Machine Translation Using Grammar Materials for LLM Post-Correction

Jonathan Hus, Antonios Anastasopoulos, Nathaniel Krasner


Abstract
This paper describes George Mason University’s submission to the AmericasNLP 2025 Shared Task on Machine Translation into Indigenous Languages. We prompt a large language model (LLM) with grammar reference materials to correct the translations produced by a finetuned Encoder-Decoder machine translation system. This system leads to improvements when translating from the indigenous languages into Spanish indicating that LLMs are capable of using grammar materials to decipher an unseen language.
Anthology ID:
2025.americasnlp-1.10
Volume:
Proceedings of the Fifth Workshop on NLP for Indigenous Languages of the Americas (AmericasNLP)
Month:
May
Year:
2025
Address:
Albuquerque, New Mexico
Editors:
Manuel Mager, Abteen Ebrahimi, Robert Pugh, Shruti Rijhwani, Katharina Von Der Wense, Luis Chiruzzo, Rolando Coto-Solano, Arturo Oncevay
Venues:
AmericasNLP | WS
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
92–99
Language:
URL:
https://preview.aclanthology.org/moar-dois/2025.americasnlp-1.10/
DOI:
10.18653/v1/2025.americasnlp-1.10
Bibkey:
Cite (ACL):
Jonathan Hus, Antonios Anastasopoulos, and Nathaniel Krasner. 2025. Machine Translation Using Grammar Materials for LLM Post-Correction. In Proceedings of the Fifth Workshop on NLP for Indigenous Languages of the Americas (AmericasNLP), pages 92–99, Albuquerque, New Mexico. Association for Computational Linguistics.
Cite (Informal):
Machine Translation Using Grammar Materials for LLM Post-Correction (Hus et al., AmericasNLP 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/moar-dois/2025.americasnlp-1.10.pdf