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Abstract

This research addresses the significance of
threat intelligence by presenting a practical ap-
proach to generate a labeled dataset for map-
ping CVEs to MITRE. By linking Common
Vulnerabilities and Exposures (CVEs) with the
MITRE ATT&CK framework, the paper out-
lines a scheme that integrates the extensive
CVE database with the techniques and tactics
of the ATT&CK knowledge base.

The core contribution lies in a detailed method-
ology designed to map CVEs onto correspond-
ing ATT&CK techniques and, in turn, to tac-
tics through a data-driven perspective, center-
ing specifically on the labeling provided by
NIST. This procedure enhances our understand-
ing of cybersecurity threats and yields a struc-
tured, labeled dataset essential for practical
threat analysis. It facilitates and improves the
recognition and categorization of cybersecu-
rity threats. Furthermore, the paper analyses
the dataset in the context of cyber-threat intel-
ligence. It highlights how vulnerability under-
standing and awareness have improved over
the years through the continuous effort to place
vulnerabilities in the context of an attack by
linking it to abstract techniques.

The dataset allows for a comprehensive cyber
attack stage and kill-chain analysis. It serves as
a training resource for algorithm development
in various use cases, such as threat detection
and large language model fine-tuning.

1 Introduction

Over 25 years, from 1999 to 2023, the National
Vulnerability Database (NVD) 1 maintained by the
National Institute of Standards and Technology
(NIST), has been a critical repository for cyber-
security information. During this extended period,
the NVD has played a key role in documenting data
on vulnerabilities across various systems, software,
and technologies. A new CVE is generated each

1https://nvd.nist.gov/

time a security flaw is identified in software or hard-
ware and subsequently reported to the organization.

Despite their importance to the cybersecurity
community, CVEs often lack specific guidance on
countering identified vulnerabilities. This informa-
tion gap becomes particularly crucial when con-
sidering the role of vulnerabilities in unlocking
particular attack patterns. As pointed out by Sadlek
et al. (2022), the timely identification of relevant
threats before the attackers exploit is fundamental
for proactive defense approaches. Sequences of ad-
versarial actions that may evolve into attacks can be
identified through multi-step attacks, which can be
modeled using the kill-chain concept. This vision
consists of ordered phases describing the attacker’s
progress in achieving objectives (Hutchins et al.,
2011).

Natural language processing (NLP) and artificial
intelligence (AI) can clarify the relationships be-
tween entities and events mentioned in text data.
By contextualizing this information, these tech-
nologies help build a more comprehensive view of
cyber threats and the actors behind them (Arazzi
et al., 2023). Recently, indications of generative AI
in cyber-threat intelligence have emerged (Ferrag
et al., 2023). However, these applications require
high-quality and substantial data for effective train-
ing to build their knowledge base.

The paper aims to establish a reliable foundation
for correlating vulnerabilities with techniques and
tactics by implementing a well-defined and struc-
tured pipeline. The main contributions of this paper
are:

• The creation of a comprehensive dataset, em-
ploying a systematic conservative approach
to map from CVEs to MITRE techniques and
tactics;

• An in-depth examination of vulnerabilities,
clarifying their associations with CWEs and
the subsequent link to the MITRE framework.

https://nvd.nist.gov/


33

The resulting dataset extends to threat intelli-
gence, where it aids analysts in identifying poten-
tial risks, while also enabling better comprehen-
sion of kill chains and the identification of tech-
niques used by adversaries to more effectively de-
fend against attacks.

2 Background and taxonomy

Understanding and addressing vulnerabilities is
essential to strengthen applications effectively.
Threat identification uses multiple risk factors to
prioritize threats according to their severity by us-
ing the multiple risk factors and calculating the
threat prioritization value, which represents the
severity level of the threat (Ma et al., 2009). How-
ever, protecting digital assets from potential threats
and attacks is a constant challenge that demands
expertise and a comprehensive understanding of
the company’s environment.

As shown in Hemberg et al. (2020), it is possible
to go from a CVE to the related techniques and
tactics following the path of CVE-CWE-CAPEC-
ATT&CK. Before explaining this framework in
more detail, we describe each pipeline component.

2.1 CVE

The Common Vulnerabilities and Exposures
(CVEs) are unique identifiers assigned to publicly
known cybersecurity vulnerabilities. These identi-
fiers help security professionals and organizations
communicate about specific weaknesses, ensuring
that everyone refers to the same vulnerability with a
common name. CVEs are essential for knowledge-
sharing, enabling researchers and vendors to col-
laborate and develop appropriate patches or miti-
gations to protect systems from potential exploita-
tions. Unfortunately, vulnerabilities can be com-
plex, involving intricate technical details such as
specific products and versions.

2.2 CWE

Common Weakness Enumeration (CWE)2 is a
community-developed list of common software
weaknesses and security flaws. Unlike CVEs,
which identify specific vulnerabilities, CWEs cate-
gorize broader classes of weaknesses, embracing
various instances of similar vulnerabilities. This
classification aids in understanding the root causes
of vulnerabilities, facilitating more comprehensive
security measures during software development

2https://cwe.mitre.org/

and system deployment. CWEs explain how (con-
ditions and procedures), why a vulnerability can
be exploited (cause), and explain the consequences
(impact) (Aghaei et al., 2020).

2.3 CAPEC

The Common Attack Pattern Enumeration and
Classification (CAPEC)3 provides a publicly avail-
able catalog of common attack patterns that helps
users understand how adversaries exploit weak-
nesses in applications and other cyber-enabled ca-
pabilities. CAPEC defines “Attack Patterns” as
descriptions of adversaries’ common attributes and
approaches to exploit known weaknesses in cyber-
enabled capabilities. Each attack pattern captures
knowledge about how specific parts of an attack
are designed and executed and provides guidance
on mitigating the attack’s effectiveness.

2.4 ATT&CK framework

MITRE ATT&CK is a curated knowledge base and
model for cyber adversary behavior, reflecting the
various phases of an adversary’s attack lifecycle
and the platforms they are known to target (MITRE,
2023). It originated from a project to document and
categorize post-compromise adversary tactics, tech-
niques, and procedures (TTPs) against Microsoft
Windows systems to improve the detection of ma-
licious behavior (Strom et al., 2018). Currently,
the framework has been extended to a broad spec-
trum of environments. At its core, ATT&CK is a
behavioral model comprising tactics that denote
short-term adversary goals, techniques delineating
how these goals are achieved, sub-techniques of-
fering more specific methods at a lower level, and
documented adversary usage encompassing proce-
dures and metadata.

The MITRE ATT&CK framework can be used
for cyber-threat intelligence enrichment, SOC as-
sessment, defensive gap assessment, behavioral
analytics development, red teaming, and adversary
emulation.

3 Dataset creation

The main contribution of this paper is the creation
of a dataset that links CVEs to MITRE techniques
and tactics. The knowledge deriving from CVEs,
CWEs, CAPEC and ATT&CK is fragmented, and
the available data are disconnected. It seems that

3https://capec.mitre.org/

https://cwe.mitre.org/
https://capec.mitre.org/
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Figure 1: Pipeline of dataset formation

all these organizations are working in sealed envi-
ronments, missing the bigger picture, to which a
vulnerability can be useful to trace back a specific
step in the cyber kill chain.

For example, CVEs serve as unique identifiers
for publicly recognized cybersecurity vulnerabili-
ties, whereas CWEs aim to abstract and categorize
CVEs. Although both frameworks have distinct
objectives, combining their knowledge allows us
to comprehend the wider context.

To this purpose, we designed a pipeline to sys-
tematically retrieve the tactics and techniques as-
sociated with any known CVE. This leads to the
largest dataset where CVEs are linked with tac-
tics. Other works are proposing ways to achieve
the same task as described in section 5, but our
approach poses some constraints over the linking
from CVEs to tactics to avoid an exploding surface:

1. We adopted only the NIST labeling from
CVEs to CWEs: since NIST has to manually
label CVEs coming from CNAs (CVE Num-
bering Authorities), we decided that adopt-
ing their labeling was the most neutral ap-
proach. If NIST did not provide any label-
ing, we adopted the labeling from the CNA.
NIST is mapping CVEs to CWEs according to
“Weaknesses for Simplified Mapping of Pub-
lished Vulnerabilities.” This subset of CWEs
was selected through coordination between
the NVD and the CWE teams.

2. We avoided linking CWEs between each other:
to prevent an exploding attack surface, we
chose the strictest approach, avoiding inter-
linking between CWEs. This decision is
rooted in the observation that the relationship

from CWEs to techniques, and subsequently
from techniques to tactics, is typically not one-
to-one but one-to-many. In the realm of threat
intelligence, false negatives are dangerous, but
also false positives have to be considered.

We got a ground truth dataset that can be used as
a baseline for multiple purposes by relying on en-
tities, e.g., MITRE, NIST, etc. The final dataset is
available online (Simonetto). The implementation
stages are depicted in Fig. 1 and can be summa-
rized in the following subsections.

3.1 Retrieving CVE information
We downloaded data from NVD repository (nvd)
and parsed it to extract only CVE ID, CVE de-
scription, and CWE ID. To do so, we discarded
information that could not be used for the map-
ping, e.g., Common Platform Enumeration (CPE),
impact, CVSS, references, assigners, and others.
CVEs that have been assigned a CVE ID but subse-
quently rejected for any reason are not considered.
An example is shown in Listing 3.1, based on data
retrieved on 23-1-2024.

"CVE ID": "CVE-2023-0001",
"Description": "An information exposure

vulnerability in...",
"CWE": "CWE-319"

3.2 Adding CWE descriptions
Enhance the CWEs by integrating corresponding
descriptions that are neither deprecated nor overly
general. The CWEs within the dataset span various
levels of abstraction, from Pillars, which represent
the highest level of abstraction, to more specific
classifications, such as classes, bases, and vari-
ants, each offering a finer-grained description of
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the CWE. An example illustrating the raw format
of the data is present at Listing 3.2.

"CWE-ID":"319",
"Name":"Cleartext Transmission

of Sensitive Information",
"Weakness abstraction":"Base",
"Description":"The product transmits

sensitive or security-critical.."

3.3 Bridging CWEs to techniques
CAPEC provides a comprehensive list of attack
patterns, each associated with a name, an ID, a de-
scription, and other pertinent details that facilitate a
deeper understanding of the attack type. These de-
tails include the associated CWEs and techniques
for each attack pattern. In this study, CAPEC is
used to link CWEs to techniques. An example of
raw CAPEC data used in this context (Listing 3.3).

"CAPEC-ID":"383",
"Name": "Harvesting Information via API

Event Monitoring",
"Abstraction": "An adversary hosts an

event within an application..",
"Related weaknesses":"311, 319, 419, 602",
"Technique-ID": "1056.004",
"Technique": "Credential API Hooking"

3.4 Linking the related tactics
To complete the analysis, the final step involves
establishing connections between techniques and
their corresponding MITRE tactic(s). This link-
age is crucial for understanding how specific tech-
niques contribute to broader strategic objectives in
cybersecurity. By mapping techniques to relevant
MITRE tactics, we gain insights into the strategic
context in which these techniques are deployed
(Listing 3.4).

"ID": "1056.004",
"Name": "Input Capture",
"Description": "Adversaries may hook ...",
"Tactics":

"collection": "The adversary is
trying to gather data ...",

"credential-access": "The adversary
is trying to steal..."

It is important to acknowledge that the NVD
database’s organizational structure spans from
1999 to the present. We exclusively use CWE de-
scriptions that are neither category nor deprecated,
following the specifications provided by CWE-
MITRE: "Category is simply a collection of similar
weaknesses that do not all share the same combina-
tion of the dimensions, so a category should not be
used for mapping". For instance, since CWE-388

is categorical, it should not be used for mapping,
so the related CWE description is set to unknown.
A big gap in the mapping from CVEs to CWE is
related to the CVEs that, according to NIST, do not
have enough information about the issue to classify
it; details are unknown or unspecified. Only dur-
ing the last year were more than 15% of all CVEs
labeled as no-info from NIST. The final observa-
tion concerns the absence of connections between
CWEs and techniques. CAPEC does not define
links for all the CWEs listed in the CWE database,
resulting in a significant gap. This gap is notewor-
thy when considering the overall count of CVEs
(without the rejected ones), as only 19,40% have
a comprehensive mapping to the corresponding
technique(s) and, consequently, to the associated
tactic(s) as shown in Eq. 1.

CVE to TTPs =
Entries with technique

Total entries
× 100

(1)
In the development of a threat intelligence

dataset, our primary objective is to establish corre-
lations between vulnerabilities and MITRE tactics.
Unlike traditional approaches that heavily rely on
expert viewpoints, our methodology prioritizes in-
tegrating information from four key sources: CVE,
CWE, CAPEC and MITRE.

4 Dataset analysis

In addition to making the dataset accessible, we
perform an analysis utilizing the insights gathered.
Initially, we visualize the yearly distribution of dis-
closed vulnerabilities, as depicted in Fig. 2, to-
taling 236,071 CVEs across all years. The vi-

Figure 2: Number of vulnerabilities per year

sual representation shows an upward trajectory in
the annual number of vulnerabilities. This escalat-
ing trend implies a continual growth in the overall
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Figure 3: Most common CWEs per year

number of security vulnerabilities discovered and
reported over the years. As vulnerabilities prolif-
erate, they contribute to broadening the attack sur-
face, highlighting an increasing array of potential
points through which adversaries can exploit weak-
nesses in systems or applications. This expanding
attack surface poses challenges for cybersecurity
measures, requiring organizations to adapt and en-
hance their defenses to address the evolving threat
landscape effectively.

Furthermore, we conduct an in-depth analysis of
the mapping from CVEs to CWEs. We visualize
the data by plotting the top three CWEs identified
for each year, as shown in Fig. 3. The findings paint
a familiar picture, portraying recurrent patterns in
the prevalent vulnerabilities. This observation re-
veals that certain weaknesses consistently appear
to be the leading contributors to security concerns
across different time frames. Such insights into
the recurring CWEs aid in understanding persistent
challenges, guiding efforts toward targeted mitiga-
tion strategies, and reinforcing cybersecurity mea-
sures against well-established vulnerabilities.

Observing the graph, it is clear that CWE-79 (Im-
proper Neutralization of Input During Web Page
Generation) has consistently maintained its status
as the most prevalent vulnerability over the last six
years. This vulnerability manifests when the appli-
cation fails to neutralize or incorrectly neutralizes
user-controllable input before incorporating it into
output, which subsequently serves as a web page to
other users. An example of CWE-79 is presented

as follows:
<body>
<h1>Welcome <?php echo $_GET['name'];?>
</h1>

</body>

The web application takes a user-supplied
input parameter name from the query string and
directly echoes it back into the HTML response
without validation or sanitization. This creates a
vulnerability because if an attacker crafts a URL
such as: http://example.com/welcome.php?
name=<script>alert(’XSS’)</script>, the
script tag will be executed when the page is loaded
in a victim’s browser, leading to a Cross-Site
Scripting attack.

The other relevant during the timeframe taken
into account are:

1. CWE-89: "Improper Neutralization of Special
Elements used in an SQL Command (’SQL
Injection’)";

2. CWE-787: "Out-of-bounds Write";

3. CWE-125: "Out-of-bounds Read";

4. CWE-20: "Improper Input Validation";

5. CWE-200: "Exposure of Sensitive Informa-
tion to an Unauthorized Actor".

Digging deeper into our analysis, we extended
our investigation by establishing a mapping be-
tween the CWEs and the corresponding techniques
documented in the CAPEC mapping. This com-
plex mapping allowed us to connect vulnerabilities
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with specific attack techniques, providing a more
comprehensive understanding of the potential ex-
ploits associated with each weakness. By bridging
the gap between CWEs and techniques, we gained
valuable insights into how adversaries may lever-
age identified weaknesses to carry out sophisticated
cyber attacks.

Figure 4: Techniques unlocked by CVEs

After analyzing attack techniques (Fig. 4), we
consistently find that "Hijack Execution Flow"
emerges as the most frequent technique that attack-
ers can employ. Additionally, in the connection
between techniques and tactics, where "Defense
evasion" notably stands out as the most prominent
tactic that malicious actors may utilize (Fig. 5).

Figure 5: Tactics unlocked by CVEs

We want to emphasize that these findings do not
represent what malicious actors employ daily to
perform attacks. Instead, they reveal the potential
exploits enabled by vulnerabilities that adversaries
may leverage. For visualization purposes, we con-

strained the timeframe from 2015 to 2023 inclusive.

5 Related work

Comprehensive threat intelligence datasets, espe-
cially those focused on vulnerabilities, are crucial
for cybersecurity research. Understanding and ana-
lyzing vulnerabilities are key for fortifying digital
systems. Quality data is essential for training ma-
chine learning models, enabling them to capture
intricate patterns in real-world cybersecurity sce-
narios (Ferrag et al., 2023). Our dataset establishes
a foundation that does not depend on external ex-
perts for mapping CVEs to MITRE, unlike previous
approaches such as the one proposed by Grigorescu
et al. (2022). This aims to provide a more unbiased
and objective basis for threat intelligence analy-
sis. This section provides an overview of existing
research on threat intelligence datasets.

Vulnerabilities have been thoroughly examined
in previous research, Ozment (2007) conducted an
in-depth study and analysis of the National Vul-
nerability Database (NVD), highlighting various
limitations. More recently also, Glyder et al. (2021)
focuses on a basic analysis of vulnerabilities and
scores from the NVD. Data sources about vulnera-
bilities are widespread, and the most used for threat
identification mostly come from two datasets, one
from ENISA (2019) and the other that can be ex-
tracted from BRON (Hemberg et al., 2020).

5.1 ENISA dataset

In December 2019, the European Union Agency
for Cybersecurity (ENISA) released a report ti-
tled "State of Vulnerabilities 2018/2019". This
report sought insights into the opportunities and
constraints within the vulnerability ecosystem. A
comprehensive collection of 27,471 pieces of vul-
nerability information, spanning from January 1,
2018, to September 30, 2019, was compiled from
diverse data sources. While analyzing this data, the
authors correlated CVEs with MITRE ATT&CK
techniques by utilizing shared information from
the CAPEC found in both the National Vulnera-
bility Database and ATT&CK. Within the ENISA
report dataset, there were 8,077 CVEs identified,
corresponding to 52 distinct MITRE ATT&CK
techniques or, in this context, labeled instances
(Katos et al., 2019). Articles such as (Mendsaikhan
et al., 2020), (Lakhdhar and Rekhis, 2021), and
(Mendsaikhan et al., 2021) are adopting the ENISA
dataset. Mendsaikhan et al. (2020) describes a
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method to automatically map software vulnerabil-
ity using a multi-label classification approach. The
authors took the vector representation of the vul-
nerability description and classified it with various
multi-label classification methods to evaluate it in
different measures. They found the LabelPowerset
method with Multilayer Perceptron. Lakhdhar and
Rekhis (2021) provides a multilabel classification
approach to automatically map a detected vulnera-
bility to the MITRE tactics that the attacker could
use. The authors evaluate machine-learning algo-
rithms (BinaryRelevance, LabelPowerset, Classi-
fierChains, MLKNN, BRKNN, RAkELd, NLSP,
and Neural Networks).

5.2 BRON
In February 2021, Hemberg et al. (2020) published
BRON set the standard for the systematic mapping
from CVEs to MITRE tactics. BRON is a rela-
tional graph that depicts entries from various infor-
mation sources as distinct types of nodes, and their
interconnections are illustrated as edges. Unidirec-
tional links in the sources are identified and por-
trayed as bidirectional connections within BRON’s
graph. By leveraging BRON, Abdeen et al. (2023)
present a tool that automatically maps CVE entries
to ATT&CK techniques based on their textual sim-
ilarity. SMET achieves this mapping by leveraging
ATT&CK BERT, a model that the authors trained
using a siamese network architecture as described
by SBERT (Reimers and Gurevych, 2019). This
works by taking two sentences as input, extracting
each sentence embedding using BERT, and then
optimising the network weights to maximise the
similarity of the two embeddings if the sentences
are semantically similar. Another approach, such
as the one proposed by Ampel et al. (2021), uses
only a subset of the entire dataset made available by
BRON. They leveraged a dataset of 24,863 CVEs
into 10 of the 14 ATT&CK tactics.

5.3 Runtime comparison
One of the strengths of BRON’s approach is bi-
directionality because data retrieval from CVEs
is possible through tactics and vice versa. This
complexity comes to the cost of time-retrieval. Fur-
thermore, the connection between CWEs that are
related together leads to an exploding surface of
applicable techniques. Considering these factors,
our approach significantly enhances the speed of
retrieving TTPs related to BRON, focusing only on
TTPs relevant to the actual CWE. Our approach’s

retrieval time is noteworthy for its efficiency, en-
abling quick and straightforward access to tech-
niques and tactics. To quantify this, we conducted
10 runs and calculated the average time required
to retrieve a technique for a selected CVE (’CVE-
2023-0001’). Our approach demonstrated a signifi-
cantly faster performance, with an average retrieval
time of only 0.46 seconds per technique, compared
to an average of 53.45 seconds per technique with
BRON. Additionally, for the same CVE, our ap-
proach retrieves only the two techniques strictly
related to the CWE, whereas BRON retrieves 84
different techniques.

5.4 Other approaches

Mendsaikhan et al. (2021) describe a method to
map the cyber-threat information using a multi-
label classification approach. The authors con-
ducted four experiments using three publicly avail-
able datasets to train and test seven multi-label clas-
sification methods and one pre-trained language
model in six evaluation measures. Other than the
already cited ENISA dataset, this approach uses
two other datasets:

1. TRAM: Threat Report ATT&CK Mapping
(TRAM) is a tool developed by MITRE to
aid the analyst in mapping finished reports to
ATT&CK. TRAM uses a Logistic Regression
model to predict the mapping of the ATT&CK
technique for a given report. MITRE re-
leased the source code and the corresponding
dataset used to train the model (for Threat-
Informed Defense, 2024). The dataset con-
tains example sentences or phrases represent-
ing specific techniques and maps them to one
or more techniques. The TRAM dataset repre-
sents the short threat information in sentences
or phrases. It has 3,005 example sentences
mapped to 188 unique MITRE ATT&CK tech-
niques.

2. rcATT: Legoy et al. (2020) implemented a tool
called rcATT, a system that predicts tactics
and techniques related to given cyber-threat
reports. They collected the threat reports refer-
enced in the original MITRE ATT&CK frame-
work per each technique to train the tool. They
made their source code and the parsed threat
reports publicly available. The rcATT rep-
resents the long descriptive information in
the form of threat reports. It has 1,490 ex-
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ample reports mapped to 227 unique MITRE
ATT&CK techniques.

5.5 Unsupervised learning
Researchers have expanded their investigations into
vulnerability analysis to incorporate advanced tech-
niques, with a significant emphasis on unsuper-
vised machine learning. Kuppa et al. (2021) pro-
posed a multi-head joint embedding neural network
model to automatically map CVEs to ATT&CK
techniques. They address the problem of the lack
of labels for this task using a novel, unsupervised
labeling technique. For the labeling process to
be successful, they had to measure the similar-
ity/dissimilarity of ATT&CK technique candidate
vectors and CVE description representations. They
manually label randomly sampled 200 CVEs found
in threat reports with their corresponding ATT&CK
techniques and, extract the context phrases, and cre-
ate candidate vectors.

6 Conclusion

As highlighted by Aota et al. (2020), the labeling
process of reports with vulnerability identifiers has
thus far been performed manually and has, there-
fore, suffered from scalability issues due to the
shortage of security experts. The versatility of the
proposed dataset makes it invaluable for a wide
range of applications, showcasing its adaptability
and utility across various domains. Its applicability
extends to threat intelligence, where analysts can
leverage the data to enhance their understanding
of potential risks and vulnerabilities. The dataset’s
rich content and diverse sources provide a com-
prehensive view of the threat landscape, aiding in
the identification and mitigation of potential cyber
threats.

Moreover, the dataset is well-suited for kill-
chain concatenation, enabling the mapping and
analysis of different stages in a cyber attack. This
facilitates a more holistic approach to cybersecurity,
allowing practitioners to identify patterns, vulner-
abilities, and attack vectors throughout the entire
kill chain. This insight is crucial for developing
effective defense strategies and proactive measures
against evolving cyber threats. As highlighted by
Kuppa et al. (2021), understanding the attacker’s
choice of vulnerability for a particular attack stage
is a hard problem.

In machine learning and artificial intelligence,
the dataset is a valuable resource for training mod-
els. Its extensive nature allows for the development

of robust machine-learning algorithms capable of
recognizing and predicting patterns within complex
data. Researchers and developers can refine and en-
hance the models’ language understanding capabil-
ities by exposing language models to a broad range
of scenarios and contexts present in the dataset.

7 Limitations

Challenges often arise when dealing with vulner-
abilities and weaknesses. The NVD-CWE-noinfo
category reflects situations where issues lack ade-
quate details for classification, leaving key informa-
tion unknown or unspecified. Similarly, the NVD-
CWE-Other classification marks that the NIST em-
ploys only a specific subset of CWEs for mapping,
omitting certain weakness types not covered by this
subset. Furthermore, some CAPEC to ATT&CK
mappings are absent due to unprovided information
from the source. Recognizing the need for advance-
ment, NIST has announced plans to retire all legacy
data feeds by 2024, emphasizing a transition to up-
dated application programming interfaces (APIs)
to enhance the accuracy and comprehensiveness of
vulnerability data. By design choice, we avoid map-
ping to deprecated or category CWEs, as MITRE
suggested. Deprecated CWEs were originally used
but introduced unnecessary complexity and depth,
while category CWEs are not weaknesses but rather
a view that provides a comprehensive categoriza-
tion and, therefore, inappropriate to describe the
root causes of vulnerabilities. The main limitation
of this paper is the absence of connections between
CWEs and techniques, as highlighted in Section
3. CAPEC does not define links for all the CWEs
listed in the CWE database, resulting in a signifi-
cant gap. This gap is substantial when considering
the overall count of CVEs, as only 19,40% have a
comprehensive mapping to the corresponding tech-
nique(s).

Ethics statement

As the creators of this dataset, we have mapped
CVEs to ATT&CK tactics, showing which step an
attacker can potentially take. We believe that the
benefits of open-source collaboration outweigh the
risk of possible misuse by individuals with mali-
cious intent. It enables cybersecurity professionals
and researchers to enhance defense strategies and
improve overall security posture. We are commit-
ted to fostering responsible usage of this dataset
within the cybersecurity community, promoting
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transparency and ethical practices to maximize its
positive impact while minimizing potential harm.
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Identification of attack paths using kill chain and
attack graphs. In NOMS 2022-2022 IEEE/IFIP
Network Operations and Management Symposium,
pages 1–6. IEEE.

Stefano Simonetto. CVE to MITRE Dataset.
https://github.com/stefanosimonetto/data_
CVE_MITRE, year = 2024,.

Blake E Strom, Andy Applebaum, Doug P Miller,
Kathryn C Nickels, Adam G Pennington, and Cody B
Thomas. 2018. Mitre att&ck: Design and philosophy.
In Technical report. The MITRE Corporation.

https://attack.mitre.org/
https://attack.mitre.org/
https://github.com/stefanosimonetto/data_CVE_MITRE
https://github.com/stefanosimonetto/data_CVE_MITRE

