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Abstract
This paper provides a vector space characteri-
zation of regular transductions. We use finite
model theory to characterize objects like strings
and trees as relational structures and origin
graphs to characterize input-output relations
generated by transducer. We show detailed pro-
cesses of using multilinear maps as function
application for evaluation to compile regular
transductions characterized by MSO definable
origin graphs into a tensor embedding.

1 Introduction

The mathematical theory of automata provides a
way to explicitly tie the complexity of linguistic
patterns to specific claims about memory organiza-
tion and thus provides an direct way of measuring
the cognitive demands of language. Transducers,
i.e. automata that produce outputs beyond “yes”
or “no”, have been around since the beginnings
of automata theory, and have a long history in lin-
guistics and NLP for modeling the complexity of
various linguistic processes (Mohri, 1997; Heinz,
2018; Roark and Sproat, 2007).

One particular class of interest is the regular
transductions, which generalize the class of regular
languages. Regular languages are one of the most
well-studied objects in computer science, character-
ized by regular expressions, finite-state automata,
and statements in Monadic Second-Order logic,
among others (Thomas, 1997). Linguistically, the
regular class has been shown to sufficiently charac-
terize phonological and morphological phenomena
(Kaplan and Kay, 1994; Rawski et al., 2023; Dola-
tian et al., 2021).

The regular transductions have become far better
understood in recent years. Engelfriet and Hooge-
boom (2001) showed that MSO-transducers, a log-
ical model of transducers studied in the general
context of graph transductions (Courcelle, 1994;
Courcelle and Engelfriet, 2012), exactly character-
ize the transductions realized by two-way transduc-

ers. A model of one-way transducers with registers,
called streaming string transducers, has also been
shown to capture the same class of transductions,
which were then called regular functions (Alur and
Černý, 2010).

This paper considers logical characterizations of
regular functions over structures that are defined
using finite model theory. Model theory has been
used for comparisons of particular grammatical
theories in phonology and syntax (Rogers, 1998;
Pullum, 2007; Graf, 2010), and for studying the
nature of linguistic structures and processes them-
selves (Heinz, 2018; Payne et al., 2016). Linguistic
structures like strings and trees are modeled us-
ing relational information which holds among the
elements characterizing a particular structure.

It is of interest to see how these models may be
characterized in vector spaces. Vector space ap-
proaches to language and symbolic cognition in
general have become increasingly popular during
the last two decades. There is work dealing with
conceptual spaces for sensory representations (Gar-
denfors, 2004), multilinear representations for com-
positional semantics (Blutner, 2009; Aerts, 2009),
and dynamical systems for modeling language pro-
cesses (Beim Graben et al., 2008; Tabor, 2009).

One particularly significant contribution in this
area is Tensor Product Representation (Smolen-
sky, 1990). Here, subsymbolic dynamics of neural
activation patterns in a vector space description
become interpreted as symbolic cognitive compu-
tations at a higher-level description by means of
“filler/role" bindings via tensor products. These
tensor product representations form the symbolic
foundation of Harmonic Grammar and Optimality
Theory, and have been successfully employed for
phonological and syntactic computations (Smolen-
sky and Legendre, 2006).

Tensor methods and (sub)regular gram-
mars/automata have been used to evaluate and
interpret neural networks (Rabanser et al., 2017).
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McCoy et al. (2018) showed that recurrent neural
networks (RNNs) implicitly encode tensor product
representations, and Strobl et al. (2023) survey
work using regular languages to test transformer
language models. Nelson et al. (2020) used regular
string transductions to test the generalization
capacity of RNNs, finding that they failed to
successfully learn them unless explicitly given
machinery which enabled them to approximate the
underlying two-way finite-state transducer.

There has also work on embedding logical cal-
culi using tensors. Grefenstette (2013) introduces
tensor-based predicate calculus that realizes logical
operations. Yang et al. (2014) introduce a method
of mining Horn clauses from relational facts repre-
sented in a vector space. Serafini and Garcez (2016)
introduce logic tensor networks that integrate logi-
cal deductive reasoning and data-driven relational
learning. Sato (2017) formalizes Tarskian seman-
tics of first-order logic in vector spaces. Rawski
(2019) employed Sato’s method to translate model-
theoretic representations and languages definable
in first-order logic (the star-free and locally thresh-
old testable sets) into tensors. This paper extends
that work to consider transductions.

2 Transductions as origin graphs

Model theory, combined with logic, provides a
powerful way to study and understood mathe-
matical objects with structures (Enderton, 2001).
This paper only considers finite relational mod-
els (Libkin, 2004).
Definition 1. A model signature is a tuple S =
⟨D;R1, R2, . . . , Rm⟩ where the domain D is a fi-
nite set, and each Ri is a ni-ary relation over the
domain.

In this paper, the relations are at most binary.
Definition 2. A model for a set of objects M is
a total, one-to-one function from M to structures
whose type is given by a model signature S.

The flexibility gven by model-theoretic repre-
sentations allows them to consider many things as
objects, including relations between inputs and out-
puts. Bojańczyk (2014), attempting to solve the
problem of how to decide whether two transduc-
ers generate the same input-output pairs, created
a novel way to describe transductions as model-
theoretic structures by using an origin mapping.
Informally, an origin mapping, which is a total func-
tion from output positions to input positions show-
ing which input position(s) are used for a given

output symbol. Bojańczyk et al. (2017) directly
considered this relation between inputs and outputs
as a structure, called an origin graph, for which
they defined the corresponding idea of an origin
transduction.

Definition 3. (Bojańczyk et al., 2017) An origin
string-to-string transduction (origin transduction
for short) consists of an input alphabet Σ, an out-
put alphabet Γ, and a set of origin graphs over
these alphabets specifying the input position used
to produce each output position.

An origin graph with input w and output v con-
sists of:

• The domain which is the disjoint union of po-
sitions in w and positions in v;

• Two binary predicates for the successor rela-
tions in w and v;

• a binary predicate, the origin mapping, which
is a total function from output position to input
positions;

• a unary predicate for each a ∈ Σ ∪ Γ which
identifies positions with label a.

a b a

a b a a b a

a b a

a b a a b a

Figure 1: Visualizations of two string-to-string trans-
ductions differing only on the origin mapping.

Consider two transductions from the input string
aba to the output string abaaba visualized in fig. 1.
In addition to the pair of input and output string
(aba → abaaba) involved in the transduction, the
origin input position of each output position differ-
entiates origin transductions, especially in terms of
their recognizability by automata (see e.g. Dolatian
et al., 2021). In fig. 1, input positions are denoted
by circles. Output positions are denoted by squares.
And the arrows from an output position to an in-
put position represents the origin information of
the output position. The upper figure can be seen
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as the result of reduplication computed by a two-
way automaton which goes back-and-forth over the
input.

Origin graphs present an intriguing way to take
concepts used to define classes of formal languages,
and apply them to transductions by considering
them as structures. This has a history in linguis-
tics, namely through evaluations of phonological
ideas. Various recent works have used formalisms
resembling origin semantics to discuss Correspon-
dence Theory (Payne et al., 2016) and rewrite-rule
interaction (Meinhardt et al., 2024).

3 Logical Languages and Transduction
Classes

Usually a model signature provides the vocabu-
lary for some logical language L , which contains
N constants {e1, . . . , eN}. Following notation of
Sato (2017), a model M = (D, I) is thus a pair of
domain, a nonempty set D and an interpretation I
that maps constants ei to elements (entities, indi-
viduals) I(ei) ∈ D and k-ary predicate symbols r
to k-ary relations I(r) ⊆ Dk.

An assignment a is a mapping from variables x
to an element a(x) ∈ D. It provides a way of eval-
uating formulas containing free variables. Syntac-
tically terms mean variables and/or constants and
atomic formulas or atoms r(t1, . . . , tk) are com-
prised of a k-ary predicate symbol r and k terms
t1, . . . , tk some of which may be variables. For-
mulas F in L are inductively constructed as usual
from atoms using logical connectives (negation ¬,
conjunction ∧, disjunction ∨) and quantifiers (∃,∀).
First-order formulas allow only quantification over
elements. Monadic Second-Order (MSO) formulas
additionally allow countably many second-order
set variables X,Y, . . . with x ∈ X , which can
be quantified over ∀X,∃X . In this case, a is a
mapping from set variables variables X to a set of
elements a(X) ∈ D.

Sentences in this logical language define sets
of strings/trees as follows. The language of a for-
mula F is all and only those graphs whose models
satisfy F . For any formula F , JF KI,a ∈ {1, 0}
and when JF KI,a = 1, we write M ⊨a F to mean
the model satisfies F . However when F is closed,
since JF KI,a does not depend on the assignment a,
we just write JF K and M ⊨ F if F is true in M .

There are several well-known connections be-
tween logical statements and languages classes.
Most famous is Büchi (1960)’s result that lan-

guages characterizable by finite-state machines, the
regular languages, are equivalent to statements in
Monadic Second-Order Logic over the precedence
model for strings (and successor, since precedence
is MSO-definable from successor).

Courcelle (1994) lifted the idea of MSO to trans-
ductions, creating the MSO-definable analog of
the regular languages. Engelfriet and Hoogeboom
(2001) showed an equivalence between MSO-
transducers and two-way transducers (where the
read head can move back and forth on the in-
put). Later, Alur and Černý (2010) showed an-
other equivalence with streaming string transduc-
ers (where the two-way read head is replaced with
a finite number of registers), giving the following
result:

Theorem 1 (Engelfriet and Hoogeboom, 2001;
Alur and Černý, 2010; Courcelle, 1994). A trans-
duction is regular iff it is realized by a 2-way
Deterinistic Finite-state Transducer or an MSO-
transducer or a Streaming String Transducer.

This convergence of results led to particular prob-
lems of deciding whether a given transducer is
equivalent to another one, or whether two transduc-
ers compute the same string relation in the same
way. This is analogous to the concept of weak ver-
sus strong capacity in linguistics (Miller, 1999).
Bojańczyk et al. (2017), using the origin graphs
defined earlier, showed another characterization:

Theorem 2. (Bojańczyk et al., 2017) Let G be an
origin transduction, i.e., an input alphabet, an out-
put alphabet, and a set of origin graphs over these
alphabets. G is a regular function (recognized by
a streaming string transducer) iff:
bounded origin: there is some m ∈ N such that in
every origin graph from G, every input position is
the origin of at most m output positions;
k-crossing: in every origin graph from G, every in-
put position is crossed by at most k output positions
(An output position j crosses an input position i if
the origin of j is no greater than i, and either j is
the final output position, or the successor of j has
its origin greater than i.);
MSO-definable: there is an MSO formula which is
true in exactly the origin graphs from G.

The main goal of this paper, extending Rawski
(2019), is to characterize the origin graphs with
these properties via tensor calculus in order to em-
bed transductions in vector spaces.
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4 Tensor Representations of Logical
Constraints

We first want to show how to embed a model do-
main and signature into a vector space, using ten-
sors to encode relational information. We then
show how the ingredients of a logical language
(specifically, First-Order and Monadic Second-
Order logics) translate to operations over tensors.

Scalars are denoted with lower case letters like
a. Vectors mean column vectors and we denote
them by boldface lower case letters like a and a’s
components by ai. D ′ = {e1, . . . , eN} is the stan-
dard basis of N -dimensional Euclidean space RN

where ei = (0 · · · , 1, · · · , 0)T is a vector that has
one at the i-th position and zeros elsewhere. Such
vectors are called one-hot vectors. For set variables
are denoted

1 is a vector of all ones. We assume square ma-
trices, written by boldface upper case letters like A.
I is an identity matrix, and 1 is a matrix of all ones.
Order-p tensors A ∈ RDp

, are also denoted by{
ai1,...,ip

}
(1 ≤ i1, . . . , ip ≤ N). A’s component

ai1,...,ip is also written as (A)i1,...,ip . (a•b) = aTb

is the inner product of a and b whereas a◦b = abT

is their outer product. 1◦ · · · ◦1 is a k-order tensor,
and 1 ◦ · · · ◦ 1 (ei1 , . . . , eik) = (1 • ei1) · · · (1 •
eik) = 1. Scalars, vectors, and matrices are tensors
of order 0, 1, and 2 respectively.

There exists an isomorphism between tensors
and multilinear maps (Bourbaki, 1989), such that
any curried multilinear map

f : V1 → . . . → Vj → Vk

can be represented as a tensor Tf ∈ Vk ⊗ Vj ⊗
. . .⊗V1. This means that tensor contraction acts as
function application. This isomorphism guarantees
that there exists such a tensor T f for every f , such
that for any v1 ∈ V1, . . . , vj ∈ Vj :

fv1 . . .vj = vk = T f × v1 × . . .× vj (1)

Following Sato (2017), we first isomorphically
map a model M to a model M ′ in RN . We map
entities ei ∈ D to one-hot vectors {ei}. So D
is mapped to D′ = {e1, . . . , eN}, the basis of
RN . We next map a k-ary relation r in M to a
k-ary relation r′ over D′ which is computed by an
order-k tensor R = {ri1,...,ik}, whose truth value
Jr(ei1 , . . . , eik)K in M is given by

Jr(ei1 , . . . , eik)K

= R(ei1 , . . . , eik)

= R×11 ei1 ×12 · · · ×1,ik eik
= ri1,...,ik ∈ {1, 0} (∀i1, . . . , ik ∈ {1, . . . , N})

(2)
We identity r′ with R so that R encodes the M -

relation r. Let M ′ be a model (D′, I ′) in RN such
that I ′ interprets entities by I ′(ei) = ei(1 ≤ i ≤
N) and relations r by I ′(r) = R.

For the purposes of this paper, we restrict our-
selves to binary relations and predicates. When r
is a binary predicate, the corresponding tensor R
is a bilinear map and represented by an adjacency
matrix R as follows:

J(ei, ej)K = (ei ·Rej) = eTi Rej = rij ∈ {1, 0}
(3)

Note that when r(x, y) is encoded by R as
(x •Ry), r(y, x) is encoded by RT , since
(y •Rx) = (x •RTy) holds

We next inductively define the evaluation
JF KI′,a′ of a formula F in M . Let a be an assign-
ment in M and a′ the corresponding assignment
in M ′, so a(x) = ei iff a′(x) = ei. For a ground
atom r(ei1 , ..., eik), define

Jr(ei1 , . . . , eikK
′ = R(ei1 , . . . , eik)

(∀i1, . . . , ik ∈ {1, . . . , N}). (4)

where R = {ri1,...,i1} is a tensor encoding the M -
relation r in M . By definition JF KI,a = JF KI,a
holds for any atom F . Negative literals are evalu-
ated using ¬R defined as

J¬r
(
ei1 , . . . , eikK

′ = ¬R (ei1 , . . . , eik)

where ¬R def
=

k︷ ︸︸ ︷
1 ◦ · · · ◦ 1−R

(5)

¬R encodes an M -relation ¬r1. Negation other
than negative literals, conjunction, disjunction, and
quantifiers are evaluated in M ′ as follows.

J¬F K′ = 1− JF K′ (6)

JF1 ∧ · · · ∧ FhK′ = JF1K′ · · · JFhK′ (7)

JF1 ∨ · · · ∨ FhK′ = min
1

(JF1K′ + . . .+ JFhK′)

(8)

J∃yF K′ = min
1

(

N∑

i=1

JFy←eiK
′) (9)

Here the operation min1(x) = min(x, 1) = x
if x < 1, otherwise 1, as componentwise applica-
tion. Fy←ei means replacing every free occurrence
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of y in F with ei. Universal quantification over
individual elements is treated as ∀xF = ¬∃x¬F .

Monadic second order logic allows variables
over sets of elements in addition to first order for-
mulas discussed above. A set variable X consist-
ing of k entities ei1 , ei2 , . . . , eik can be represented
as the sum of the corresponding one-hot vectors,
eX =

∑
ei∈X ei which is a k-hot vector. Notice

here the subscript is a set of numbers X instead of
a number indicating the position, e.g. i. The eval-
uation of ground atoms like r(Ei1 , . . . , Eik) can
stay the same, which is also true of other first order
evaluations. The existential quantification of set
variables can be evaluated in M ′ as follows.

J∃XF K′ = min
1

(
∑

I⊆D
JFX←IK′) (10)

Similarly, universal quantification over sets can
be treated as ∀XF = ¬∃X¬F .

We can now define the properties over origin
graphs using this formulation as in Theorem 2. For
an origin graph, the set of its input positions is N
and the set of its output positions is M . Binary
relation Rorigin defines the origin information be-
tween N and M . Rorigin(i, j) = 1 when the output
position j has the input position i as its origin.

For every input position x, the condition of k-
crossing is equivalent to

|M |∑

i=1

Rorigin(x, i) ≤ k (11)

The condition of bounded origin is equivalent to

|M |∑

i=1

cross(x, i) ≤ k (12)

Equating input positions withe natural numbers
1 to |N | and output positions with natural numbers
1 to |M |, the function cross (see theorem 2 for
definition) can be defined as

cross(x, i) =





1 ∃k(k ≤ x ∩R(k, i))∩
∩(i = |M | ∪ ∃l(x < l∩
∩R(l, i+ 1)))

0 otherwise

Intuitively, cross(x, i) returns 1 if an output posi-
tion i has origin at some input position k preceding
an input position x, such that i is either the last
output position or its successor has origin to the
right of x. It returns 0 otherwise.

5 Examples

This section presents detailed processes of com-
piling MSO definable origin graphs into a tensor
embedding, based on Sato (2017); Rawski (2019).
MSO formulas are first converted into prenex nor-
mal form. Then the formula is translated into its
corresponding tensor representation by applying
evaluations rules discussed in section 4. For read-
ability, we often collapse multiple sequential ∃
quantifiers into one.

5.1 -t insertion

We begin with a simple process of concatenating a
symbol -t onto the end of an output word, akin to
suffixation or epenthesis. This process of -t inser-
tion maps, for example, the input string ba to bat.
The process can be captured by an MSO formula
(in fact, a first order formula):

F−t = ∀x(Rinput(x) →
∃y(Rorigin(x, y) ∧Requal(x, y) ∧ ((Rlast-i(x)∧

∃z(Rsucc-o(y, z)∧Rorigin(x, z)∧Rt-o(z)∧Rlast-o(z)))

∨ ∃x′, y′(Rsucc-i(x, x
′) ∧Rsucc-o(y, y

′)∧
∧Rorigin(x

′, y′))))) (13)

We assert that for any input position x
(Rinput(x) = 1), there exists an output position
y whose origin is x (Rorigin(x, y) = 1) and the la-
bels of x and y are the same (Requal(x, y) = 1). We
follow Bojańczyk et al. (2017) in distinguishing the
set of input alphabet and the set of output alphabet.
For example, Rt-output(z) checks whether position
z is an output position and whether its label is t. In
this way, unary predicates Rinput, Routput and the
binary predicate Requal can all be defined with no
difficulty.

Additionally, if x is the last input position
(Rlast-i(x) = 1), then y has a successor z. The
origin of z is x (Rorigin(x, z) = 1). Its label is t
in the output alphabet (Rt-output(z) = 1). And it is
the last position in the output (Rlast-o(z) = 1). Oth-
erwise x has its successor x′ (Rsucc-i(x, x

′) = 1)
and y also has its successor y′ (Rsucc-o(y, y

′) = 1),
whose origin is x′ (Rorigin(x

′, y′) = 1).
The adjacency matrix defined by the binary rela-

tion Rorigin in this case is almost an identity matrix.
Suppose the input has a length of n. Then for any
i less that n, (i, i) is 1. (n, n + 1) is also 1. All
other entries are 0. It satisfies the constraints of
bounded origin and k-crossing naturally, as each
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input position is the origin of at most 2 output posi-
tions and is crossed by at most 2 output positions.
And thus the origin transduction of -t insertion is
recognizable by a streaming string transducer with
k registers.

b a

b a t

Figure 2: Visualizations of the origin graph of suffixiat-
ing -t to ba.

Because the formula of -t or any suffix inser-
tion is properly first order (in fact it’s subsequential
(Mohri, 1997)), its origin graph has a straightfor-
ward embedding into tensor operations following
results from Rawski (2019) (see also section 4).

First, the formula can be converted into prenex
normal form:

∀x∃y∃z∃x′∃y′(¬Rinput(x) ∨ (Rorigin(x, y)∧
∧Requal(x, y) ∧ ((Rlast-i(x)∧

∧(Rsucc-o(y, z)∧Rorigin(x, z)∧Rt-o(z)∧Rlast-o(z)))∨
∨(Rsucc-i(x, x

′)∧Rsucc-o(y, y
′)∧Rorigin(x

′, y′)))))
(14)

Compiling the prenex formal formula into tensor
notation, we get

T−t = 1−min
1

N∑

x=1

(1−min
1

N∑

y,z,x′,y′=1

(min
1

((1−Rinputex)+(eTxRoriginey)•(eTxRequaley)

•min
1

((Rlast-iex) • (eTy Rsucc-oez)

• (eTxRoriginez) • (Rt-iez) • (Rlast-oez)+

((eTxRsucc-iex′) • (eTy Rsucc-oey′) • (eTx′Roriginey′

)))))) (15)

Here we can see how each of the ingredients
of the logical formula maps, straightforwardly, to
ingredients of the tensor formulation. Note that∑N

y,z,x′,y′=1 collapses the four existential quanti-
fiers, for ease of readability.

5.2 Copying
Next we demonstrate an MSO formula for the pro-
cess of copying the input word, which is of more

linguistic significance. Copying, known as redupli-
cation in linguistics, is a common morphological
process which is often argued to be among the
most complex phenomena in linguistics. Copying
is properly a regular function, and is one of the
standard characteristic functions used to define the
properties of the class, namely the linear growth
property (see Rawski et al. (2023) for details).

Fcopying = ∀x(Rinput(x) →
→ ∃Y,Z(Routput-path(Y,Z)∧

∧∃y, z(Rorigin(x, y)∧Rorigin(x, z)∧y ∈ Y ∧z ∈ Z∧
∧ (¬Rlast-input(x) →

∃x′, y′, z′(Rsucc-input(x, x
′) ∧Rsucc-output(y, y

′)∧
∧Rsucc-output(z, z

′)∧Rorigin(x
′, y′)∧Rorigin(x

′, z′)

))))) (16)

The binary predicate Routput-path(Y,Z) holds when
Y and Z partition the output positions, in which Y
and Z are two paths and the first position of Z is
the successor of the last position of Y . It can be
formalized by the conjunction of three predicates:
1) Y and Z together cover all output positions, with
each position belonging exclusively to either Y or
Z; 2) Both Y and Z must be paths. A path is
defined as a connected graph where every position,
except one, has a successor within the path, and
every position, except one, is a successor of another
position in the path; 3) the tail of Y has the head
of X as its successor in X (the tail of a path can
be defined as the only position without a successor
in the path; the head of a path is not a successor of
any position in the path).

The formula thus states that for every input po-
sition x, there are two output positions y ∈ Y and
z ∈ Z, whose origin is x. The part requires they
bear the same label is omitted for the ease of un-
derstanding. Whenever x is not the last position
in the input, y and z are also not last positions in
Y and Z. Their successors y′ and z′ both have the
successor of x, x′ as their origin.

In this way, each input position is mapped to
exactly two output positions and bounded origin
is satisfied. The last input position is only crossed
once by the last output position. Every other input
position is crossed twice by the two output posi-
tions it mapped to. And therefore k-crossing is
satisfied as well. Importantly, the number of copies
must be linearly bounded (i.e. some pre-specified
number of copies of an input string) in order to
remain MSO-definable. Unbounded copying vio-
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lates both constraints and is not MSO definable, nor
is bounding the number of copies to some higher
order, say polynomially. (Rawski et al., 2023).

a b a

a b a a b a

Figure 3: Visualizations of the origin graph of copying
aba

Converting the formula into prenex normal form:

Fcopying = ∀x∃Y ∃Z∃y∃z∃x′∃y′∃z′(¬RINPUT(x)

∨ (Routput-path(Y, Z)

∧ (Rorigin(x, y) ∧Rorigin(x, z) ∧ y ∈ Y ∧ z ∈ Z

∧(Rlast-input(x)∨(Rsucc-input(x, x
′)∧Rsucc-output(y, y

′)

∧Rsucc-output(z, z
′)∧Rorigin(x

′, y′)∧Rorigin(x
′, z′)

))))) (17)

The formula can be compiled into tensor nota-
tion as follows:

Tcopying =

1−min
1

(
N∑

x=1

(1−min
1

∑

Y,Z⊆D
(min

1
(

N∑

y,z,x′,y′,z′=1

min
1

((1−Roriginey′) + (Rsucc-output × eY × eZ)•

(eTxRoriginey)•(eTxRoriginez)•(ey•eY )•(ey•eY )•
min
1

(Rlast-inputex + (eTxRsucc-inputex′)•

(eTy Rsucc-outputey′) • (eTz Rsucc-outputez′)•
(eTx′Roriginey′) • (eTx′Roriginez′))))))) (18)

5.3 First-Last to Even-Odd mapping
In this subsection we show that in contrast to the
previous example, the origin graph of First-Last to
Even-Odd mapping does not satisfy the condition
of k-crossing. Patterns of this type are unattested
linguistically, though they are reminiscent of cer-
tain types of spreading patterns.

Consider the origin transduction exemplified in
fig. 4. Every odd position in the output has the
last input position as its origin. Every even output
position has the first input position as its origin.
The length of the output can be arbitrary. All input
positions are then sandwiched between the origins
of each neighboring even-odd output position pair.

a b c d e

e a e a e

Figure 4: Visualizations of the origin graph of reversing
abcde

And thus these input positions are crossed by each
even position in the output. Suppose the length
of the output is n. The crossing number is ⌊n/2⌋,
which grows with n and is unbounded.

The essential property of origin graphs of first-
last to even-odd mapping can be defined by the
following MSO formula:

FFLEO =

∃Youtput-o, Youtput-e(Routput-o/e(Youtput-o, Youtput-e)

∧ ∀y(y ∈ Youtput-o → ∃xf (Rfirst-input(xf )

∧Rorigin(xf , y)) ∧ (y ∈ Youtput-e →
∃xl(Rlast-input(xl) ∧Rorigin(xl, y))))) (19)

The MSO definable binary predicate
Routput-o/e(Youtput-o, Youtput-e) is true when Youtput-o
and Youtput-e constitute a partition of the set of
output positions and Youtput-o is the set of all odd
output positions while Youtput-e denotes the set of
all even output positions (see e.g. Filiot, 2015).
The formula asserts that every even output position
has the last input position as its origin while every
odd output position has the first input position as
its origin position. The part requires they bear the
same label is omitted for the ease of understanding.

We can convert this formula into prenex normal
form as follows:

∃Youtput-o∃Youtput-e∀y∃xf∃xl(
Routput-o/e(Youtput-o, Youtput-e)∧

∧(¬y ∈ Youtput-o∨(Rfirst-input(xf )∧Rorigin(xf , y))∧
∧(¬y ∈ Youtput-e∨(Rlast-input(xl)∧Rorigin(xl, y)))))

(20)

We can compile this into a tensor formula as
follows:
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TFLEO = min
1

∑

Youtput-o,Youtput-e⊆D
(1−min

1

N∑

y=1

(1−

−min
1

N∑

xf ,xl=1

(Routput-o/e × eYoutput-o × eYoutput-e)•

•min
1

((1− ey • eYoutput-o) + (Rfirst-inputexf
)•

• (eTxf
Roriginey)) •min

1
((1− ey • eYoutput-e)+

+ (Rlast-inputexl
) • (eTxl

Roriginey)))) (21)

6 Conclusion

This paper showed how to embed transductions in
a vector space via operations over tensors. In par-
ticular, by using the idea of origin graphs, which
represent input-output relations computed by some
transducer, we embedded these graphs into tensors
via finite model theory, and introduced Monadic
Second-Order logical operations to compile the
connectives and quantifiers. We showed how a
class of origin graphs with these properties charac-
terizing the regular transductions fits this exactly,
and gave several examples motivated from linguis-
tics.

There are several further directions this work
could take. The most obvious is to consider the
class of First-Order transductions on its own term.
First-Order functions generalize the star-free lan-
guages (definable in first-order logic) to transduc-
tions, and correspond to restricting the underlying
automaton of the transducer to be aperiodic (see
Filiot et al. (2019)).

Transductions have also been extended to other
structures besides strings, such as trees, which are
relevant data structures in syntactic and semantic
phenomena. The concept of origin information
can be extended from string transducers to tree
transducers, by considering the input and output
graphs as tree structures ordered by dominance
(Filiot et al., 2018; Winter, 2021). Therefore, tree
transductions can be embedded into vector space
using the same methods.

In general, the flexibility given by model the-
ory, as well as the precision given by classes of
transductions, allows for multiple characterizations
of structures of interest to linguistics, computer
science, and cognitive science.
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