
Proceedings of the 10th Workshop on Computational Linguistics and Clinical Psychology (CLPsych 2025), pages 79–89
May 3, 2025 ©2025 Association for Computational Linguistics

Automatic Scoring of an Open-Response Measure of Advanced
Mind-Reading Using Large Language Models

Yixiao Wang1, Russel Dsouza1, Robert Lee2, Ian Apperly2,
Rory T. Devine2, Sanne W. van der Kleij2, Mark Lee1

1School of Computer Science, University of Birmingham, UK
2School of Psychology, University of Birmingham, UK

{y.wang.37, r.s.dsouza, r.lee.5, i.a.apperly, r.t.devine, s.w.vanderkleij, m.g.lee}@bham.ac.uk

Abstract
A rigorous psychometric approach is crucial for
the accurate measurement of mind-reading abil-
ities. Traditional scoring methods for such tests,
which involve lengthy free-text responses, re-
quire considerable time and human effort. This
study investigates the use of large language
models (LLMs) to automate the scoring of psy-
chometric tests. Data were collected from par-
ticipants aged 13 to 30 years and scored by
trained human coders to establish a benchmark.
We evaluated multiple LLMs against human as-
sessments, exploring various prompting strate-
gies to optimize performance and fine-tuning
the models using a subset of the collected data
to enhance accuracy. Our results demonstrate
that LLMs can assess advanced mind-reading
abilities with over 90% accuracy on average.
Notably, in most test items, the LLMs achieved
higher Kappa agreement with the lead coder
than two trained human coders, highlighting
their potential to reliably score open-response
psychometric tests.

1 Introduction

Theory of Mind (ToM), commonly referred to as
mind-reading, is a crucial social cognitive skill that
enables individuals to understand, analyze, and
use mental states to predict and explain the be-
havior of others (Apperly, 2010). Researchers
have extensively studied the emergence and de-
velopment of mind-reading abilities in young chil-
dren, focusing on how they begin to grasp concepts
such as perspective-taking and intention recogni-
tion (Perner et al., 1987; Wimmer and Perner,
1983; Gopnik and Astington, 1988). There is grow-
ing evidence (Apperly et al., 2011; Devine, 2021)
to suggest that ToM continues to develop through-
out middle childhood and adolescence and that
there are individual differences in mind-reading
across this age range.

Individual differences in a child’s ability to un-
derstand others’ perspectives remain stable over

time, are frequently disrupted in clinical and mental
health conditions, and have a significant impact on
long-term outcomes. (Hughes and Devine, 2015).
These outcomes include the quality of peer rela-
tionships, experiences of loneliness, mental health,
overall well-being, and success in educational set-
tings. Given its importance in mental health, in-
dividual differences in mind-reading offer a target
for intervention. Such interventions can be tailored
for individuals in therapeutic settings or applied
broadly to larger populations by improving social
environments. It is plausible that mind-reading will
be equally important to the mental health and well-
being of older adolescents and adults. However,
researchers currently lack reliable and valid tools
to study individual differences in mind reading be-
yond middle adolescence to adulthood (Yeung
et al., 2024). This work addresses the significant
challenges of creating sufficiently difficult mind-
reading tasks that are scalable to large samples.

To create a sufficiently difficult task we reasoned
that a core challenge for performing advanced min-
dreading is to apply mindreading abilities across a
variety of people and contexts. Building on estab-
lished theoretical frameworks, as outlined in previ-
ous research (Dziobek et al., 2006), we collected
authentic social narratives from a demographically
diverse group of individuals aged 17-18 to serve as
test items, ensuring that the assessment effectively
measures mind-reading ability. Story authors’ inter-
pretation of the mental states of characters in their
story became the ground-truth against which min-
dreading accuracy was assessed. To maximize the
potential for individual differences in performance,
participants were asked to provide open-ended re-
sponses explaining their reasoning. This approach
generated rich qualitative data that were graded
by trained human coders who evaluated answers
based on predefined rubrics. While this approach
ensures a nuanced understanding of participants’
mental state inferences, it is labour-intensive, time-
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consuming, and prone to variation due to subjective
interpretation (Devine et al., 2023).

Automation to overcome the need for human
coding is needed for employing the new task at
scale. However, automated coding of such re-
sponses poses challenges because, by design, the
mindreading involved is highly sensitive to the
story context, and the expression of correct and in-
correct answers is highly variable. Recent advance-
ments in natural language processing, particularly
the development of large language models (LLMs),
present a promising solution to automate this pro-
cess. LLMs have demonstrated impressive capabil-
ities in understanding, generating, and evaluating
human language (Achiam et al., 2023; Dubey et al.,
2024). They have been successfully used to grade
free-text responses in educational settings (Xiao
et al., 2024; Nilsson and Tuvstedt, 2023), making
them strong candidates for evaluating individual
differences in advanced mind-reading ability. How-
ever, unlike standard text classification, scoring
advanced mind-reading responses is particularly
challenging due to the complexity of following and
applying the coding scheme consistently. Even
for human coders, extensive training is required to
achieve reliable scoring.

In this study, we explore the potential of LLMs
to address these challenges and improve the au-
tomation of mind-reading assessment. Specifically,
we investigate the following key questions:

1. How well do state-of-the-art LLMs measure
advanced mind-reading ability compared to
human coders?

2. What prompting strategies optimize the grad-
ing performance of these models?

3. To what extent does fine-tuning improve
LLMs’ grading accuracy?

To address these questions, we designed a set of
mind-reading tests based on 10 selected social nar-
ratives, collected and coded responses from 1733
participants aged 13-30 before benchmarking sev-
eral LLMs against human-coded scores. In par-
ticular, we assessed the impact of various prompt-
ing techniques and fine-tuning strategies on model
performance. To further enhance the models, we
applied data augmentation to expand the dataset,
improving the effectiveness of fine-tuning. Our re-
sults show that LLMs, particularly those fine-tuned
on the augmented dataset, achieve high accuracy

and consistency, significantly reducing the effort
required for human grading while maintaining reli-
ability. This automated scoring approach provides
clinicians with a fast, scalable, and reliable tool
for assessing mind-reading ability. By addressing
the scalability limitations of human-coded evalua-
tions, it improves screening for conditions such as
autism spectrum disorder and social communica-
tion disorders, where difficulties in mind-reading
are prevalent (Dziobek et al., 2008; Happé, 2015).
Our contributions can be summarized as follows

• We designed and implemented innovative psy-
chological tests to measure advanced mind-
reading abilities, addressing a critical need
for robust and scalable assessment tools in
psychometrics.

• We collected a unique dataset from partici-
pants aged 13 to 30 years and will publicly
release this dataset, along with our code and
fine-tuned models1 .

• We systematically optimized the performance
of LLMs through various prompting strategies
and fine-tuning based on data augmentation,
achieving over 90% accuracy in scoring psy-
chometric tests.

2 Related Work

Automated grading of psychometric tests with
open-ended responses has attracted significant in-
terest in recent years. Early efforts focused on rule-
based systems, which relied on manually defined
patterns and logic to assess responses (Williamson
et al., 2006). While these systems provided con-
sistency in scoring, they struggled to handle the
variability and nuance of open-ended responses
(Burrows et al., 2015).

Over time, machine learning techniques have
gained prominence as a more versatile and adapt-
able solution to address the problem (Mohler et al.,
2011). Machine learning models frequently employ
supervised learning methods, which rely on anno-
tated datasets containing labeled examples (Bailey
and Meurers, 2008; Nielsen et al., 2008; Madnani
et al., 2013). These datasets enable the models to
train classifiers that learn patterns and relationships
between input features and their corresponding out-
comes, allowing them to predict scores or make

1All code and data to replicate our experiments
is available at https://github.com/YixiaoWang/
ToM-automatic-scoring-using-LLMs/.
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informed decisions when presented with unseen
data. Additionally, machine learning also incorpo-
rates unsupervised learning approaches (Alfonseca
and Pérez, 2004; Pérez et al., 2005; Mohler and
Mihalcea, 2009). These methods identify hidden
patterns, groupings, or structures within the data
itself, such as clustering similar items or detect-
ing anomalies. However, the performance of these
machine learning models remained constrained by
the quality and size of the training data, as well
as their limited ability to capture deeper semantic
understanding.

The advent of pre-trained language models
marked a significant leap forward in automating
text-based assessments. The model DistilBERT
(Sanh, 2019), have been applied to scoring the
open-response for mind-reading, where they have
shown promise in scoring standardized tests of chil-
dren’s mind-reading (Devine et al., 2023). To
further enhance the effectiveness of fine-tuning in
these language models, data augmentation tech-
niques can be employed to artificially expand the
training dataset, thereby improving model gener-
alization and robustness (Kovatchev et al., 2021).
Methods such as synonym replacement, back-
translation, and paraphrasing introduce variability
in training samples, reducing the risk of overfitting
to limited datasets.

The emergence of foundation models (Bom-
masani et al., 2021) trained on larger datasets with
substantially more parameters to capture deeper
contextual relationships has significantly enhanced
performance in text-based tasks. Research efforts
have successfully used LLMs to develop automatic
grading systems in education setting (Xiao et al.,
2024; Nilsson and Tuvstedt, 2023), enabling accu-
rate evaluation of student writing and essay grading,
often matching human evaluators in accuracy.

Assessing mind-reading ability poses significant
challenges, as it requires the interpretation of nu-
anced psychological cues that are often deeply
context-dependent, extending beyond surface-level
or factual knowledge. Recent studies (Strachan
et al., 2024; Kosinski, 2023; He et al., 2023) have
demonstrated that LLMs are capable of making
mental inferences, highlighting their suitability for
this task. Although the application of LLMs to eval-
uate advanced mind-reading assessments remains
underexplored in the broader literature, prior work
by Devine et al. (2023) has made notable progress
by automating the scoring of mind-reading ability
using DistilBERT. This study builds on that foun-

dation while advancing it in two key directions: (1)
introducing a novel open-ended test designed for
adults, which requires inferring more subtle and
context-dependent mental states, and (2) leverag-
ing LLMs instead of lightweight models to enable
more sophisticated evaluations. By applying LLMs
to assess responses in advanced mind-reading tests,
this study seeks to further explore their potential in
assessing complex human cognition.

3 Methodology

3.1 Data

The mind-reading test included 10 social narra-
tives, each followed by a question that asked par-
ticipants to interpret the mental states of the char-
acters. An example of one such narrative, along
with the corresponding mind-reading question and
coding scheme, is presented in the table 1. A total
of 1,733 participants aged 13–30 provided free-text
responses after completing these psychometric test
either in schools or online via Prolific.co. The label-
ing process was conducted by one lead coder and
four trained coders. After an initial training phase,
during which coders achieved inter-rater reliability
(Cohen’s Kappa > 0.7) with the lead coder, they in-
dependently coded different portions of the dataset.
To ensure consistency and accuracy, each coder pe-
riodically re-coded responses from another coder.
Discrepancies were resolved by the lead coder, en-
suring high reliability throughout the process.

The final labeled data confirmed that the de-
signed task was sufficiently challenging. The table
2 below shows the percentages of participants who
successfully completed the mind-reading test for
each of the 10 social narratives. This rigorous,
multi-step process generated a high-quality, gold-
standard dataset for training and evaluating LLMs.
We assessed LLMs by comparing their predictions
with labels of the dataset, using accuracy as the
evaluation metric. Through systematic benchmark-
ing, we aim to identify the most effective LLM for
automated grading.

3.2 Model Selection

To assess the suitability of different LLMs for the
mind-reading evaluation, we select a diverse set of
state-of-the-art models as shown in Table 3. By
comparing these models, we aim to analyze the
trade-offs between model size, computational cost,
and task performance for automating the mind-
reading evaluation process.
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Story It was October last year, and I went to a theme park that had extra attractions for Halloween. One highlight was
the “Dungeon Experience”. This had actors playing characters who interact with you as you pass through it. I
went in. It was really fun, but I have sensory needs and I couldn’t believe how loud it was. For the first half of the
experience, I had to keep my fingers in my ears, and I felt really self-conscious. I got to the bit of the experience
where you get to ride on a boat through the ‘Black River’. A Ferryman was wearing dark robes, limping, and
carrying a lantern. He greeted us in a raspy voice then started warning us about the journey to come. He saw
how I looked and put his finger up for us to wait. He hobbled off to one side, then returned a moment later and
pressed a small package into my hand. It was a pack of earplugs. I put them in my ears and the ferryman caught
my eye and raised an eyebrow. I gave him a thumbs up back and he grinned then returned to warning us about
the journey in his raspy voice, before giving my sister two riddles to solve. He didn’t even really break character!

Question Why did she appreciate that the actor stayed in character?
Partial
Coding
Scheme

Correct Responses: 1 part required for a ’correct response’:
She appreciated that the actor was able to help her without drawing excessive attention to her sensory
needs/differences (about which she felt self-conscious) (the Ferryman drew less unwanted attention by staying in
character, but it was the not drawing unnecessary attention rather than specifically staying in character per se)
This may be phrased in a number of different ways, for example:

• He did not make her feel ’different’, ‘strange’, or ’weird’ through his actions did not make a big deal of it
did not make it into an emergency (whilst also meeting her needs)

• The Ferryman was able to help discretely helped without making an unnecessary fuss scene

• He did not make her feel embarrassed/awkward/ self-conscious,

• He did not make her feel like an inconvenience or ‘a nuisance’,

• He did not treat her differently (other than by supporting her needs)

• It meant that the actor helped her discretely (without drawing unwanted attention).

• It did not make her feel more conspicuous (and therefore more self-conscious).

• ...

Incorrect or Incomplete Mindreading responses: Fail to mention or indicate that she was glad that the actor was
able to help in a way that did not draw unwanted attention to her needs/differences

• For example, responses that just mention that it didn’t break the immersion for herself/others (without
considering the context that made this important) [e.g. this may be expressed as ‘it didn’t ruin the magic’]
would be incomplete mindreading responses.(The actor staying in character was his way of not drawing
unnecessary attention, and not making her feel embarrassed but the not breaking immersion for others was
only an add-on, not the key reason that the author appreciated him staying in character)

• “It made her feel included/not left out”/”it included her in the experience” are incomplete responses, since
the actor giving her the earplugs would help with this, regardless of whether he stayed in character.

• Responses that focus on how helping her ‘didn’t ruin the experience/immersion for others’

• ...

Non-mindreading responses: Express an opinion on the situation, rather than trying to take the author’s
perspective. Or just describes the general situation without linking this to the author’s experience, e.g. ‘it kept it
fun’, ‘it didn’t break immersion’ (for whom?)

Correct
Sample She appreciated that the actor was able to help her without drawing excessive attention to her sensory needs.

Incorrect
Sample Because the immersion wasn’t totally ruined for the author and the other people in the experience.

Table 1: One Example from the 10 Test Items

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10
Proportion of Correct Answers (%) 56.7 58.3 56.8 42.1 16.1 51.4 30.7 35.7 20.8 42.2

Table 2: Percentages of participants (out of 1,733 total) accurately performing mind-reading tasks across 10 distinct
test items
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Model Name Reference

allenai/longformer-base-4096 Beltagy et al. (2020)
meta/llama-3.2-3B-instruct Dubey et al. (2024)
microsoft/phi-3.5-mini-instruct Abdin et al. (2024a)
mistralai/mistral-7B-v0.3-Instruct Jiang et al. (2023)
microsoft/phi-4 Abdin et al. (2024b)

openai/gpt-4o-2024-08-06 Achiam et al. (2023)
openai/gpt-4o-mini-2024-07-18 Achiam et al. (2023)

BERT Devlin (2018)
RoBERTa Liu (2019)

Table 3: List of Models and References

3.3 Prompt Strategies
These experiments explore the influence of vari-
ous prompting strategies on the performance of
LLMs in the task. We conducted a series of ex-
periments to assess how different input formats,
grading schemes, and prompting techniques im-
pact a LLM performance. First, we compared the
effect of different input formats, including plain
text, XML, and JSON, on the task results. The goal
was to determine whether more structured formats,
such as XML and JSON, yield better results than
plain text input. Next, we evaluated the impact of
different grading schemes included in the prompts.
The original grading scheme, which is highly de-
tailed but often difficult for humans to interpret,
was compared to two alternative formulations: a
rephrased version and a summarized version gener-
ated by GPT-4o. This comparison aimed to identify
which grading scheme provided the clearest and
most effective guidance for mind-reading responses
evaluation.

Based on the findings from the input format and
grading scheme experiments, we selected the most
effective combination of syntax format and grading
scheme for the remaining experiments. Follow-
ing the tradition in prompt engineering (Ouyang
et al., 2022), the LLM to be tested was given two
prompts as components: a system prompt and a
user prompt. The system prompt provided the
LLM with basic instructions for the task, while the
user prompt contained the specific mind-reading
context, including the narrative, question, corre-
sponding grading schemes, and the participants’
responses to be graded. The LLM was expected to
provide a binary response (0 or 1), indicating the
true value of the given response. This process is
visualized in Figure 1.

Finally, we compared the performance of LLMs
under zero-shot and few-shot prompting conditions.
In the few-shot condition, the user prompt included
a small number of labeled responses for each test.

In contrast, no labeled responses from the dataset
were included in the user prompt under the zero-
shot condition. This comparison aimed to assess
whether providing labeled responses within the
prompt improves the model’s performance on the
mind-reading evaluation task.

Figure 1: Prompt structure

3.4 Fine-Tuning

To enhance the performance of LLMs in grading
free-text responses, we fine-tuned selected models
using a labeled dataset. The dataset was split into
80% for training, 10% for validation and 10% for
testing. The models to be fine-tuned are listed in
Table 3. Fine-tuning aimed to align these models
with the grading rubric, improving their ability to
interpret and assess responses accurately. Since
different models have distinct architectures and
constraints, we adopted three fine-tuning strategies:

• Propreitary Models (GPT-4o, GPT-4o-mini):
Fine-tuning was conducted using OpenAI’s
API service. Due to token limitations, we
could include a maximum of 50 labeled re-
sponses per test, totaling 500 responses across
10 test items.

• Open-source Models (Llama, Mistral, and
Phi): Given our computational constraints, we
employed LoRA (Low-Rank Adaptation) (Hu
et al., 2021) instead of full-parameter fine-
tuning. LoRA performs on par with full fine-
tuning, but requires significantly less memory.
However, LoRA requires careful hyperparam-
eter tuning, which we select using Bayesian
search to achieve the best performance.

• BERT and RoBERTa: Fine-tuning these mod-
els differs significantly from other LLMs. Un-
like other models, it involves training a binary
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classifier for each test item. Each binary clas-
sifier receive individual response from its cor-
responding test and predicts its truth values
without considering contextual elements like
the question, narrative, or grading rubric.

After fine-tuning, we evaluated the models on
the test set using accuracy as the primary metric.

3.5 Data Augmentation

A key challenge in fine-tuning LLMs is the limited
availability of labelled training data. To address
this, we investigated the role of data augmentation
in enhancing fine-tuning performance. Specifically,
we used GPT-4o to generate paraphrased versions
of all responses in the training split of our gold-
standard dataset. These paraphrased response pre-
served the original meaning while varying in vocab-
ulary and sentence structure. To ensure labelling
consistency, a human coder randomly selected 50
paraphrased responses per story test item for la-
beling. The coder’s labels were then compared
to those of the original responses, achieving an
agreement rate of over 90%, indicating a high level
of consistency. After generating the paraphrased
responses, we incorporated them into the training
split of the original dataset, effectively doubling the
size of the available training data. This augmented
dataset was then used to fine-tune the LLMs.

4 Results and Analysis

Syntax Format Accuracy
Plain 0.82
XML 0.84
JSON 0.83

Table 4: Results testing the effect of syntax format in
prompting GPT-4o in terms of grading accuracy.

Scheme Accuracy
Original Grading Scheme 0.88
Grading Scheme Summary 0.86
Paraphrase Summary Scheme 0.85

Table 5: Results testing the effect of grading scheme on
GPT-4o prompt in terms of grading accuracy.

4.1 Result of Prompt Engineering

We first analyze how different input formats af-
fected the performance of the LLM (GPT-4o) in
the mind-reading evaluation task. As shown in
the table 4, structured formats, XML and JSON,

slightly outperform plain text in terms of accuracy.
Then, we compared the effect of different grad-
ing schemes incorporated into the prompts. As
shown in the Table 5, the original grading scheme,
although highly detailed and challenging for hu-
man coders to employ consistently, surprisingly
produced the better results, outperforming both the
rephrased version and summarized version gener-
ated by GPT-4o. This finding suggests that, despite
the complexity of the original scheme, LLMs are
capable of capturing the relevant information em-
bedded in highly detailed text. Based on these
results, we use XML as prompt syntax and orig-
inal grading scheme as default coding rubric to
prompt all LLMs, both in zero-shot setting and few-
shot setting. The detailed performance of zero-shot
prompting and few-shot prompting are included in
the Table 6 and Table 7.

In the zero-shot condition, each model’s perfor-
mance was assessed by comparing the results to
those assigned by trained human coders and calcu-
lating its accuracy in scoring answers for each test.
Overall performance was determined by averag-
ing accuracy rates across all 10 test items. Among
the models tested, GPT-4o achieved the highest
accuracy at 89.4 %, significantly outperforming
the others. Phi-4 followed with a strong 81.5%,
while Mistral-7B and Phi-3.5 scored 77.1% and
73.5%, respectively. Llama-3.2 trailed at 64.3%,
and Longformer, the smallest model in the table,
lagged further at just 50%—likely due to its limited
capacity to process complex information. These
results indicate that larger language models tend
to perform better on mind-reading ability scoring
task.

Building on the observation from zero-shot re-
sults, we evaluated the performance of the best-
performing model, GPT-4o, along with GPT-4o-
mini, under few-shot conditions. These models
were selected due to their outstanding performance
in the zero-shot evaluation and their larger capac-
ity to handle more complex prompts. In the first
few-shot test, where 10 labelled answers from the
dataset were provided for each test, we observed a
slight improvement in performance for both mod-
els. GPT-4o achieved an accuracy rate of 89.5%,
marginally outperforming its zero-shot result of
89.4%. Similarly, GPT-4o-mini saw an increase,
with its accuracy rate rising to 81.4% from 79.7%
in the zero-shot condition. However, when the
number of labelled answer was increased to 50 for
each test, the results shifted, GPT-4o’s accuracy
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rate decreased to 88.1%, and GPT-4o-mini’s accu-
racy rate dropped to 80.1%. These results highlight
an important insight in few-shot prompting: While
providing a certain number of examples can en-
hance model performance, increasing this number
beyond a certain threshold does not always lead to
improved outcomes.

4.2 Result of LLMs fine-tuning

As is shown in the Table 8, all models in the eval-
uation show significant improvements after fine-
tuning, highlighting the effectiveness of this ap-
proach for the task of psychometric scoring. GPT-
4o achieves the best results, with its accuracy in-
creasing from 89.4% to 92.8%. Notably, its perfor-
mance is further supported by a kappa value of 0.83,
indicating strong agreement that far exceeds what
would be expected by chance. GPT-4o-mini bene-
fits greatly from fine-tuning, rising from 79.7% to
90.5%. This success is particularly remarkable con-
sidering that GPT-4o-mini was fine-tuned on only
50 examples per test. Longformer, initially starting
at 50.0%, shows a remarkable jump to 86.7%, and
Llama moves from 64.3% to 91.1%. Models like
Mistral and Phi-4, which started with strong zero-
shot accuracy, also see significant improvements.
These results underscore the substantial benefits of
fine-tuning in improving model accuracy.

Notably, the BERT family of models has
demonstrated impressive performance despite their
smaller sizes. BERT-base and BERT-large achieved
accuracies of 90.2% and 90.5%, respectively,
matching or even surpassing larger models like
GPT-4o-mini. This is particularly remarkable given
BERT’s more compact architecture, highlighting
its competitive edge when fine-tuned for specific
test items. However, fine-tuning BERT models dif-
fers significantly from that of other LLMs. Unlike
LLMs, which are fine-tuned as single scoring sys-
tems to handle all test items, BERT and RoBERTa
are trained into 10 distinct classifiers, each dedi-
cated to a specific test item. These classifiers are
test-specific and cannot be transferred to other test
items, so while their specialization enhances perfor-
mance on individual test, it limits their flexibility
across a range of tests. Additionally, BERT and
RoBERTa fall short of LLMs in providing explana-
tions or feedback to justify the scores they assign,
making their high performance both impressive and
somewhat constrained in comparison.

4.3 Effect of Data Augmentation

Data augmentation has a positive effect on per-
formance for most models, although the improve-
ments are not consistent across all of them. Long-
former sees a notable gain, increasing from 86.7%
to 91.6%, demonstrating the clear benefit of aug-
mented data. Mistral and Phi-3.5 also benefit, with
Mistral rising from 88.7% to 91.6% and Phi-3.5
improving from 83.8% to 90.1%. However, Llama
experiences a slight drop, from 91.1% to 90.5%,
and Phi-4 shows only a small increase, from 87.5%
to 87.6%. These results indicate that while data
augmentation often enhances model accuracy, its
impact can vary depending on the model and test
item.

4.4 Comparison between human coders and
LLMs

Building on the previous findings that LLMs can
grade psychometric tests with high accuracy, we
now compare their performance to human coders
in both accuracy and efficiency. Initially, all four
trained human coders demonstrated adequate Inter-
Rater Reliability (Cohen’s Kappa > .7) with the
lead coder across 10 test items before being as-
signed different portions of the main dataset to
code. However, the following spot checks revealed
that two trained coders drifted in their application
of the marking criteria for certain test items. To
address this, the fine-tuned GPT-4o was used to
reassess all participant responses for those cases.
Whenever the LLM and the trained coder disagreed,
the lead coder made the final decision. The table
below summarizes the relative accuracy of human
coders and the fine-tuned GPT-4o under this proce-
dure. Importantly, the Kappa agreement score was
calculated only for cases where the LLM and the
human coder initially disagreed. The results indi-
cate a clear trend: except for test item 5, fine-tuned
GPT-4o consistently showed higher agreement with
the lead coder than the trained coders did. This sug-
gests that, for the majority of test items (1, 2, 3,
6, 7, 8, and 10), the LLM provided more reliable
coding across many cases.

In terms of time efficiency, training a single hu-
man coder requires at least 14 hours before they can
pass the Inter-Rater Reliability check. With four
human coders trained, this amounts to a total of
56 hours of training time. After passing the check,
each coder takes an average of 33 seconds to grade
a single response. Given 10 test items and 1,733
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Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 AVG

gpt-4o 88.5 86.7 90.2 91.3 87.3 91.9 94.2 78.1 95.9 90.2 89.4
gpt-4o-mini 80.4 83.3 83.9 82.1 80.1 83.9 81 73.5 65.5 83.3 79.7

longformer-4096-base 68.5 63.3 66.5 49.7 22.3 60.2 42.6 47.1 28.5 48 50
Llama-3.2-3B 72.7 78.6 71.5 66.2 43.9 70.7 65.5 61.4 48.8 61.7 64.3
mistral-7b-v0.3-instruct 81.1 78.6 77.8 74.5 82 78.2 87.1 70 65.8 74.7 77.1
phi-3.5-mini-instruct 81.8 79.4 72.1 65.6 81.3 73.7 75 72.8 72.3 63.6 73.5
phi-4 86 78.6 79.1 83.4 87.1 82.7 71 80 84.5 83.1 81.5

Table 6: Evaluation results of LLMs on 10 psychometric tests using zero-shot prompting. Results are reported in
terms of accuracy (%)

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 AVG

gpt-4o (10 shots) 83.9 87.3 90.2 91.3 89.6 91.9 90.8 85 96.5 89 89.5
gpt-4o-mini (10 shots) 78.7 85.6 82.7 86.2 81 84.4 83.4 77.5 68.9 85.6 81.4

gpt-4o (50 shots) 86.2 89.6 86.2 93.6 89 86.7 89 82.7 94.8 83.9 88.17
gpt-4o-mini (50 shots) 80.4 87.3 85 81 80.2 83.9 79.8 77.5 64.3 82.1 80.1

Table 7: Grading results of LLMs on 10 psychometric tests using few-shot prompting. Results are reported in terms
of accuracy rate (%)

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 AVG

BERT-base 86.2 83.3 90.2 93.1 94.8 91.9 89 87.3 94.2 90.2 90.2
BERT-large 89.6 83.3 90.8 93.6 93.1 88.5 91.9 88.5 92.5 92.5 90.4
RoBERTa-base 88.5 86.7 93.6 91.9 91.9 91.9 91.3 83.3 94.2 90.8 90.4
RoBERTa-large 89.6 87.9 94.8 92.5 94.8 91.3 92.5 87.3 95.4 94.2 92

gpt-4o 89 91.3 93.1 94.2 94.8 93.6 94.2 85 97.1 96.5 92.8
gpt-4o-mini 86.7 83.3 91.9 94.8 93.1 92.5 90.8 79.3 97.1 95.9 90.5

longformer-4096-base 87.0 80.9 91.7 94.9 77.7 89.5 87.1 89.3 81.3 87.6 86.7
Llama-3.2-3B 86.7 85.5 91.1 96.8 90.6 90.2 87.8 90 95.1 97.4 91.1
mistral-7b-v0.3-instruct 86.7 80.9 89.2 94.9 84.9 91.7 89.2 82.1 91.9 95.4 88.7
phi-3.5-mini-instruct 76.2 86.3 89.9 69.3 87.1 80.4 85.8 88.6 90.2 85.7 83.8
phi-4 87.4 84 84.8 90.4 89.9 83.5 85.8 86.4 91.9 90.9 87.5

Table 8: Results of evaluation of fine-tuned LLMs in the 10 psychometric tests. Results are reported in terms of
accuracy (%)

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10 AVG

longformer-4096-base 91.6 83.9 94.3 94.9 89.9 91 90.5 90.7 93.5 96.1 91.6
Llama-3.2-3B 85.3 86.2 93 94.9 89.2 89.4 89.8 89.3 93.5 94.1 90.5
mistral-7b-v0.3-instruct 90.9 87 90.5 94.3 91.4 90.2 89.2 91.4 94.3 97.4 91.6
phi-3.5-mini-instruct 88.8 81.7 87.3 93.6 92.8 90.2 87.8 87.9 96.7 94.2 90.1
phi-4 86 85.5 84.8 91.7 89.2 91 88.5 81.4 88.6 88.9 87.6

Table 9: Results of evaluation of fine-tuned LLMs on augmented train split in the 10 psychometric tests. Results are
reported in terms of accuracy (%)
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Participant Numbers ID number assigned to human coder Item (Story and Question) Kappa agreement of human coder with lead coder Kappa agreement of GPT-4o with lead coder

1325–2013 1
2 0.791 0.906
5 0.873 0.786
6 0.758 0.837

2014–2157 3

1 0.929 0.971
2 0.756 0.878
3 0.889 0.845
5 0.974 0.638
8 0.580 0.928

10 0.833 0.889

Table 10: Kappa agreement of trained human coder and GPT-4o with lead coder.

participants, the entire dataset requires approxi-
mately 158 hours to label. In contrast, fine-tuning
LLMs (e.g., Llama-3.2-3B) takes approximately
16-24 hours, including 8-16 hours for hyperparam-
eter tuning. Once fine-tuned, the LLM can score
each response in milliseconds, a dramatic reduction
compared to the time required by human coders.
This highlights the LLM’s exceptional efficiency
in processing speed.

5 Discussion

Our findings highlight the transformative potential
of LLMs in automating the scoring of open-ended
responses in complex mind-reading tests. Fine-
tuning, particularly when paired with augmented
training data, enables LLMs to better grasp the test-
specific nuances of intricate coding manuals, re-
sulting in more accurate evaluation. Despite the in-
herent complexity of the task, LLMs demonstrated
an impressive ability to interpret and apply these
detailed coding guidelines effectively. This adapt-
ability suggests that LLMs could be valuable tools
for automating the scoring of other psychometric
tests, particularly those that involve open-ended
responses. Such applications could help overcome
the ceiling effect often seen in closed-ended ques-
tions, making it possible to quantify reliably the
abilities of more developmentally advanced partic-
ipants (i.e. older adolescents and adults) than has
previously been possible.

Our exploration of prompt strategies further re-
vealed that a relatively small number of examples
led to noticeable improvements in performance.
However, increasing the number of examples be-
yond a certain point did not produce gains. As our
results show, fine-tuning is a more effective strat-
egy than prompting, particularly when leveraging
a larger set of examples to enhance model perfor-
mance. This highlights that fine-tuning, rather than
prompting, is the more powerful tool for maximiz-
ing LLM capabilities in psychometric task scoring.

Furthermore, the BERT family of models contin-
ues to be a highly effective and practical choice for

scoring open-response psychometric tasks. While a
BERT classifier trained on one test may not directly
transfer to others due to the distinct nature of each
test, its strength lies in its simplicity and computa-
tional efficiency. BERT models are relatively easy
to implement and require fewer computational re-
sources compared to other LLMs, making them an
ideal option for users with limited computational
resources or specific task requirements.

6 Conclusion

This paper demonstrates the effectiveness of LLMs
in scoring psychometric tests designed to assess
advanced mind-reading ability. By optimizing
prompting strategies and fine-tuning models, we
achieve results that not only align closely with hu-
man evaluations but also surpass the performance
of some trained human coders on most of test items.
This highlights LLMs’ potential to reliably assess
complex cognitive processes, offering a scalable,
efficient, and consistent approach to psychometric
testing. While current methods use LLMs to evalu-
ate responses against pre-defined answers, LLMs
also excel at analyzing patterns in mind-reading
responses. This goes beyond identifying perfor-
mance gaps in individuals with neurodevelopmen-
tal or psychiatric conditions, allowing researchers
to explore whether they mind-read in systemati-
cally different ways. Such insights could trans-
form our understanding of individual differences in
mind-read processes. Future work should explore
these applications, further expanding the utility of
LLMs in psychometric research.

7 Limitations

While the performance of LLMs in scoring mind-
reading responses is impressive, it raises the ques-
tion of what enables them to excel in this task. Are
LLMs inherently skilled at mind-reading, allowing
them to assess responses reliably, or do they sim-
ply follow the complex coding manual with high
accuracy? This study does not provide a definitive
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answer, and further research is needed to explore
the underlying mechanisms of LLM judgment.

8 Ethical Considerations

The project gained ethical review and approval
from the Science Technology Engineering and
Mathematics ethical review panel at the Univer-
sity of Birmingham UK, project approval ID:
ERN_2311-Jun2024.
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