
Proceedings of the 31st International Conference on Computational Linguistics, pages 7870–7880
January 19–24, 2025. ©2025 Association for Computational Linguistics

7870

Incorporating Review-missing Interactions for
Generative Explainable Recommendation

Xi Li, Xiaohe Bo, Chen Ma, Xu Chen*

Gaoling School of Artificial Intelligence, Renmin University of China
{lixi2021, xiaohe, machen2001, xu.chen}@ruc.edu.cn

Abstract

Explainable recommendation has attracted
much attention from the academic and industry
communities. Traditional models usually lever-
age user reviews as ground truths for model
training, and the interactions without reviews
are totally ignored. However, in practice, a
large amount of users may not leave reviews
after purchasing items. In this paper, we argue
that the interactions without reviews may also
contain comprehensive user preferences, and
incorporating them to build explainable recom-
mender model may further improve the expla-
nation quality. To follow such intuition, we first
leverage generative models to predict the miss-
ing reviews, and then train the recommender
model based on all the predicted and original
reviews. In specific, since the reviews are dis-
crete tokens, we regard the review generation
process as a reinforcement learning problem,
where each token is an action at one step. We
hope that the generated reviews are indistin-
guishable with the real ones. Thus, we intro-
duce an discriminator as a reward model to eval-
uate the quality of the generated reviews. At
last, to smooth the review generation process,
we introduce a self-paced learning strategy to
first generate shorter reviews and then predict
the longer ones. We conduct extensive exper-
iments on three publicly available datasets to
demonstrate the effectiveness of our model.

1 Introduction

Explainable recommendation has recently attracted
much attention from the academic and industry
communities. It basically aims to solve the prob-
lem of “why an item should be recommended to
a user”. In early years, explainable recommender
models are mostly based on features (Zhang et al.,
2014; Seo et al., 2017), where the explanations
are generated by predicting user favorite features,
and filling them into fixed templates. However,

* Corresponding authors.

the explanation capability of such methods can be
limited by the feature set, which is usually small
in practice, and the fixed template may be less
friendly and vivid as an interface to communicate
with users. To alleviate these problems, people
propose to directly generate explanations in the
form of natural languages (called generative ex-
plainable recommendation) (Li et al., 2020, 2023,
2017a), which are much more flexible and user
accessible. Usually, generative explainable rec-
ommendation regards user reviews as explanation
ground truths, and converts the explanation gener-
ation task to the review prediction problem. For
example, NRT (Li et al., 2017b) regards user re-
views as word sequences, and predicts them based
on gated recurrent neural networks. PETER (Li
et al., 2021) incorporates IDs of users and items
into the transformer to generate personalized ex-
planations. PEPLER (Li et al., 2023) regards user
and item IDs as prompts and leverages GPT-2 to
enhance the explanation generation process.

While the above generative explainable recom-
mender models have achieved remarkable suc-
cesses, they all require that all the user-item in-
teractions should have reviews, and for the review-
missing interactions, they usually ignore them in
the model optimization process. We believe such
requirement may severely limit the performance of
existing models in practice to provide reasonable
explanations. To be more specific, in real-world
scenarios, a large amount of users may only leave
a small number of reviews, even though they have
interacted with a lot of items in the past.

As can be seen in Figure 1, we count the num-
bers of interactions with only ratings and the ones
with both ratings and reviews. We can see that most
interactions are without reviews in Figure 1(a). To
be more specific, in Figure 1(b), the majority of
users have a review missing rate of 75%-100%.
Then, the interactions with only ratings are impor-
tant to reveal more comprehensive user preferences

7871

Figure 1: Figures that present the review-missing situations on the two real-world datasets. (a) shows the number of
interactions that miss reviews or contain reviews. (b) presents the extent to which reviews are missing for users. (c)
illustrates an example showing that leveraging interaction records without reviews can improve model performance,
where the question mark represents unknown ratings or reviews for users.

and also can provide supports for other interactions
to generate reasonable explanations. For instance,
in Figure 1(c), the user has two interactions: (A)
she purchases a laptop, leaving a positive score
and a review on the screen, and (B) she scores
an iPhone with 5-star, but does not post reviews.
Suppose we need to predict the review of the user
for an Apple watch, then according to (B) and the
collaborative nature, we know that the user may
give a positive score to the Apple watch due to its
brand. According to (A), we know that when the
user gives a positive score on a digital item, then
she may comment on the screen. By combining the
above two conditions, the model can predict that
the user may post a review including “screen” on
the Apple watch. If we do not have the information
of (B), the prediction can be less accurate. As a
result, the interactions with only rating informa-
tion are important for the review generation, which
has been ignored in existing generative explainable
recommender models.

In this paper, we propose to incorporate
interactions without reviews to improve
explainable recommender models(called IWRER
for short). In specific, we design a general adver-
sarial framework, where the review prediction task
is converted to a reinforcement learning problem,
and we predict the reviews for the rating-only
interactions to retrain explainable recommender
models. To make the review prediction process
more smoothly, we introduce a self-paced learning
technique, where shorter reviews are optimized
before the longer ones. The main contributions of
this paper can be summarized as follows:

• We propose the idea of incorporating interac-

tions without reviews to conduct explainable
recommendation, which is the first work in
the domain of generative explainable recom-
mendation, to the best of our knowledge.

• We design an adversarial framework to imple-
ment the above idea, and introduce self-paced
learning to improve the training process.

• We conduct extensive experiments along with
qualitative and quantitative analysis to demon-
strate the effectiveness of our framework.

2 Related Work

Explainable recommendation systems enhance user
trust and satisfaction by providing insightful expla-
nations. There are many forms of recommendation
explanations (Zhang et al., 2020). For instance,
(Peake and Wang, 2018; Balog et al., 2019) are
rule-mining methods, (Chen et al., 2019) provides
visual explanations, (Sharma and Cosley, 2013)
generates explanations based on social networks,
and (Chen et al., 2021) generate natural languages
for explanations. For the last way, early models
such as NRT (Li et al., 2017b) use multi-layer per-
ception to predict ratings and generate explanations
with GRU. To ensure the controllability and expres-
siveness of generated sentences, NETE (Li et al.,
2020) incorporates features and sentiment analysis
into the process of text generation. To generate
more personalized explanations, PETER (Li et al.,
2021) utilizes an attention masking matrix and
transformer blocks, incorporating user and item
IDs into the transformer. PEPLER (Li et al., 2023)
leverages user and item IDs as prompts to incor-

7872

Figure 2: Our model architecture. (a) Overall pipeline. (b) Adversarial learning for review generation. (c) Self-paced
learning. (d) Discriminator. I to IV are four steps representing the pre-training, review generation, model retraining,
and testing stage.

porate the knowledge of pre-trained models into
explainable recommender models.

However, all of the above models filtered the
data in which reviews are missing, which also re-
flects user preferences. Therefore, we propose our
framework IWRER, which can incorporate these
interactions to capture user preferences more ac-
curately and comprehensively, so that the model
performance can be improved.

3 Problem Definition

Let us consider a user set U and an item set I . The
interactions between these users and items are gath-
ered into a set O = {(u, i, rui, sui)|u ∈ U , i ∈ I},
where each element represents that user u has inter-
acted with item i, and the rating and review are rui
and sui, respectively. The review sui is a sequence
of word tokens, that is, sui = {w1

ui, w
2
ui, ..., w

lui
ui },

where lui is the length of the review. The task is to
learn a model, so that we can accurately predict the
rating and review for a given user-item pair.

Traditional models usually assume that sui is
visible in all the samples (Li et al., 2020, 2023,
2017a). However, as mentioned before, such as-
sumption is unreasonable and impractical. Thus, in
our problem, we allow O to have review-missing
interactions, that is, we have two sets DL =
{(u, i, rui, sui)} and DU = {(u, i, rui)}, where
in DL, the interactions are all accompanied with
reviews, but in DU , we only have ratings for the
interactions. Our task is to design a unified frame-

work to leverage both DL and DU to better learn an
explainable recommender model for rating predic-
tion and explanation generation, which is basically
a semi-supervised learning problem.

4 Methodology

The overall pipeline of our framework is presented
in Figure 2. We have four steps. The first step is pre-
training an explainable recommender model based
on DL. Then, we generate reviews for DU based
on reinforcement learning in an adversarial manner.
To learn the generation model more smoothly, we
introduce a self-paced learning technique to sched-
ule the training samples in an easy to hard manner.
In the next, the original and generated reviews are
both leveraged to retrain the explainable recom-
mender model. At last, we use the learned model
to make predictions in the test set. In the subse-
quent section, we present a detailed explanation of
our framework.

4.1 Review Generation as a Reinforcement
Learning Problem

Generating reviews for DU based on DL is basi-
cally a data augmentation problem. However, dif-
ferent from traditional settings, where the key task
is to predict binary or multi-category labels, our
problem needs to generate user reviews, which are
sequential word tokens. Such differences bring sig-
nificant challenges for us to generate high quality
user reviews. To begin with, since the words are

7873

represented by discrete IDs, it is hard to directly
propagate gradients in a fully differentiable manner.
Then, the prediction error of the current words may
influence the accuracy of the subsequent inference,
and the accumulated error can be considerably am-
plified as the sequence length becomes larger.

To solve the first problem, we regard the re-
view generation process as a reinforcement learn-
ing problem, where the model for generating re-
views is updated based on the reward for measuring
the review quality. However, how to comprehen-
sively and accurately measure the review quality is
not easy, since there can be too many perspectives
to evaluate the reviews, and it is labor-intensive
for designing the evaluation rules. To alleviate this
problem, we take inspiration from adversarial learn-
ing to design an automatic evaluation strategy. In
specific, we suppose the real user reviews have the
highest quality, and if the model generated reviews
are more similar to the real ones, then they should
also have higher quality. We deploy a discriminator
to measure the review quality, which is expected
to output 1 for the real reviews and 0 for the ones
that are far from them. In addition, the review gen-
eration model is optimized to produce high quality
reviews to fool the discriminator. We formulate
the state, action, reward, and policy of the designed
reinforcement learning problem at step t as follows,
detailing each component for clarity: the state st is
(u, i, rui, w1, w2, ..., wt−1), where u and i denote
user and item separately, and {w1, w2, ..., wt−1}
is the subsequence that has already been generate;
the action is the word to be generated at step t;
the reward is computed based on the discriminator
after the complete review has been generated; the
policy Pθ chooses a word wt based on the current
state st, where θ is the parameter set of the policy.

Suppose the discriminator is Jφ(·) ∈ (0, 1), then
we use the following minimax objective to itera-
tively optimize Pθ and Jφ:

min
θ

max
φ

Es∼Pdata [log Jφ(s)] + Es∼Pgen [log (1− Jφ(s))],

(1)

where s = (u, i, rui, w1, w2, ..., wT) is a complete
review. Pdata and Pgen represent the distribution of
the real user reviews and the ones generated by Pθ.
In this objective, the generator θ is optimized to
produce reviews which can lead to larger Jφ. The
discriminator φ is learned to separate the reviews
from the users and the generator θ. After conver-
gence, the generator is expected to produce reviews
that can not be identified by the discriminator. The

empirically version of equation (1) can be written
as follows:

min
θ

max
φ

∑
s∼Odata

[log Jφ(s)] +
∑

s∼Ogen

[log (1− Jφ(s))],

(2)

where Odata and Ogen are the reviews in DL and
the ones generated from Pθ, respectively.

4.2 Review Generation via Self-paced
Learning

As mentioned before, word prediction errors may
be accumulated in the sequence generation process.
To overcome this challenge, we introduce a strategy
called self-paced learning, to smooth the training
process of the generator (Wang et al., 2022). In
specific, we first let the generator produce shorter
reviews. After it can well handle these samples, we
gradually increase the review length. Intuitively,
when the reviews are shorter, the model only needs
to handle smaller accumulation errors, which builds
easy optimization tasks. Once the model can gener-
ate good enough short sequences, we increase the
review length. At this time, the model can already
generate accurate short sequences. Thus, longer
reviews may not lead to too large accumulation of
errors.

To achieve the above idea, an important chal-
lenge is how to control the sequence length
of the generated reviews adaptively in the opti-
mization process. Before solving this challenge,
we first take a closer look at the optimization
process of θ. To begin with, suppose L =∑

s∼Ogen
[log (1− Jφ(s))], we have: where we use

P̂ to represent the joint distribution of all the words
in a sequence. The length of the generated review
is T . To control the sequence length, we improve
Pθ to a new policy as follows:

P
′
θ =


Pθ(wt|u, i, w1,...,t−1) If t < g(µ)

κ If t > g(µ) and wt = EOS

(1− κ)

|V| If t > g(µ) and wt ̸= EOS

(3)

where P
′
θ represents P

′
θ(wt|u, i, w1,...,t−1), |V| is

the size of the word vocabulary. g(µ) is a self-
paced regularizer. “EOS” is a special token indicat-
ing the complete review has been generated. When
the generation step is smaller than g(µ), this policy
is the same as the original one. After the sequence
is longer than g(µ), the policy outputs “EOS” with
a large probability κ, and the other words only have
very small chances to be generated. By this opera-
tion, the length of the generated review is smaller

7874

than g(µ) with a large probability. In the train-
ing process, we gradually enlarge g(µ) to increase
the review length, such that θ can be optimized
in an easy to hard manner. To this end, we revise
objective L as follows:

L =
∑

s∼Ogen

[log (1− Jφ(s))] + g(µ), (4)

where we let g(µ) = max{aµ2 + b, 10}, a and b
are hyper-parameters that control the growth trend
of g(µ).

By combining the above reinforcement learning
and self-paced learning components, the training
process of our framework is presented in Algo-
rithm 1 in Appendix A.

4.3 Model Specification

For better understanding our framework, we in-
troduce the implementation of the generator and
discriminator of our framework in detail.

4.3.1 Implementation of Generator Pθ

The generator, denoted as Pθ, is responsible for
simulating user-generated reviews on DU based on
the user-item interaction data DU ∪ DL. In this
paper, we use PETER (Li et al., 2021) and PE-
PLER (Li et al., 2023) as Pθ, because they are ex-
plainable recommendation models with the ability
of natural language generation and rating predic-
tion. As mentioned in section 3, after training on
DL, Pθ can predict ratings and generate explana-
tions given (u, i) in DU .

4.3.2 Implementation of Discriminator Jφ

The discriminator Jφ plays a crucial role in judging
whether the input data (u, i, rui, w1, w2, ..., wT)
can form a reasonable sample. We implement it
using GRU (Chung et al., 2014), which is adept
at processing sequential data like text. The GRU-
based architecture allows Jφ to capture and analyze
the user behavior sequence, in which we leverage
the the embedding of user u to initialize its first
hidden state. The output of the GRU is then passed
through the sigmoid activation function σ to obtain
a probability score in (0, 1), indicating whether the
sequence of user behavior constitutes a reasonable
sample:

Jφ(u, i, rui, w1, w2, ..., wlui) = σ(bThl+1) (5)

where hl+1 denotes the last hidden state, b is a
linear layer to project hl+1 into a scalar value.

5 Experiments

5.1 Experiments Setup

5.1.1 Datasets
We conduct our experiments based on three
publicly available explainable recommendation
datasets following (Li et al., 2020), which cover
the area of Hotel, E-commerce and Restaurant.

TA-HK AZ-MT YELP19
user 9,765 7,506 27,147
item 6,280 7,360 20,266

records 105,570 226,362 463,737
sparsity 99.83% 99.59% 99.92%
domain Hotel E-commerce Restaurant

Table 1: Statistics of the three real-world datasets.

TripAdvisor (TA-HK) is a travel dataset1,
where there are numerous ratings and reviews, re-
flecting consumer preferences for Hong Kong’s
hotels. Amazon (Movies&TV) is an e-commerce
dataset2, which provides extensive user reviews
and ratings for a wide range of movies and TV
shows. Yelp Challenge 2019 (YELP19) is a restau-
rant dataset3 including diverse user reviews and rat-
ings for restaurants across various businesses. The
statistics of the above three real-world datasets are
reported in Table 1.

5.1.2 Baselines
To assess the performance of our framework, we
apply it to PETER and PEPLER, and compare it
against the following methods: Att2Seq (Dong
et al., 2017) is an encoder-decoder architecture
that generates reviews by LSTM (Hochreiter and
Schmidhuber, 1997); NRT (Li et al., 2017b) is an
explainable recommendation model that predicts
ratings by MLP (Rosenblatt, 1958) and generates
reviews with GRU. PETER (Li et al., 2021) is a
personalized explainable recommendation model
that incorporates user and item information for ex-
planation generation; PEPLER (Li et al., 2023)
employs user and item IDs as prompts to en-
hance text generation. We apply our framework
on PETER and PEPLER to verify the improve-
ment, which are two explainable recommendation
models. The resulting methods are referred to as
IWRER(PETER) and IWRER(PEPLER), respec-

1https://www.cs.cmu.edu/∼jiweil/html/hotel-review.html
2https://jmcauley.ucsd.edu/data/amazon/
3https://www.yelp.com/dataset

7875

Metrics
BLEU (%) ROUGE-1 (%) ROUGE-2 (%)

RMSE (↓)
B-1 B-4 F1 R P F1 R P

TA-HK dataset
MF - - - - - - - - 0.913

SVD++ - - - - - - - - 0.881
Att2seq 14.871 0.940 15.271 14.805 17.867 1.896 1.914 2.179 -

NRT 14.619 0.854 15.529 14.616 18.655 1.909 1.899 2.207 0.815
PETER 14.904 0.822 16.176 16.806 17.047 1.963 2.147 1.998 0.849

IWRER(PETER) 16.311 1.076 16.901 16.884 18.745 2.273 2.427 2.376 0.818
PEPLER 15.593 0.993 15.962 15.461 19.012 2.110 2.107 2.493 0.823

IWRER(PEPLER) 15.906 1.083 16.619 16.070 19.740 2.217 2.272 2.526 0.804
AZ-MT dataset

MF - - - - - - - - 1.088
SVD++ - - - - - - - - 1.008
Att2seq 12.558 0.956 15.214 13.621 20.118 2.073 1.963 2.647 -

NRT 10.887 0.739 15.091 12.795 21.221 1.903 1.718 2.566 0.978
PETER 13.335 1.011 15.543 14.281 19.547 2.111 2.022 2.617 0.967

IWRER(PETER) 13.517 1.040 15.870 14.534 20.080 2.199 2.115 2.727 0.958
PEPLER 12.403 0.889 15.046 13.730 19.306 1.874 1.790 2.443 0.976

IWRER(PEPLER) 13.281 1.012 15.484 14.490 19.496 2.067 2.030 2.591 0.967
YELP19 dataset

MF - - - - - - - - 1.154
SVD++ - - - - - - - - 1.127
Att2seq 11.884 0.706 14.181 12.939 18.202 1.461 1.410 1.850 -

NRT 11.761 0.584 13.773 12.305 18.171 1.228 1.150 1.597 1.031
PETER 10.679 0.669 13.760 12.065 18.723 1.453 1.348 1.963 1.024

IWRER(PETER) 12.049 0.761 14.519 12.942 19.240 1.602 1.579 2.006 1.018
PEPLER 10.097 0.675 13.651 12.036 18.827 1.571 1.472 2.139 1.020

IWRER(PEPLER) 11.592 0.795 14.141 12.956 18.940 1.652 1.639 2.193 1.017

Table 2: Overall performance about representative baselines and our framework IWRER on PETER and PEPLER, in
which we highlight the best results in bold fonts. "B-1", "B-4", "R" and "P" denote "BLEU-1", "BLEU-4", "Recall"
and "Presion", respectively. We omit the "%" when reporting the values of BLEU and ROUGE, and leverage "-" for
unavailable computations on some metrics. For RMSE, the sign "↓" indicates that lower values are related to better
recommendation performance.

tively. For rating prediction, we additionally com-
pare our framework with two collaborative filtering
methods: MF (Shi et al., 2012) leverages latent
vector representations for user-item preference esti-
mation based on inner products to calculate ratings;
SVD++ (Koren, 2008) is an advanced collabora-
tive filtering algorithm that incorporates implicit
feedback along with explicit ratings.

5.1.3 Implementation Details
To construct a scenario where part of the reviews
are missing, we randomly select 20% of the inter-
action data for each user and mask their reviews to
get review-missing data. For the remaining 80%
of the interaction records, we divide them into
training, validation, and testing sets in an ratio of

8:1:1 , where we ensure that all the user-item in-
teractions in the testing set have been seen in the
training set. We evaluate baselines and our frame-
work based on three well-known metrics including
RMSE (Hotelling, 1992) for rating prediction, and
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004)
for explanation generation. We constrain the length
of the generated sentence to 15 and set the size of
the vocabulary V to 20,000 following (Li et al.,
2020, 2021). During the process of adversarial
training, we optimize the generator Pθ and discrim-
inator Jφ alternately, with 4 rounds for Pθ and 2
rounds for Jφ. For all models, we set the batch size
to 128 and fix embedding size at 512. For hyper-
parameters such as hidden size and learning rate,

7876

Method
TA-HK AZ-MT YELP19

B-1↑ B-4↑ RMSE↓ B-1↑ B-4↑ RMSE↓ B-1↑ B-4↑ RMSE↓
PEPLER 15.593 0.993 0.823 12.403 0.889 0.976 10.097 0.675 1.020

IWRER(PEPLER)-GAN-SPL 14.605 0.946 0.805 12.067 0.940 0.968 10.358 0.715 1.018
IWRER(PEPLER)-GAN 15.620 0.994 0.810 12.711 0.943 0.968 10.756 0.719 1.017
IWRER(PEPLER)-SPL 15.813 1.065 0.804 13.062 0.955 0.968 10.572 0.729 1.018

IWRER(PEPLER) 15.906 1.083 0.804 13.281 1.012 0.967 11.592 0.795 1.017

Table 3: Performance comparison on review generation and rating prediction between baseline PEPLER, our
framework IWRER(PEPLER) and its variants, where "B-1", "B-4" and "SPL" denote "BLEU-1", "BLEU-4" and
"self-paced learning", respectively. When reporting BLEU scores, the percent sign “%" is omitted. Bold fonts
represent the best results between our framework and other models.

grid search is employed to determine them. Due to
space constraints, we introduce them in detail in the
appendix. See Appendix B for more information.

5.2 Overall Performance

The comprehensive comparison results are summa-
rized in Table 2. We can see: among these base-
lines, PETER and PEPLER can obtain better re-
sults against other baselines in most cases, and can
usually beat Att2seq and NRT in each evaluation
metric for all datasets. This is consistent with the
previous work (Li et al., 2021, 2023), and demon-
strates the effectiveness of incorporation of user
and item ID when generating explanations. NRT
always performs better than MF and SVD++, be-
cause reviews also reflect user preferences, which
can be leveraged to promote rating prediction. MF
could achieve the worst performance, and SVD++
always beats MF benefiting from the incorporation
of user history behaviors. Encouragingly, apply-
ing our framework to explainable recommendation
models such as PETER and PEPLER can always
enhance the model performance on all of the three
datasets. This is because our method is capable of
incorporating samples with missing reviews to cap-
ture user preferences more comprehensively with
the help of reinforcement learning and self-paced
learning, improving the performance of explana-
tion generation and rating prediction tasks. On
average, our method can enhance the best perfor-
mance against PETER by about 11.88%, 4.12%,
10.03% on BLEU, ROUGE-1 and ROUGE-2 for ex-
planation generation, and around 1.75% on RMSE
for rating prediction. Compared with PEPLER,
it can improve by around 11.71%, 4.36%, 6.99%,
and 1.05% on these metrics separately. Overall,
the above results demonstrate that by leveraging
the user interaction records without reviews, our
framework can predict more precise ratings and

generate more accurate explanations.

5.3 Ablation Studies

To determine the necessity of each component and
assess their individual contributions to the over-
all performance, we conduct a series of ablation
studies. We remove single or both components of
our framework and get the following three vari-
ants. IWRER(PEPLER)-GAN-SPL is a variant,
in which we remove adversarial learning and self-
paced learning of our framework when generating
the missing reviews. IWRER(PEPLER)-GAN is a
method, where we generate missing reviews with-
out adversarial training. IWRER(PEPLER)-SPL
is a model, where we remove self-paced learning
and generate explanations in greedy search. The
comparison between the variants and our frame-
work is summarized in Table 3. We can see:
for IWRER(PEPLER)-GAN-SPL, the performance
may even decline on some metrics for the three
datasets. This shows that directly using the pre-
trained model for data augmentation does not al-
ways benefit generating more accurate explana-
tions. Compared with our framework, the perfor-
mance on BLEU and RMSE decreases when the
adversarial training or self-paced learning module
is removed. And their performance always beats
IWRER(PEPLER)-GAN-SPL on BLEU-1 and
BLEU-4. The reason is that for IWRER(PEPLER)-
GAN, SPL enables the model to generate expla-
nations from easy to difficult, making the learn-
ing process smoother. For IWRER(PEPLER)-SPL,
GAN helps to optimize the generator by judging
whether the generated user behaviors can form a
reasonable interaction. Finally, the best result is
obtained when combining each part of our frame-
work. Overall, the above analyses demonstrate the
necessity and effectiveness of adversarial learning
as well as self-paced learning in our framework.

7877

Figure 3: Influence of review missing ratio x on the
model performance for RMSE, BLEU-1 and BLEU-4.

Figure 4: Influence of κ, a and b for self-paced learning
on the model performance for RMSE, BLEU-1 and
BLEU-4.

5.4 Parameter Analysis

5.5 Influence of review missing ratio x.

To identify whether our framework is always effec-
tive when different ratios of reviews are absent, we
set it to 20%, 40%, and 60% and conduct verifica-
tion based on PEPLER. The experiment results are
presented in Figure 3, from which we can see: with
the increase of the review missing ratio x, the effec-
tiveness of both PEPLER and IWRER(PEPLER)
decreases. Besides, for different absences of re-
views, IWRER(PEPLER) can always outperform
PEPLER on RMSE and BLEU. In addition, when
there are more missing reviews, the performance
improvement is even more effective for our frame-
work IWRER(PEPLER) compared with PEPLER.

5.6 Influence of the key parameters in
self-paced learning.

In our model, κ represents the stop probability in
the review generation process. a and b are param-
eters that can affect how g(µ) grows up, which
further indirectly determines when the sequence
generation is likely to stop according to the equa-
tion(3). The experiment results are presented in

Figure 4, from which we can see: with the rise of κ,
a and b, the value of RMSE is little affected. This
is because in our framework, self-paced learning is
applied to explanation generation, rather than rat-
ing prediction. For BLEU-1 and BLEU-4, larger κ
tends to lead to better results. The reason for this is
that as the value of κ increases to a sufficiently high
level, the function g(µ) has the capability to "halt"
the process of text generation, so that the model can
learn easier sentences at first. This demonstrates
the effectiveness of self-paced learning. As for a,
the best performance of BLEU-1 and BLEU-4 is
achieved when it is equal to 0.8 for both of the
above two datasets. Finally, when b is equal to
0.8 and 0.2, the best performance is achieved for
TA-HK and AZ-MT datasets separately, indicating
that the value of b needs to be carefully tuned in
the experiments.

5.7 Explanation Evaluation

To determine whether our framework can intu-
itively improve the explainability of the generated
explanations by incorporating data without reviews,
we comprehensively evaluate these explanations.
We first conduct a qualitative study to provide an
intuitive understanding of our explanations. Then,
we employ numerous labelers for a quantitative
comparison of our framework against PEPLER.

5.7.1 Qualitative Analysis
Table 4 presents many examples of explana-
tions generated by PEPLER and our framework
IWRER(PEPLER), along with the ground truth. As
we can see, IWRER(PEPLER) can always gener-
ate more accurate explanations than PEPLER. For
the first example, the user pay attention to the dis-
tance between the hotel and the airport. PEPLER
points out that the hotel is conveniently located
but fails to describe its proximity to the "airport".
IWRER(PEPLER) further takes it into account and
generates the word "airport", which is more consist
with the ground truth. In the second case, the con-
sumer looks out for both the "bathroom" and the
"shower". Our framework generates a reasonable
explanation from these two aspects, while PEPLER
only focuses on the "bathroom". In the last exam-
ple, "lobby" and "staff" are mentioned in the review.
IWRER(PEPLER) successfully pays attention to
both of them. However, PEPLER incorrectly de-
scribes the size of the "bathroom" and fails to gen-
erate explanations on "staff". To sum up, benefiting
from the incorporation of samples without reviews,

7878

Model Explanation

Ground Truth very convenient close to the airport.
PEPLER the hotel is located in a very convenient location.

IWRER(PEPLER) the hotel is very well located for access to the airport.

Ground Truth the bathroom was large and the water pressure great in the shower
PEPLER the bathroom was large and the bed is very comfortable.

IWRER(PEPLER) the bathroom was very large and the shower was great.

Ground Truth the design of the the lobby is absolutely gorgeous and the staffs were very nice.

PEPLER the bathroom was large and well-appointed.

IWRER(PEPLER) the lobby is well appointed and the staff is very friendly and helpful.

Table 4: Qualitative analysis on the explanation generation, in which we highlight the matching words between
ground truth and the generated explanations by PEPLER and our framework IWRER(PEPLER).

Dataset TA-HK AZ-MT YELP19 Average

Question Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2

PEPLER 3.078 3.662 3.368 3.692 3.318 3.502 3.255 3.587
IWRER(PEPLER) 3.736 4.210 3.598 3.876 3.654 3.818 3.694 3.968

Table 5: Quantitative studies on the generated expla-
nations by PEPLER and IWRER(PEPLER). We label
larger values to bold fonts between them for each ques-
tion, which indicate better model performance.

our model can capture user interests more com-
prehensively and accurately, and generate more
accurate explanations.

5.7.2 Quantitative Analysis
To assess the real-world effectiveness of our model,
we also perform a manual questionnaire evalua-
tion. Specifically, we randomly select 50 sentences
from each of the three datasets, with explanations
generated by both PEPLER and IWRER(PEPLER),
respectively. Then, we recruited 10 volunteers from
the laboratory to manually score the above reviews
on the following two questions (Wang et al., 2018):

• Q1: Does the explanation help you to get more
information about the recommended item?

• Q2: Does the explanation help you to make
decisions more efficiently?

For Q1 and Q2, the volunteers are asked to give
a rating score from 5 to 1, representing strongly
agree, agree, neutral, disagree, and strongly dis-
agree, respectively. To maintain fairness, the
volunteers are unaware of whether the explana-
tions are generated by PEPLER or our frame-
work IWRER(PEPLER) during the evaluation pro-
cess. We compute the average scores for Q1 and
Q2 across each dataset, and report the final re-
sults in Table 5. As illustrated, our framework
IWRER(PEPLER) consistently achieves higher

scores than PEPLER for both questions across
all datasets. On average, our framework obtains
13.49% and 10.62% improvement on Q1 and Q2
separately. Overall, the above quantitative analysis
demonstrates that our framework can successfully
leverage the samples without reviews to generate
more informative and accurate explanations.

6 Conclusion

In this paper, we propose an explainable recom-
mendation framework to leverage samples with-
out reviews. We employ reinforcement learning to
complete the missing reviews and use self-paced
learning to smooth the word sequence generation.
Extensive experiments demonstrate that our frame-
work can effectively leverage samples without re-
views to improve the informativeness and persua-
siveness of the generated explanations.

7 Limitation

Despite the promising results of our proposed
IWRER framework, there are still several limita-
tions. For one thing, we do not extract features
from the generated reviews, and utilize them to ben-
efit the explanation generation process. For another,
our framework lacks the integration of large lan-
guage models, which could be leveraged to model
user profiles and historical behaviors to produce
more reasonable and personalized explanations.

References
Krisztian Balog, Filip Radlinski, and Shushan

Arakelyan. 2019. Transparent, scrutable and explain-
able user models for personalized recommendation.
In Proceedings of the 42nd International ACM SI-
GIR Conference on Research and Development in
Information Retrieval, pages 265–274.

7879

Hanxiong Chen, Xu Chen, Shaoyun Shi, and Yongfeng
Zhang. 2021. Generate natural language ex-
planations for recommendation. arXiv preprint
arXiv:2101.03392.

Xu Chen, Hanxiong Chen, Hongteng Xu, Yongfeng
Zhang, Yixin Cao, Zheng Qin, and Hongyuan Zha.
2019. Personalized fashion recommendation with
visual explanations based on multimodal attention
network: Towards visually explainable recommenda-
tion. In Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 765–774.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555.

Li Dong, Shaohan Huang, Furu Wei, Mirella Lapata,
Ming Zhou, and Ke Xu. 2017. Learning to generate
product reviews from attributes. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, pages 623–632.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735–
1780.

Harold Hotelling. 1992. Relations between two sets of
variates. In Breakthroughs in statistics: methodology
and distribution, pages 162–190. Springer.

Yehuda Koren. 2008. Factorization meets the neighbor-
hood: a multifaceted collaborative filtering model. In
Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 426–434.

Jing Li, Pengjie Ren, Zhumin Chen, Zhaochun Ren, Tao
Lian, and Jun Ma. 2017a. Neural attentive session-
based recommendation. In Proceedings of the 2017
ACM on Conference on Information and Knowledge
Management, pages 1419–1428.

Lei Li, Yongfeng Zhang, and Li Chen. 2020. Gener-
ate neural template explanations for recommendation.
In Proceedings of the 29th ACM International Con-
ference on Information & Knowledge Management,
pages 755–764.

Lei Li, Yongfeng Zhang, and Li Chen. 2021. Person-
alized transformer for explainable recommendation.
arXiv preprint arXiv:2105.11601.

Lei Li, Yongfeng Zhang, and Li Chen. 2023. Person-
alized prompt learning for explainable recommen-
dation. ACM Transactions on Information Systems,
41(4):1–26.

Piji Li, Zihao Wang, Zhaochun Ren, Lidong Bing, and
Wai Lam. 2017b. Neural rating regression with ab-
stractive tips generation for recommendation. In Pro-
ceedings of the 40th International ACM SIGIR con-
ference on Research and Development in Information
Retrieval, pages 345–354.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

Georgina Peake and Jun Wang. 2018. Explanation min-
ing: Post hoc interpretability of latent factor mod-
els for recommendation systems. In Proceedings of
the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 2060–
2069.

Frank Rosenblatt. 1958. The perceptron: a probabilistic
model for information storage and organization in
the brain. Psychological review, 65(6):386.

Sungyong Seo, Jing Huang, Hao Yang, and Yan Liu.
2017. Interpretable convolutional neural networks
with dual local and global attention for review rat-
ing prediction. In Proceedings of the eleventh ACM
conference on recommender systems, pages 297–305.

Amit Sharma and Dan Cosley. 2013. Do social expla-
nations work? studying and modeling the effects
of social explanations in recommender systems. In
Proceedings of the 22nd international conference on
World Wide Web, pages 1133–1144.

Yue Shi, Alexandros Karatzoglou, Linas Baltrunas,
Martha Larson, Nuria Oliver, and Alan Hanjalic.
2012. Climf: learning to maximize reciprocal rank
with collaborative less-is-more filtering. In Proceed-
ings of the sixth ACM conference on Recommender
systems, pages 139–146.

Nan Wang, Hongning Wang, Yiling Jia, and Yue Yin.
2018. Explainable recommendation via multi-task
learning in opinionated text data. In The 41st in-
ternational ACM SIGIR conference on research &
development in information retrieval, pages 165–174.

Zhidan Wang, Wenwen Ye, Xu Chen, Wenqiang Zhang,
Zhenlei Wang, Lixin Zou, and Weidong Liu. 2022.
Generative session-based recommendation. In Pro-
ceedings of the ACM Web Conference 2022, pages
2227–2235.

Yongfeng Zhang, Xu Chen, et al. 2020. Explainable
recommendation: A survey and new perspectives.
Foundations and Trends® in Information Retrieval,
14(1):1–101.

Yongfeng Zhang, Guokun Lai, Min Zhang, Yi Zhang,
Yiqun Liu, and Shaoping Ma. 2014. Explicit factor
models for explainable recommendation based on
phrase-level sentiment analysis. In Proceedings of
the 37th international ACM SIGIR conference on
Research & development in information retrieval,
pages 83–92.

7880

A Algorithm of Our Framework

Algorithm 1 Learning Algorithmic of IWRER
Set N , NP , NJ , M for iteration.
Initialize κ, a and b for self-paced learning.
Set the learning rate α.
Initialize µ, φ, and θ.
Pretrain Pθ based on the original dataset DL, in
which all the user-item interactions are
accompanied by reviews.
for k in [1, N] do

Select a user-item pair (u, i) from DU , and
generate a word sequence sui based on P

′
θ,

(u, i) and the rating score rui.
Calculate the reward r = Jφ(u, i, rui, sui).
for i in [1, NP] do

µ := µ+ α▽µ L(θ,µ).
µ̂ := µ.
θ := θ + α▽θ L(θ, µ̂).

end
for k in [1, NJ] do

Update the parameters φ in the
discriminator Jφ based on:
min
θ

max
φ

Es∼Pdata [log Jφ(s)] +

Es∼Pgen [log (1− Jφ(s))],
where s = (u, i, rui, w1, w2, ..., wT), and
T is the length of sui.

end
end
for j in [1, M] do

Generate review sui based on the updated Pθ.
Add sui to the sample set without reviews:
D̂U ← DU ∪ {sui|(u, i) ∈ DU}.

end
Train Pθ based on DL ∪ D̂U .

B Hyper-Parameter Settings in Detail

In specific, we tune the learning rate and hidden
size in [0.0001, 0.001, 0.01, 0.1, 1.0] and [32, 64,
128, 256, 512] separately. The number of MLP
layers is searched in [1, 2, 3, 4, 5], and the dropout
ratio is tuned in [0.0, 0.1, 0.2, 0.3, 0.4]. For self-
paced learning in our framework, we search a and
b in [0.2, 0.4, 0.6, 0.8], and κ in [0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 0.99]. The weight of l2 loss
is searched in [0.0001, 0.001, 0.01, 0.1, 0, 1.0].
And the weight of rating loss, context loss and text
loss are determined in the range of [1.0, 0.1, 0.01,
0.001, 0.0001].

	Introduction
	Related Work
	Problem Definition
	Methodology
	Review Generation as a Reinforcement Learning Problem
	Review Generation via Self-paced Learning
	Model Specification
	Implementation of Generator P
	Implementation of Discriminator J

	Experiments
	Experiments Setup
	Datasets
	Baselines
	Implementation Details

	Overall Performance
	Ablation Studies
	Parameter Analysis
	Influence of review missing ratio x.
	Influence of the key parameters in self-paced learning.
	Explanation Evaluation
	Qualitative Analysis
	Quantitative Analysis

	Conclusion
	Limitation
	Algorithm of Our Framework
	Hyper-Parameter Settings in Detail

