge Integration via
Weighted Importance) assesses translations
using human judgment scores in a reference-
free context, integrating linguistic features and
contextual embeddings. For a source sentence
x and candidate translation y, CometKiwi
employs a neural network N to map inputs to a
quality score Q(x,y). The network is trained on
human-annotated scores Qhuman(x,y).

The quality score is defined as:

Q(x,y) = f(Esrc(x),Ecand(y),L(x,y)) (14)

where:

• Esrc(x) is the source sentence embedding,

• Ecand(y) is the candidate translation embed-
ding,

• L(x,y) represents linguistic features.

Formally, f is expressed as:

f(Esrc(x),Ecand(y),L(x,y)) = N (Esrc,Ecand,L)
(15)

The network N is optimized to minimize the
loss function L:

L =
1

N

N∑

i=1

(Q(xi,yi)−Qhuman(xi,yi))
2 (16)

where N denotes the number of training sam-
ples.

4120

D Final Set of Hyperparameters

Both the pretraining and finetuning hyperparam-
eters are chosen through a rigorous and iterative
experimental process. We conduct a series of
controlled experiments, systematically varying pa-
rameters such as learning rate, batch size, opti-
mizer settings, and regularization factors, to iden-
tify the configuration that yields the most stable
and robust performance. The final hyperparame-
ter settings for the pretraining phase are detailed
in Table 8.

Similarly, after extensive experimentation with
different configurations, we arrive at the optimal
settings for finetuning on the Mojo-SFT dataset,
which are presented in Table 9. For finetuning on
the Mojo-mSFT dataset, Table 10 outlines the hy-
perparameters used. This ensures that our models
are finely tuned for each specific training stage,
balancing performance improvements with com-
putational efficiency.

D.1 Pretraining HyperParameters

Hyperparameter Value

Per device train batch size 32
Gradient accumulation steps 8
Number of training epochs 3
Learning rate 5× 10−6

FP16 False
BF16 True
Dataloader num workers 4
Gradient checkpointing True
Logging steps 100
DDP find unused parameters False
Max gradient norm 1.0
Warmup steps 500
Evaluation strategy steps
Evaluation steps 10,000
Save strategy steps
Save steps 10,000
Save total limit 3
Load best model at end True
Metric for best model loss
Greater is better False

Table 8: Final set of hyperparameters, chosen empiri-
cally after several iterations of trial and error, for pre-
training on the Mojo-Corpus.

D.2 Finetuning Hyperparameters

Parameter Value

Max Sequence Length 2048
Batch Size (Train/Eval) 8
Gradient Accumulation Steps 4
Number of Epochs 3
Learning Rate 5e-5
Weight Decay 0.02
Warmup Steps 10%
Optimizer AdamW (8-bit)
LR Scheduler Cosine
Precision BF16
Evaluation Strategy Steps
Evaluation Steps 50
Save Strategy Steps
Save Steps Varies
Seed 42

Table 9: Final set of hyperparameters, chosen empiri-
cally after several iterations of trial and error, for fine-
tuning on Mojo-SFT.

Parameter Value

Max Sequence Length 2048
Batch Size (Train/Eval) 16
Gradient Accumulation Steps 4
Number of Epochs 3
Learning Rate 1e-5
Weight Decay 0.04
Warmup Steps 15%
Optimizer AdamW (8-bit)
LR Scheduler Cosine
Precision BF16
Evaluation Strategy Steps
Evaluation Steps 100
Save Strategy Steps
Save Steps Varies
Seed 42

Table 10: Final set of hyperparameters, chosen empiri-
cally after several iterations of trial and error, for fine-
tuning on Mojo-mSFT.

4121

E Mojo-Coder - Examples

E.1 Sample Task 1
Difficulty: Easy

Task: Write a Mojo Code snippet that prints ’Hello World’

Verdict: PASSED
Generated Response:

1 fn main():
2 # Print the string "Hello, World!" to the console
3 print("Hello, World!")
4
5 # Call the main function to execute the program
6 main()

E.2 Sample Task 2
Difficulty: Easy

Task: Write a Mojo Code snippet that can detect Leap Year.

Verdict: PASSED
Generated Response:

1 fn is_leap_year(year: Int) -> Bool:
2 # Check if the year is divisible by 4
3 if year % 4 == 0:
4 # If it's divisible by 4, check if it's not divisible by 100
5 if year % 100 != 0:
6 return True
7 # If it's divisible by 100, check if it's divisible by 400
8 elif year % 400 == 0:
9 return True

10 # If it's divisible by 100 but not by 400, it's not a leap year
11 else:
12 return False
13 # If the year is not divisible by 4, it's not a leap year
14 else:
15 return False
16
17 # Example usage
18 fn main():
19 let test_year = 2024
20 let result = is_leap_year(test_year)
21
22 if result:
23 print(test_year, "is a leap year")
24 else:
25 print(test_year, "is not a leap year")

4122

E.3 Sample Task 3
Difficulty: Medium

Task: Write a Mojo Code snippet to do Radix Sort.

Verdict: PASSED
Generated Response:

1 from math import max
2
3 fn radix_sort(inout arr: DynamicVector[Int]):
4 """
5 Sort the given array using radix sort algorithm.
6 """
7 if len(arr) <= 1:
8 return
9

10 # Find the maximum element to determine the number of digits
11 max_element = arr[0]
12 for i in range(1, len(arr)):
13 if arr[i] > max_element:
14 max_element = arr[i]
15
16 # Determine the number of digits
17 max_digits = 0
18 while max_element > 0:
19 max_digits += 1
20 max_element //= 10
21
22 # Perform counting sort for every digit
23 for digit_place in range(max_digits):
24 counting_sort(arr, digit_place)
25
26 fn counting_sort(inout arr: DynamicVector[Int], digit_place: Int):
27 """
28 Perform counting sort for a specific digit position.
29 """
30 n = len(arr)
31 output = DynamicVector[Int](n)
32 count = DynamicVector[Int](10, 0)
33
34 # Count occurrences of each digit
35 for i in range(n):
36 index = (arr[i] // (10 ** digit_place)) % 10
37 count[index] += 1
38
39 # Change count[i] so that count[i] now contains actual
40 # position of this digit in output[]
41 for i in range(1, 10):
42 count[i] += count[i - 1]
43
44 # Build the output array
45 i = n - 1
46 while i >= 0:
47 index = (arr[i] // (10 ** digit_place)) % 10
48 output[count[index] - 1] = arr[i]
49 count[index] -= 1
50 i -= 1
51
52 # Copy the output array to arr[], so that arr[] now contains sorted numbers
53 for i in range(n):
54 arr[i] = output[i]
55
56 # Example usage
57 fn main():
58 var arr = DynamicVector[Int]()
59 arr.push_back(170)
60 arr.push_back(45)
61 arr.push_back(75)
62 arr.push_back(90)
63 arr.push_back(802)
64 arr.push_back(24)
65 arr.push_back(2)
66 arr.push_back(66)
67 arr.push_back(110)
68 arr.push_back(1)
69
70 print("Original array:", arr)
71 radix_sort(arr)
72 print("Sorted array:", arr)

4123

E.4 Sample Task 4
Difficulty: Hard

Task: Write a function in Mojo that takes a 2D grid where 1
represents land and 0 represents water. An island is a group of 1s
connected horizontally or vertically. The function should return
the maximum area of an island in the grid. If there are no islands,
return 0.

Verdict: FAILED - Does not pass all the test cases.
Generated Response:

1 from python import Python
2
3 fn max_area_of_island(grid: PythonObject) -> Int:
4 """
5 Find the maximum area of an island in a 2D grid.
6
7 Args:
8 grid: A 2D list of integers representing the grid, where 0 is water and 1 is land.
9

10 Returns:
11 The maximum area of an island.
12 """
13
14 # Get the dimensions of the grid
15 rows = len(grid)
16 if rows == 0:
17 return 0
18 cols = len(grid[0])
19
20 # Initialize max_area to 0
21 max_area = 0
22
23 # Define a function to explore an island and calculate its area
24 fn explore_island(i: Int, j: Int) -> Int:
25 if i < 0 or i >= rows or j < 0 or j >= cols or grid[i][j] == 0:
26 return 0
27 # Mark the current cell as visited (set to 0)
28 let current_area = 1
29 grid[i][j] = 0
30 # Explore adjacent cells
31 current_area += explore_island(i + 1, j)
32 current_area += explore_island(i - 1, j)
33 current_area += explore_island(i, j + 1)
34 current_area += explore_island(i, j - 1)
35 return current_area
36
37 # Iterate through each cell in the grid
38 for i in range(rows):
39 for j in range(cols):
40 # If a land cell is found, explore its area
41 if grid[i][j] == 1:
42 let current_area = explore_island(i, j)
43 max_area = max(max_area, current_area)
44
45 return max_area
46
47 fn main():
48 # Example usage
49 let grid = Python.list([
50 Python.list([1, 0, 0, 0, 0]),
51 Python.list([0, 1, 0, 0, 1]),
52 Python.list([0, 0, 1, 0, 1]),
53 Python.list([0, 0, 0, 1, 0]),
54 Python.list([1, 0, 0, 0, 1])
55])
56
57 let result = max_area_of_island(grid)
58 print("Maximum area of an island:", result)
59
60 main()

4124

F Base Models vs Mojo

As mentioned in Section 4.4.1, off-the-shelf models often struggle to generate working code snippets in
Mojo, when prompted. Even SOTA models like GPT-4o and Claude severely underperform when the
prompt is non-English. We present some examples here reporting such issues.

F.1 Sample Task 1

Difficulty: Easy
Task: Write a Mojo Code snippet that prints ’Hello World’

GPT-4o
Verdict: FAILED - Parsing Error

Generated Response:

fn main() {
print("Hello World")

}
main()

Claude-3.5-Sonnet
Verdict: PASSED

Generated Response:

fn main():
print("Hello World")

WizardCoder
Verdict: FAILED - Syntax Error

Generated Response:

import logging

logging.info("Hello, World!")

CodeGemma
Verdict: FAILED - Compilation Error

Generated Response:

@Mojo(name = "hello-world")
public class HelloWorldMojo
extends AbstractMojo {

public void execute() throws
MojoExecutionException {
getLog().info("Hello World");

}

}

CodeLLaMA
Verdict: FAILED - Compilation Error

Generated Response:

4125

<plugin>
<groupId>com.example</groupId>
<artifactId>helloworld
</artifactId>
<version>1.0.0</version>
<executions>

<execution>
<phase>validate</phase>
<goals>

<goal>hello-world
</goal>

</goals>
</execution>

</executions>
</plugin>

Mistral
Verdict: FAILED - Compilation Error

Generated Response:

#include <stdio.h>

int main() {
printf("Hello World");
return 0;

}

4126

F.2 Sample Task 2
Difficulty: Easy

Task: Write a Mojo Code snippet that can detect Leap Year.

GPT-4o
Verdict: PASSED

Generated Response:

fn is_leap_year(year: Int) -> Bool:
if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0):

return true
else:

return false

fn main():
let year = 2024 # Change this value to test other years
if is_leap_year(year):

print(f"{year} is a leap year")
else:

print(f"{year} is not a leap year")

main()

Claude-3.5-Sonnet
Verdict: PASSED

Generated Response:

fn is_leap_year(year: Int) -> Bool:
return (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0)

fn main():
let current_year = 2024
print("Is", current_year, "a leap year?", is_leap_year(current_year))

Test a few more years
for year in range(2020, 2026):

print(year, "is", "a leap year" if is_leap_year(year) else "not a leap year")

main()

WizardCoder
Verdict: FAILED - Compilation Error

Generated Response:

var leapYearApplet = {
activate: function(args) {

var year = args.year;

// Check if the year is a leap year
if ((year % 4 === 0) && (year % 100 !== 0) || (year % 400 === 0)) {

Mojo.log("The year " + year + " is a leap year.");
} else {

Mojo.log("The year " + year + " is not a leap year.");
}

}
};

4127

CodeGemma
Verdict: FAILED - Compilation Error

Generated Response:

// Mojo code to detect leap year
int year = 2024;

// Check if the year is divisible by 4
if (year % 4 == 0) {

// Check if the year is divisible by 100
if (year % 100 == 0) {
// Check if the year is divisible by 400
if (year % 400 == 0) {

// The year is a leap year
print("The year " + year + " is a leap year");

} else {
// The year is not a leap year
print("The year " + year + " is not a leap year");

}
} else {
// The year is a leap year
print("The year " + year + " is a leap year");

}
} else {

// The year is not a leap year
print("The year " + year + " is not a leap year");

}

CodeLLaMA
Verdict: FAILED - Compilation Error

Generated Response:

$year = 2020;
if (date('L', mktime(0, 0, 0, 1, 1, $year)) == 1) {

echo "It's a leap year!";
} else {

echo "It's not a leap year.";
}

Mistral
Verdict: FAILED - Compilation Error

Generated Response:

#!/usr/bin/perl
use strict;
use warnings;

Function to check if a number is prime
sub is_prime {

my ($num) = @_;
if ($num <= 1) {

return 0; # 0 and 1 are not prime
}
for (my $i = 2; $i * $i <= $num; $i++) {

if ($num % $i == 0) {
return 0; # if divisible, not prime

}
}
return 1; # if no divisors, prime

}

4128

