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Abstract

Code-switching, the act of alternating between
languages, emerged as a prevalent global phe-
nomenon that needs to be addressed for build-
ing user-friendly language technologies. A
main bottleneck in this pursuit is data scarcity,
motivating research in the direction of code-
switched data augmentation. However, current
literature lacks comprehensive studies that en-
able us to understand the relation between the
quality of synthetic data and improvements on
NLP tasks. We extend previous research con-
ducted in this direction on machine translation
(MT) with results on automatic speech recog-
nition (ASR) and cascaded speech translation
(ST) to test generalizability of findings. Our
experiments involve a wide range of augmenta-
tion techniques, covering lexical replacements,
linguistic theories, and back-translation. Based
on the results of MT, ASR, and ST, we draw
conclusions and insights regarding the efficacy
of various augmentation techniques and the im-
pact of quality on performance.

1 Introduction

Code-switching (CSW) is a worldwide phe-
nomenon, involving the alternation between multi-
ple languages in the same discourse.1 Despite the
need to process it effectively, language technolo-
gies still fall short when handling code-switched in-
put compared to monolingual data (Doğruöz et al.,
2021), where the lack of CSW resources is a main
challenge. CSW data augmentation has thus been
gaining attention as a workaround for alleviating
this issue. Furthermore, the need for language
technologies to not only process, but also gener-
ate CSW in human-computer interaction has been
highlighted by researchers (Bawa et al., 2020) for
the aim of building tools that cater to the needs and
preferences of multilingual communities.

1For survey papers on CSW in NLP, we refer the readers
to the following papers: Sitaram et al. (2019); Doğruöz et al.
(2021); Winata et al. (2023); Hamed et al. (2025).

While considerable amount of research has been
conducted on CSW data augmentation, we still lack
comprehensive studies covering multiple augmen-
tation techniques, human and extrinsic evaluations,
and multiple NLP tasks. Such studies are needed to
draw conclusions with regards to the improvements
achieved by the different augmentation techniques
on NLP tasks, the quality of the generated augmen-
tations, and the relation between both; quality and
improvements.

Several studies evaluate the effectiveness of dif-
ferent augmentation techniques extrinsically, how-
ever lack human evaluations assessing the quality
of generations (Winata et al., 2018, 2019; Li and
Vu, 2020; Gupta et al., 2021). Other studies in-
clude human evaluations, however, do not report
results on downstream tasks (Pratapa and Choud-
hury, 2021; Kuwanto et al., 2024). Few studies
involve both extrinsic and human evaluations. The
study by Hussein et al. (2023) involved two aug-
mentation approaches, however, their effectiveness
was only reported in the scope of speech recogni-
tion. Hamed et al. (2022b) presented a study that
is diverse in terms of extrinsic evaluations, cover-
ing MT, AST, and ST, however, the augmentation
approaches were limited to lexical replacements
only. Finally, Hamed et al. (2023) presented a com-
prehensive study covering multiple augmentation
techniques, however, the extrinsic evaluation only
covered the task of MT.

Given current literature, we cannot draw strong
conclusions with regards to the effectiveness of the
different techniques across different NLP tasks, as
well as the relation between quality and improve-
ments achieved on downstream tasks. In this paper,
we aim at extending current literature with find-
ings based on a more comprehensive setup in terms
of investigated augmentation techniques and NLP
tasks. To achieve that, we build on our experimen-
tal setup in Hamed et al. (2023), being the most
comprehensive study in terms of augmentation ap-
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proaches. We report results on ASR and cascaded
ST, covering a wider range of NLP tasks investi-
gated within the same experimental setup.

Our contributions are as follows:

• Following our previous experimental setup in
Hamed et al. (2023), we report new results
on ASR and ST. This allows us to make com-
parisons and draw conclusions based on five
variations of augmentation approaches (cov-
ering linguistic-based approaches, lexical re-
placements, and back-translation) and three
downstream tasks (MT, ASR, and ST).

• We present a discussion on the relation be-
tween the quality of generations and their ef-
fectiveness on NLP tasks in light of the results
on ASR and ST as well as previous MT re-
sults. Our results show that with regards to
the effectiveness of the techniques, some ap-
proaches are consistent in their performance
across tasks, while others are task-dependent.
Moreover, we find that the relation between
data quality and NLP improvements, while
confirmed for MT, does not hold for ASR.

• We explore and discuss other factors, besides
quality of generations, that may affect results,
including data diversity and task complexity.

The paper is organized as follows. Section 2
discusses related work. In Section 3, we provide an
overview on the augmentation techniques included
in the study. Section 4 is dedicated to the exper-
imental setup. In Section 5, we present the ASR
and ST results, as well as the correlations between
quality of augmentations and ASR improvements.
Finally, in Section 6, we provide further insights,
discussing the possible impact of other factors.

2 Related Work

The majority of previous research on CSW data
augmentation has addressed language modeling
(LM), primarily for ASR. Various techniques have
been investigated based on heuristics (Shen et al.,
2011; Vu et al., 2012; Kuwanto et al., 2021), lin-
guistic theories (Pratapa et al., 2018; Lee et al.,
2019; Hussein et al., 2023), MT (Tarunesh et al.,
2021), and generative models (Winata et al., 2018,
2019; Li and Vu, 2020) including large language
models (LLMs) (Hu et al., 2023; Alharbi et al.,
2024). MT has received less attention, where tech-
niques mainly involved lexical replacements (Ap-
picharla et al., 2021; Gupta et al., 2021; Xu and

Yvon, 2021) and few efforts investigated back-
translation (Kuwanto et al., 2023) and linguistic
theories (Hamed et al., 2023).

With regards to studies conducting human evalu-
ations without experimental results on downstream
tasks, Pratapa and Choudhury (2021) compared lex-
ical replacements and linguistic-based approaches,
where higher human preference was observed for
the latter approach. Recently, Kuwanto et al. (2024)
investigated the use of the Equivalence Constraint
theory (Poplack, 1980) when prompting LLMs by
providing information on words that should be
code-switched, showing slight improvements.

With regards to studies comparing different aug-
mentation techniques through human evaluations
as well as extrinsically, Hussein et al. (2023) com-
pared random lexical replacements versus utilizing
the Equivalence Constraint theory through human
evaluation and ASR results. While the linguistic-
based approach was found to be superior in the
human evaluation, it was outperformed by ran-
dom lexical replacements in language modeling
and speech recognition. In Hamed et al. (2022b),
we compared different approaches for lexical re-
placements. While the authors provide a compre-
hensive study, including human evaluation and re-
sults on MT, ASR, and ST tasks, the study is fo-
cused on experimental considerations for lexical
replacements and does not include other augmen-
tation approaches. In Hamed et al. (2023), we
presented a comprehensive study covering multi-
ple augmentation techniques, including linguistic-
based approaches, lexical replacements, and back-
translation. The study involved extrinsic evaluation
on MT task in addition to human evaluation as-
sessing the naturalness of the generations across
techniques. A positive correlation was reported
between the naturalness scores achieved by the dif-
ferent techniques and improvements on MT. How-
ever, given that the study is only focused on MT, it
is still unclear whether the findings generalize to
other NLP tasks. In this paper, we work towards
filling the current research gap in comparative stud-
ies, extending literature with further findings in the
area of CSW data augmentation.

3 Data Augmentation Techniques

We cover the same techniques and setup as in
Hamed et al. (2023), where Arabic-English parallel
sentences are utilized to generate CSW Arabic-
English sentences using the approaches below.
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3.1 Lexical Replacements

Dictionary Replacement (LEXDict): X% ran-
dom Arabic words on the source side are replaced
with their English gloss entries. The gloss en-
tries are obtained using MADAMIRA (Pasha et al.,
2014), a system that performs morphological anal-
ysis and disambiguation for Arabic. X is set to 19
based on the frequency found in naturally occurring
CSW data (Hamed et al., 2022a).

Aligned with Random CSW Points (LEXRand):
X% Arabic words on the source side are replaced
with their counterpart English words on the target
side based on alignments obtained using Giza++
(Och and Ney, 2003), as specified in Hamed et al.
(2023). X is also set to 19.

Aligned with Predicted CSW Points (LEXPred):
Instead of randomly choosing the words on the tar-
get side to be injected into the source side, a CSW
predictive model is leveraged, where the model
identifies the words on the target side that would
be plausible CSW words on the source side. The
CSW predictive model from Hamed et al. (2022b)
is utilized for this task. The model is trained us-
ing ArzEn-ST corpus (Hamed et al., 2022a), con-
taining CSW Arabic-English sentences and their
English translations. In order to train the CSW
predictive model, a matching algorithm was de-
veloped to tag the words on the target side that
match the code-switched words on the source side.
An mBERT model is then fine-tuned on this bi-
nary classification task, where given an English
sentence, the model identifies which words are
probable to be present in the CSW correspond-
ing sentence. Afterwards, similar to the previous
augmentation approach, target-to-source replace-
ments are performed using alignments to inject
these words into the source side sentence.

3.2 Linguistic Theories (EC and ML)

The GCM tool (Rizvi et al., 2021) is utilized to
obtain CSW generations following two linguistic
theories: Equivalence Constraint (EC) (Poplack,
1980) and Matrix Language Frame (MLF) (Myers-
Scotton, 1997). The tool provides two approaches
for sampling across the multiple generations it pro-
vides; random and Switch Point Fraction (SPF). In
SPF sampling, the generations are ranked based on
their SPF (Pratapa et al., 2018) distribution com-
pared to a reference SPF distribution. The reference
SPF (0.22) is calculated based on natural CSW data

(Hamed et al., 2022a). Similar to the previous ap-
proaches, one generation is sampled per sentence
for both sampling variants. We refer to the variants
as ECRand, ECSPF , MLRand, and MLSPF .

3.3 Back-translation (BT)

A BT model (Hamed et al., 2023) is trained to trans-
late English into CSW Arabic-English. The model
is utilized to translate the target side of the Arabic-
to-English parallel sentences to CSW sentences.
The model is trained as a Transformer model using
Fairseq (Ott et al., 2019) by utilizing the Arabic-
English parallel corpora discussed in Section 4.1 in
addition to ArzEn-ST corpus, where the approach
is outlined in Hamed et al. (2023).

4 Experimental Setup

4.1 Data

In this Section, we specify the datasets used in (1)
generating the augmentations and (2) training and
evaluating the ASR systems.

For augmentation, we use the synthetic data gen-
erated in Hamed et al. (2023). The generations
are obtained by augmenting 309k Arabic-English
parallel sentences collected from the following cor-
pora: Callhome Egyptian Arabic-English Speech
Translation Corpus (Gadalla et al., 1997; LDC,
2002b,a; Kumar et al., 2014), LDC2012T09 (Zbib
et al., 2012), LDC2017T07 (Chen et al., 2017),
LDC2019T01 (Chen et al., 2019), LDC2021T15
(Tracey et al., 2021), and MADAR (Bouamor et al.,
2018). Using the approaches outlined in Sec-
tion 3, these monolingual parallel sentences are
augmented into CSW Arabic-English sentences.

For ASR, we utilize ArzEn-ST, which is a CSW
Arabic-English speech translation corpus. The cor-
pus contains naturally occurring speech having fre-
quent CSW (Hamed et al., 2020) along with its Ara-
bic and English translations. The corpus is used
in training, development and testing. ArzEn-ST
train, dev, and test sets contain 3.3k, 1.4k, and 1.4k
sentences (containing 2.2k, 0.9k, and 0.9k CSW
sentences). For training, we also utilize Callhome
(Gadalla et al., 1997) and MGB-3 (Ali et al., 2017)
for Egyptian Arabic data, in addition to 5 hours
from each of Librispeech (Panayotov et al., 2015)
for English data, and MGB-2 (Ali et al., 2016) for
Modern Standard Arabic (MSA) data. We perform
Arabic Alif/Ya normalization, remove punctuation
and corpus-specific annotations, and lower-case
English words.
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4.2 ASR Model

We use joint CTC/attention based end-to-end ASR
systems using ESPnet (Watanabe et al., 2018). We
apply SpecAugment (Park et al., 2019) and set the
CTC/attention weight to 0.3. The encoder and de-
coder consist of 12 and 6 Transformer blocks with
4 heads, feed-forward inner dimension 2048 and at-
tention dimension 256 (Karita et al., 2019). We use
RNNLM consisting of 1 LSTM layer with 1000
hidden units trained for 20 epochs. For decoding,
we set the beam size to 20 and CTC weight to 0.2.
The LM is trained on the transcriptions of the ASR
corpora, in addition to the synthetic CSW data in
case of data augmentation experiments.

4.3 ST Model

We evaluate the effectiveness of the augmentation
techniques on a cascaded ST task. We utilize our
ASR models and the MT models from Hamed et al.
(2023), where we train Transformer models using
Fairseq. We report results on ArzEn-ST test set.

5 Results

We present ASR and ST results and discuss the
relation between naturalness scores of the genera-
tions and improvements on ASR. For ASR, the full
results are presented in Table 1. We present WER
and CER on ArzEn-ST test set, for all sentences
as well as CSW sentences only. We also report
perplexity (PPL), out-of-vocabulary (OOV) rates,
and the number of generations per technique. For
ST, the full results are provided in Table 2, show-
ing BLEU (Papineni et al., 2002), chrF, chrF++
(Popović, 2017), and BERTScore (F1) (Zhang et al.,
2019), reported on all ArzEn-ST test set and the
CSW sentences only. We provide the statistical
significance for both tasks in Appendix A. The
analysis in this section is based on the results on
ArzEn-ST test set CSW sentences, using WER and
chrF++, as CSW is our main concern. For easier
comparison of results across ASR and MT, we also
briefly discuss previous results obtained on MT.

5.1 ASR Results

We report results on the following two settings:

• Zero-shot setting: given the scarcity of CSW
resources, we mimic the case of the lack of
CSW corpora. We train a baseline model,
ASR_BLMono, using the monolingual speech
corpora for Egyptian Arabic, English, and
MSA only. Data augmentation is performed

using the techniques that do not require
CSW parallel corpora: LEXDict, LEXRand,
EC, and ML. The augmented CSW data along
with the monolingual speech corpora tran-
scriptions are used for LM rescoring.

• Non-zero-shot setting: this setting allows the
use of CSW corpora. The baseline model,
ASR_BLAll, is trained on the monolingual
speech corpora in addition to ArzEn-ST. For
augmentation, all techniques are applied.

We present WER results on ArzEn-ST test set CSW
sentences in Figures 1a and 1b. The baseline
models, ASR_BLMono and ASR_BLAll, achieve
64.5% and 34.4% WER, respectively. For the
zero-shot setting, among the linguistic theories, the
best performance is achieved by ECRand. With
regards to lexical replacements, LEXDict provides
comparable performance to linguistic theories and
LEXRand provides highest overall improvements,
achieving absolute WER reduction of 2.8% over
ASR_BLMono.

For the non-zero-shot setting, the best result is
achieved by BT, achieving 2.0% absolute WER im-
provements over ASR_BLAll. By checking statisti-
cal significance, we find that LEXRand, LEXPred,
and ECRand provide equal performance to BT. This
is followed by the other linguistic variants and
LEXDict. It should be noted that LEXRand proves
to be a strong approach for ASR across both set-
tings, while requiring no linguistic knowledge nor
CSW data. This is in-line with the results of Hus-
sein et al. (2023), where the superiority of random
lexical replacements was demonstrated over the use
of the Equivalence Constraint theory for ASR.

5.2 MT Results

We include MT results from Hamed et al. (2023)
in Figure 1. Similar to ASR, MT results cover
zero-shot and non-zero-shot settings, with their re-
spective baselines; MT_BLMono and MT_BLAll.
In case of the zero-shot setting, the MT models are
trained on the Arabic-English parallel corpora out-
lined in Section 4.1, in addition to augmentations
from the respective approaches. In case of the non-
zero-shot setting, the training data of the MT mod-
els additionally included ArzEn-ST corpus. For
a full discussion on MT experimental setup and
results, we refer the readers to Hamed et al. (2023).
Across both settings, LEXDict degrades MT per-
formance over baselines. We also report that
linguistic-based approaches and LEXRand perform

9



LEXD
ic
t

LEXR
an
d

ECR
an
d

EC SP
F

M
LR

an
d

M
L SP

F

62

63

64

W
E

R

62.4

61.7

62.3

62.8 62.7
62.5

(a) The WER achieved by the ASR models in zero-shot
setting. The dashed line represents ASR_BLMono.

LEXD
ic
t

LEXR
an
d

ECR
an
d

EC SP
F

M
LR

an
d

M
L SP

F

LEX P
re
d BT

32

33

34

35

W
E

R

33.1

32.5 32.6
32.9

33.1 33.0

32.5 32.4

(b) The WER achieved by the ASR models in non-zero-
shot setting. The dashed line represents ASR_BLAll.

LEXD
ic
t

LEXR
an
d

ECR
an
d

EC SP
F

M
LR

an
d

M
L SP

F

52

54

56

58

ch
rF

++

51.8

56.0
56.3 56.2

55.8 56.0

(c) The chrF++ scores achieved by the MT models in zero-
shot setting. The dashed line represents MT_BLMono.

LEXD
ic
t

LEXR
an
d

ECR
an
d

EC SP
F

M
LR

an
d

M
L SP

F

LEX P
re
d BT

55

56

57

58

ch
rF

++

55.9

57.5

56.9
57.3

57.6 57.5

58.0

58.6

(d) The chrF++ scores achieved by the MT models in non-
zero-shot setting. The dashed line represents MT_BLAll.

Figure 1: ASR and MT results on ArzEn-ST test set CSW sentences in zero-shot and non-zero-shot settings.

equally well, however, they are unable to achieve
significant improvements over the baseline in the
non-zero-shot setting. BT and LEXPred show su-
periority, achieving +1.3 and +0.7 chrF++ points
over the baseline, respectively.

5.3 ST Results

We present the chrF++ scores on ArzEn-ST test
set CSW sentences for the non-zero-shot setting in
Figure 2. The baseline, ST_BLAll, achieves 41.6
chrF++ points. We observe that LEXDict does not
outperform the baseline, where its overall perfor-
mance on the ST task is affected by the low MT
results. Among the linguistic theories, ECSPF per-
forms best, and is the only variant that outper-
forms the baseline, providing similar performance
to LEXRand. The best performance is achieved by
BT followed by LEXPred, achieving improvements
of +1.7 and +1.4 chrF++ points over ST_BLAll.

5.4 Effect of Quality on Performance

We examine the importance of generating natural
CSW sentences in ASR LM rescoring. We utilize
our human evaluation results from Hamed et al.
(2023) and calculate the correlations against ASR
scores. The human evaluation involved three anno-
tators assessing 150 sentences across all augmen-
tation techniques for naturalness on a scale of 1
to 5, following the rubrics introduced by Pratapa
and Choudhury (2021). The mean opinion score
(MOS) is calculated as the average of the annota-
tors’ scores for each sentence. The percentage of
sentences perceived as natural (quite natural but
rarely used - perfectly natural and frequently used)
per technique is shown in Figure 3. We report cor-
relations of 0.19 (p = 0.73) and -0.56 (p = 0.15)
between the zero-shot and non-zero-shot ASR re-
sults (presented in Figure 1) and the percentage of
sentences perceived as natural.
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All Test Sentences CSW Test Sentences
Exp Model |Train| PPL OOV WER CER WER CER

Baselines
B1 ASR_BLMono 27,449 687.7 10.57 62.1 38.5 64.5 41.1
B2 ASR_BLAll 30,793 415.1 5.57 34.7 20.0 34.4 20.0

Zero-shot Experiments (ASR_BLMono+Augmentations)
A1 +LEXDict 267,093 396.2 6.62 60.0 37.0 62.4 39.6
A2 +LEXRand 220,101 364.6 5.70 59.5 36.9 61.7 39.4
A3 +ECRand 169,549 460.0 6.23 60.2 37.2 62.3 39.6
A4 +ECSPF 169,549 438.8 6.25 60.6 37.4 62.8 39.9
A5 +MLRand 125,681 455.3 6.37 60.5 37.3 62.7 39.8
A6 +MLSPF 125,681 460.9 6.36 60.4 37.4 62.5 39.9

Non-zero-shot Experiments (ASR_BLAll+Augmentations)
A7 +LEXDict 270,437 318.6 4.16 33.3 19.3 33.1 19.3
A8 +LEXRand 223,445 274.1 3.88 32.9 18.9 32.5 18.8
A9 +LEXPred 143,735 270.4 3.88 33.0 18.9 32.5 18.8
A10 +ECRand 172,893 301.0 3.95 33.1 18.9 32.6 18.8
A11 +ECSPF 172,893 309.7 3.93 33.4 19.1 32.9 19.0
A12 +MLRand 129,025 313.7 4.11 33.7 19.3 33.1 19.2
A13 +MLSPF 129,025 297.4 4.09 33.5 19.2 33.0 19.0
A14 +BT 181,868 275.3 3.96 32.9 18.8 32.4 18.7

Constrained Experiments (ASR_BLAll+Constrained[Augmentations])
A15 +LEXDict 55,636 410.2 4.57 34.3 19.7 33.8 19.6
A16 +LEXRand 55,636 384.8 4.39 34.0 19.5 33.4 19.4
A17 +LEXPred 55,636 385.4 4.42 34.2 19.5 33.7 19.5
A18 +ECRand 55,636 394.5 4.50 34.2 19.6 33.6 19.5
A19 +ECSPF 55,636 446.2 4.48 34.6 19.7 34.0 19.6
A20 +MLRand 55,636 435.5 4.54 34.6 19.8 34.2 19.8
A21 +MLSPF 55,636 416.1 4.54 34.6 19.7 34.1 19.6
A22 +BT 55,636 361.9 4.41 33.7 19.3 33.2 19.2

Table 1: We report ASR results using WER and CER on ArzEn-ST test set, for all sentences as well as CSW sentences
only. We also report PPL and OOV on all sentences of ArzEn-ST test set. We report the results of the baselines,
zero-shot and non-zero-shot settings and well as the constrained settings. Given the varying amounts of generations
produced by each technique, we also report the number of sentences used in training each model. The best
performing models in each setting are bolded. The overall best performing model is underlined.

Unlike ASR, strong positive correlations of 0.92
(p < 0.05) and 0.97 (p < 0.05) were reported in
zero-shot and non-zero-shot MT settings between
chrF++ and naturalness scores.

To eliminate the factor of varying amounts of
generations across techniques, we conduct con-
strained experiments (results in Table 1), where
we only utilize the synthetic sentences augmented
across all approaches (= 24.8k sentences) for
LM rescoring. We report a correlation of -0.26
(p = 0.54) between naturalness scores and ASR
performance. Therefore, we conclude that for ASR,
producing more natural synthetic data does not nec-
essarily entail improvements in ASR LM rescoring.

6 Discussion

In this section, we share more insights to gain fur-
ther understanding of other factors affecting results.

6.1 Consistency of Results Across Tasks
We discuss consistency of findings across tasks by
comparing our ASR and MT results. With regards
to the efficacy of the techniques, we observe that
linguistic theories do not show superiority, and that
the best results are achieved by BT followed by
LEXPred. The performance of LEXDict is found
to be task-dependent, where it is effective in ASR
but not suitable for MT, as the semantics of the
original sentences may be altered. With regards
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All Test Sentences CSW Test Sentences
Exp Model BLEU chrF chrF++ BertScore BLEU chrF chrF++ BertScore

Baseline
+ST_BLAll 15.9 42.2 40.3 0.335 16.4 43.7 41.6 0.318

Non-zero-shot Experiments
A7 +LEXDict 15.7 42.1 40.2 0.343 16.1 43.2 41.2 0.322
A8 +LEXRand 15.9 42.7 40.7 0.347 16.5 44.1 42.0 0.329
A9 +LEXPred 17.3 43.5 41.7 0.351 17.9 44.9 43.0 0.335
A10 +ECRand 15.7 42.5 40.5 0.343 16.1 43.9 41.7 0.324
A11 +ECSPF 16.5 42.8 40.9 0.348 17.1 44.2 42.2 0.334
A12 +MLRand 16.0 42.6 40.6 0.342 16.4 43.9 41.8 0.323
A13 +MLSPF 16.0 42.6 40.6 0.346 16.5 44.0 41.8 0.330
A14 +BT 16.9 43.7 41.8 0.349 17.7 45.4 43.3 0.337

Table 2: We report ST results using BLEU, chrF, chrF++, and BertScore (F1) on ArzEn-ST test set, for all sentences
as well as CSW sentences only. We report the results of the baseline and augmentation experiments.
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Figure 2: The chrF++ scores achieved in ST on ArzEn-
ST test set CSW sentences in non-zero-shot setting. The
dashed line represents the baseline model ST_BLAll.

to the relation between naturalness of generations
and NLP improvements, a strong correlation was
found for MT, but no correlation for ASR. The im-
portance of quality is also seen in MT, where only
BT and LEXPred brought improvements over the
baseline in the non-zero-shot setting, as opposed to
all approaches in ASR.

6.2 Inconsistent Quality-Performance
Relation Across Tasks

We further examine why the relation between qual-
ity and performance is not consistent across tasks.
One factor that may affect this relation is the com-
plexity of the NLP tasks and how well the base-
line models perform on CSW. We conduct an error
analysis on 100 sentences from ArzEn-ST dev set
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Figure 3: The human evaluation scores as obtained
from (Hamed et al., 2023), showing the percentage of
augmentations perceived as natural per technique.

using the ASR and MT baseline models. We find
that 70% of the sentences in the case of ASR have
CSW-related issues as opposed to 25% in the case
of MT. We provide examples in Table 3 demon-
strating this disparity in performance. This may be
a contributing factor, where quality might be less
relevant to low-performing models. While CSW
introduces further challenges to ASR, in the case
of MT when translating to the primary/secondary
language, the translation is partially present in the
source sentence, allowing the model to perform bet-
ter on CSW over monolingual sentences, as shown
in Gaser et al. (2022). CSW quality can then be
important for the model to not just retain words
through translation but to learn the modifications
often needed to achieve higher fluency.
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Examples
ASR Ref ú


	æªK
 one of my dream jobs èX èX ��.
ASR baseline ú


	æªK
 my dream job A 	K @ èX èX ��.
ASR BT ú


	æªK
 my dream job é 	�QK. èX ��.
MT Ref But this is one of my dream jobs actually.
MT baseline but this.. one of my dream jobs i mean
MT BT but this.. this is one of my dream jobs
ASR Ref AêÊ¿ Qå�Ó ú


	̄ most beautiful city 	à@ñ�@ i think ú

	æªK
 ð

ASR baseline AêÊ¿ Qå�Ó ú

	̄ student È@ C�@ i think ú


	æªK
 ð
ASR BT AêÊ¿ Qå�Ó ú


	̄ student È@ i think ú

	æªK
 ð

MT Ref And actually, i think Aswan is the most beautiful city in all Egypt.
MT baseline and i think aswan most beautiful city in all of egypt
MT BT and i mean i think aswan is most beautiful city in all of egypt
ASR Ref ø
 ð@ Q�


�J» posters ÉÒª	JK. graphic È@ ú

	̄ èX semester È@

ASR baseline ø
 ð@ Q�

�J» projects ú


	̄ èX ½�J�@PX È@ ÉÒª	K semester

ASR BT ø
 ð@ Q�

�J» posters ú


	̄ èX ½�J�@PX È@ ÉÒª	JK. semester

MT Ref We’re designing many posters this semester in graphic.
MT baseline this semester in graphic we make posters a lot

(We mark posters a lot as incorrect as the output incorrectly follows the same
syntactic structure as the original CSW sentence, where the Arabic adjective
Q�
�J» ktyr ‘many’ follows the English noun posters.)

MT BT this semester in graphic we make a lot of posters
ASR Ref ÉÔ«@ ø
 @ 	P@ web applications ÉÔ«@ ø
 @ 	P@ A

	K @ 	à@ Aî 	DÓ @Yg. Q�
�J» �HAg. Ag ÕÎª�JK. A 	K @
é 	�QK. hardware �HAg. Ag ø
 @ 	P@ games ÉÔ«@ ø
 @ 	P@ mobile È@ applications

embedded systems
ASR baseline ÉÔ«@ ø
 @ 	P@ precautions ù


�®J. K
ð ÉÓA« ø
 @ 	P@ A
	K @ 	à@ Aî 	DÓ @Yg. Q�
�J» �HAg. Ag ú
ÎÒª

�JK. ð
é 	�QK. hardware �HAg. Ag ø
 @ 	P@ games ÉÔ«@ ø
 @ 	P@ mobile È@ applications

implications
ASR BT ÉÔ«@ ø
 @ 	P@ precautions ù


�®J. K
 @ñÊÔ« ø
 @ 	P@ A
	K @ 	à@ Aî 	DÓ @Yg. Q�
�J» �HAg. Ag �IÒÊª�K@ ð

é 	�QK. hardware �HAg. Ag ø
 @ 	P@ games ÉÔ«@ ø
 @ 	P@ mobile È@ applications

implications
MT Ref I am learning a lot of things, including how to develop web applications, how

to develop mobile applications, how to develop games .. as well as hardware
things such as embedded systems

MT baseline i learn a lot of things, including how to do web applications, how to make
applications the mobile, how to make games, how.. hardware embedded sys-
tems

MT BT i learn a lot of things, including how to make web applications, how to make
applications the mobile, how to make games, how.. hardware also embedded
systems

Table 3: Examples of outputs of ASR and MT systems. For each example, we show the reference transcription
(ASR Ref) and translation (MT Ref) as well as the outputs of the baseline and BT augmentation models in the
non-zero-shot setting. The words in the transcriptions/translations are highlighted according to whether they are
correct (green) or incorrect (red and underlined) with regards to CSW. Given that Arabic is written from right to left,
all sentences are displayed in a right-to-left orientation.
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6.3 Other Factors Affecting Performance
We investigate other factors besides quality that
may impact the effectiveness of the augmentation
techniques, by checking their correlations against
MT and ASR non-zero-shot results. With regards
to the varying quantity of generated augmentations
across techniques, while it may affect results, it
holds a low correlation of -0.01 (p = 0.98) and
-0.60 (p = 0.12) with ASR and MT results. We
also check correlations against perplexity and OOV
rate, where strong correlations of 0.89 (p = 0.003)
and 0.84 (p = 0.008) are found for ASR. For MT, a
lower correlation of -0.77 (p = 0.027) is found for
perplexity (implementation details in Appendix B).
We do not report correlations with OOV rate for
MT, as it is the same value for the majority of aug-
mentation techniques.2 We agree with Hashimoto
et al. (2019) that perplexity captures diversity but
not quality, while human evaluation captures qual-
ity but not diversity, where we believe both cri-
teria affect augmentation performance. Accord-
ingly, the high performance achieved by BT and
LEXPred across ASR and MT tasks could be sup-
ported by their high performance on both criteria.

6.4 Perplexity as a Quality Measure
While perplexity has been previously used to mea-
sure the quality of generated CSW and monolingual
augmented data (Winata et al., 2018; Feng et al.,
2020; Evuru et al., 2024), we report a low corre-
lation of -0.62 (p = 0.10) with naturalness scores.
This highlights the importance of assessing natural-
ness through human evaluations as well as the need
for further research towards developing automatic
quality evaluation methods for CSW synthetic data.

7 Conclusions and Outlook

We investigate the efficacy of multiple CSW data
augmentation approaches and the relation between
quality of generations and improvements. We ex-
tend our previous work on MT with results on
ASR and ST. We find that back-translation and
predictive-based lexical replacements perform con-
sistently well, however, quality of generations are
found to be less important for ASR than MT mod-
els. We shed light on multiple factors that come
into play, including diversity of generations as well
as task complexity and model performance.

2Both Arabic and English sentences of the parallel corpora
are used on the source side when training the MT models, so
no new words are introduced for LEXRand, LEXPred, and
linguistic-based approaches.

In future work, we plan on expanding the in-
vestigated approaches, with a focus on utilizing
large language models. We also plan on exploring
personalized CSW text generation.

Limitations

While this paper provides a comprehensive compar-
ison of CSW augmentation techniques, in terms of
the number of augmentation methods and the range
of NLP tasks considered, we acknowledge that the
coverage is limited to one language pair. Further
research is needed to assess the generalizability of
our findings across different languages. Addition-
ally, we also acknowledge that LLM-based CSW
generation is an interesting direction that is gaining
attention (Yong et al., 2023; Potter and Yuan, 2024;
Alharbi et al., 2024; Kuwanto et al., 2024). Fur-
ther research is needed to assess its effectiveness
compared to the approaches presented in this work,
which we leave for future work.
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A Statistical Significance Tests

We present the statistical significance for the ASR and ST experiments in Tables 4 and 5.

LEXDict LEXRand ECRand ECSPF MLRand

WER 62.4 61.7 62.3 62.8 62.7
LEXDict 62.4
LEXRand 61.7 0.009*
ECRand 62.3 0.719 0.017*
ECSPF 62.8 0.124 <0.001* 0.016*
MLRand 62.7 0.197 <0.001* 0.032* 0.719
MLSPF 62.5 0.764 0.003* 0.407 0.142 0.254

LEXDict LEXRand LEXPred ECRand ECSPF MLRand MLSPF

WER 33.1 32.5 32.5 32.6 32.9 33.1 33.0
LEXDict 33.1
LEXRand 32.5 0.006*
LEXPred 32.5 0.009* 0.928
ECRand 32.6 0.057 0.503 0.535
ECSPF 32.9 0.337 0.095 0.114 0.238
MLRand 33.1 0.865 0.003* 0.004* 0.018* 0.201
MLSPF 33.0 0.667 0.020* 0.026* 0.075 0.516 0.465
BT 32.4 0.003* 0.589 0.509 0.177 0.018* <0.001* 0.003*

Table 4: Statistical significance between ASR models in the zero-shot (upper) and non-zero-shot (lower) settings
calculated on WER achieved on ArzEn-ST test set CSW sentences. We present the p-values and mark p-values
< 0.05 with ∗, where the null hypothesis can be rejected. We include the WER figures for easier readability and
comparison.

LEXDict LEXRand LEXPred ECRand ECSPF MLRand MLSPF BT
chrF++ 41.2 42.0 43.0 41.7 42.2 41.8 41.8 43.3

LEXDict 41.2
LEXRand 42.0 0.0010*
LEXPred 43.0 0.0010* 0.0010*
ECRand 41.7 0.0100* 0.0490* 0.0010*
ECSPF 42.2 0.0010* 0.1598 0.0010* 0.0070*
MLRand 41.8 0.0040* 0.0939 0.0010* 0.2687 0.0170*
MLSPF 41.8 0.0020* 0.1489 0.0010* 0.1798 0.0420* 0.2647
BT 43.3 0.0010* 0.0010* 0.0410* 0.0010* 0.0010* 0.0010* 0.0010*
ST_BLAll 41.6 0.0300* 0.0250* 0.0010* 0.2038 0.0040* 0.1518 0.0949 0.0010*

Table 5: Statistical significance between ST models in the non-zero-shot setting calculated on the chrF++ scores
achieved on ArzEn-ST test set CSW sentences. We present the p-values and mark p-values < 0.05 with ∗, where the
null hypothesis can be rejected. We include the chrF++ scores for easier readability and comparison.

B Perplexity in MT Setup

We report PPL in MT setups by training transformer-based LMs using Fairseq. The models are optimized
with Adam (Kingma and Ba, 2014) using β1 = 0.9, β2 = 0.98. We set the dropout to 0.1 and the
learning rate to 0.0005. We report perplexity for the non-zero-shot settings as follows: LEXDict (163.2),
LEXRand (156.1), LEXPred (148.6), ECRand (146.0), ECSPF (150.5), MLRand (147.0), MLSPF (150.5),
and BT (143.2).
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