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Abstract

3D facial emotion modeling has important ap-
plications in areas such as animation design,
virtual reality, and emotional human-computer
interaction (HCI). However, existing models
are constrained by limited emotion classes
and insufficient datasets. To address this, we
introduce Emo3D, an extensive "Text-Image-
Expression dataset" that spans a wide spec-
trum of human emotions, each paired with im-
ages and 3D blendshapes. Leveraging Large
Language Models (LLMs), we generate a di-
verse array of textual descriptions, enabling
the capture of a broad range of emotional ex-
pressions. Using this unique dataset, we per-
form a comprehensive evaluation of fine-tuned
language-based models and vision-language
models, such as Contrastive Language-Image
Pretraining (CLIP), for 3D facial expression
synthesis. To better assess conveyed emotions,
we introduce Emo3D metric, a new evaluation
metric that aligns more closely with human per-
ception than traditional Mean Squared Error
(MSE). Unlike MSE, which focuses on numer-
ical differences, Emo3D captures emotional
nuances in visual-text alignment and seman-
tic richness. Emo3D dataset and metric hold
great potential for advancing applications in
animation and virtual reality.

1 Introduction

Automatic translation of character emotions into
3D facial expressions is an important task in dig-
ital media, owing to its potential to enhance user
experience and realism. Facial Expression Gen-
eration (FEG) has a wide range of applications
across various industries, including game devel-
opment, animation, film production, and virtual
reality. Previous studies in this domain have pri-
marily focused on generating facial expressions for
2D or 3D characters, often relying on a limited set
of predefined classes (Siddiqui, 2022) or driven by
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audio cues (Karras et al., 2017; Peng et al., 2023).
However, there is a growing need for better control
in the generation of complex and diverse human
facial expressions. Recent studies (Zou et al., 2023;
Zhong et al., 2023; Ma et al., 2023) have made
notable progress in this area through the use of text
prompts, offering a more direct approach to address
the challenge of limited control that has been preva-
lent in earlier works (Siddiqui, 2022; Karras et al.,
2017; Peng et al., 2023).

The primary issue with recent works using text
prompts is (i) their limited focus on textual descrip-
tions of emotions. Many studies have not deeply
explored emotional context. These studies have not
offered a comprehensive solution that integrates
both textual descriptions and 3D FEG, creating
a noticeable gap in the field (Zhong et al., 2023;
Zou et al., 2023). Moreover, there is (ii) a scarcity
of datasets containing emotional text alongside
corresponding 3D facial expressions, impeding
the development and training of FEG models for
practical applications (Zhong et al., 2023; Zou
et al., 2023; Ma et al., 2023). Additionally, (iii) the
absence of reliable benchmarks and standardized
evaluation metrics in this research area further
complicates the assessment of FEG models.

Contributions: This paper tackles key challenges
in FEG, focusing on generating expressions from
textual emotion descriptions. Our contributions
towards addressing the gaps in the field of FEG are
as follows:

(i) Emo3D-dataset: We present the Emo3D-
dataset, specifically developed to bridge the gap
between textual emotion descriptions and 3D
FEG. This dataset provides a rich compilation of
annotated emotional texts alongside matching 3D
expressions for effective training and assessment
of FEG models.
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"The face had an expression of fear, with
wide eyes, eyebrows drawn together, lips
stretched into a thin line, and corners of

the mouth downturned."
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Figure 1: Emo3D Dataset Creation: Textual data describing human emotions is initially generated using GPT. We
then utilize DALL-E models to synthesize human faces. Each image undergoes face blendshape extraction using
MediaPipe. Furthermore, we employ GPT to extract the emotion distribution for each prompt.

(ii) Baseline Models: We propose several baseline
models for FEG as benchmarks for future research.
These models provide a foundation for evaluating
new advancements and measuring progress in
translating emotion descriptions into 3D facial
expressions. Our baselines include (i) fine-tuning
pre-trained language models, (ii) CLIP-based
approaches, and (iii) Emotion-XLM, a customized
model designed to enhance the functionality of
language models for this task.

(iii) Evaluation Metric: To address the lack
of standardized evaluation metrics in FEG, we
introduce a new metric specifically designed to
capture the complexities and nuances of human
emotions.

2 Related Work

Audio-based emotion extraction: FEG methods
often utilize audio data, leveraging the semantic,
tonal, and expressive qualities of voice for 3D
FEG. “Audio-driven Facial Animation” (Karras
et al., 2017) learns to map audio waveforms to
3D facial coordinates, identifying a latent code
for expression variations beyond audio cues.
“EmoTalk” (Peng et al., 2023) focuses on creating
3D facial animations driven by speech, aligning
expressions with both content and emotion.

CLIP-based baselines: The utility of CLIP’s
language-and-vision feature space (Radford et al.,
2021) in text-to-image generation has been high-
lighted in several works. MotionCLIP (Tevet et al.,
2022) leverages CLIP for a feature space that
accommodates dual modalities, enabling out-of-
domain actions and motion integration into CLIP’s
latent space. The 4D Facial Expression Diffusion
Model (Zou et al., 2023) introduce a generative
framework for creating 3D facial expression se-
quences, utilizing a Denoising Diffusion Proba-
bilistic Model (DDPM). The framework consists
of two tasks: learning a generative model based on
3D landmark sequences and generating 3D mesh
sequences from an input facial mesh driven by the
generated landmarks. Also, ExpCLIP (Zhong et al.,
2023) is an autoencoder designed to establish se-
mantic alignment among text, facial expressions,
and facial images. ExpClip introduces a blend-
shape encoder to map blendshape weights to an
embedding, reconstructed by a decoder. Concur-
rently, a CLIP text encoder (ωtext) and text projector
(Ptext), along with an image encoder (ωimg) and an
image projector (Pimg) to map emotion text and
images into a joint embedding space.

Additionally, (Li et al., 2023) introduced
CLIPER, a unified framework for both static and
dynamic facial expression recognition, utilizing
CLIP and introducing multiple expression text
descriptors (METD) for fine-grained expression
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representations, achieving state-of-the-art perfor-
mance by a two-stage training paradigm which
involves learning METD and fine-tuning the image
encoder for discriminative features.

Metrics: While a variety of metrics exist for eval-
uating 2D image generation, the development of
effective metrics for 3D FEG remains a challenge.
Building upon the approach in (Xu et al., 2017),
(Cong et al., 2023) adopted R-precision to mea-
sure the alignment between input text and output
image. This metric was calculated using a CLIP
model fine-tuned on the entire dataset, following
the methodology outlined in (Park et al., 2021).

3 Dataset

We introduce the Emo3D-dataset, an assembly
of 150,000 instances. Each instance comprises a
triad: textual description, corresponding image,
and blendshape scores created as follows:

(i) Emotion Descriptions: To generate emotion-
specific textual descriptions, we prompted GPT-
3.5 (OpenAI, 2023) to focus on eight primary
emotions: happiness, anger, surprise, sadness, dis-
gust, contempt, fear, and neutral. Subsequently, we
again utilized GPT-3.5 to derive emotion distribu-
tions for these textual elements through carefully
crafted prompts. This process resulted in eight-
dimensional vectors representing distinct emo-
tional profiles, as illustrated in Figure 1.

While concerns may arise regarding the
reliability of GPT-3.5 in generating emotion
distributions, the human evaluation study in
Section 6.1 demonstrates their strong alignment
with human perception. That section also provides
a comparative analysis of GPT-3.5, GPT-4o-mini,
and Gemma-9B, highlighting the reasoning behind
our model choice. Additionally, a more in-depth
analysis of the linguistic characteristics of the
generated data can be found in the supplementary
material.

(ii) 2D Image Generation: Subsequently, we uti-
lize DALL-E 3 (Ramesh et al., 2022), an image
generation model, to create images that align with
the generated textual descriptions. While the reli-
ability of AI-generated images in conveying emo-
tions is a valid concern, previous studies, including
the comprehensive evaluation presented in (Lomas
et al., 2024), have demonstrated that DALL-E 3

excels in generating images that closely align with
human emotional evaluations. These findings rein-
force the effectiveness of DALL-E 3 in producing
emotionally resonant outputs, providing a strong
foundation for our use of this model in emotion-
driven image generation.
(iii) Blendshape Scores Estimation: A blend-
shape is a predefined 3D model deformation
used to represent facial movements by blending
a neutral face with specific expressions, such as
raising eyebrows, smiling, or frowning. These
52 blendshapes, compatible with Apple ARKit,
correspond to a wide range of facial expressions,
enabling precise control and reconstruction of a 3D
face model’s emotions or expressions. We utilize
the Mediapipe framework (Lugaresi et al., 2019)
to generate blendshape scores corresponding to
the images synthesized from textual descriptions.
Figure 2 presents an overview of the dataset,
showcasing three sample data points. Each
sample consists of three textual descriptions and
their corresponding images, generated using the
DALL-E model. As illustrated, the generated
images closely match the textual descriptions.
Furthermore, for each sample, a vector is provided
representing the distribution of eight primary
sensory categories associated with the given
descriptions.

Primitive Emotion Faces: Additionally, for
intrinsic evaluation purposes, we construct a
dataset of primitive emotions comprising singular
emotion words, each paired with corresponding
images that portray males and females exhibiting
three distinct intensity levels of emotion. Utilizing
Mediapipe (Lugaresi et al., 2019), we subsequently
extract blendshape scores for the facial expressions
depicted in these images. The emotional distribu-
tions associated with these individual words are
derived using Emolex (Mohammad, 2018). Figure
3 provides an example of the primitive emotion
"surprise" and a set of close words defined using
Emolex.

Comparison of Emo3D with Existing Datasets:
As shown in Table 1, Emo3D-dataset integrates tex-
tual, visual, and blendshape modalities, providing
a more holistic representation of emotional expres-
sions compared to single-modal datasets (Saravia
et al., 2018; Mollahosseini et al., 2019; Chen et al.,
2023). Our dataset comprises 90,000 images and
60,000 texts. It can also be employed for emo-
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She had a round face with sunken cheeks, drooping eyelids and a
furrowed brow that expressed sadness.

The sadness she felt was evident in her face, her eyes were
downcast and her cheeks had fallen inward.

The emotion of sadness was clearly visible in her soft face, her
eyebrows were drawn together and her eyes were heavy.

neutral happiness surprise sadness anger disgust fear contempt

0.2 0 0 0.8 0 0 0 0

The human face expresses happiness in a wide smile and
sparkling eyes.

The person has a cheerful visage and a joyful countenance.

The person has a broad grin and eyes alight with cheer.

neutral happiness surprise sadness anger disgust fear contempt

0 1 0 0 0 0 0 0

The human face emotion was one of total confusion, with wide
eyes, slightly open mouth and furrowed brow.

The human face expression was one of bewilderment, with eyes
that were wide and a mouth slightly open, and furrowed brow.
The human face emotion was one of bewilderment, with eyes that
were wide and staring, a mouth slightly agape and a furrowed
brow.

neutral happiness surprise sadness anger disgust fear contempt

0.5 0 0.7 0.2 0 0 0.3 0

Figure 2: Samples of Emo3D Dataset: A glimpse into the rich diversity and complexity of our collected data,
paving the way for insightful analysis and discovery.

Figure 3: “Surprise” Emotion Word Cloud: closest
words to “surprise” using Emolex based on cosine simi-
larity of emotion distribution.

tion recognition in text and images, thanks to the
emotion distributions associated with each sample.

Emo3D-dataset shares similarities with other ex-
isting datasets, particularly TEAD(Zhong et al.,
2023) and TA-MEAD(Ma et al., 2023), in terms
of modality integration and a focus on emotional
expressions. TA-MEAD (Ma et al., 2023) dataset,
designed for 2D FEG, provides emotion descrip-
tions for videos, along with Action Unit (AU) (Ek-
man and Friesen) intensity annotations for each
video. In contrast, our Emo3D-dataset offers a
unique perspective by concentrating on textual
emotion expressions, corresponding images, and
blendshape scores. TEAD (Zhong et al., 2023)
dataset, designed for 3D FEG, features situation de-
scriptions, our Emo3D-dataset distinguishes itself
by emphasizing emotion descriptions. Additionally,
our dataset includes a distinctive feature with cor-
responding images for each text, providing a richer
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and more comprehensive resource. The Emo3D-
dataset, comprising 150,000 samples, stands out
significantly in scale when compared to ExpClip,
which consists of 50,000 samples.

Dataset Size Distribution Modalities

AffectNet 440,000 Yes Image

Emo135 700,000 Yes Image

CARER 417,000 Yes Text

TEAD 50,000 No
Text

Blendshape

TA-MEAD - No
Text

Video

Emo3D
Text: 60,000

Image: 90,000
Triple: 150,000

Yes
Text

Image
Blendshape

Table 1: Comparison of Emo3D with existing
datasets: This table summarizes key attributes of
Emo3D alongside established datasets such as Affect-
Net, Emo135, CARER, TEAD, and TA-MEAD.

4 Method

4.1 Models

In this section, we propose several baseline models
for the task of translating emotion descriptions into
3D facial expressions. This includes (i) fine-tuning
of pre-trained language models, (ii) CLIP-based
approaches, and (iii) Emotion-XLM, a customized
XLM model designed to enhance the functionality
of language models for this task.

Pretrained LM Baselines: We utilize BERT (De-
vlin et al., 2019) and Glot500, a highly multilingual
variant of XLM-RoBERTa (ImaniGooghari et al.,
2023), as the backbones. To map LM outputs into
a designated target space, we incorporate a Multi-
Layer Perceptron (MLP). The MLP is trained
with tuples T = {(b, l) | b → R768, l → R52},
where b denotes the LM output and l represents
the corresponding blendshape scores.

Emotion-XLM: Extending the MLP structure
to XLM-RoBERTa, we introduce an emotion-
extractor unit. The transformer output is fed into
this unit to extract emotion distributions alongside
one-hotted vectors. Representing the input space
as B = {b | b → R768}, the emotion-extractor unit

produces output E = {(v, o) | v, o → R8},
where v indicates emotion intensities in
V = {[v1, . . . , v8] | vi → [0, 1], i = 1, . . . , 8}, and
o is the one-hotted vector of v. Pairs of vectors
are then passed to the MLP unit, where they are
concatenated with the text embedding before being
fed to the regression unit, F(.) : R784 ↑ R52. In
the training time, 50 % of the time, ground-truth
emotion labels are replaced with the emotion-
extractor unit’s output, to efficiently train both
modules, ensuring that the blendshape MLP unit is
well-trained while giving enough feedback to the
emotion-extractor unit.

L = ε1LBlendshape + ε2LEmotion (1)

Our training methodology employs a combina-
tion of MSE losses for blendshapes and extracted
emotions, weighted by coefficients to balance their
contributions effectively. This model is illustrated
in Figure 4.

CLIP Baseline: We employed a Multi-Layer
Perceptron (MLP) architecture built upon the
CLIP model (Radford et al., 2021). The model
consists of three fully connected layers: the first
with 256 units, the second with 128 units, and
the output layer with 52 units, corresponding to
the blendshape scores. All layers use the ReLU
activation function, except for the output layer,
which uses the sigmoid activation to constrain
the predictions between 0 and 1, ensuring the
generated blendshape values are valid. The
Emo3D dataset provides image-text pairs and their
corresponding blendshape scores. By leveraging
CLIP’s ability to generate embeddings for both
image and text, we trained the model to get both
modalities as input to predict blendshape scores.
This effectively doubles the size of the dataset used
for training, distinguishing this approach from
Pretrained LM Baselines.

VAE CLIP: We employed a Variational Autoen-
coder (VAE) to align blendshape scores with their
corresponding text and image CLIP (Radford et al.,
2021) embeddings, as illustrated in Figure 5. This
model consists of an encoder, latent space, and
decoder. The encoder processes the input, a
52-dimensional blendshape vector, through two
fully connected layers with ReLU activations and
dropout regularization, outputting two vectors:
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Figure 4: Architecture and Training Process of the Emotion-XLM Model: Emotion-XLM uses emotion ground
truth to predict facial blendshapes. An Emotion Extractor guides the Regression model with the Teacher-Forcing
technique at a 50% ratio. Both units are trained via MSE loss.

mean and log-variance, which define the distribu-
tion of the latent space. The latent space is fixed to
match CLIP embeddings (corresponding text and
image embeddings). The reparameterization trick
samples from this latent space to enable backprop-
agation. The decoder takes the latent vector and re-
constructs the original blendshape vector using two
more fully connected layers, outputting the recon-
structed facial expression. The blendshape scores
are generated by the decoder from the CLIP embed-
dings of text. The model is trained via three distinct
losses. Textual-blendshape and Visual-blendshape
alignment are addressed using cosine similarity.
Moreover, The reconstruction loss is defined by
MSE.

Ltext = 1 ↓ cos (CLIP text, z) (2)

Limage = 1 ↓ cos (CLIP image, z) (3)

L = Lrecon + εtextLtext + εimageLimage (4)

Here, cos(a, b) denotes the cosine similarity be-
tween two vectors a and b.

4.2 Metric

We introduce a new 3D FEG metric for evaluat-
ing the reconstruction of the original emotion vec-
tor from 2D snapshots of the generated 3D faces.
We create a test set comprising diverse emotion
prompts uniformly selected. To evaluate any pro-
posed FEG model, we generate the correspond-
ing blenshape scores of the input text and project
the 3D face model onto a 2D image. Using zero-
shot CLIP (Radford et al., 2021), we identify the
k-nearest text prompts related to the image. We

Encoder Decoderz

CLIP
model

Figure 5: Architecture and Training Process of the
VAE-CLIP Model: VAE CLIP concurrently recon-
structs facial expressions while aligning their latent
representation with corresponding text and image repre-
sentations in the CLIP space.

calculate the emotion distribution for the original
prompt and the top-K prompts. This is followed by
computing the Kullback-Leibler (KL) divergence
between the emotion vector of the original prompt
and the average emotion vector of the top-K re-
trieved prompts. We refer to the normalized KL
bounded between 0 and 1 as the “Emo3D metric”:

DKL(ϑ || ϖ̄) =
∑

i

ϑ(i) · log

(
ϑ(i)

ϖ̄(i)

)
(5)

Emo3D Metric =
1

1 + e↑DKL(ω || ε̄)
(6)

where ϑ represents the emotion distribution of the
input prompt, and ϖ̄ represents the mean emotion
distribution of the top-k prompts. The steps for
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Model MSE Emo3D

BERT 0.03 0.796

XLMRoBERTa 0.04 0.789

VAE CLIP 0.002 0.776

Emotion-XLM 0.035 0.756

CLIP Baseline 0.014 0.737

Table 2: Performance comparison of FEG models using
MSE vs. Emo3D metrics.

Emo3D calculation are outlined in Figure 6. In
our evaluation of the FEG models, we provide both
the Emo3D Metric and the MSE scores of the 3D
models for comparison purposes. Additionally, to
validate the alignment of the Emo3D Metric with
human perception, we conducted a human eval-
uation study. This study assesses the correlation
between the metric’s rankings and human judg-
ments of emotional alignment. More details on this
evaluation can be found in Section 6.2.

5 Results

The FEG model performances are provided in Ta-
ble 2. It becomes evident that the CLIP With Re-
gression Unit model demonstrates superior perfor-
mance when evaluated using our Emo3D metric.
Our results indicate that the MSE and Emo3D met-
rics do not consistently align. To better understand
this discrepancy, we conducted a human evalua-
tion of the 3D model outputs (details provided in
6.2). The evaluation revealed that samples that
performed better according to Emo3D metric also
demonstrated a closer visual resemblance to the in-
put prompt, in contrast to samples that showed bet-
ter performance based on MSE, similar to Figure 7.
This can be because in our metric, Emo3D priori-
tizes visual-text alignment and proximity, tending
to capture richer semantic information than dis-
tance metrics in 3D space using MSE.

6 Human Evaluation

To ensure the validity of our approach, we con-
ducted a comprehensive human evaluation study.
This study serves three main purposes: (1) val-
idating the annotations generated by LLMs, (2)
justifying our choice of GPT-3.5, comparing our
results with more modern LLMs GPT-4o-mini and
Gemma-9B, and (3) demonstrating that our pro-

posed Emo3D metric aligns more closely with hu-
man perception compared to MSE.

6.1 Assessing the Quality of Emotion
Distributions

To ensure the accuracy and reliability of emotion
distributions generated by the models, we con-
ducted a rigorous human evaluation of a dataset
consisting of 100 emotionally diverse text sce-
narios. These scenarios were selected through k-
means clustering (k=100) on emotion embeddings
obtained from a pre-trained model specific for emo-
tion classification, roberta-base-go_emotions
(Lowe, 2021). Four independent annotators manu-
ally annotated the selected scenarios, resulting in
two-way assessments of the emotions conveyed in
each text sample. Details of the given instructions
are provided in Appendix A.1.

The agreement between annotators was evalu-
ated using Cohen’s kappa, yielding a score of 0.79,
indicating a substantial agreement level. Discrep-
ancies in emotional assessments were addressed
through discussions among the annotators, and
when necessary, the judgment of a third annota-
tor was sought to resolve disagreements. The final
emotion score for each text scenario was calculated
by averaging the agreed-upon assessments. This
human judgment served as the reference for com-
paring model-generated emotion distributions.

Additionally, to evaluate the performance of dif-
ferent language models, we compared GPT-3.5
to Gemma-9B and GPT-4o-mini. GPT-3.5 was
initially chosen due to its availability and cost-
effectiveness at the time of dataset curation, while
Gemma-9B and GPT-4o-mini were selected as
recent examples of open-source and commercial
LLMs, respectively. For each of the 100 text scenar-
ios, we generated emotion distributions using these
models, and the results were compared against the
human assessments.

The results of the human evaluation and model
performance are summarized in Table 3, which
presents the averaged absolute emotion score dif-
ferences between human judgments and model-
generated emotion distributions for each model.

Surprisingly, GPT-3.5 demonstrated better per-
formance based on both the absolute emotion score
differences and the averaged cross-entropy over ba-
sic emotion distributions. However, statistical anal-
ysis using a t-test revealed that neither Gemma-9B
nor GPT-4-o-mini performed significantly worse.
These findings highlight the suitability and relia-
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Figure 6: Overview of the Emo3D Metric Calculation Process: Our methodology in Emo3D metric entails
selecting n prompts with a balanced emotion distribution. For a given input and a generated facial expression by a
model, we project the 3D face onto a 2D image and employ zero-shot CLIP to identify the k nearest text prompts.
Subsequently, we compute the Kullback-Leibler (KL) divergence between the emotion distribution of the input text
and these k prompts.

CLIP EmotionXLMR VAE CLIPXLMRBERT

Figure 7: Qualitative 3D Face Generation Model Comparison: For the given text prompt, “The human face
exuded joy, with their eyes sparkling with delight and lips curling upwards in a broad beam of happiness”, the figure
compares the output of the proposed FEG models, i.e., BERT-based, XLMR-based, CLIP-based, Emotion-XLM
and VAE Clip models.

bility of GPT-3.5 for this task, with performance
comparable to, and sometimes better than, other
models. Moreover, the minimal differences from
human judgment underline the credibility of the
generated emotion distributions.

These findings are noteworthy for several rea-
sons. First, they demonstrate the potential of GPT-
3.5 as a highly reliable model for emotion analy-
sis in text, highlighting its cost-effectiveness and
suitability for this task. Second, the minimal dif-
ferences observed across all models emphasize the
credibility and reliability of the emotion distribu-
tions generated, as they align closely with human
judgment despite the models’ varying architectures
and training data.

In conclusion, the results from both the human
evaluation and model performance analysis con-
firm that GPT-3.5 is a strong candidate for emotion
distribution tasks, and its performance is compa-
rable to, if not better than, more advanced models
like Gemma-9B and GPT-4o-mini. These findings
also validate the overall methodology, suggesting
that LLMs are capable of generating emotion dis-
tributions that are closely aligned with human per-
ceptions of emotions in text.

6.2 Evaluating the Alignment of Emo3D
Metric with Human Perception

To assess the reliability of the Emo3D metric, we
selected 100 samples from our test set. For each
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Emotion Gemma-9B GPT-3.5 GPT-4o-mini

Neutral 0.20 ± 0.07 0.20 ± 0.05 0.18 ± 0.23

Happiness 0.24 ± 0.11 0.23 ± 0.11 0.23 ± 0.32

Surprise 0.22 ± 0.07 0.25 ± 0.09 0.24 ± 0.28

Sadness 0.27 ± 0.09 0.26 ± 0.08 0.28 ± 0.30

Anger 0.19 ± 0.08 0.19 ± 0.07 0.20 ± 0.27

Disgust 0.08 ± 0.03 0.14 ± 0.039 0.11 ± 0.19

Fear 0.22 ± 0.07 0.22 ± 0.07 0.24 ± 0.26

Contempt 0.22 ± 0.13 0.24 ± 0.10 0.19 ± 0.31

Table 3: Averaged absolute emotion score difference be-
tween human judgments and model-generated emotion
distributions for specific text scenarios.

of these samples, we conducted two-way rankings,
where each human ranker scored an image corre-
sponding to an emotion description on a scale of
0–4 based on the front view. These scores were
then used to rank the images for each description.
The human rankers achieved a Spearman agree-
ment score of 0.62, indicating moderate agreement.

Next, we compared the Emo3D metric against
the traditional MSE metric to evaluate its utility.
To do this, we measured the correlation between
the human rankers’ scores and rankings achieved
from both Emo3D and MSE using Pearson correla-
tion and Kendall’s Tau. These metrics were used
to determine how well the Emo3D metric aligns
with human evaluations compared to MSE. The
results of the comparison between Emo3D, MSE,
and human evaluations are presented in Table 4 and
Table 5.

Comparison Human Score Emo3D MSE

Human Score 1.00 0.84 0.56

Emo3D 0.84 1.00 0.12

MSE 0.56 0.12 1.00

Table 4: Pearson correlation between Human scores,
Emo3D metric, and MSE.

Table 4 and 5 demonstrate that Emo3D aligns
significantly better with human rankings compared
to MSE. The results of these comparisons support
the validity of Emo3D as a more reliable metric
than MSE for assessing the emotional alignment of
3D images with textual emotion descriptions. Ad-

Comparison Human Score Emo3D MSE

Human Score 1.00 0.67 0.33

Emo3D 0.67 1.00 0.00

MSE 0.33 0.00 1.00

Table 5: Kendall’s Tau correlation between Human
Score, Emo3D, and MSE.

ditionally, the human evaluation shows that the use
of a 2D image of a 3D model from the front view is
sufficient for assessing emotional alignment. This
confirms that the 2D projection captures the nec-
essary features to evaluate facial expressions. The
only notable disagreement between Emo3D and
human rankings occurs when comparing VAE Clip
and Emotion-XLM, where VAE Clip scores higher
in human evaluations, while Emotion-XLM scores
higher in Emo3D. However, both are close in scores
in both settings, suggesting a slight gap. Despite
this, the results from the Pearson correlation under-
line the reliability of Emo3D as a benchmark for
emotion assessment in 3D outputs.

7 Conclusion

In this paper, we introduced “Emo3D”, a compre-
hensive “Text-Image-Expression dataset” that cov-
ered a wide range of human emotions and their
textual descriptions, paired with images and 3D
blendshapes. Our use of LLMs to generate prompts
captured a variety of emotional expressions and de-
scriptions. To the best of our knowledge, “Emo3D”
stood out as the most comprehensive FEG dataset,
encompassing sufficiently diverse and complex
emotional descriptions. Furthermore, we devel-
oped an efficient evaluation metric to provide 3D
image synthesis models with a reliable benchmark.
Throughout our work, we tested several unimodal
and multimodal models as baselines to encour-
age new entrants to the field. The significance of
“Emo3D” lies in its potential to advance 3D facial
expression synthesis, holding promising implica-
tions for animation, virtual reality, and emotional
human-computer interaction.

8 Limitations and Future Work

While our dataset exhibits positive attributes, it is
not without errors stemming from the processes
involved in its production. Specifically, the use of
Mediapipe to obtain blendshape scores introduced
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inaccuracies, particularly in the representation of
certain emotions and facial expressions. To en-
hance the dataset in future endeavors, collaboration
with skilled animators could be sought to refine and
design more accurate blendshape scores.

9 Ethics

This paper leverages GPT-3.5 (OpenAI, 2023)
for generating textual emotional descriptions and
DALL-E3 (Ramesh et al., 2022) for creating corre-
sponding images. It’s vital to recognize the poten-
tial biases and privacy concerns inherent in these
AI models. Both GPT-3.5 and DALL-E3, like many
advanced AI systems, reflect the data on which they
were trained, which can include societal biases and
inaccuracies. Mitigating and analyzing such biases
is beyond the scope of this paper. Studies such as
“DALL-EVAL: Probing the Reasoning Skills and
Social Biases of Text-to-Image Generation Models”
(Cho et al., 2023) and the paper “ChatGPT: A Com-
prehensive Review on Background, Applications,
Key Challenges, Bias, Ethics, Limitations and Fu-
ture Scope” (Ray, 2023) thoroughly examine biases
in the DALL-E and GPT models, respectively. Ac-
cording to these studies, the DALL-E and GPT
models are also shown to have certain degrees of
biases related to gender, skin tone, professions, and
certain attributes and may have privacy or account-
ability concerns.

References

Keyu Chen, Changjie Fan, Wei Zhang, and Yu Ding.
2023. 135-class emotional facial expression dataset.

Jaemin Cho, Abhay Zala, and Mohit Bansal. 2023.
Dall-eval: Probing the reasoning skills and social
biases of text-to-image generation models. Preprint,
arXiv:2202.04053.

Yuren Cong, Martin Renqiang Min, Li Erran Li,
Bodo Rosenhahn, and Michael Ying Yang. 2023.
Attribute-centric compositional text-to-image gen-
eration. IEEE Trans. Pattern Anal. Mach. Intell.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Paul Ekman and Wallace V Friesen. Facial action cod-
ing system. Environmental Psychology & Nonverbal
Behavior.

Ayyoob ImaniGooghari, Peiqin Lin, Amir Hossein Kar-
garan, Silvia Severini, Masoud Jalili Sabet, Nora
Kassner, Chunlan Ma, Helmut Schmid, André Mar-
tins, François Yvon, and Hinrich Schütze. 2023.
Glot500: Scaling multilingual corpora and language
models to 500 languages. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1082–
1117, Toronto, Canada. Association for Computa-
tional Linguistics.

Tero Karras, Timo Aila, Samuli Laine, Antti Herva, and
Jaakko Lehtinen. 2017. Audio-driven facial anima-
tion by joint end-to-end learning of pose and emotion.
ACM Transactions on Graphics (TOG).

Sheng Li, Jinpeng Wang, Wei Zhao, Yucong Chen,
and Kunpeng Du. 2023. Cliper: A unified vision-
language framework for in-the-wild facial expression
recognition. arXiv preprint arXiv:2303.00193.

James Derek Lomas, Willem van der Maden, So-
hhom Bandyopadhyay, Giovanni Lion, Nirmal Pa-
tel, Gyanesh Jain, Yanna Litowsky, Haian Xue, and
Pieter Desmet. 2024. Improved emotional alignment
of ai and humans: Human ratings of emotions ex-
pressed by stable diffusion v1, dall-e 2, and dall-e 3.
Preprint, arXiv:2405.18510.

Sam Lowe. 2021. Roberta-base fine-tuned on
goemotions dataset. https://huggingface.co/
SamLowe/roberta-base-go_emotions.

Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris
Mcclanahan, Esha Uboweja, Michael Hays, Fan
Zhang, Chuo-Ling Chang, Ming Guang Yong,
Juhyun Lee, Wan-Teh Chang, Wei Hua, Manfred
Georg, Matthias Grundmann, and Google Research.
2019. Mediapipe: A framework for building percep-
tion pipelines. IEEE Trans. Vis. Comput. Graph.

Yifeng Ma, Suzhen Wang, Yu Ding, Bowen Ma, Tangjie
Lv, Changjie Fan, Zhipeng Hu, Zhidong Deng, and
Xin Yu. 2023. Talkclip: Talking head generation with
text-guided expressive speaking styles. IEEE Trans.
Circuit Syst. Video Technol.

Saif M. Mohammad. 2018. Word affect intensities. In
Proceedings of the 11th Edition of the Language Re-
sources and Evaluation Conference (LREC-2018),
Miyazaki, Japan.

Ali Mollahosseini, Behzad Hasani, and Mohammad H.
Mahoor. 2019. Affectnet: A database for facial
expression, valence, and arousal computing in the
wild. IEEE Transactions on Affective Computing,
10(1):18–31.

OpenAI. 2023. Gpt-4 technical report.

3167

https://doi.org/10.21227/8e31-3188
https://arxiv.org/abs/2202.04053
https://arxiv.org/abs/2202.04053
https://arxiv.org/abs/2301.01413v1
https://arxiv.org/abs/2301.01413v1
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2023.acl-long.61
https://doi.org/10.18653/v1/2023.acl-long.61
https://research.nvidia.com/publication/2017-07_audio-driven-facial-animation-joint-end-end-learning-pose-and-emotion
https://research.nvidia.com/publication/2017-07_audio-driven-facial-animation-joint-end-end-learning-pose-and-emotion
https://arxiv.org/abs/2303.00193
https://arxiv.org/abs/2303.00193
https://arxiv.org/abs/2303.00193
https://arxiv.org/abs/2405.18510
https://arxiv.org/abs/2405.18510
https://arxiv.org/abs/2405.18510
https://huggingface.co/SamLowe/roberta-base-go_emotions
https://huggingface.co/SamLowe/roberta-base-go_emotions
https://arxiv.org/abs/1906.08172v1
https://arxiv.org/abs/1906.08172v1
https://arxiv.org/abs/2304.00334v1
https://arxiv.org/abs/2304.00334v1
https://doi.org/10.1109/taffc.2017.2740923
https://doi.org/10.1109/taffc.2017.2740923
https://doi.org/10.1109/taffc.2017.2740923
https://arxiv.org/abs/2303.08774


Dong Huk Park, Samaneh Azadi, Xihui Liu, Trevor
Darrell, and Anna Rohrbach. 2021. Benchmark for
compositional text-to-image synthesis. IEEE Trans.
Image Process.

Ziqiao Peng, Haoyu Wu, Zhenbo Song, Hao Xu, Xi-
angyu Zhu, Jun He, Hongyan Liu, and Zhaoxin Fan.
2023. Emotalk: Speech-driven emotional disentan-
glement for 3d face animation. IEEE Trans. Circuit
Syst. Video Technol.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision. Proceedings of Machine Learning Re-
search, 139:8748–8763.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol,
Casey Chu, and Mark Chen. 2022. Hierarchical
text-conditional image generation with clip latents.
Preprint, arXiv:2204.06125.

Partha Pratim Ray. 2023. Chatgpt: A comprehensive
review on background, applications, key challenges,
bias, ethics, limitations and future scope. Internet of
Things and Cyber-Physical Systems, 3:121–154.

Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang,
Junlin Wu, and Yi-Shin Chen. 2018. CARER: Con-
textualized affect representations for emotion recog-
nition. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3687–3697, Brussels, Belgium. Association
for Computational Linguistics.

J. Rafid Siddiqui. 2022. Explore the expression:
Facial expression generation using auxiliary clas-
sifier generative adversarial network. Preprint,
arXiv:2201.09061.

Guy Tevet, Brian Gordon, Amir Hertz, Amit H.
Bermano, and Daniel Cohen-Or. 2022. Motionclip:
Exposing human motion generation to clip space.
Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 13682 LNCS:358–
374.

Tao Xu, Pengchuan Zhang, Qiuyuan Huang, Han Zhang,
Zhe Gan, Xiaolei Huang, and Xiaodong He. 2017.
Attngan: Fine-grained text to image generation with
attentional generative adversarial networks. IEEE
Conf. Comput. Vis. Pattern Recog.

Yicheng Zhong, Huawei Wei, Peiji Yang, and Zhisheng
Wang. 2023. Expclip: Bridging text and facial ex-
pressions via semantic alignment.

Kaifeng Zou, Sylvain Faisan, Boyang Yu, Sébastien
Valette, and Hyewon Seo. 2023. 4d facial expression
diffusion model. IEEE Trans. Pattern Anal. Mach.
Intell.

A Human Evaluation Guidelines

In this section, we provide detailed instructions
given to annotators for the two human evaluation
experiments conducted in our study. The first ex-
periment assesses the reliability of emotion distri-
butions generated by GPT-3.5, while the second
evaluates the alignment of our proposed Emo3D
metric with human perception. Below, we outline
the annotation guidelines for each experiment.

A.1 Emotion Distribution Annotation

In this experiment, annotators were asked to assign
intensity values (ranging from 0 to 1) for eight emo-
tional categories—Neutral, Fear, Anger, Happiness,
Contempt, Disgust, Surprise, and Sadness—based
on facial expression samples. The goal was to
measure how well the GPT-3.5-generated emotion
distributions align with human perception. Part
of the evaluation form given to the annotators is
shown in Figure 8

A.1.1 Objective
Your task is to assign intensity values (on a
scale from 0 to 1) for eight emotional cate-
gories—Neutral, Fear, Anger, Happiness, Con-
tempt, Disgust, Surprise, and Sadness—for each
facial expression sample. The goal is to reflect the
emotional profile conveyed by the facial expression
as accurately as possible. These intensities will
then be normalized into a distribution for further
analysis.

A.1.2 General Principles
• Granular Scale of Emotion Intensity: Each

emotion is rated independently on a scale from
0 to 1, where:

– 0: The emotion is not present in the ex-
pression at all.

– 1: The emotion is maximally expressed.

Avoid “forcing” an emotion if it is not dis-
cernible in the expression.

• Independence of Emotions: Emotions may
co-occur; for example, a person may express
both Surprise and Happiness. Score all emo-
tions based on their individual presence in the
expression, regardless of overlaps.

• Facial Action and Emotion Mapping: Use
key visual cues, such as facial action units
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(FAUs), to infer emotional intensity. The rela-
tionship between facial movements and emo-
tions can help ensure consistency:

– Happiness: Upturned mouth corners
(smile), cheek raising.

– Anger: Furrowed brows, clenched jaw,
narrowed eyes.

– Sadness: Downturned mouth corners,
drooping eyelids, raised inner brows.

– Fear: Wide eyes, raised eyebrows, tense
mouth.

– Surprise: Wide-open eyes, raised eye-
brows, rounded mouth.

– Disgust: Wrinkled nose, raised upper
lip.

– Contempt: Asymmetrical smirk, raised
lip on one side.

– Neutral: Lack of pronounced facial mus-
cle activity.

• Subtle Expressions:

– Pay attention to subtle facial cues. Low-
intensity emotions should still be scored
rather than being ignored if present.

– When unsure, assign a lower intensity
rather than zero unless absolutely no evi-
dence of the emotion exists.

A.1.3 Systematic Process for Assessing
Emotional Intensity

1. Break Down the Expression Into Compo-
nents (FAUs)

• Start by identifying the movements of
key facial features (e.g., mouth, eyes,
eyebrows) and map them to relevant
emotions using the following FAU-to-
emotion guide:

– Neutral: Minimal or no visible acti-
vation of facial muscles.

– Happiness: Upturned mouth corners
(AU12: Lip Corner Puller), cheek
raising (AU6: Cheek Raiser).

– Sadness: Downturned mouth cor-
ners (AU15: Lip Corner Depressor),
raised inner eyebrows (AU1+AU4:
Inner Brow Raiser and Brow Low-
erer), drooping eyelids.

– Anger: Furrowed brows (AU4: Brow
Lowerer), narrowed eyes (AU7: Lid

Tightener), tightened lips or open
mouth (AU23: Lip Tightener or
AU22: Lip Funneler).

– Fear: Wide-open eyes (AU5: Up-
per Lid Raiser), raised eyebrows
(AU1+AU2: Inner and Outer Brow
Raiser), mouth corners stretched
back (AU20: Lip Stretcher).

– Surprise: Raised eyebrows
(AU1+AU2), wide-open eyes
(AU5), rounded mouth (AU27:
Mouth Stretch).

– Disgust: Wrinkled nose (AU9: Nose
Wrinkler), raised upper lip (AU10:
Upper Lip Raiser).

– Contempt: Asymmetrical lip pull or
smirk (AU14: Dimpler).

2. Assess the Intensity of Each Facial Compo-
nent

• For each FAU, rate its intensity on a scale
of 0 to 1:

– 0: No activation of the feature.
– 0.5: Moderate activation: facial ex-

pressions are noticeable but not pro-
nounced.

– 1: Strong activation: facial expres-
sions are clear and dominate the ex-
pression.

3. Combine FAU Ratings Into Emotion Scores

• Use the intensity ratings of the FAUs to
assign a score for each emotion:

– The most intense and dominant FAUs
should correspond to higher emotion
scores.

– Secondary or blended FAUs should
result in proportionally lower scores.

– For ambiguous FAUs, assign a low
intensity (e.g., 0.1–0.3) rather than
ignoring the emotion entirely.

4. Evaluate the Expression as a Whole

• After scoring individual emotions based
on FAUs, assess the overall emotional
impression:

– Does the expression predominantly
communicate one emotion Assign it
the highest intensity score.
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– Are multiple emotions blended or
secondary emotions present? Score
these proportionally.

– For subtle or fleeting expressions,
lower all scores appropriately.

5. Validate and Adjust Scores

• Ensure all eight emotion scores align
with your observations:

– No emotion should be scored non-
zero without clear justification from
FAU activation or your subjective in-
terpretation.

– Review for proportionality: The
most dominant emotion should gen-
erally have the highest score.

– Adjust scores as needed for consis-
tency with previous samples.

A.1.4 Step-by-Step Workflow
• Observe the Expression Carefully: View

each facial expression for at least 5 seconds to
assess its components (eyes, eyebrows, mouth,
etc.).

• Score the Emotions: Assign a value from 0
to 1 to each of the eight emotional categories,
referencing the FAU mappings and observed
intensity.

• Review and Adjust: After initial scoring, re-
check your annotations to ensure alignment
between the FAU-based observations and over-
all emotional impression.

• Document Annotations: Provide intensity
values for all eight emotions, ensuring the sum
does not need to equal 1, as normalization will
be handled in post-processing.

A.1.5 Tips for Consistency and Accuracy
• Neutral as a Baseline: Start by assessing

whether the face appears mostly neutral and
assign scores to other emotions relative to this
baseline.

• Dominant vs. Secondary Emotions: Iden-
tify the primary (most intense) emotion. As-
sign the highest score to it and lower scores to
secondary or blended emotions.

• Non-Emotional Features: Ignore non-
emotional aspects of the face, such as aes-
thetic features (e.g., wrinkles, facial asymme-
try) or artifacts (e.g., shadows, blurs).

• Consistency Across Samples: Use a stan-
dardized scoring framework across all sam-
ples. If a similar expression appears in mul-
tiple samples, ensure your ratings are consis-
tent.

A.2 Metric Evaluation Study
This experiment aimed to assess the effective-
ness of our Emo3D metric in capturing human-
perceived emotional similarity. Annotators were
presented with generated 3D facial expressions and
corresponding textual prompts and were asked to
evaluate the emotional congruence between them.
These human judgments were then compared to the
metric scores to analyze its alignment with human
perception. A sample of the form provided to the
annotators can be seen in Figure 9.

A.2.1 Annotation Guidelines
You will evaluate how well four computational
models generate facial expressions based on textual
descriptions. Your task is to rank the four output
images from 1 (best match) to 4 (least match) for
each description. To ensure a systematic and ob-
jective evaluation, follow the step-wise procedure
outlined below, starting with major considerations
and narrowing down to finer details.

Step 1: Understand the Description Read the
text carefully to identify:

• Primary Emotion: The central emotional
state described (e.g., Neutral, Fear, Anger,
Happiness, Contempt, Disgust, Surprise, or
Sadness).

• Secondary Nuances: Additional emotional
layers or subtleties, such as mixed emotions
(e.g., fearful surprise or sad anger).

• Intensity: Determine whether the text de-
scribes a subtle, moderate, or intense expres-
sion of the emotion.

• Facial Detail Cues: Note specific descrip-
tions of facial features (e.g., "raised eye-
brows," "tightened lips," "averted gaze") or
contextual hints.

Step 2: Evaluate Overall Alignment with the
Main Emotion For each image:

• Identify the expressed emotion: Assess which
emotion is most clearly communicated by the
facial expression in the image.
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Figure 8: A blank annotation sheet provided to annotators for recording emotion distribution ratings across eight
emotional categories.

• Match to the text: Decide how well this pri-
mary emotion aligns with the main emotion
described in the text.

– Assign higher preference to images that
capture the correct emotional category.

– If none align perfectly, select the one that
aligns most closely.

Step 3: Assess Emotional Intensity

• Compare the intensity of the emotion in each
image with the level implied in the text.

• Look for proportionality:

– Is the smile too exaggerated for a mildly
happy description?

– Does fear appear subdued when the text
implies terror?

• Penalize images that fail to match the de-
scribed intensity.

Step 4: Examine Key Facial Features For each
image, evaluate how well the detailed facial com-
ponents align with the text:

• Eyes: Are the eyes widened, narrowed, or
averting gaze as described?

• Mouth: Is the mouth set, smiling, frowning,
or clenched appropriately?

• Brows & Forehead: Do they reflect the ten-
sion or relaxation described (e.g., furrowed
brows for anger)?

• Other Details: Consider any additional fea-
tures like head tilts, cheek tension, or jaw po-
sitioning mentioned in the description.

Step 5: Consider Overall Naturalness

• Does the facial expression look believable and
anatomically correct?

• Penalize images with unnatural or distorted
features that detract from their realism, even
if they align with the text descriptively.

Step 6: Rank the Images

• Compare all four images: Based on the above
criteria, rank the images from 1 (best match)
to 4 (least match).

• Resolve ties by weighing:

– Major alignment with the primary emo-
tion.

– Clarity of facial features.
– Naturalness and intensity accuracy.

Step 7: Provide Notes (Optional)

• For any ambiguous cases or particularly
strong impressions, include brief comments
explaining your decisions.

– Example: Image 3 captures the surprise
well, but the mouth is too exaggerated
compared to the text.
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Figure 9: A blank evaluation sheet given to annotators for scoring the quality of generated facial expressions for
each model based on textual descriptions.

Final Checklist Before Submission

• Have you ranked all four images distinctly?

• Did you consider all major and minor criteria
for each image?

• Are your rankings consistent with the textual
descriptions?
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