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Abstract
Social media users often enhance and comple-
ment the emotions underlying in their posts
by using emojis. This leads to an increase in
research on sentiment analysis using text ac-
companied by emojis. While there are plenty
of previous works for predicting emojis in En-
glish posts based on understanding the mean-
ing of posts and classifying them into ap-
propriate emoji categories, research on emoji
prediction in Japanese is scarce. Addition-
ally, all of those previous works utilize clas-
sification models like BERT instead of large
language models. Therefore, in this paper,
we utilize three large language models, Chat-
GPT1, Claude2 and Gemini3 to predict emo-
jis for Japanese X posts, and compare the re-
sults to pre-trained models such as XLM (Con-
neau and Lample, 2019), Japanese BERT4 and
Japanese RoBERTa5. The results show that
Claude with 8 shots provided performs the
best.

1 Introduction

Social media users often enhance and complement
the emotions underlying in their posts by using
emojis. Emojis have become an indispensable ele-
ment in NLP. Many studies have attempted to un-
derstand the meaning of text using emojis. For ex-
ample, the performance of irony detection can be
improved by utilizing an emoji prediction model
as a transfer learning approach (Golazizian et al.,
2020).

There also exists the task of emoji prediction,
where the most suitable emojis are predicted from

1https://platform.openai.com/docs/models
2https://docs.anthropic.com/en/docs/

about-claude/models
3https://ai.google.dev/gemini-api/docs/

models/gemini
4https://huggingface.co/tohoku-nlp/

bert-base-japanese-v3
5https://huggingface.co/rinna/

japanese-roberta-base

text-only posts, or those text-only posts are classi-
fied into appropriate emoji categories. The emoji
prediction task is crucial for understanding and an-
alyzing the meaning of posts on social media (Bar-
bieri et al., 2017, 2018a,b; Cappallo et al., 2015;
Felbo et al., 2017; Lee et al., 2022; Ma et al., 2020;
Singh et al., 2022; Tomihira et al., 2018, 2020).
Particularly in classification tasks using large lan-
guage models (LLMs) like ChatGPT, it is neces-
sary to not only understand the meaning of the text
but also comprehend the meanings and usages of
emojis, and correlate them with the text.

However, studies on emoji prediction have fo-
cused mainly on English and the models studied
so far are classification models (Barbieri et al.,
2017, 2018a,b; Cappallo et al., 2015; Lee et al.,
2022; Ma et al., 2020; Singh et al., 2022; Tomi-
hira et al., 2018), where research on emoji predic-
tion in Japanese using LLMs is scarce. Further-
more, most of these studies have not considered
the validity of emojis annotated to the text by the
users and have not studied whether the emoji an-
notated to each post is predictable or not by hu-
mans. Also, emojis with similar usages and mean-
ings exist, so it is necessary to categorize emo-
jis into appropriate emoji groups before predic-
tion. Plus, not every post on social media is emoji-
predictable since usages of emojis are determined
by an individual human. Therefore, in this paper,
we first propose to group emoji labels consider-
ing the emotion each emoji label represents, where
similar emojis are grouped together so that not
each individual emoji but each emoji group should
be predictable. We also develop datasets consist-
ing of emoji-predictable Japanese X posts to eval-
uate emoji prediction models such as large lan-
guage models (ChatGPT, Claude and Gemini) and
compare the results with pre-trained models such
as XLM, Japanese BERT and Japanese RoBERTa.



step # posts ratio (%) step # posts ratio (%) step # posts ratio (%)
1 5,568,951 100.00 3 1,234,431 22.17 5 592,546 10.64

2 5,568,951 100.00 4 1,192,752 21.42 6 315,746 5.67

Table 1: Numbers of X posts after each preprocessing step

Our contributions are as follows:6

1. We demonstrate that Claude with few shots
provided is useful in emoji prediction task.
This is also the first study to conduct emoji
prediction task using LLMs in Japaneese.

2. We create datasets that consist only of posts
that are emoji-predictable by humans and
ones that consist of both posts that are emoji-
predictable by humans and posts that are
not. We show that better performance can be
achieved when predicting the former rather
than the latter.

2 Related Work

The emoji prediction task was introduced in 2015
or earlier (Cappallo et al., 2015) but started
to receive attention from an NLP standpoint in
2017 (Barbieri et al., 2017), where it can be seen
that the technologies studied in the task have
contributed to various NLP tasks. State-of-the-
art performance has been achieved in sentiment
analysis, emotion recognition, and sarcasm detec-
tion benchmarks using an emoji prediction model
DeepMoji (Felbo et al., 2017). The improved ver-
sion of DeepMoji, a label-wise attention LSTM,
is then utilized to predict emojis using data from
SemEval 2018 Task 2 (Barbieri et al., 2018a,b).
Although the label-wise attention LSTM fails to
achieve state-of-the-art performance, it shows the
strength of relationships between emojis and in-
dividual words, contributing to analyzing how the
model predicts the emojis. Their method also im-
proved performance of infrequently used emojis.
Furthermore, a machine learning technique is uti-
lized to predict emojis in multi-class and multi-
label settings (Ma et al., 2020). Emoji prediction
is also conducted as a multi-task learning task with
emotion classification as an auxiliary task (Lee
et al., 2022), or it is conducted with both sentiment
analysis and emotion analysis (Singh et al., 2022).
Here, it is important to note that those previous

6The code and the data used in this study are available at
the following URL: https://anonymous.4open.science/
r/emoji-prediction-3275.

studies on emoji prediction have focused mainly
on English.

In Tomihira et al. (2018, 2020), performance
of emoji prediction in Japanese has been exam-
ined, and the comparison between emoji predic-
tion for Japanese and English posts has been inves-
tigated using CNN, FastText, attention BiLSTM
and BERT7. With the English dataset, it achieves
higher accuracy than with the Japanese dataset in
all models, whereas F1 scores are lower in some
models. In this previous work (Tomihira et al.,
2018, 2020), the models employed are those other
than LLMs such as CNN, FastText, BiLSTM and
BERT and they have no discussion on the influ-
ence of emoji-predictability of posts. On the other
hand, we utilize LLMs to predict emojis and dis-
cuss the influence of emoji-predictability of posts
on the performance of the emoji prediction task.
Specifically, we developed a separate dataset con-
sisting only of posts whose emojis are predictable
by humans, and evaluated proposed methods with
the dataset.

3 X Posts Dataset

Emojis have multiple versions, and the OpenAI’s
model gpt-3.5-turbo-0125 is trained with the
oldest data among the three LLM models we use
and can only accurately recognize emojis up to
version 13.1. Therefore, in this paper, we adhere
to gpt-3.5-turbo-0125 and set emojis of ver-
sion 13.1 as the recognition limit. In our prelim-
inary evaluation, about 97% of emojis are up to
version 13.1. We collect Japanese X posts and
preprocess them as following, where the number
of posts extracted at each step is shown in Table 1:

1. We randomly collect Japanese X posts that
are available at time of January 2023 without
any restriction on those post dates.

2. We remove URLs and user mentions since
they can be noise for prediction.

3. In this paper, we consider the emoji predic-
tion task as a multi-class classification task.

7https://github.com/tommy19970714/
EmojiPrediction



emoji # posts emoji # posts emoji # posts emoji # posts
38,210 19,120 12,896 8,210

32,244 18,641 12,234 7,841

23,972 17,552 11,631 7,760

23,423 13,461 9,525 7,597

21,869 13,180 9,336 7,044

Table 2: The top 20 most frequent emojis and their distribution in the M20 dataset

group ID emoji group representative emoji group name # posts ratio (%)
1 joy 99,592 31.54

2 fun 36,672 11.61

3 sadness 50,373 15.95

4 celebration 61,710 19.54

5 love 20,075 6.36

6 sweat 26,357 8.35

7 angel 9,336 2.96

8 question 11,631 3.68

total — — — 315,746 100.00

Table 3: Representative emojis and group names after grouping emojis

Therefore, we extract posts each containing
only one emoji.

4. We extract posts containing emojis up to ver-
sion 13.1 as the recognition limit of the Chat-
GPT model mentioned earlier.

5. In this paper, we aim to understand the mean-
ing of the entire text and predict emojis ac-
cordingly. Therefore, we extract posts where
emojis are located at the end of the posts.

6. We extract posts with the top 20 most fre-
quently occurring emojis to limit the varia-
tion of class labels.

It should be noted that in step 5, the number of the
posts amounts to nearly half of the posts after the
step 4. It is known that emoji prediction models
behave differently according to the position of the
emoji within a post (Kwon et al., 2022). The issue
on how to handle the remaining half by consider-
ing the position of the emoji within a post is left as
a future work. Thus, finally, the dataset obtained
by the overall preprocessing above (i.e, 315,746
posts each with an emoji in it) is referred to as M20

for use in the following experiments.

4 Emojis for Evaluation

4.1 Selecting Emojis for Evaluation

Table 2 shows the top 20 most frequent emojis and
their distribution in the M20 dataset. One problem
here is that we cannot always predict emojis based
on the text of each post because the emoji corre-
sponding to the text is sometimes not uniquely de-
termined, since emojis like and have similar
meanings and usages. Neither humans nor mod-
els of this paper can tell whether a text is more
appropriate to or . On the other hand, in tradi-
tional multi-class classification tasks such as sen-
timent analysis, the class label corresponding to
the text is uniquely determined, which typically
means that a text can be usually classified into a
single class (like either positive or negative). In
order to address this issue, we group emojis so as
to ensure that the correspondence between a text
and an emoji is uniquely determined even if in the
case where there exist similar emojis.

Thus, emojis in Table 2 are grouped accord-
ingly, and each emoji is replaced with its repre-
sentative as shown in Tabel 3. There are many
approaches finding similar emojis and grouping
them. One common method is utilizing vectors,
meaning that emojis are placed into a vector space
and emojis’ similarity is determined based on vec-
tor similarity. In fact, emoji embeddings, which is



Japanese X post (and its English translation) emoji group name

ササミさん、ありがとうございます。無事 4000人突破しました。(Sasami-san, thank
you very much. We’ve successfully surpassed 4,000 people.)

joy

間に合ってます爆笑 (We made it in time LMAO.) fun

寝れない。(I can’t sleep.) sadness

あにちん結婚おめでとう。(Congratulations on your marriage, Anichin.) celebration

おいしいですよね。私も大好きです。(It’s delicious, isn’t it? I love it too.) love

涼しいと思ったけど最寄駅まで歩いたら暑くなった (I thought it was cool, but after
walking to the nearest station, I started feeling hot.)

sweat

もっと頑張ろうと思ったらもう終わってた (I was about to put in more effort, but it was
already over.)

angel

どんな味がするんだろ (I wonder what it tastes like.) question

Table 4: Example posts with each of the 8 representative emojis in M8

called emoji2vec, have been studied (Eisner et al.,
2016) and utilized to cluster emojis (Lee et al.,
2022). However, emoji2vec can only be applied to
English and thus we do not have Japanese emoji
embeddings. In this paper, we leave the issue
of grouping Japanese emojis based on Japanese
emoji embeddings as a future work and decided
that emojis are grouped based on a survey con-
ducted by human subjects. The details of the
method of emoji grouping through a survey by hu-
man subjects are as follows.

A survey on emoji grouping 13 participants
were provided with the 20 emojis shown in
Table 2 without any other information about
those emojis. They are asked to group those
20 emojis as follows, “これらの 20 種類
の絵文字を自由にグループ化してくださ
い。ただし、使い方もしくは意味が近い
絵文字同士が一つのグループになるよう
にグループ化を行ってください。各絵文
字は一回しか使えません。(Group these 20
emojis as you like. However, please group
them such that those with similar usages or
meanings are grouped together. Each emoji
can only be used once.)”. We then compiled
the obtained survey results by counting the
number of occurrences of each pair of emojis
among all survey responses. If the number of
occurrences is seven or larger (i.e., more than
half of the 13 participants agreed to group
the pair together) we consider the two emojis
eventually belong to the same group. We
examined the number of occurrences of all
the pairs, and the final emoji-grouping result
is shown in Table 3.

While there exist initially 20 emojis before re-
placement, through replacement shown in Table 3,

8 emoji groups and their representative emojis
with group names are obtained as in Table 3. The
resulting dataset after replacement is referred to
as M8, where, as shown in the last column of Ta-
ble 3, M8 has a biased distribution in that nearly
one-third of it belongs to the “joy” emoji group.
In the evaluation of section 6, this bias makes
the pre-trained models advantageous when eval-
uated against the similarly biased test dataset, be-
cause they are all trained with those biased training
dataset. ChatGPT, on the other hand, is fine-tuned
with the unbiased training dataset with the uniform
distribution. For each of the 8 representative emo-
jis, Table 4 shows an example post found in M8

and its English translation.

4.2 Training and Test Datasets

While emojis are grouped, it is still difficult for
models to properly predict emojis for X posts be-
cause posts annotated with emojis may happen to
express emotions that do not semantically coin-
cide with the texts. Therefore, we decided to de-
velop datasets of posts that are emoji-predictable
by humans from M8. The procedure of creating
the datasets is outlined as follows, where the target
amount of posts for a predictable dataset is given
as N and the steps 1, 2, and 3 below are repeated
until N is reached.

1. A random post p is selected from the dataset
M8, where its text is denoted as tp and its
emoji as ep.

2. The first author examines only the text tp and
predicts the most appropriate emoji ê for the
text tp.

3. If ê equals to ep, the post p is added to the
dataset consisting of posts that are emoji-
predictable by humans.



Prompts without description of Prompts with description of
common usages of emojis common usages of emojis

Choose an emoji that is the
most appropriate to the tweet
[This place is for the actual post
for prediction] from the choices.
And answer only the emoji you
chose. Choices: , , , , ,

, ,

Choose an emoji that is the most appropriate to the
tweet [This place is for the actual post for prediction]
from the choices. And answer only the emoji you chose.
However, the following rules apply. is only used
after text like “congratulations”. presents feelings
like “like”, “happiness”, “wonderful”. represents
“stress”, “nervousness”, “sweat”. represents “it’s
over”, “I’m done”, “angel”. Choices: , , , , ,

, ,

Table 5: Prompts for LLMs (English translation of Japanese prompts).

For the predictable datasets, we develop training,
validation, and test datasets to examine the perfor-
mance of the emoji prediction task. The specific
procedure for creating training, validation, and test
datasets is outlined below.

Validation and test datasets The number of
emoji-predictable posts N is set as 360.
Following the procedure mentioned above,
emoji-predictable datasets each comprising
360 randomly selected posts are designated
as a validation dataset denoted as V8h, and
a test dataset denoted as T8h. Additionally,
datasets each comprising 360 posts randomly
collected from M8, regardless of whether
they are emoji-predictable by humans or
not, are designated as a validation dataset
V8M , and a test dataset T8M . Furthermore,
datasets each comprising 360 posts randomly
collected based on a uniform distribution
of 8 emojis are designated as a validation
dataset V8u, and a test dataset T8u.

Training datasets for ChatGPT From M8, we
first remove the data in all the validation
datasets and the test datasets created above,
resulting in a subset denoted as R8. Then,
based on a uniform distribution of 8 emojis,
randomly selected emoji-predictable sets of
40, 80, 120, and 160 posts are obtained from
R8 to be the training datasets, each denoted
as R40

8 , R80
8 , R120

8 , and R160
8 , respectively.

Training datasets for pre-trained models From
M8, we remove the data in all the validation
datasets and the test datasets created above,
denoted as R8p (313,649 posts, the same
as R8), which are then used as the training

dataset for fine-tuning XLM, Japanese
BERT, and Japanese RoBERTa.

The number of posts within T8h (360 posts)
amounts to about 38% of all the posts examined
in the steps 1, 2, and 3 above, meaning that the
rate of predictability is approximately 38%.

5 Emoji Prediction Methods

We utilize GPT-4o (gpt-4o-2024-05-13), GPT-
3.5 (gpt-3.5-turbo-0125), Claude 3.5 Sonnet
(claude-3-5-sonnet-20240620), Gemini 1.5
Pro (gemini-1.5-pro) as the LLMs, as well as
XLM (FacebookAI/xlm-mlm-17-1280), BERT
(tohoku-nlp/bert-base-japanese-v3), and
RoBERTa (rinna/japanese-roberta-base) as
the pre-trained models. The results are evaluated
based on classification accuracy (Acc) and F1

score.

5.1 Large Language Models
5.1.1 Overview
We examine the performance of zero-shot, few-
shot, and fine-tuning on the test datasets created
in section 4.2 using LLMs.

For zero-shot, only the text of the test data is in-
putted into LLMs in the form of prompts shown
in Table 5. For few-shot, 1 or 2 posts are extracted
from R160

8 for each of the 8 emojis to create an 8-
shot set and a 16-shot set. The 8-shot set and the
16-shot set are inputted also in the form of prompts
shown in Table 5 before the test data to demon-
strate how the models should predict each emoji.

For fine-tuning, since fine-tuning of GPT-4o
was not available at the time we conducted this
experiment, we only fine-tune GPT-3.5 in this pa-
per. Fine-tuning of GPT-3.5 is performed using



model
without description of

common usages of emojis
T8h (Acc / F1)

with description of
common usages of emojis

T8h (Acc / F1)
GPT-4o (zero-shot) 0.70 / 0.54 0.66 / 0.51
GPT-4o (8-shot) 0.69 / 0.53 0.68 / 0.55
GPT-4o (16-shot) 0.68 / 0.53 0.69 / 0.54
GPT-4o (fine-tuning) 0.71 / 0.54 0.70 / 0.53
GPT-3.5 (zero-shot) 0.66 / 0.49 0.67 / 0.50
GPT-3.5 (8-shot) 0.56 / 0.43 0.58 / 0.48
GPT-3.5 (16-shot) 0.53 / 0.42 0.60 / 0.49
GPT-3.5 (fine-tuning) 0.74 / 0.56 0.69 / 0.56
Claude 3.5 Sonnet (zero-shot) 0.69 / 0.53 0.75 / 0.53
Claude 3.5 Sonnet (8-shot) 0.73 / 0.56 0.78 / 0.61
Claude 3.5 Sonnet (16-shot) 0.72 / 0.54 0.75 / 0.59
Gemini 1.5 Pro (zero-shot) 0.64 / 0.49 0.66 / 0.50
Gemini 1.5 Pro (8-shot) 0.69 / 0.51 0.71 / 0.54
Gemini 1.5 Pro (16-shot) 0.67 / 0.50 0.70 / 0.55
XLM 0.73 / 0.56 N/A
BERT 0.70 / 0.54 N/A
RoBERTa 0.71 / 0.51 N/A

Table 6: Acc and F1 scores of the test dataset that is emoji-predictable by humans (T8h). Bold text indicates the
highest Acc and F1 scores of each setting.

the training data created in section 4.2. The op-
timal settings for the number of training data and
epochs are explored using the validation dataset.
After fine-tuning, only the text of the test data is
inputted into the model with the optimal setting,
and the Acc and F1 score of the prediction results
are measured.

5.1.2 Prompts
To address the issue of LLMs’ misuse or mis-
recognition of emojis in Japanese, we provide
LLMs with description of common usages of emo-
jis in Japanese posts in the prompts. In order to
keep the prompts short, we provide description of
common usages only for four emojis that LLMs
frequently misuse or misrecognize instead of pro-
viding all. Both “Prompts without description of
common usages of emojis” setting and “Prompts
with description of common usages of emojis” set-
ting are shown in Table 5. Bold text indicates the
description of common usages of the four emojis
that LLMs frequently misuse or misrecognize.

5.2 Pre-Trained Models

Fine-tuning of pre-trained models are conducted
with the dataset R8p created in section 4.2. Op-
tuna8 is utilized to search for optimal settings of
batch size and learning rate using the validation

8https://optuna.org/

dataset. After fine-tuning, only the text of the test
data is inputted into the model with the optimal
setting, and the Acc and F1 score of the prediction
results are then measured.

6 Evaluation Results

The results on the test dataset that is emoji-
predictable by humans (T8h) are shown in Ta-
ble 6. Because the pre-trained models do not use
prompts, description of common usages of emojis
is not available. Overall, Claude (8-shot), which
achieved an Acc of 0.78 and an F1 score of 0.61,
performs the best. Fine-tuning on GPT-3.5 is
confirmed effective in terms of the emoji predic-
tion task, where it outperformed any other mod-
els when without description of common usages
of emojis. Table 7 and Table 8 show Acc and F1

scores of the test datasets that are created regard-
less of whether they are emoji-predictable by hu-
mans or not (T8M and T8u).

In contrast to T8h and T8M where XLM per-
forms the best among those three pre-trained mod-
els, in T8u, RoBERTa performs the best, achieving
an Acc of 0.38 and an F1 score of 0.35. A prob-
able reason why XLM underperforms RoBERTa
is due to the number of parameters of the mod-
els. XLM (570M parameters) carries more pa-
rameters than RoBERTa (110M parameters) do.
Considering that T8u contain more posts that are



model
without description of

common usages of emojis
T8M (Acc / F1)

with description of
common usages of emojis

T8M (Acc / F1)
GPT-4o (zero-shot) 0.35 / 0.25 0.34 / 0.25
GPT-4o (8-shot) 0.33 / 0.24 0.35 / 0.26
GPT-4o (16-shot) 0.32 / 0.22 0.34 / 0.25
GPT-4o (fine-tuning) 0.33 / 0.23 0.33 / 0.22
GPT-3.5 (zero-shot) 0.30 / 0.23 0.32 / 0.22
GPT-3.5 (8-shot) 0.31 / 0.24 0.34 / 0.25
GPT-3.5 (16-shot) 0.33 / 0.21 0.34 / 0.23
GPT-3.5 (fine-tuning) 0.33 / 0.24 0.33 / 0.24
Claude 3.5 Sonnet (zero-shot) 0.35 / 0.27 0.39 / 0.26
Claude 3.5 Sonnet (8-shot) 0.34 / 0.27 0.40 / 0.28
Claude 3.5 Sonnet (16-shot) 0.35 / 0.27 0.39 / 0.25
Gemini 1.5 Pro (zero-shot) 0.33 / 0.25 0.34 / 0.25
Gemini 1.5 Pro (8-shot) 0.33 / 0.27 0.37 / 0.26
Gemini 1.5 Pro (16-shot) 0.32 / 0.25 0.33 / 0.25
XLM 0.48 / 0.38 N/A
BERT 0.46 / 0.33 N/A
RoBERTa 0.47 / 0.36 N/A

Table 7: Acc and F1 scores of the test dataset T8M . Bold text indicates the highest Acc and F1 scores of each
setting.

not emoji-predictable by humans, XLM may re-
quire more training data when trained with emoji-
unpredictable posts than when trained with emoji-
predictable posts, resulting in that XLM underper-
forms RoBERTa against T8u.

The major cause of why XLM achieved almost
the same performance as GPT-3.5 (fine-tuning)
can be explained from distribution of datasets. As
we mentioned in section 4.1, both the training
dataset of XLM and the test dataset T8h have the
biased distribution with the dominant “joy” emoji
class, while GPT-3.5 is fine-tuned with the unbi-
ased training dataset with the uniform distribution.

This is contrastive with the evaluation results
of the test dataset T8u (having the uniform distri-
bution) in Table 8, where RoBERTa outperforms
GPT-3.5 (fine-tuning). This is also because both
the training dataset of GPT-3.5 fine-tuning and the
test dataset T8u have the unbiased uniform distri-
bution, while the training dataset of RoBERTa is
still biased.

In all settings except GPT-4o and GPT-3.5 (fine-
tuning), the results of “with description of com-
mon usages of emojis” are generally better than
those of “without description of common usages
of emojis”. However, the difference is small in
most cases. The probable reason why perfor-
mance cannot be improved through description of

common usages of emojis is because before given
description, GPT-4o and GPT-3.5 (in GPT-3.5’s
case, through fine-tuning) has already gained more
knowledge about usage of emojis than the descrip-
tion. Therefore, it can happen that the given de-
scription did not contribute to improving the mod-
els’ performance. On the other hand, as easily
expected, the results of the test datasets that are
emoji-predictable by humans are far more better
than the test datasets that are created regardless
of whether they are emoji-predictable by humans
or not. Unlike previous works on emoji predic-
tion, this paper experimentally confirmed that it
is easier to predict emojis of posts that are emoji-
predictable by humans than those that are not. Re-
garding posts that are emoji-unpredictable by hu-
mans, they may contain emotions that do not se-
mantically coincide with the texts, which prevents
them from being correctly emoji-predicted. The
analysis of usages of emojis used in these posts
and their characteristics is our future work.

7 Evaluation on English X Posts

In order to evaluate the performance of our emoji
prediction models against an existing English
posts dataset for emoji prediction, we evaluate the
pre-trained models BERT, RoBERTa and XLM
applied to our Japanese datasets with an English
dataset (Baziotis et al., 2018). We avoid apply-



model
without description of

common usages of emojis
T8u (Acc / F1)

with description of
common usages of emojis

T8u (Acc / F1)
GPT-4o (zero-shot) 0.33 / 0.30 0.31 / 0.29
GPT-4o (8-shot) 0.30 / 0.27 0.33 / 0.30
GPT-4o (16-shot) 0.32 / 0.25 0.32 / 0.31
GPT-4o (fine-tuning) 0.32 / 0.27 0.33 / 0.31
GPT-3.5 (zero-shot) 0.26 / 0.24 0.29 / 0.26
GPT-3.5 (8-shot) 0.20 / 0.20 0.24 / 0.23
GPT-3.5 (16-shot) 0.21 / 0.20 0.23 / 0.21
GPT-3.5 (fine-tuning) 0.32 / 0.28 0.31 / 0.28
Claude 3.5 Sonnet (zero-shot) 0.34 / 0.32 0.31 / 0.27
Claude 3.5 Sonnet (8-shot) 0.33 / 0.31 0.34 / 0.31
Claude 3.5 Sonnet (16-shot) 0.31 / 0.30 0.32 / 0.30
Gemini 1.5 Pro (zero-shot) 0.31 / 0.28 0.31 / 0.27
Gemini 1.5 Pro (8-shot) 0.33 / 0.28 0.30 / 0.27
Gemini 1.5 Pro (16-shot) 0.31 / 0.26 0.30 / 0.24
XLM 0.36 / 0.32 N/A
BERT 0.33 / 0.30 N/A
RoBERTa 0.38 / 0.35 N/A

Table 8: Acc and F1 scores of the test dataset T8u. Bold text indicates the highest Acc and F1 scores of each
setting.

SVM
FacebookAI/ google-bert/ FacebookAI/

xlm-mlm-17-1280 (XLM) bert-base-cased (BERT) roberta-base (RoBERTa)

Acc / F1 0.45 / 0.31 0.46 / 0.31 0.49 / 0.35 0.51 / 0.37

Table 9: Acc and F1 scores of emoji prediction for English datasets.

ing LLMs because the number of the test data
is too large. We then reexperiment on the En-
glish dataset (Baziotis et al., 2018) by applying
SVM that was evaluated in the prior study (Çöl-
tekin and Rama, 2018) and achieves the best F1

score in SemEval 2018 Task 2 (Barbieri et al.,
2018a). For the pre-trained models BERT and
RoBERTa, we specifically evaluate their English
versions (Devlin et al., 2019; Liu et al., 2019). The
dataset consists of 491,665 training data, 50,000
trial data and 50,000 test data and we conducted
the experiment in the same manner as described
in section 5.2. Their evaluation results are shown
in Table 9, where the pre-trained models BERT,
RoBERTa and XLM outperform SVM that per-
formed the best in SemEval 2018 Task 2 (Barbieri
et al., 2018a).

8 Conclusion

This paper examined the performance of emoji
prediction for Japanese X posts utilizing large lan-
guage models and compared their performance
with pre-trained models. By grouping emojis and

replacing them with representative ones while se-
lecting posts that are emoji-predictable by hu-
mans, we achieved high Acc and F1 score. It
turns out that overall, Claude performs the best
among all the models used in this paper. Addi-
tionally, we discovered that, in some cases, by
inputting description of common usages of emo-
jis into prompts, we can achieve slightly better
performance. On the other hands, for posts that
are emoji-unpredictable by humans, it is neces-
sary to analyze usages of emojis used in these
posts and their characteristics to discover the rea-
son why models fail to predict emojis of those
posts. As mentioned in section 4.1, emojis are
grouped based on opinions of 13 survey partici-
pants. This could create some biases, so we plan
to group emojis according to certain embeddings
of emojis. It is also another significant future
work to extend our experiment to a multi-label
task since some posts can contain multiple emo-
tions and can be followed by multiple emojis.
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