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Preface by the General Chair

Welcome to the proceedings of the 1st Machine Learning for Ancient Languages (ML4AL) Workshop,
held as part of the Annual Conference of the Association for Computational Linguistics (ACL) 2024. Ta-
king place on August 15th, 2024, this is a hybrid event with virtual and on-site participation in Thailand.

MLA4AL showcases the scientific opportunities at the intersection of the Humanities and ML, repre-
senting a unique convergence between the two and spotlighting promising directions for future endeavors
within this rising field. By leveraging advances in Al and by focusing on the study and preservation of
ancient texts, ML4AL aims to inspire collaboration and support research momentum in the emerging
field of ML for the study of ancient languages.

On its 1st year, ML4AL received 50 submissions from a global community of researchers. The submis-
sions concerned multiple languages, including Ancient Greek, Latin, Sumerian and Akkadian, Classical
and Old Chinese, ancient Egyptian, Coptic, etc. 18 papers were accepted for oral presentation (36%)
and 10 were accepted as posters (20%). The accepted submissions covered diverse topics, such as di-
gitization, restoration, attribution, linguistic analysis, textual criticism, translation, and decipherment of
ancient texts. These contributions reflect the depth and breadth of current research and highlight the
innovative approaches being developed to tackle the unique challenges posed by ancient languages.

Besides the oral and poster presentations, ML4AL features two distinguished keynote talks to provi-
de valuable perspectives on the integration of machine learning for the study of ancient texts. The talk of
Dr Stephen Parsons from Educe Lab, University of Kentucky, USA concerns the virtual unwrapping of
the Herculaneum Scrolls. The talk of Professor JinYeong Bak from the Department of Computer Scien-
ce and Engineering, Sungkyunkwan University, South Korea focuses on monarchical ruling styles when
applying ML to historical corpora.

The ML4AL Organising Committee is grateful: to the keynote speakers for their stimulating talks; the
authors for their valuable contributions; the members of the Program Committee for their hard work. We
would like to particularly thank our emergency reviewers, who provided very valuable expertise in a very
limited time window. We would also like to extend our gratitude to the ACL 2024 Workshop Chairs for
their kind assistance, and to our sponsors and supporting organization for their generous contributions.
Specifically, Google DeepMind was our diamond-tier sponsor, the Vezuvius Challenge was our silver-tier
sponsor, and Archimedes/Athena RC was our supporting organization.

Hopefully, the discussions and collaborations initiated at this workshop will lead to significant advance-
ments in the study of ancient languages and foster a deeper understanding of our shared human heritage.

Sincerely,

John Pavlopoulos, General Chair
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Abstract

Automatic correction of errors in Handwritten
Text Recognition (HTR) output poses persis-
tent challenges yet to be fully resolved. In
this study, we introduce a shared task aimed
at addressing this challenge, which attracted
271 submissions, yielding only a handful of
promising approaches. This paper presents the
datasets, the most effective methods, and an ex-
perimental analysis in error-correcting HTRed
manuscripts and papyri in Byzantine Greek,
the language that followed Classical and pre-
ceded Modern Greek. By using recognised and
transcribed data from seven centuries, the two
best-performing methods are compared, one
based on a neural encoder-decoder architecture
and the other based on engineered linguistic
rules. We show that the recognition error rate
can be reduced by both, up to 2.5 points at the
level of characters and up to 15 at the level of
words, while also elucidating their respective
strengths and weaknesses.

1 Introduction

The digitisation of ancient texts plays a crucial role
in both analysing ancient corpora and preserving
cultural heritage. However, transcribing ancient
handwritten text using optical character and text
recognition methods remains a challenging task.
Handwritten text recognition (HTR) concerns the
conversion of scanned images of handwritten text
into machine-readable text. In contrast to recently
printed materials, the analysis of images contain-
ing handwritten documents presents more intricate
difficulties, particularly when dealing with histori-
cal and premodern manuscripts. These challenges
may result in recognised text containing numerous
errors or, at times, a complete inability to recog-
nise the text. This is especially true when there is a
low availability of suitable training data for specific
scripts, such as medieval scripts.

1

1.1 Motivation

Natural language processing (NLP) can assist with
the task of detecting and correcting erroneous text.
When errors come from human learners of well-
resourced languages, the task is undoubtedly chal-
lenging, yet notable advancements have been doc-
umented in recent research (Bryant et al., 2017,
2022). In the case of low-resource languages, how-
ever, the task can be more difficult and expensive,
posing an additional hurdle not only to experts but
also to systems. An example is the correction of
recognition errors in historical newspapers, where
recognition error rates of 10% (Chiron et al., 2017)
have been reported. In this study, we escalate the
difficulty by concentrating on the task of rectifying
recognition errors in handwritten text. These errors
tend to pose a greater challenge compared to those
in printed text, primarily owing to the diversity in
letter shapes and the distinct scripts employed by
scribes. Error correction algorithms are applicable
to HTRed material, benefiting macro-analytical ap-
plications, such as collation (Perdiki, 2022). They
also concern transcribed text, e.g. by proposing
corrections arising, for instance, due to distraction
or fatigue during the annotation process.

1.2 Background

The written language of the Byzantine manuscripts
and papyri,! such as the ones we shared with the
challenge (see Section 3.2.3), reflects the language
of the Byzantine times, following classical Greek
and preceding the modern Greek language. Within
these texts, morphological categories such as the
optative, the pluperfect, and the perfect have disap-
peared, while others, such as the dative case have
gradually decreased. Infinitives and participles are
still there in the texts, serving as remnants of the

'We refer to Byzantine Greek, also known as Medieval or
Middle Greek.

Proceedings of the 1st Workshop on Machine Learning for Ancient Languages (ML4AL 2024), pages 1-12
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classical tradition, prompting one to regard the lan-
guage as a distinct variant, separate from modern
Greek. There are several spelling conventions that
deviate from the older orthographic rules while the
ancient punctuation signs are still in use, albeit
not always with the same function. A more de-
tailed description of this language is available in
Papaioannou (2021).

1.3 Contributions

We study the benefits of error-correcting HTRed
Byzantine text from the 10th to the 16th cent. CE.
To conduct our research, we utilised a collection
of transcribed images of Byzantine papyri and
manuscripts documented by Platanou et al. (2022).
For recognition, we used Transkribus (Kahle et al.,
2017) to train an HTR model on seven images,
one per century, and we used the trained model to
recognise approx. one hundred pages. By using the
recognised and transcribed images,” we introduced
and successfully ran a shared task, challenging sys-
tems to correct errors in HTRed material (Fig. 1).
Here:

* we present an overview of this challenge,
which attracted 271 submissions, discussing
the timeline, the evaluation, and the task dif-
ficulty that was introduced by a recognition
error rate that varied across centuries;

* we introduce and publicly release a machine-
actionable dataset for the correction of errors
in HTRed Byzantine text.> Additionally, we
offer three other resources: a synthetic dataset
for evaluating error correction algorithms, and
two corpora created specifically for this chal-
lenge, which we also make publicly available;

* by benchmarking the two best ap-
proaches—one based on engineered
linguistic rules and the other on deep
learning (the developers are co-authors)—we
demonstrate that both effectively reduce the
recognition-error rate, also outlining and
analysing the merits of each approach.

2 Related work

Most studies approach the task of post-correction
by focusing on printed text and by employing

*To distinguish between the two, we will refer to ‘tran-
scribed’ when the text is generated by a human expert and to
‘recognised’ when it is generated by a system.

3https ://github.com/htrec-gr/challenge.

encoder-decoder architectures (Chiron et al., 2017;
Rigaud et al., 2019; Schaefer and Neudecker, 2020;
Lyu et al., 2021). The underlying idea is to encode
the recognized erroneous text and then decode it
into the corrected text, frequently employing meth-
ods from machine translation (Nguyen et al., 2020;
Amrhein and Clematide, 2018).

2.1 Error correction

Error-correcting recognised text is a common ap-
proach when working with printed text (Schulz and
Kuhn, 2017), where techniques such as spell check-
ing, edit distance from lexicons, and the output
of a statistical machine translation (SMT) model
(Koehn et al., 2007) have been employed. A lan-
guage model (i.e., the SMT decoder) decides the
most probable correction, and to prevent the false
alteration of a correct word, the authors introduce
an additional input feature to the decision module.
This feature indicates whether a word was found
in a corpus alongside the preceding or following
word. More generally, SMT is preferred in error
correction while neural machine translation (NMT)
has been reported advantageous in error detection
(Amrhein and Clematide, 2018). More recently, an
encoder-decoder model has been used to correct
recognised printed text (on a character level) from
historical books in German (Lyu et al., 2021). All
the aforementioned studies pertain to printed text,
where a recognition error rate of 10% is deemed
challenging (Chiron et al., 2017). While we also
experiment with statistical and neural error correc-
tion methods, our primary focus is on handwritten
text, where the error rate is often higher (Figure 4).

2.2 Error detection for error correction

Error detection benefits error correction (Pavlopou-
los et al., 2023). In 2017, ICDAR organised a com-
petition focused on post-correcting recognised out-
put (Chiron et al., 2017). The competition used a
dataset comprising 12 million characters of printed
text in English and French, and consisted of two
subtasks. The first concerned error detection, aim-
ing at the accurate identification of the position and
the length of the errors. The second concerned error
correction, where the errors were already provided
to the participants (Chiron et al., 2017; Rigaud
et al., 2019). The organisers noted 35 registrations,
indicating a substantial interest from the commu-
nity. However, it was also noted that only half of
the submissions were deemed successful, under-
scoring the challenging nature of the task.


https://github.com/htrec-gr/challenge
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Figure 1: Overview of the organised shared task (details hidden to preserve anonymity)

In 2019, the competition was repeated, and the
dataset’s size was doubled, with the introduction of
ten European languages (Rigaud et al., 2019). The
texts used in both competitions were sourced from
collections of national libraries or universities and
encompassed a variety of formats, such as news-
papers, historical books, and shopping receipts. In
the 2017 edition, the most effective error correc-
tion method consisted of an ensemble combining
statistical and neural machine translation models.
In contrast, in the 2019 competition a character-
level neural encoder-decoder took the top position,
based on BiLSTM (Hochreiter and Schmidhuber,
1997) and BERT (Devlin et al., 2018).

BERT, fine-tuned on a named entity recognition
task, was also used to perform error detection at
the token level (Nguyen et al., 2020). After the
subtoken tokenisation, the authors obtained GloVe
or fastText word embeddings; combined with seg-
ment and positional embeddings, these were given
as input to BERT. The hidden states were fed to
a dense layer on top that classified each token as
erroneous or not. Error correction, then, followed
with a character-based NMT model. Error detec-
tion has been considered a reasonable first step to
avoid the false alteration of already correctly recog-
nised lines (Schaefer and Neudecker, 2020). The
authors used a recurrent neural network (RNN) as a
first step to detect erroneous characters in the recog-
nised printed text. Then, a neural encoder-decoder
translation model was fed only with sentences that
comprised (detected) erroneous characters. Their
two-step post-correction resulted in an 18.2% rela-
tive improvement in the recognition error rate.

3 The Shared Task

We used a dataset (§3.2) to set up a shared task
on error-correcting the HTR output of Byzantine
papyri and manuscripts. The challenge lasted from
May 1st to July 1st, 2022, counting one hundred
thirty-six registered participants from around the
world,* and 271 submissions.

3.1 The language

We used images from Byzantine papyri and
manuscripts from seven centuries (10th-16th c.
CE). As was discussed already (§1.2), the written
text reflects the language of the Byzantine times, a
language during an intermediary phase of linguistic
evolution between Classical and Modern Greek.
We employed the Handwritten Paleographic
Greek Text Recognition (HPGTR) dataset (Pla-
tanou et al., 2022), comprising images from the
digitised Barocci manuscript collection of the
Bodleian Library that display text dating back from
10th to 17th c. CE. The scripts found in the respec-
tive manuscripts are the Greek minuscule script
and the cursive style of the minuscule script, an ex-
ample of which is shown in Figure 2(a). As shown
in Figure 2(b), characters may join each other, dis-
allowing empty space between words and leading
to joined words that often characterise the cursive
style. Also, joined characters can form ligatures, as
shown in Figure 2(c), while the character position
is not strict, as is shown with the character ‘o’ at
the end of the word ‘tdAowve’ in Figure 2(d).
Figure 2 also shows that lowercase and upper-
case letters appear interchangeably in the text.
Scriptura continua exists (not consistently) along

*India had the most participants (26), followed by the
United States (7), Russia (6), Greece (6), and Japan (3).
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Figure 2: Visual examples of the language in the
HPGTR dataset. An example of the cursive style of
the minuscule script (a). The words ‘mtoAA&’ and “yi-
veoUou’ are joined, leaving no empty space between

LI

them (b). In the word ‘®ote’, the characters ‘c’, ‘T
and ‘e’ are combined to form the ligature ‘cte’ (c). The
words ‘x\bouca’ and “tdAouve’ are shown in (d), with
the final ‘o’ written above the latter.

with abbreviations. Furthermore, characters of vari-
ous sizes may appear regardless of their neighbour-
ing ones, such as in Figure 2(d) where the bigger
letter “T” is written between two small letters ‘o’.

3.2 The dataset

The dataset of the challenge comprises texts that are
recognised (HTRed) and transcribed, with the latter
serving as ground truth (hidden during evaluation).

3.2.1 The HTR model

To recognise text from images of handwritten
Byzantine papyri and manuscripts, we opted for
Transkribus (Kahle et al., 2017).> This is an in-
dustrial platform that encompasses a wide range
of functions (e.g., layout analysis, transcription,
HTR training/prediction). To yield a rich ma-
terial for our task and, hence, a diversity of
recognition errors, we trained our model only on
seven randomly-selected images (and transcrip-
tions) from the HPGTR dataset, one per century.
The centuries from 11th to 13th are better supported
when counting words compared to the next three
centuries, with the 16th being the least supported.

3.2.2 Training data

We used the lines from ninety-eight HPGTR im-
ages. Each was transcribed by both a human expert,
yielding the ground truth, and by our HTR network,
yielding the input (see Fig. 1). To ensure a balanced
representation across centuries, we randomly se-
lected ten images per century (from the 10th to
the 16th c. CE). However, the images from the
16th century contained fewer lines compared to
other centuries, which we addressed by including

Shttps://readcoop.eu/transkribus, Version 1.15.1.

additional images from that period. Overall, the
training dataset comprises a (parallel) corpus of
1,800 lines (see also Table 5 in Appendix A).
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Figure 3: CER of recognised lines per century

CER per century When we group the character
error rate (CER) by century, we notice that the rate
tends to be higher for lines originating from the
three most recent centuries (Fig. 3). This trend is
consistent with findings from recognition systems
trained on larger datasets (Platanou et al., 2022).
Here, however, it is worth noting that lines with
low CER present a more manageable correction
task, whereas those with high CER pose greater
challenges for parsing and correction.

HTR error analysis A common error in lines
with a low CER is mistaken word division (i.e.,
space mistakenly added, e.g., by pushing away the
final “s” of a word) and merging. Figure 4 shows
that approx. 200 lines have a CER that is lower
than 10% (fifty of which have less than 5%), while
500 have less than 20%. Further, approximately
400 lines have a CER of 50% or higher.

Figure 4: Number of recognised lines per CER
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3.2.3 Evaluation data

For evaluation purposes, a held-out test set was
created, comprising 180 recognised lines but ex-
cluding their respective 180 transcriptions (hidden
ground truth). These lines were taken from seven
randomly selected HPGTR images, one per cen-
tury, different from the ones used for creating the
training set.

Synthetic data The test set comprised also syn-
thetic recognised lines, designed by “attacking” hu-
man transcriptions of seven randomly selected im-
ages (153 lines), one per century (synthetic test
set), as outlined in Table 5. Synthetic data had been
shared also with the participants to serve validation
purposes while avoiding overfitting the evaluation
data. Our error-introducing attacks are based on
five categories, shown in Table 1. We remove (I)
or add (IT) words in the text; add (IIT) or swap (IV)
characters, and merge consecutive words (V). Al-
though different in nature when compared to data
coming from an HTR system, we opt for this syn-
thetic dataset to unlock a detailed error analysis.

Error type | Example

I. Remove randomly selected | this is a test > this

words isa__
I1. Add random words at random | this is a test > this
positions is word a test

III. Add random characters at | this is a test > this

random positions is a teskt

IV. Swap random characters this is a test > thiis
__satest

V. Merge random consecutive | this is a test > this

words is atest

Table 1: Types of errors introduced (attacks) to yield
the synthetic dataset. Instead of transcriptions, the same
example sentence is shown to highlight the error types.

3.3 The evaluation metric

For evaluation we employ relative error reduction
(ERr), which is applicable to CER and WER. We
consider a (human) transcription tZD for line 7 in
document D; the recognised text r” for the same
line, and the corrected text C(r?), assuming the
application of an error correction system. Then,
assuming an error rate method F'R (e.g., CER), we
define E'Rr for line 7 of D as:

ERr(i,D) = ER(tP ,+P) — ER(tP,C(rP))
(1)

SThe positions of the attacks are selected randomly.

A positive ZRr means that the error rate is reduced
and that the applied correction (by C') yields a text
that is closer to the human transcription. Negative
values, on the other hand, mean that errors are
introduced, increasing the edits needed to reach the
transcribed text.

3.4 Leaderboard

A leaderboard was set up using the character er-
ror rate reduction (CERTr) as the official evaluation
metric but also reporting the word error rate reduc-
tion (WERT). The scores of the leaderboard were
computed on the whole evaluation set, comprising
system and synthetic transcriptions. The official
ranking, however, ignores the synthetic transcrip-
tions. We opted for adding instead of hiding data
(i.e., using only a small part of the data for the
leaderboard), for two reasons. First, synthetic er-
rors provide valuable information regarding the
generalisation ability of systems. Second, a small
evaluation set is easier to overfit, which could yield
a deceiving leaderboard.

4 Methods

For our error correction task, which aims to push
the system transcription closer to the respective
human transcription, we opted for three baselines
(§4.1), which were shared with the participants
of the challenge. Upon the evaluation of all the
submissions, using the system and the synthetic
transcriptions as input, we investigate further the
two best-performing submitted approaches: one
based on predefined rules and the other utilising a
text-to-text Transformer.”

4.1 Baselines

We considered three baselines, which were based
on edit distance (EDDI), a language model (LAMO),
and linguistic rules (LMR).
EDDI replaces unknown words in the text by using
the edit distance and a lexicon. Tokens that are
not in the lexicon are replaced by the word in the
lexicon with the lowest edit distance. As a lexicon,
we use all the words of the training set.?
LAMO is similar to EDDI in that it uses a lexicon
"The developers of these two algorithms are co-authors of
this paper. Other submissions were excluded due to their lower
performance and a lack of accompanying system descriptions.
8The method returns the input text when the count of un-
known words is larger than three, and only lexicon entries
with low distance (lower than twenty-five) are considered for

replacements. Thresholds are based on preliminary experi-
ments.



to recognise unknown words in the text. However,
word replacement is performed by a word-based
statistical language model. We use a window of
three words for the language model.

LMR is the third baseline, which is based on lin-
guistic rules. Specifically, it focuses on the final “s”
letter that is frequently the subject of wrong word
division. Then, a character-based statistical lan-
guage model decides whether it would be deleted
(i.e., assuming it was mistakenly added) or merged
with the previous word (a mistaken word division).

4.2 Deep learning with ByT5

ByT5 (Xue et al., 2022) is a byte-level pre-
trained text-to-text Transformer (Raffel et al., 2020;
Vaswani et al., 2017) that allows fine-tuning on vari-
ous downstream tasks. For small model sizes, it out-
performs MTS5, which is the multilingual version
of TS (Xue et al., 2020) °. We fine-tuned the ByT5
“large” model variant by feeding it with recognised
and transcribed texts, in order for it to learn to en-
code the former and decode the latter. We used
a gradient accumulation of four steps, a standard
cross-entropy loss, and the efficient Adafactor opti-
miser (Shazeer and Stern, 2018). At inference time,
we used greedy decoding as it produced the best
results. More details can be found in Appendix B.

4.3 Linguistic engineering with RBS

The rule-based correction system (RBS) is designed
by making use of different rules, derived based on a
qualitative analysis of what kind of errors typically
occur in hand-written text recognition of Greek
texts. These rules are described in more detail
below (the algorithm is provided in Appendix C).

Word subset (R1): Any token comprising a word
in a lexicon (formed by the transcriptions) is di-
vided into two tokens with a white space.!”

Edit distance (R2): Tokens that had an edit dis-
tance of one with (a) any possible valid alternation
of the conjunction “xot”, and (b) a term in the lex-
icon (R1), are replaced with these two terms. For
tokens of eight characters or more, not affected by
this rule, we use an edit distance of two.

Word bigrams (R3): Recognition often produces
white spaces at the wrong positions (e.g., “Ouxou
ovrepl” instead of “Ouxonov mept”). To address such

°In preliminary experiments, MT5 performed considerably
worse than ByT5.

19A more strict version of this rule uses a list of pronouns
(e.g., autou) and conjunctions (e.g., xou), testing if the token
concatenates words from the two resources.

errors, any bigram in the text is merged (removing
the white space) and passed to R1.
Single-character tokens (R4): Single-character
tokens that weren’t known articles are merged with
the end of the previous token, if the merged token
exists in the lexicon, and with the start of the next
token otherwise.

Duplicate characters (RS): Tokens comprising
two (or more) identical consecutive characters, and
that are not present in the lexicon, are collapsed to a
single character (e.g., “cectiv” becomes “cotiv”).
Misspelled pronouns (R6): Character order issues
of pronouns are fixed by specific replacements. For
example, “tvw” is replaced by “twv’.

Joint pronouns (R7): Pronouns merged with the
next token (e.g., “tnvxopdiay”) are searched and
replaced by two words (e.g., the previous token
would become “tnv xopEdiay”).

Main prepositions (R8): Words beginning with
specific prefixes (e.g., “cwvtoc”, “evroc”, “nx-
Toc”, “extne”) can bypass the previous rules.
Hence, a mapping is used to address such tokens.

S Empirical analysis

5.1 Error rate reduction results

In Table 2, we present the ERr for characters
(CERr) and words (WERr), achieved by error-
correcting the HTR output or synthetic data. EDDI
and LAMO display negative scores in both metrics
on both input types. This means that such - rather
simplistic - baselines introduce new errors instead
of addressing existing ones. The third baseline,
LMR, reduces slightly the CER and WER of the
HTR output. The focus of this baseline is on a
single letter (final “s”), which is a common recog-
nition error, though not the only one. The attacks
that are used to create the synthetic data, on the
other hand, are applied to random text positions
(see §4), none of which concerns this letter. Hence,
no correction is made and both scores are zero.
BYTS and RBS achieve a positive reduction in
both metrics. RBS scores higher than LMR when
the input is the HTR output. Also, it achieves a pos-
itive reduction when the input is synthetic (0.10 in
CERr and 1.29 in WERr). Obviously, this method
handles many error types, covering more than typi-
cal HTR mistakes. BYTS is the best overall when
applied to HTR output. It is more than five times
better in terms of CER and more than eight times
better in terms of WER compared to RBS. When
evaluated on synthetic input, however, the error



HTR OuTPUT SYNTHETIC
CERrt WERrt CERrt WERrt

EDDI -0.19 -0.29 -0.54 -2.48
LAMO -5.88 -0.80 -5.95 -3.13
LMR 0.02 0.06 0.00 -0.00
RBS 0.44 1.82 0.10 1.29
BYTS 2.53 14.97 -7.72 -23.14

Table 2: CERr and WERTr scores of the baselines (top
three rows), of the neural encoder-decoder (BYT5), and
the rule-based error correction approach (RBS).

rates increase considerably, displaying a lower per-
formance than RBS and all three baselines, most
probably because the model is not trained on syn-
thetic data. This is an indication that the synthetic
data may not be very natural, and that rule-based
systems are less useful in ‘real-world’ situations.

5.2 Inter-corrector agreement

In order to investigate closer the relationship be-
tween BYTS and RBS, we compute the CER be-
tween the two corrected texts, one per system, of
each recognised line. Low scores reflect a high
agreement between the two approaches while high
scores indicate very different outputs. By sorting
the lines based on this score, we can assess the two
approaches in different agreement zones. Figure 5
presents these results. Overall, BYTS is more of-
ten above zero and bars are also much higher than
RBS. When we look at the left of the diagram, there
are almost no differences between the two in their
performance, which is reasonable given that the
two approaches agree (i.e., they will both be cor-
rect or they will both be wrong). As we move to
the right, however, we can see that BYTS achieves
more and deeper negative bars. On the other hand,
RBS follows a low-risk, low-gain strategy.

Manual investigation of the best and worst han-
dled lines per method (Table 3) reveals that in the
worst-case scenario per method (line 8 for RBS, hal-
lucination in 15 for BYTS), the corrections of the
other method were minimal (lines 7 and 16, resp.).

5.3 Sensitivity analysis on synthetic data

As was shown in Table 2, RBS achieves a positive
CERr in the synthetic data while BYT5 underper-
forms in this setup. To explore the performance of
the two methods further, we computed the mean
CERr per attack type (Table 4). For all attack types,

B CERr(neural)
CERr(rule-based)

=20

Figure 5: CERr (moving average for better readability
with a window of size 5) of BYTS5 and RBS per line.
Lines have been sorted from the least (left) to the highest
(right) agreement (CER) between the two.

BYTS yields a negative average CERr, with its
weakest performance observed when characters are
added (Type I1I), and relatively better results when
words are merged (Type V). On the other hand, RBS
also struggles with two attack types, specifically
when words are removed (Type I) and added (Type
II). Its performance remains relatively consistent
for the remaining three types of attack.

5.4 Enhanced HTR vs. post-correction

Enhancing HTR with more training data can allow
a direct comparison between the performance gains
from neural error correction and from increasing
the HTR training data.

For the purposes of this experiment, we trained a
new HTR model. To avoid the financial cost of train
multiple instances, we opted for an open-source
alternative to Transkribus. For the experiment de-
scribed in §5.4, our HTR model achieved a similar
performance with Transkribus on the same seven
training pages. We release this model publicly at:
https://github.com/htrec-gr/htr. The archi-
tecture of this HTR model is a Swin (Liu et al.,
2021) encoder with a BERT-based decoder (Devlin
et al., 2019). For the experiment we used a sin-
gle GPU card, i.e., NVIDIA Tesla V100 (16GB),
and the model had 142 million parameters. It was
trained for 75 epochs (12 hours). We used as seed
42, batch size of 48, AdamW optimizer, and Trans-
formers V4.25.1. For language generation, we used
a max-length of 200 characters, early stopping and
a greedy decoding strategy.

Figure 6 shows the CERr and WERTr as we tran-
sition from 7 pages of training data (our baseline)
to 70 pages overall. When training with 28 (+21)
pages, CERr goes up to 9.73 and WERr to 12.62.
This means that the WERr of BYTS (correcting the
errors of a 7-page-trained HTR model) is better by
two points (14.97; Table 2). When training with
more pages (e.g., 70), however, CERr and WERr
reach up to 15.72 and 27.15 respectively, outper-
forming the gains from error correction. It is worth
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Transcribed, Recognised, or Corrected line CERr
Human: ocwUOTOC XPELTTWY TOGOUTOV TV yenuact Bon
HTRed:  0UATOC XPELTYWY TOGOUTOV TV XenUactBor
BYTS: EWUATOC XPELTOL TO GOUTOV TWV -4.88
RBS: PELTYWY TOGOUTOV TWV 4.88
Human: Aevtiov dielwoev savtov
HTRed: Jevtiov dielwoeveautdv
BYTS: Aevtiov delwoey cauTov 0.00
W  RBS: Aevtiov dielwoeve auTtdv -4.37
Human:  (extee Toloucty eaUTouS Gopxol
HTRed:  {ixe xté¢ moL ouoty eadtolc o8Ap xo
BYTS: TOLOVGLY EAUTOLS 17.24
RBS: Yxe xTHES TOL OLGLY EAVTOLE GEAE XAt 0.00
Human:  &v 8¢ cuvemivooupevny €xwyv Tf Unoapiet
HTRed: ®&v 8¢ cuvemivoouuevny oéywy i) UnaEeget
W BYTS: GUVETILVOOUUEVNY GUVETLVOOUUEVNV GUVETLVOOUUEVT...  -108
RBS: &GV 88 ouvemvoouuevny d€ywyv TH drakpget 0.00

Table 3: Error analysis by focusing on the best (B) and worst (W) correction per method based on the achieved
CERr. The first two rows per quadruplet show the respective transcription and recognition.

Type of attack BYT5 RBS
L Remove words -6.36  0.00
1L Add words =795 -0.06
III. Add characters  -12.28 0.18
IV. Swap characters -8.42  0.21
V. Merge words -3.54  0.18

Table 4: Average CERTr per attack type.

¢ CERr » WERr

30 2715

10 20 30 40 50 60 70

Training Pages #

Figure 6: CERr and WERTr scores (vertically) when the
HTR model is trained on more pages (horizontally).

noting that this improvement requires a substantial
increase of HTR training material, which may not
be available (e.g., lack of images or transcriptions),
making error correction a promising alternative.

6 Discussion

The challenge in error-correcting the HTR output
of Byzantine manuscripts and papyri has attracted a
significant number of registrations and submissions
(83.2.3), the best of which were discussed in this
work. Characteristics of Byzantine Greek and the

respective scripts have been discussed in §3.1, in
order to highlight the difficulties that recognition
and error-correction algorithms need to tackle. The
variety of scripts and scribes in this language, along
with its evolution, is likely to have caused a varying
recognition error rate over time (Figure 3). This
error rate variety poses a significant challenge to
post-correction methods, which should be able to
handle lines that comprise from few to many errors
(different types).

When assessing error correction in recognized
printed and handwritten material, it’s crucial to con-
sider the error rate. As detailed in §2, prior studies
have predominantly focused on printed material,
characterised by relatively low recognition error
rates. However, our findings illustrate a significant
variation in the error rate for HTR output, encom-
passing both accurate recognitions and those with
numerous errors (Fig. 4).

We also show that a rule-based approach out-
performs the baselines (Table 2), or even a neural
encoder-decoder in the case of synthetic data (Ta-
ble 4). Therefore, error-correcting the HTR output
can also be seen as a knowledge-intensive NLP
task, for which knowledge-based approaches can
be successful (Lewis et al., 2020).

The experimental results presented in Table 2,
show that post-correcting the HTR output for
Byzantine Greek can reduce the error rate by ap-
proximately 2.5 units at the character and 15 units
at the word level. This means that error correc-
tion can be employed during the recognition of
the text in the images of Byzantine manuscripts
and papyri, to facilitate human experts with the



tedious semi-automated transcription task (i.e., cor-
recting the HTR output). This gain is recorded by
post-correcting errors, but the encoding-decoding
of BYTS could possibly be integrated also into the
HTR pipeline, incorporated as one of the tasks in a
multitask approach (i.e., image to text to text).

7 Conclusions

We presented a challenge of error-correcting HTR
output for Byzantine Greek, publicly releasing data
with both synthetic and actual HTR errors. A pre-
trained BYTS encoder-decoder model, fine-tuned
on recognised (input; encoded) and transcribed
(output; decoded) texts, achieves a notably high
performance, effectively reducing errors. A compa-
rable reduction of errors could have been achieved
if the HTR model had been trained on approxi-
mately 30 additional pages. However, generalisa-
tion remains a concern, as evidenced by the model’s
performance on synthetic data, where errors were
introduced instead of corrected. A rule-based ap-
proach, on the other hand, showed promise by well
performing on synthetic data but not on real-world
data. Future work will focus on challenging error-
correction systems based on HTR models trained
on data from specific centuries, aiming to address
the diverse range of errors encountered.
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Limitations

* As observed in the results, the performance
of the systems varies significantly across cen-
turies, suggesting that century-specific factors
need to be considered when designing effec-
tive error-correcting systems.

It’s evident that post-correction is often hin-
dered by the low quality of the HTR output.
Therefore, there is a need for more advanced
approaches that incorporate error detection
(Pavlopoulos et al., 2023) and correction be-
fore the output is generated, possibly in con-
junction with a post-correction module.

While the results demonstrate the potential of
error-correcting systems for some Byzantine

Greek corpora, the generalisation potential in
the context of low-resource data remains to be
explored. This can be achieved by extending
this approach to additional corpora and other
languages, allowing for a more comprehen-
sive understanding of its effectiveness across
different linguistic domains. Still, we hope
that this study will be beneficial for the de-
velopment of new error-correction strategies
aimed at improving the quality of recogni-
tions, especially in scenarios with limited data
availability.
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A Dataset configuration

As is shown in Table 5, we compiled a parallel
corpus of 1,800 lines for training purposes. Each
line comprises a transcription (ground truth) and a
recognition, resulted from an under-trained HTR
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model (trained on the transcriptions of seven held-
out pages). Evaluation was performed on synthetic
(153 lines) and actual (180 lines) data, resulting to
a parallel corpus of 2,133 lines, overall, which we
publicly release, along with the HTR model that
we used to produce the recognitions.

Purpose | # Pages | # Lines | Dataset
Training 98 1800 HPGTR
Evaluation 8 180 HPGTR
Evaluation 7 153 Synthetic
Total 113 2,133 —

Table 5: Data configuration for the challenge. Each
page comprises several lines (texts) and each line has
been transcribed and recognised. The transcription of
lines used for evaluation was kept hidden from the par-
ticipants during the testing phase.

B ByTS

We (i.e., a participant at the time of the challenge)
opted for a batch size of 1 (i.e., a single line) and a
learning rate of le-4. Optimum performance was
achieved at one and a half epochs. As is shown
in Table 6, BYTS was trained for more epochs but
results deteriorated.

Table 6: CERr and WERr of ByT5 when it was trained
for more epochs.

HTR OUTPUT SYNTHETIC
EPOCHS CERrt WERr? CERr1 WERr?
5 253 1497 772 -23.14
3 291 862  -1541  -36.05
12 -8.45 6.08  -18.85  -43.40
C RBS

Algorithm 1 presents the pseudocode for RBS. A
rule based system, however, is only as good as the
corpus size it has access to. We hypothesize that the
system’s performance would improve with a bigger
corpus. To that end, we provide over 100 books of
text in ancient Greek !! and Byzantine '2, scraped
from various online sources. Due to time con-
straints, these were not utilized by RBS, a task that
will be explored in future work. The biggest col-
lection, titled "X 0voig Iotopudyv’ from 1.Skylitzis

llhttp: //users.uoa.gr/~nektar/history/tributes/
ancient_authors/index.htm
12https ://byzantium.gr/keimena/keimena.php

totals 5 books, 153,709 words and 885,259 char-
acters 3. Furthermore, we provide a lexicon '# of
over 42,107 ancient Greek words independent of
the collection of books, which was also not utilized
by RBS.

Bhttps://wordcounter. tools/

14https: //www.greek-1language.gr/
digitalResources/ancient_greek/tools/
liddel-scott/search.html?start=20&1lqg=
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Algorithm 1 Rule-Based System (RBS)

Require: corpus < list(words) > 0
for sent < example_system_transcr do
sent <+ drop_duplicate_char(sent)
for token <+ sent do
for gold + corpus_1 do
if token in gold then
gold, subtoken <+ split_token(token)

sent —
replace_token_in_sentence(token, [gold, subtoken])
end if
end for

list[(goldy, golds)]  create_pairs(corpus)
for pair « list[(gold:, gold2)] do
combination < pair[0] + pair[l]
if token in combination then

gold, golda —
split_combination(token)
sent —
replace_token_in_sentence(token, [goldi, golds))
end if
end for

token < replace_freq_tokens(token)
list_and < ["xow’, *xod’, “xal’]
for gold < corpus + list_and do
if edit_distance(gold, token) == 1 and (to-
ken not in list_and) then
if gold in list_and) then
if gold not in
(begin/end_of_the_sentence) then
token < gold
end if
else if IV is odd then
token < gold
end if
end if
if edit_distance(gold, token) == 2 and
length(token) > 8 then
token < gold
end if
end for
list_articles < [tv’, "o, "1, *t&v’]
if token in list_articles then
if position(token,gold) in
begin_or_end_of_token then
gold, subtoken <+ split_article(token)

sent —
replace_token_in_sentence(token, [gold, subtoken)])
end if

end if
if length(token)==1 then
sent < drop_token(token)
end if
for i < range(0, len(sent_tokens)—1) do #R3
wl, w2 « sent_tokens[i], sent_tokens[i +
1
bigram = wl 4 w2 # no white space between
the consecutive words
for g < corpus do # for each gold word in the
corpus
if edit_distance(g, bigram) == 1 & wl
notin {’0’,;n’, o’ ta’ } then
token <—g+*’+w2
end if
end for
end for
end for
end for
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Abstract

Hebrew manuscripts provide thousands of tex-
tual transmissions of post-Biblical Hebrew
texts. In many cases, the text in the manuscripts
is not fully decipherable, whether due to
deterioration, perforation, burns, or other-
wise. Existing BERT models for Hebrew
struggle to fill these gaps, due to the many
orthographical deviations found in Hebrew
manuscripts. We have pretrained a new ded-
icated BERT model, dubbed MsBERT (short
for: Manuscript BERT), designed from the
ground up to handle Hebrew manuscript text.
MsBERT substantially outperforms all existing
Hebrew BERT models regarding the predic-
tion of missing words in fragmentary Hebrew
manuscript transcriptions in multiple genres, as
well as regarding the task of differentiating be-
tween quoted passages and exegetical elabora-
tions. We provide MsBERT for free download
and unrestricted use, and we also provide an
interactive and user-friendly website to allow
manuscript scholars to leverage the power of
MsBERT in their scholarly work of reconstruct-
ing fragmentary Hebrew manuscripts. !

1 Introduction

Hebrew manuscripts preserve thousands of textual
transmissions of post-Biblical Hebrew texts from
the first millennium (Richler, 2014). In many cases,
the text in the manuscripts is not fully decipherable,
whether due to deterioration, perforation, burns, or
otherwise. Hebrew Studies scholars spend hours
upon hours attempting to determine these missing
words, in order to reconstruct the original texts.
Prima facie, BERT models are optimally suited
for this task, given their Masked Language Model-
ing objective (Devlin et al., 2019a). Indeed, a vari-
ety of high-performing BERT models for Hebrew

'Link to model: https://huggingface.co/dicta-il/
MsBERT
Link to website:
netlify.app/

https://mss--dicta-bert-demo.
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texts have been released over the last few years,
including AlephBERT (Seker et al., 2021), Aleph-
BERTGimmel (Gueta et al., 2023), and BEREL
(Shmidman et al., 2022). A recent study even
showed that these models can be leveraged to com-
plete Biblical verses (Fono et al., 2024). However,
as we will show, these models are not adequately
equipped to handle Hebrew manuscript texts. In or-
der to address this need, we have pretrained a new
BERT model specifically for Hebrew manuscript
transcriptions. Our new model is dubbed MsBERT,
short for: Manuscript BERT.

2 Reconstruction of Textual Lacunae via
Deep Learning in Other Languages

Over the last few years, deep learning techniques
have been utilitized for reconstruction of textual
lacunae in a number of other languages. For in-
stance, Assael et al. (2019) applied such techniques
to Greek epigraphy; Bamman and Burns (2020)
did so with Latin; and Fetaya et al. (2020) did so
regarding Akkadian texts found in Mesopotamian
cuneiform tablets. For a full survey of existing re-
search regarding computational textual restoration,
see Sommerschield et al. (2023, Section 4).

3 Challenges of Hebrew Manuscript Texts

Most existing Hebrew BERT models, including
AlephBERT and AlephBERTGimmel, were trained
on modern Hebrew alone. The historical texts
found in Hebrew manuscripts admit to a very differ-
ent writing style. Differences abound regarding vo-
cabulary, morphology, syntax, semantics, and more.
It is therefore not surprising that these models stum-
ble when faced with historical Hebrew texts.

One notable exception is BEREL. This model
was specifically trained on a corpus of historical
Hebrew texts, and it is thus suited to handle the
linguistic norms of such texts. However, although
it can handle the morphology and syntax of these

Proceedings of the 1st Workshop on Machine Learning for Ancient Languages (ML4AL 2024), pages 13—18
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texts, it falls flat when confronted with the orthog-
raphy of the manuscript transcriptions. Virtually all
of BEREL’s training data originates from printed
editions of historical Hebrew texts. Although these
printed editions date as far back as the cradle of
printing at the end of the fifteenth century, they
still conform to a narrow set of orthographic norms
assumed by the Hebrew printing press.

In contrast, the scribes of the Hebrew
manuscripts did not adhere to such norms. Exam-
ples of where the orthography of the manuscripts
deviates from that of the printing press include:

* Matres lectionis (consonants representing
vowels). Manuscripts use matres lectionis in
a far more varied set of positions (e.g. 703"
rather than 5703n).

* Acronyms. Manuscripts tend to use multiple
apostrophes rather than a single double quote
mark (e.g. 1'2'P'7 rather than 7"2pi).

* Truncated words. The manuscript scribes of-
ten transcribed only one or two letters of a
given word, relying on the reader to fill in the
rest from context. Hebrew manuscripts often
contain long sequences of such minimal word
subsets (e.g. 71 P "2 'R "7 rather than 927
X7 @Ip 3 NN).?

Treating the preposition 5% ("of") as a pro-
clitic rather than as an independent word (e.g.
NS vs. N Sw).

Needless to say, these orthographic discrepan-
cies lead to a situation wherein texts of Hebrew
manuscripts are not well supported in the BEREL
model. Many of the words in the texts (including
words noted above, such as 703", andY, and
'2'p'), end up as sequences of word-pieces that
the model was simply not trained for. The ortho-
graphic deviations noted above are not occasional
but rather rampant throughout these texts, and thus
they take their toll on BEREL's ability to handle
the text.

Due to all of the foregoing, there is a need for
a new specialized model for Hebrew manuscript
texts, designed from the ground up - from the tok-
enization level and through all phases of training
- specifically to handle the type of text found in

*This particular sequence is attested in a Cairo Genizah
fragment of mekhilta de-rashbi, a legal midrash; see Kahana
(2005), p. 25.
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Hebrew manuscripts.®> The present paper does pre-
cisely this.

4 Model

4.1 Tokenizer

The first stage of our model design involves the
training of a new word-piece tokenizer to build
a BERT vocabulary that is optimally suited for
Hebrew manuscript texts. For the training cor-
pus for the tokenizer we start with our full set of
manuscript transcriptions (section 4.3.1). Addition-
ally, we add in a corpus of standard editions of
Hebrew texts from before the printing era (sec-
tion 4.3.2), to widen the vocabulary with addi-
tional words that are likely to be found in Hebrew
manuscripts, even if they aren’t in our particular
corpus of manuscript transcriptions.

We use the Word-Piece tokenization method pro-
posed by Song et al. (2021), with adjustments to
handle the apostrophe and double-quote marks,
which otherwise would have been tokenized into
separate word pieces. Specifically, we avoid break-
ing on a double-quote between Hebrew letters (e.g.,
7”1n), or on apostrophes which succeed Hebrew
letters (e.g., V¥'R).

Following previous work (Gueta et al., 2023),
the tokenizer was trained with a vocabulary size
of 128,000 tokens. In addition, in order to prop-
erly represent the fragmentary nature of Hebrew
manuscripts, we add two special tokens to the vo-
cabulary: [GAP] (indicating a large gap, or a gap
of an unknown number of words) and [ONEGAP]
(indicating a single missing word).

4.2 Architecture

The model’s architecture is based on the BERT-
base architecture (Devlin et al., 2019b), trained

3To be sure, to a certain extent, challenges of manuscript
orthography can be addressed with existing models if normal-
ization is applied during preprocessing. However, the oddities
of manuscript orthography often result in ambiguous forms
which must be disambiguated prior to normalization, and ag-
gressively normalizing such forms would likely result in errors
early on in the pipeline, adversely impacting the model’s ca-
pabilities overall. Furthermore, the oddities of manuscript
orthography are not entirely predictable, and constructing a
completely comprehensive normalization routine would prove
difficult. Additionally, for downstream tasks such as handwrit-
ten text recognition, it is desirable to have a model which can
predict the specific orthographic forms which fits the ortho-
graphic norms of the context words; this would not be possible
if everything was normalized in advance. For these reasons,
we opted to produce the new model presented here, tokenized
and pretrained from scratch. Nevertheless, in future work we
hope to explore the preprocessing normalization approach as
well, and to properly compare the results.



on a DGX-A100 with 4xA100 40GB cards. The
training was done with the fused lamb optimizer
combined with AMP (Automatic Mixed Precision).
A polynomial warmup learning rate scheduler was
used to warm up for a portion of the training steps
and then decay the learning rate over the total steps.

4.3 Training Data

On the one hand, we wish to train the model specif-
ically for Hebrew manuscript texts; yet our corpus
of Hebrew manuscript texts is not sufficiently large
to train a BERT model alone, and thus we need
to augment it with larger corpora of Hebrew. We
first describe the multiple corpora which we used
as part of this process, and then describe how we
combine them together during the training process.

4.3.1 Hebrew Manuscript Corpus

We collected transcriptions of Hebrew manuscripts
from Hebrew Studies scholars who generously
agreed to provide their transcriptions for this
project. All in all, this corpus consists of over 67
million words, representing texts authored between
the 3rd and 13th centuries.

4.3.2 Pre-Print Rabbinic Corpus

The Pre-Print Rabbinic Corpus is a collection of
digitized Rabbinic texts authored before the age of
printing (that is, before the end of the 15th century).
This corpus contains a total of 49 million words.

4.3.3 Comprehensive Rabbinic Corpus

This corpus contains a maximally comprehensive
set of digitized Rabbinic Hebrew texts from all
available time periods, stretching from the 3rd cen-
tury until today. It contains over 400 million words,
including the full corpus of texts from Sefaria 4,
plus many texts which we have scanned and digi-
tized in-house.

4.4 Training Objectives

We train our model on the Masked Language Mod-
eling objective. We implement two restrictions
when selecting the random tokens to mask:

1. We don’t allow masking of word-piece tokens
which are not full words. The task of predicting just
one part of a word given the rest of the word is too
easy and does not result in significant optimization.

2. We don’t allow masking of the [GAP] and
[ONEGAP] tokens, since we wish to train the model
to predict actual Hebrew words.

*sefaria.org.il
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During training we chunk the texts into se-
quences of up to 256 tokens. To ensure we train on
sentences of substance, we remove sentences with
fewer than 3 words or where most of the sentence
consisted of [GAP] tokens.

4.5 Training Phases

In order to leverage the larger Hebrew corpora,
while still placing the emphasis specifically on the
manuscript transcriptions, we used a three-stage
procedure, as follows:

Phase 1: For the first phase of the training -
when the model is most malleable - we trained
only on the manuscript Corpus (4.3.1) and the Pre-
Print Corpus (4.3.2). We trained for one full epoch
over these corpora, using a global batch size of
2048 examples per iteration, for a total of 4200
iterations. The learning rate was initialized to O,
and was warmed up to 6e-5 by the end of this phase.
Total training time was 7 hours.

Phase 2: For the second phase of the training,
we continued training with all three corpora. We
trained for a total of 5.5 epochs of the corpora,
using a global batch size of 8192 examples, for a
total of 15,400 iterations. We continued warming
up the learning rate until 6e-3 and then applied a
polynomial scheduler with a degree of 0.5. Total
training time was 2.1 days.

Phase 3: For the third phase of the training,
we confined the training corpus solely to our set
of Hebrew manuscript transcriptions. We ran this
corpus for 3.5 epochs with a batch size of 1024,
for a total of 15,800 iterations. We used a learning
rate of Se-5, with the same scheduler as in phase 2.
Total training time was 5.5 hours.

S Experiments and Results

We evaluate the performance of MsBERT in com-
parison with the three BERT models discussed
above. We evaluate MsBERT both in its final form
(MsBERT-Full), as well the checkpoint upon com-
pleting phase 2 (MsBERT-Ph2), before the final
training phase on the dedicated manuscript corpus,
in order to evaluate the impact of that final training
phase.

Our first test evaluates the models’ ability to pre-
dict a masked word within a Hebrew manuscript
transcription. We tested the models on Hebrew
manuscript transcriptions from two separate gen-
res: first, manuscripts of a homiletic text from the



5th-6th century (shir hashirim rabba),’ and sec-
ond, a manuscript of a Hebrew legal text from the
fourth quarter of the first millennium dubbed me ‘en
sh’iltot (Emanuel, 2019, 82-148). These transcrip-
tions were not part of the training corpus of any of
the BERT models.

It should be emphasized that this word prediction
task is particularly difficult due to the fragmentary
nature of the aforementioned manuscripts. Many
words are damaged or indecipherable throughout
both manuscripts, and many of the extant words
are truncated. It should also be noted that although
MsBERT was trained with the special GAP and
ONEGAP tokens in order to provide it with opti-
mal knowledge of the type of gaps found in Hebrew
manuscript, here we avoided use of those tokens,
to allow for a fair comparison with the other mod-
els in which those tokens are not available. In-
stead, we replace any single-word gaps with the
universal MASK token, and we treat GAP tokens
as paragraph separators, cutting the input samples
at that points. We run the word-prediction test on
all full words within the text (we don’t include trun-
cated words in the test, because they can potentially
match multiple forms). In all, we test predictions
for 9333 words in the first corpus, and 9475 words
in the second corpus.

We report accuracy indicating how often the
masked word was correctly predicted within the
top 1, top 3, or top 10 (ignoring predictions of trun-
cated words, word pieces, or punctuation). When
we test for word equivalence, we ignore medial
vav and yod characters, because words that differ
only in their matres lectionis are essentially the
same word. The results can be seen in Tables 1 and
2. MsBERT outperforms all models on both tests.
As expected, BEREL (184M params) performs far
better than both AlephBERT (120M params) and
AlephBERTGimmel (184M params), due to its ex-
posure to a large Rabbinic Hebrew corpus. Yet, at
the same time, the substantial gap between BEREL
and MsBERT (also 184M params) demonstrates
the critical importance of our new training corpus
which reflects the orthographic range of Hebrew
manuscripts. Furthermore, the results demonstrate
that the final phase of manuscript-only training
does in fact provide a boost in the model’s ability
to handle these fragmentary transcriptions.

Our second test evaluates the models’ ability to

5https://schechter.ac.il/midrash/shir-hashirim-raba/; we
use the set of 16 Cairo Genizah fragments downloadable there.
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analyze the content of the texts, by testing whether
the models can identify the words that comprise
quoted citations. Our evaluation involves two gen-
res: legal midrash and homiletic midrash. Many
citations of Biblical verses are interspersed through-
out such texts. Unlike modern texts, these texts
do not use any form of quotation marks or braces
to mark the citations; rather, the reader must fig-
ure this out from context. Thus, this test poses
an ample challenge for our BERT models, to de-
termine how well they are able to parse the con-
text and to thus determine which words comprise
the claims and discussion, and which words are
source material interwoven within. The test set
includes manuscripts transcriptions of mekhilta
de-rashbi (a legal midrash),® and shir hashirim
rabah (a homiletic midrash).” The training set in-
cludes excerpts from standard print editions of sifre
Deuteronomy (a legal midrash) and kohelet rabba
(a homiletic midrash). We selected training texts
from printed editions in order to increase the chal-
lenge: the BERT models must apply the lessons
learned from standard Hebrew texts to Hebrew
manuscripts with their nonstandardized orthogra-
phy. This challenge is particularly acute when it
comes to identifying citations, because print edi-
tions tend to quote sources in full, whereas the
manuscript scribes, painstakingly writing by hand,
generally sufficed with more subtle references of
only two or three words.

All of these texts were annotated by our in-house
expert who marked the words that comprise the
source citations. We include both full words and
truncated words in the experiment. In total, the test
set includes 1753 words, 288 of which are citations;
the train set includes 3976 words, 1122 of which
are citations.

We fine-tune each of the BERT models on the
task of classifying words as "Citation" or "Not Cita-
tion". We input sequences of 64 tokens (batch size
=2, LR =5e-5, Epochs = 30). We report the results
in Table 3. Although precision is similar across the
various models, MsBERT far outperforms all of the
other models on the recall.

6 Conclusion

The BERT model we present here is the first of
its kind: a model specifically trained to handle

®We test on fragment 13 from Kahana (2005), p. 161-162.
"We test on Cairo Genizah fragments 15 and 16 from
https://schechter.ac.il/midrash/shir-hashirim-raba/.



Model Top | Top 3 | Top 10 Model Precision | Recall
AlephBERT 2290 | 31.95 | 40.86 AlephBERT 76.99 20.21
AlephBERTGimmel | 25.57 | 34.89 | 43.96 AlephBERTGimmel 77.40 47.60
BEREL 47.33 | 5899 | 67.91 BEREL 78.67 81.94
MsBERT-Ph2 56.77 | 69.50 | 77.25 MsBERT-Ph2 79.31 87.85
MsBERT-Full 59.99 | 71.99 | 79.10 MsBERT-Full 78.20 89.93

Table 1: Word prediction on mss of shir hashirim rabba

Model Top | Top 3 | Top 10
AlephBERT 26.37 | 37.27 | 46.80
AlephBERTGimmel | 31.18 | 4291 | 53.11
BEREL 56.24 | 68.88 | 76.89
MsBERT-Ph2 62.43 | 74.5 82.06
MsBERT-Full 63.99 | 75.85 | 82.99
Table 2: Word prediction on the me‘en sh’iltot
manuscript.

the orthographic oddities of Hebrew manuscript
transcriptions. As we have shown, our model sub-
stantially outperforms all existing Hebrew BERT
models on a variety of tests regarding Hebrew
manuscript texts. We release the model for un-
restricted use and free download.

We expect that this new model will aid Hebrew
manuscript scholarship in a number of ways. First
and foremost, this model provides a computational
foundation to aid scholars in deciphering and re-
constructing Hebrew manuscript text. As noted, we
have in fact already developed an interactive and
user-friendly website to bridge the gap between
the scholar and the technology; scholars can input
their text as they have deciphered it so far, and then
receive predictions from the model which fit the
context and any additional extant letters. Moreover,
in addition to the basic word-prediction task, we
have demonstrated that this model also excels be-
yond other models in its ability to classify parts
of the text. Thus, this model provides a critical
foundation for researchers who wish to build deep
learning models for automatic analysis of Hebrew
manuscripts. Finally, because this model is so
keenly aware of the orthographic reality of He-
brew manuscripts, it provides an ideal foundation
on which to build Handwritten Text Recognition
systems for Hebrew manuscripts.

7 Limitations

When building the training corpus of Hebrew
manuscript transcriptions, we endeavored to in-
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Table 3: Evaluation on the citation identification test.

clude as many genres as possible, to ensure maxi-
mal applicability of the model. However, we note
that there is one specialized genre found in He-
brew manuscripts which is not at all covered in
the present model: the genre of Hebrew liturgical
poetry. These Hebrew poems draw upon all sorts
of unusual and unique words which are not rep-
resented in the present model, and which really
require a separate specialized model in and of it-
self. We don’t expect this model to perform well on
manuscripts containing Hebrew liturgical poetry.
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Abstract

This paper explores the possibility to exploit
different Pretrained Language Models (PLMs)
to assist in a manual annotation task consist-
ing in assigning the appropriate sense to ver-
bal predicates in a Latin text. Indeed, this
represents a crucial step when annotating data
according to the Uniform Meaning Represen-
tation (UMR) framework, designed to anno-
tate the semantic content of a text in a cross-
linguistic perspective. We approach the study
as a Word Sense Disambiguation task, with
the primary goal of assessing the feasibility
of leveraging available resources for Latin to
streamline the labor-intensive annotation pro-
cess. Our methodology revolves around the
exploitation of contextual embeddings to com-
pute token similarity, under the assumption that
predicates sharing a similar sense would also
share their context of occurrence. We discuss
our findings, emphasizing applicability and lim-
itations of this approach in the context of Latin,
for which the limited amount of available re-
sources poses additional challenges.

1 Introduction

Word Sense Disambiguation (WSD), i.e. the task of
identifying the correct sense of a word in a specific
instance or sentence, poses non-trivial challenges
especially in the context of languages where re-
sources are relatively scarce. This is the case of
Latin, whose few existing resources confront the
inherent complexity of the task and often resort to
a binary approach revolving around the assumption
that the several senses of a word can be reduced
to two primary senses. This inevitably leads to re-
sources that are overly coarse-grained. While such
simplifications serve as valuable starting points for
future experiments, their granularity may not uni-
versally cater to the diverse research needs.

The present work originates from the needs of a
distinct project, which focuses on the annotation of
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Latin data according to the Uniform Meaning Rep-
resentation framework (UMR) (Van Gysel et al.,
2021). The text to be annotated is De Coniuratione
Catilinae ‘Conspiracy of Catiline’ by Sallust. The
UMR framework is designed to annotate the se-
mantic content of a text, and was developed with
cross-linguistic scope in mind. It is primarily based
on Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013), and aims at extending it to
other languages — in particular to morphologically
complex, possibly low-resource languages — in a
cross-lingual and typological perspective. In AMR
and UMR graphs, nodes represent semantic con-
cepts. If word senses are available, semantic con-
cepts are defined as word senses; participant roles
associated to each predicate (e.g., ARGO, ARG1)
are included in the graph if realized in the sentence.
For instance, the predicate utimur in the sentence
Corporis servitio magis utimur ‘Of the body we
rather employ the service’ corresponds to the se-
mantic concept utor-03, i.e. the sense "put into
service; make work or employ for a particular pur-
pose or for its inherent or natural purpose" to which
ARGO (first person plural, not overtly realized) and
ARGI1 (servitio) are associated. Within the whole
annotation process, manual selection of the correct
sense constitutes a time-consuming and demand-
ing sub-task. We thus aim to investigate whether
the existing resources allow to develop a strategy
to expedite this process, by deriving annotation
suggestions for unannotated predicates based on
already manually annotated ones.

The paper is structured as follows. Section 2
presents an overview of related work, while Sec-
tion 3 discusses Latin Vallex as the main linguistic
resource that has been exploited, as well as the lim-
itations it presents. Section 4 describes the method-
ology designed for the task, while its outcomes are
evaluated in Section 5. Section 6 highlights some
conclusive remarks and possible future research
directions.
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2 Related Work

The exploration of WSD tasks for classical lan-
guages, and notably Latin, has recently gained at-
tention, especially from a diachronic perspective
with regard to lexical semantic change (Beelen
et al., 2021; McGillivray, 2021; McGillivray et al.,
2022, 2023a; Marongiu and McGillivray, 2023).
However, the granularity of available resources re-
mains a significant obstacle to successful WSD,
as discussed by Navigli (2006) and McGillivray
et al. (2023b). In the context of introducing the
Latin BERT model, Bamman and Burns (2020) dis-
cuss a WSD task framed as a binary classification
task, where only the first two major senses are se-
lected for each headword and, thus, the sense to be
predicted has to be chosen out of two possible can-
didates only. Building on their work, Lendvai and
Wick (2022) create a new dataset based on a subset
of sense representations from the Thesaurus Lin-
guae Latinae,' and use it to fine-tune Latin BERT
on a supervised WSD task. Despite achieving more
robust performances, the task remains configured
as binary classification, retaining only the first two
sense groups for each lemma.

Pivoting a low-resource language to a high-
resource one via parallel corpora has been observed
to be a valid strategy to obtain WSD annotations in
the under-resourced language (Pasini et al., 2021).
As the issue of data scarcity applies to Latin as
well, Ghinassi et al. (2024) extend such approach
to historical languages, leveraging parallel corpora
to pivot Latin to English. Propagating WSD an-
notations from English to Latin then helps tackle
the challenge represented by the lack of large sense
annotated corpora.

The need for automated WSD has been observed,
particularly for historical languages, in light of
the increasing size of corpora to annotate and
of the subjectivity involved in the intuitive judg-
ment required by sense disambiguation, even more
so when native speakers cannot be exploited, as
noted by Manjavacas Arevalo and Fonteyn (2022).
However, efforts to expedite the annotation pro-
cess do represent a more general need. For in-
stance, in the context of expanding an event-type
ontology Strakova et al. (2023) try to exploit fine-
tuned LLMs to generate annotation suggestions
that could expedite the manual annotation process
of verbs to be included in the ontology. Despite not
working with a historical language — as their focus

"https://tll.degruyter.com/about.
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is on Czech — their remarks about the necessity of
manual post-inspection and annotation of sugges-
tions as an indispensable step can be generalized.

Furthermore, Scarlini et al. (2020) experiment
with developing a semi-supervised approach? to ob-
tain sense embeddings for lexical meanings within
a lexical knowledge base like WordNet. Although
their approach does not include Latin and thus can-
not be leveraged in our work, it interestingly builds
upon the semantic information already carried by
contextual word embeddings.

In general — as it provides a comprehensive lexi-
cal inventory for the identification of the different
word senses — WordNet is a crucial resource for
WSD. The current Latin WordNet® (WN) (Franzini
et al. 2019; Mambrini et al. 2021) is the outcome of
an ongoing and substantial revision of the original
LatinWordNet (Minozzi, 2010) as initiated within
the MultiWordNet project (Pianta et al., 2002).
In WordNet, diverse senses of a polysemic word
are assigned to distinct synsets. Within the LilLa
Knowledge Base (Passarotti et al., 2020), these
WN synsets are mapped with valency frames of
the valency lexicon Latin Vallex*, thanks to the
shared lexical entries between the two resources.
As a result, the Latin Vallex contains not only va-
lency frames but also synset definitions associated
to them.

3 In between Latin Vallex and WordNet

Let us delve deeper into the examination of the
linguistic resources exploited, and notably Latin
Vallex.’ Nonetheless, speaking of Vallex implies
speaking of WordNet as well, as the two resources
are interlinked in LiLa (Section 2).

For each lemma, Vallex contains information
about the synset definition (taken from WordNet)
and the valency frame associated to it. A closer
look at the entries immediately reveals how some
synsets are semantically close. In many cases, their
strikingly similar definitions are not justified by
diverging valency frames. Among the many exam-
ples, two senses of porto, both with frame ACT
(Actor), PAT (Patient), are defined respectively as

2ARES (context-AwaRe Embeddings of Senses).

3https: //lila-erc.eu/lodview/data/
lexicalResources/LatinWordNet/Lexicon.

4http: //lila-erc.eu/lodview/data/
lexicalResources/LatinVallex/Lexicon.

Shttps://github.com/CIRCSE/Latin_vallex2.0.
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definition synset_id
have on one’s person  v#00047745
have with oneself; VHO2T17102

have on one’s person

Three very similar entries are associated to augeo,
all with the same valency frame ACT, PAT:

definition synset_id

make strong or stronger v#00220869
make stronger v#00222472
make more intense, stronger, V#00227165

or more marked

The examples just mentioned represent instances
of extremely high similarity of synset definitions.
Although not infrequent, such cases are not the ma-
jority. Metior can serve as a less extreme example,
yet still informative about Vallex/WN granularity;
see a list of its 9 synsets, all with frame ACT, PAT:

1. measure (distances) by pacing

2. determine the measurements of something or
somebody, take measurements of

. judge tentatively or form an estimate of (quan-
tities or time)

. evaluate or estimate the nature, quality, ability,
extent, or significance of

. set, mark, or draw the boundaries of some-
thing

. determine the capacity, volume, or contents of

by measurement and calculation

travel across or pass over

give out as one’s portion or share

administer or bestow, as in small portions

7.
8.
9.

Although with different nuances, synsets 1-6 all
revolve around the concept of measuring, being
possibly too fine-grained for automatic detection.
Metior does not represent an isolated occurrence,
but a standard entry in Vallex/WN: in light of this
consideration, it becomes apparent how Vallex it-
self poses additional challenges to such task of
automatic synset detection.

4 Methodology

In response to the aforementioned need of deriv-
ing annotation suggestions for verbal senses, we
develop a Predicate Sense Disambiguation (hence-
forth PSD) workflow leveraging contextual embed-
dings.® As the core of the approach, we try to

®Code is available at https://github.com/fjambe/
PSD-Latin-UMR.

21

assess the similarity’ between the verbal tokens in
the target text and those in the reference corpus,
with the goal of disambiguating the token sense by
virtue of its contextual surroundings. Reference
and target corpus® are defined based on text para-
graphs (reference: par. 1-30 + par. 41-61; target:
par. 31-40). The workflow consists of the following
steps:

Extracting of verbal tokens. We collect a list
of all verbal tokens by extracting them from our
source text, i.e., Sallust’s De Coniuratione Catili-
nae annotated in the XML-based format Prague
Markup Language (PML).? The PML files of the
treebank are organized by annotation layers and
linked to each other through stand-off annotation;
we exploit the morphological (lemmatization and
morphological tagging) and the tectogrammatical
(semantic and pragmatic annotation) layers in com-
bination. We retrieve all verbs by extracting nodes
with a valency frame and the required POS.'’

The extracted verbs are split according to the refer-
ence/target corpus partition,!! and are then manu-
ally annotated by a single annotator.

Storing annotated synsets. For each of the
extracted tokens in the reference corpus, we store
the synset definition that was manually assigned to
it. Three cases can occur: i) Most verbs receive a
synset from the Latin WN/Vallex, as linked in the
LiLa Knowledge Base. For instance, dominor in
lubidinem dominandi ‘lust of dominion’ is assigned
the synset v#02442106 "be master; reign or rule".
ii) When no appropriate synset can be found in the
resource, a new one is defined. The definition of
the new synset can consist either of an existing WN
synset which was not yet assigned to the verb, or
of a new definition modeled on a dictionary entry
for the verb. E.g., for vivo there is no entry in
WN; to its occurrence in alii alio more viventes
‘living with different customs’ we assign a new
frame with synset v#02614387 "lead a certain kind

"Measured in terms of cosine similarity.

8Since we are not training any model, we decided not to
call them training and test.

°The text is available at
marginalia.it/view/download.php
Latin Dependency Treebank (LDT).

19Based on the guidelines of the Prague Dependency Tree-
bank, whose annotation the LDT replicates, valency mainly
applies to verbs, yet not exclusively. See https://ufal.mff.
cuni.cz/pdt2.0/doc/manuals/en/t-1layer/html/.

""The respective sizes of reference and target corpus are:
i) tokens: 13,297 and 1,775 tokens; ii) extracted predicate
tokens: 1,787 and 259. The division approximately conforms
to a 9:1 ratio, while preserving the paragraph structure of the
original work.

https://itreebank.
as part of the
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Figure 1: Comparison of different PLMs (mBERT, LatinBERT, PhilBERTa, PhilTa) with lemma constraint. For
each of the four defined settings, the number of suggested candidates before retrieving one with same lemma is

shown.

of life; live in a certain style". iii) Some tokens lack
assigned synsets, as they can be treated as UMR
abstract predicates;l2 for instance, the verb sum ‘to
be’ can be treated e.g. as identity-91, belong-91,
have-mod(ification]-91. We proceed to exclude
such tokens from the corpus.

Computing and comparing embeddings. For
each verbal token in its respective sentence, both in
reference and target corpus, embeddings are com-
puted exploiting the Flair library.'> We then com-
pute cosine similarity to compare embeddings, and
more precisely to quantify the degree of similarity
between each target token and each reference token.
Similarity scores are then sorted in descending or-
der, so that we can extract the five closest tokens
(those with the highest scores — even if the scores
are generally low). The synsets of these tokens are

ZUMR features 9 types of abstract predicates, used to rep-
resent predication of properties, possession, location. They
are identified by special labels serving as artificial lemmas and
have their own roleset. For example, identity-91 has an ARG1
role for the theme, and ARG?2 for the equated referent.

Bhttps://flairnlp.github.io/. We employ Trans-
former embeddings with default arguments; we only choose a
different pooling operation to generate the final token represen-
tation from subwords — for which we select mean, calculating
a torch.mean over all subword embeddings.
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then extracted as candidate synsets.

Further constraining candidate tokens. Addi-
tionally, we retrieve all the tokens that are extracted
as candidates before the first one with the same
lemma as the target token'# is found, i.e. those
tokens with higher similarity score than the first
one with constrained lemma. As preliminary re-
sults did not appear very promising, we decide to
apply this additional lemma-based constraint on
the candidate extraction. Specifically, we hence-
forth select as candidates only those tokens which
share the lemma with the target token. The same-
lemma requirement is merely an artificial constraint
intended to facilitate the task, as in a real-case sce-
nario it is possible to derive a correct synset even
when the lemma differs. For instance, the synset
v#00406243 "make ready or suitable or equip in
advance for a particular purpose or for some use,
event, etc." is shared by pario, instituo, and fa-
cio among other verbs. In theory, such tokens
that share synsets should be retrievable aside from
whether they share the same lemma or not. Yet, the
necessity of defining a simplified scenario through
the imposition of a lemma constraint becomes ap-

'“By target token we mean the token to be annotated.
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parent from the initial results of the experiments.

Output. As a result, the output file provides all
retrieved information about each token: five anno-
tation suggestions; i.e. the most plausible synsets;
the number of incorrect guesses before suggesting
a token with the same lemma;'> the list of lemmas
retrieved before a correct one was found.

4.1 Pretrained LMs for Embeddings

The following pretrained language models have
been exploited to produce embeddings:

mBERT (Devlin et al., 2018): multilingual
BERT model (base, cased) pre-trained on 104
languages including Latin.

Latin BERT (Bamman and Burns, 2020): pre-
trained on 642.7 million words from a variety
of sources spanning the Classical era to the
21st century.

PhilBERTa (Riemenschneider and Frank,
2023): RoBERTa (Liu et al., 2019) model,
pre-trained on Latin, Ancient Greek, and En-
glish, and tailored for classical philology (like
PhilTa).

¢ PhilTa (Riemenschneider and Frank, 2023):
TS5 (Raffel et al., 2020) model, pre-trained on
Latin, Ancient Greek, and English.

5 Evaluation

In this section we present and discuss a compar-
ison between outputs yielded by different PLMs
(Subsection 4.1), with respect to various criteria.
Additionally, we manually evaluate a subset of the
target corpus so as to complement the evaluation
metrics with a qualitative analysis.

5.1 Quantitative Analysis

OOV. A key observation concerns out-of-
vocabulary predicates, i.e. verbs that occur in the
target corpus only. The amount of such verbs, for
which a candidate with same lemma cannot be
retrieved, is considerably high (20%). The per-
centage of target predicates whose lemma occurs
only once in the reference corpus is quite high as
well (13.7%). These figures would strongly argue
against the constrained-lemma setting, when only
candidates with the same lemma as the target token
are retrieved. However, as mentioned before, the
constraint on the lemma was deemed reasonable
since preliminary results did not seem promising.

SOf course, the fact that the lemma is shared does not
guarantee that the sense is shared as well.
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Criteria. We identify four criteria to extract
some patterns from the data (see Figure 1). For all
four metrics, lower scores are indicative of better
performance.

1. guess_tot: average number of suggested
candidates before retrieving one with the same
lemma.

. guess_no_hapax: average number of sug-
gested candidates before retrieving one with
same lemma, excluding hapax legomena.'®

. guess_seen: average number of suggested

candidates before retrieving one with same

lemma, considering only lemma-synset pairs
which occur in the reference corpus. In
other words, we try to observe what hap-
pens when evaluating only cases where there
was a chance that the synset could have been
guessed correctly. The results of this arti-
ficially simplified setup will be analyzed in
greater depth also with respect to retrieval of
synsets, by exploiting such a controlled setup
to lift the lemma constraint and evaluate re-
trieval of synsets instead of lemmas.

guess_freq: average number of suggested
candidates before retrieving one with same
lemma, computed only on the 10 most fre-
quent lemmas'” of the whole corpus.

In light of the criteria defined, and assuming their
representativeness, we observe how PhilBERTa ten-
dentially performs best in all settings, while the
worst results are achieved with PhilTa. A pattern
emerges when progressively limiting the evalua-
tion scope to ‘known’, i.e. more frequent, predi-
cates: all four PLMs output slightly improved re-
sults, highlighting the effect of frequency on such
a task. Specifically, the number of retrieved can-
didates before finding one with shared lemma is
highest in case of overall evaluation, and it gradu-
ally decreases first when hapax are excluded, then
when only lemma-synset pairs occurring in the ref-
erence corpus are considered, and finally when the
evaluation is limited to the 10 most frequent verbs.
In particular, the guess_frequent setting seems
to impact results to a greater extent, as the number
of retrieved candidates is here conspicuously lower.

18] emmas occurring only once, namely only in the target
corpus.

' Facio ‘make’, dico ‘say’, video ‘see’, paro ‘prepare’, fio
‘become’, do ‘give’, cognosco ‘know’, coepio ‘begin’, capio
‘take’, valeo ‘be strong’. Sum ‘be’ and habeo ‘have’ have been
discarded as they often correspond to UMR abstract concepts.
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Figure 2: Evaluation of different PLMs (mBERT, Lat-
inBERT, PhilBERTa, PhilTa) in synset retrieval. The
y axis reports the number of candidates suggested be-
fore retrieving the correct synset, without any lemma
constraint and by considering only lemma-synset pairs
occurring in the reference corpus.

In addition to the evaluation settings based on
lemma constraint, we then design an artificially
simplified setting to analyze how PLMs behave
when retrieving the correct synset without being
limited by shared lemma. As mentioned when pre-
senting the guess_seen evaluation criterion, in this
controlled setup we focus only on lemma-synset
pairs which occur in the reference corpus, exclud-
ing from the evaluation all those that do not meet
this requirement. A similar setup should allow to in-
vestigate actual performances without being overly
affected by data scarcity. In principle, it should be
possible to retrieve tokens sharing the same synset
regardless of whether they share the same lemma,
as explained through the example of pario, facio,
instituo, all sharing the synset v#00406243 (Sec-
tion 4). However, Figure 2 highlights how the num-
ber of attempts before a correct guess is still very
high. The pattern is similar to what already ob-
served when constraining on lemma, with PhilTa
performing the worst. Yet, here PhilBERTa and
multilingual BERT are inverted, with the latter re-
sulting to be the model that on average needs the
lowest number of attempts before a correct one.
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5.2 Manual Evaluation

To further investigate the performance of the mod-
els, we also conduct a manual evaluation of a sub-
set of the results. As a sample, we extract the
first 20 predicates that occur in the target text. We
first assess how the models perform on this sub-
set within the default lemma-constrained setting
(guess_tot). We ignore the number of attempts
before retrieving the correct lemma, as it is already
reflected by evaluation metrics, and focus on the
assignments of synsets given a shared lemma. Re-
sults are presented in Table 1, to be interpreted
in the following way: 1/2 means that two synset
candidates are retrieved by the model (given a con-
strained lemma), and the first out of the two is the
correct one based on manual annotation. 1=2/2 im-
plies that two candidates are retrieved, and that they
are identical and both correct, while 8/n means
that none of the n retrieved candidates is correct.
1=n=5/5 corresponds to a situation where all five
retrieved candidates are identical and correct.

The analysis of results shows that the models’
performances do not differ substantially one from
another in the defined setting. Lemmas for which
none of the retrieved candidates are correct (e.g.
0/5 in the table) can be explained by the fact that
the sense they have been manually annotated with
never occurs in the reference corpus, either at all
or in association to that specific lemma. It is e.g.
the case of credo ‘to believe’ and moveo ‘to move’,
despite both being quite frequent verbs. The same
happens with diffido ‘to distrust’; the sense ob-
served in the target corpus (v#00687926, "regard as
untrustworthy; regard with suspicion; have no faith
or confidence in") never occurs in the reference cor-
pus. In this way, even a classification that should
be relatively simple -— like the binary classifica-
tion of diffido, for which only two senses are stored
in Latin WordNet — fails. In the case of permota,
from permoveo ‘to stir up’, we can observe the
similarity of definitions that was already discussed
in Section 3, as the sense definitions of retrieved
candidates are highly similar: "move deeply" and
"disturb in mind or make uneasy or cause to be
worried or alarmed" (retrieved twice).

The case of gerere, from gero ‘to manage’, offers
interesting insights as well, since all the five re-
trieved candidates are assigned the same sense "di-
rect the course of; manage or control”. Such cases
of candidates leading to the same sense sugges-
tion could probably be grouped, in order to inves-
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Figure 3: Evaluation of different PLMs in synset retrieval on two examples (permota, peperit).

token lemma hapax | mBERT | Latin BERT | PhilBERTa PhilTa
permota permoveo 1=3/3 2=3/3 2=3/3 2=3/3
pepererat pario 172 2/2 2/2 2/2
invasit invado 2/3 3/3 1/3 3/3
festinare festino 1=2/2 1=2/2 1=2/2 1=2/2
trepidare trepido X

credere credo 0/5 0/5 0/5 0/5
gerere gero 1=n=5/5 1=n=5/5 1=n=5/5 1=n=5/5
metiri metior X

incesserat incedo 1=2/2 1=2/2 1=2/2 1=2/2
adflictare afflicto X

tendere tendo 0/1 0/1 0/1 0/1
miserari miseror 0/1 0/1 0/1 0/1
rogitare rogito X

pavere paveo X

adripere arripio X

Omissis omitto 2/2 2/2 2/2 2/2
diffidere diffido 01 01 071 01
movebat moveo 0/5 0/5 0/5 0/5
parabantur | paro 1=3=5/5 | 1=2=3=5/5 1=2=3=4/5 | 1=2=3=5/5
interrogatus | interrogo 0/2 0/2 0/2 0/2

Table 1: Manual assessment of PLMs’ performances (with lemma constraint).
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tigate whether additional and different senses are
retrieved after the main one; then, retrieved sense
suggestions could possibly be weighted by the num-
ber of times they are proposed. However, in this
specific case in the reference corpus we can find
ten occurrences of the verb gero, all assigned that
same sense. The effect of frequency can be ob-
served with gero in the number of total guesses
before a token with the same lemma is retrieved:
459 for PhilBERTa and 304 for mBERT, consider-
ably lower than the average number (Figure 1).
Hapax legomena, marked as such in Table 1, have
been set aside also in the manual evaluation, as the
lemma-constrained setting inevitably prevents the
retrieval of any candidate.

Overall, what emerges from Table 1 is that no PLM
consistently outperforms the others, with all mod-
els exhibiting similar performance within the de-
fined setting.'®

Within the proposed manual assessment, we
also evaluate the sub-task of synset retrieval. Let
us take again the token permota'® as an exam-
ple. mBERT and PhilBERTa, the two models that
have proved to perform better, take respectively
328 and 1168 guesses before retrieving the cor-
rect synset. Their performances differ substan-
tially here, with mBERT outperforming PhilBERTa
by much. Nonetheless, the synset definitions of
the first 5 out of the 328 candidates suggested by
mBERT are sufficient to highlight the absence of
a clear, reliable rationale in such retrieval, as they
appear uncorrelated: "give a certain impression or
gave a certain outward aspect”, "enter or assume
a certain state or condition", "from a critical opin-
ion of", habitually do something (used only in past
tense)", "have with oneself; have on one’s person".

Moreover, deriving discernible patterns from the
outputs of PLMs presents considerable challenges
(see Figure 3). In the case of permota, beside per-
formances by mBERT and PhilBERTa, we observe
the number of guesses by PhilTa and Latin BERT
amounting to 592 and 1240 respectively — not to-
tally consistently with the pattern observed e.g. in
Figure 1. However, if we take into account the
second token of the target corpus, i.e. peperat from

'8]t is important to note that these results may be influenced
by the limited sample size.

YOccurring in the sentence Quibus rebus permota civ-
itas atque inmutata urbis facies erat (Sall., De Coniura-
tione Catiline XXXI), translated as "By such proceedings
as these the citizens were struck with alarm" in Perseus, at
https://www.perseus.tufts.edu/.
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pario with the meaning of "cause to happen, oc-
cur or exist", the number of suggestions before
retrieving the correct sense does not mirror what
has been observed so far (PhilBERTa: 15 suggested
candidates; Latin BERT: 28; mBERT: 68; PhilTa:
324). Once again, it is hard to interpret why spe-
cific senses associated to candidate suggestions are
retrieved. For instance, mBERT retrieves the fol-
lowing: 1) "be willing to concede", 2) "spur on",
3)"impose a penalty on; inflict punishment on", 4)
"confess to a punishable or reprehensible deed, usu-
ally under pressure", 5) "take or capture by force".
PhilBERTa,, i.e. the model with lowest retrieval
score in this specific case, outputs these candidates:
1) "make a solicitation or entreaty for something;
request urgently or persistently"”, 2) "order, request,
or command to come", 3) "get to know or become
aware of, usually accidentally", 4) "assign a speci-
fied (usually proper name) proper name to", 5) "de-
cide with authority". Not only their similarity to the
actually assigned one ("cause to happen, occur or
exist") is irrelevant, but the two sets of candidates
do not look mutually similar in any way.

6 Conclusions

The complexity of the task has been apparent from
the beginning, and is confirmed by observations
from related studies. Bamman and Burns (2020)
already discuss comparable challenges, emphasiz-
ing the inherent difficulty of the WSD task and
the lack of suitable resources for Latin — an obser-
vation also echoed by Keersmaekers et al. (2023).
In light of such complexity, our study was never
truly conceived as a solution to a specific task, but
rather as a qualitative assessment of the available
resources as well as of the results they can lead
to. Therefore, our main objective revolved around
a thorough examination of the task, its objectives,
and challenges, with the intention of critically ana-
lyzing and identifying realistic possibilities within
the constraints of the available resources. One of
the key questions concerned whether we can actu-
ally exploit available resources: in particular, can
Latin Vallex represent a suitable resource for PSD?
At its present stage, its exploitation for PSD does
not appear to be feasible; its fine-grained granular-
ity definitely presents challenges for this specific
task. Nevertheless, adopting a binary classification
approach, as suggested by previous works (Bam-
man and Burns, 2020; Lendvai and Wick, 2022),
may not offer a satisfactory solution either. As an


https://www.perseus.tufts.edu/

illustrative example, the verb postulo demonstrates
the need for at least three distinct frames, even un-
der a coarse-grained granularity: i) ’to ask, demand,
require’ (ACT, ADDR, PAT); ii) ’arraign before a
court, to prosecute, accuse’ [juridical] (ACT, PAT,
REG); iii) ’to contain, measure’ [of things] (ACT,
PAT). Currently, Latin Vallex/WN provides nine
frames for postulo. The granularity of Latin Vallex
and the simplicity of a binary classification demand
a thoughtful exploration of alternative strategies to
address such challenges. A possibility could be
represented by sense clustering, as described e.g.
by Navigli (2006) and Martelli et al. (2022).

Additionally, an important limitation of the study
arises from the decision not to fine-tune PLMs,
whose performances would most probably be en-
hanced through fine-tuning. However, fine-tuning
requires training data, and the annotated dataset cur-
rently at our disposal is of limited size. The quanti-
tative results, as illustrated in Figure 1, clearly high-
light the substantial impact of the limited amount
of available data on results. Therefore, what can
be also inferred from the present study is the need
for a larger reference corpus, to be obtained by
enlarging the existing dataset with additional data.

An envisioned extension to the presented work-
flow involves the computation of sentence embed-
dings for definitions. Without constraining either
on same lemma or on same synset, and thus han-
dling even OOV cases, cosine similarity could be
leveraged to identify the most probable synset by
comparing all the synset definitions associated to
the target token against the synset definition of the
extracted candidates, to find the most similar one(s).
In other words, embeddings for the synset defini-
tion of retrieved candidates could be generated, as
well as for the list of synset definitions as available
in Vallex/WN for the lemma under scrutiny. We
could then select candidate synset definitions by
computing cosine similarity between all synsets
associated in Vallex/WN to the target lemma and
synsets of the extracted candidate tokens in the
reference corpus, in order to be able to deal not
only with synsets shared by verbs with different
lemma, but also with synsets that do not occur in
the reference corpus. However, we expect the is-
sues encountered so far (to name one, the dataset
size) to pose similar challenges even in this further-
defined setting.
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Abstract

Cuneiform is the oldest writing system used for
more than 3,000 years in ancient Mesopotamia.
Cuneiform is written on clay tablets, which are
hard to date because they often lack explicit ref-
erences to time periods and their paleographic
traits are not always reliable as a dating cri-
terion. In this paper, we systematically anal-
yse cuneiform dating problems using machine
learning. We build baseline models for both vi-
sual and textual features and identify two major
issues: confounds and distribution shift. We ap-
ply adversarial regularization and deep domain
adaptation to mitigate these issues. On tablets
from the same museum collections represented
in the training set, we achieve accuracies as
high as 84.42%. However, when test tablets
are taken from held-out collections, models
generalize more poorly. This is only partially
mitigated by robust learning techniques, high-
lighting important challenges for future work.

1 Introduction

Computational paleography (Vidal-Goréne and
Decours-Perez, 2021; Srivatsan et al., 2021) is a
growing interdisciplinary field that uses compu-
tational algorithms to decipher and analyse an-
cient writing systems. We investigate using ma-
chine learning to automate large-scale dating of
cuneiform!, the oldest writing system from around
3,500 BCE. Similar to general chronicle attribution
tasks in paleography, cuneiform dating involves
classifying cuneiform tablets into specific time pe-
riods rather than precise years. For example, Figure
1 shows a tablet comes from Ur III. Different from
other historical languages, such as ancient Greek
(Assael et al., 2022) or ancient Arabic (Adam et al.,
2018), cuneiform tablets are more challenging to
convert into a machine readable format because the
writing system continually evolved over the 3,000
years it was in use.

!Code is available at https://github.com/taineleau/
CuneiML/tree/main/ml4al_2024_dating.
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Figure 1: An overview of the cuneiform dating task.
Tablets from different collection (museum or private
collector) usually in different time period distribution
and there is confound (undeier features to machine learn-
ing models) from different cameras. The transliteration
is usually exhibit bias towards specific time periods.

For many writing systems, historians and pale-
ographers have been able to identify distinguishing
features in textual content and writing style that
allow for inferences about date of origin for indi-
vidual artifacts. For some writing systems, these
processes have even been automated with machine
learning to some extent. For example, Assael et al.
(2022) showed encouraging results using neural
networks trained on ancient Greek text to restore
and date digitized ancient Greek artifacts.

Can we train similar textual models for
cuneiform dating using accompanying manual tran-
scriptions or transliterations? We conduct experi-
ments with a series of light-weight recurrent mod-
els that show this is indeed possible. However,
relying on manual transcriptions for the purpose of
dating is somewhat circular: for Cuneiform, tran-
scription and transliteration is as time-intensive as
manually dating tablets. Further, transliterations
themselves might exhibit bias—for example, an
expert’s approach to transliterating a tablet may al-
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ready be influenced by preconceived notions about
its time period—allowing models to overfit to the
tendencies of individual transliterators.

Thus, we also study whether visual representa-
tions of Cuneiform tablets can be used effectively
for automatic dating. Visual representations skirt
the issues of manually-intensive transcription and
confounds due to transliteration style. Further, vi-
sual representations may even allow models to auto-
matically extract information about the visual style
of writing, which paleographers have found useful
for manual dating. In past work, Bogacz and Mara
(2020) has shown that relatively accurate dating
of cuneiform tablets using 3D scans is possible.
However, currently it is not feasible to produce 3D
scans of over 100,000 remaining tablets, which are
dispersed among museums and private collections
around the world.

Therefore, instead we explore the use 2D pho-
tographs from CDLI (CDLI contributors, 2024)
to address the dating problem—a task that as far
as we are aware has not been previously studied.
Our experiments using convolutional neural models
trained on 2D images demonstrate a new problem
however: the different imaging setups used by dif-
ferent collections presents a confound that leads
to poor generalization (shown in Figure 3). We
find that the gap between performance on tablets
from collections that were attested in training data
versus those that were not is extremely large. Thus,
we also evaluate to what extent robust learning
methods that attempt to address out-of-distribution
(OOD) generalization can mitigate this issue. We
find that while these methods do help, they do not
increase generalization to the point where accurate
dating of tablets from unseen collections can be
performed reliably. Thus, our empirical study high-
lights this important challenge as an area for future
research. We summarize our primary contributions
below:

1. We identify and analyze several challenging is-
sues in cuneiform dating related to confounds,
distribution shift, and domain generalization.
These challenges are likely also present in the
classification of other ancient artifacts with
text.

2. We study a range of modeling approaches in-
cluding simple methods like Naive Bayes, as
well as neural methods for both images and
text features. We demonstrate strong perfor-
mance when using data splits that reduce dis-
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tribution shift and OOD effects, but poor per-
formance across museum collections.

3. We applied multiple robust learning tech-
niques to mitigate distribution shift and the
effect of confounds. While our results demon-
strate improvements from these techniques,
overall OOD generalization performance is
still prohibitive for broader use.

In the following sections, we first formulate the
problem and then describe the data collection splits
we created to address our core research questions.

2 Problem Formulation

Technically, the dating task can be formulated as ei-
ther a classification or a regression problem. How-
ever, after careful examination, we concluded that
treating inferred dates as continuous variables (us-
ing regression) does not make sense in this domain
because the annotation standard used for manual
dating (the source of supervision for learning and
evaluation) includes date categories with overlap-
ping time intervals (see Figure 5). Instead, we
represent each time period as a categorical class
ID and treat dating as a multi-class classification
problem.

Next, we layout the core research questions we
attempt to answer in this empirical study. To ad-
dress each, we will carefully design data splits that
contain three separate test sets, each measuring a
specific aspect of OOD generalization, along with
a train and validation set.

RQ1: What models, configurations, and
features—either visual or textual—are most
effective for automatically dating cuneiform
tablets?

RQ2: How much of a problem do OOD effects
pose for generalization in this domain? For exam-
ple, do models overfit to specific features present in
individual museum collections? How well do mod-
els generalize to tablets from previously unseen
museum collections?

RQ3: How well do existing robust learning
techniques address the issue of distribution
shift and OOD generalization in the context of
cuneiform tablet dating?

In later sections, we will specify the datasets
we use, which specific input representations
we compare, and which modeling approaches



Visualization Of Time Periods Preserved In Each Museum Collection
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Figure 2: The normalized count density (by collection) of tablets from different time periods across museum
collections. Darker colors indicate higher densities, highlighting that tablets from certain collections often belong to
the same time period. This supports the hypothesis of distribution shifts between training and testing datasets. For a

high-resolution version, see Appendix Figure 8.
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Time: Ur IIT
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Forum der Vélker
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Figure 3: An overview one of the dating tasks using
major-face cutouts of photographs to predict time pe-
riods. We held out several museums for the out-of-
distribution (OOD) setting (e.g., the Cairo Museum),
while the ID Testing set contains tablets from the same
museums as the training set.

we evaluate. We will also carefully design test
splits to answer specific questions about OOD
generalization. Next, we describe and define some
of the potential OOD effects in this domain and
distribution shifts we seek to analyze.

Generally speaking, distribution shift occurs
whenever the underlying distribution that gener-
ated the training data diverges from the distribution
that will generate future test instances. Distribu-
tion shift poses a substantial challenge for learning
systems: patterns that hold true on the training
data may not generalize to the test set, leading to
poor generalization performance. In the domain
of cuneiform data the are two important types of
distribution shift.

First, cuneiform datasets tend to exhibit substan-
tial label shift due to how tablets are distributed
across museum collections. We depict the distri-
bution of tablet dates in museum collections in the
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Distribution shift from training to testing set

ED I-1I split
ED Illa
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Neo-Babylonian
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Old Assyrian

Old Babylonian

Ur III

training
T OOD testing

Time period

Figure 4: Visualization of label shift for the
collection shift train/test split setting.

CuneiML dataset (Chen et al., 2023) (which we use
in experiments) in Table 2. Most museums contain
tablets from a small range of time periods. Thus, if
train and test setups for validating computational
approaches are selected based on i.i.d. sampling
from this dataset, the test performance may not
accurately reflect expected performance on tablets
from new, unseen museum collections. In Figure 4
we visualize actual label distribution shift in a i.i.d.
train/test split.

Second, the input representations from individ-
ual museum collections may have properties that
make the collection itself identifiable. For instance,
as shown in Figures 1 and 3, the scanning method-
ologies used by separate museums leave artifacts
like different amounts of color saturation and blur-
ring. Similarly, it is possible that different translit-
eration styles may also be identifiable. Because
individual collections are biased towards specific
date ranges, the confounds mentioned above may
cause covariate shift—a type of distribution shift
where the distribution on the input variables and the
relationship between input and output vary between
train and test. For example, a model may learn to
identify the collection based on properties of the
scanning hardware in order to determine date. This
may work on training data, but will not generalize



Time Period Overlapping Visualization

Neo-Babylonian oo
Neo-Elamite oo
Neo-Assyrian oo
Early Neo-Babylonian . .
Middle Elamite s
Middle Assyrian .
Middle Babylonian e
Middle Hittite oo
Old Babylonian e
Old Assyrian oo
Early Old Babylonian oo
UrIII oo
Lagash II oo
Old Akkadian oo
Ebla .o
ED IIIb oo
ED Illa Lad

Time Periods

ED I-1I oo
Proto-Elamite oo
Uruk I1I oo
Uruk IV oo
Uruk V | e—e

=3500 -3000 -2500 -2000 -1500 -1000 —500
Years (BCE)

Figure 5: Time period overlapping visualization. The
x-axis is years for BCE. Two time period classes can
be parallel in time, for example, Middle Babylonian is
almost completely overlaps in time with Middle Assyr-
ian.

to new collections. Thus, one of our primary goals
is to measure the effects of label and covariate shift
for cuneiform dating and to evaluate to what extent
robust learning methods may address these issues.

3 Data

We obtain 38,937 tablet images with translitera-
tions from CDLI (CDLI contributors, 2024), using
prepossessing from CuneiML (Chen et al., 2023).
An example is shown in Figure 6. Besides transliter-
ation and 2D images, we use several other attributes
from the metadata entries, including provenience,
collection, and genre, which we use in later exper-
iments for both simple baselines and as additional
supervision to mitigate distribution shift.

1. 3{disz) udu bar-gal2
M<S>H<S>1 _ﬁj‘_Ir

2. 1(disz) udu bar-su-ga
1<S>E<S>] =g

3. 1(gesz2) 1(disz) masz2
1<Sa1<Sa1G

4. mu-kux(DU) {d}szara2 |KLANKki}
B % E<B>B ¥ <53

5. ki da-da-ta

EB<S>HFHH

1. lu24{d)suen [3-dabs

% NEH<Ss>E- 8

2. mu ha-ar-szi{ki} ki-masz{ki} ba-hul
<S> A+ <S> B <S> B L <S> H <S> & Y

Figure 6: Left: Cuneiform Tablet images with six face
photographs. Right: Example of transliteration in ATF
format and the tokenization in cuneiform glyph. We use
a special token <S> to separate the word in cuneiform.
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Split % Count Note

all 100% 38,937 -

train 80% 30,626 -

test 1 5% 2,065 OOD, p(y) shift
valid 5% 2,116 OOD, p(y) shift
test 2 5% 2,065 ID, p(y) shift
test 3 5% 2,065 ID

Table 1: Dataset split statistics. OOD stands for Out-of-
distribution compared to training set, and ID stands for
in distribution compared to training set.

3.1 Data split

Inspired by Koh et al. (2021), we identify two kinds
of distribution shift and would like to create splits
that disentangle the issues and better answer the
research questions. As we can see in Figure 2, most
museum collections only own tablets from one or
two time periods and most time periods are col-
lected by a specific museum. To better study the
distribution shift across collections, we split the
data with regard to the collection id, i.e. tablets
from the same collection only present in one split.
This split we call OOD test split (test 1). We use

p(y) shift to denote a split where the label distri-

bution p(y) is significantly different from that of
the training set. We describe briefly how we split
the data (Table 1) below.

1. Step 1: Getting an OOD and p(y) shift set
S1 from the full data. We sampled about 10%
from the full dataset using the following rules:
(i) We sample by collections, meaning tablets
from an entire collection are either included or
excluded. (ii) For a given time period, we do
not select collections that constitute more than
30% of the data for that time period, ensuring
that we do not remove most of the tablets
for certain time periods from the training set.
We named the remaining 90% of full data S5.
Figure 4 shows the shift of p(Y").

2. Step 2: Getting valid and test 1 set. we
evenly split 51 We obtained from step 1 and
we now have valid and test 1 set.

3. Step 3: Getting test 2. We sampled 5% of
the data from the subset S against the label
distribution of test 1. Therefore, test 2 has the
same sub-population shift from the training
set as test 1, but consists of in-domain (ID)



data instead of OOD data. We named the
remaining 85% of the full data Ss.

Step 4: Getting test 3 and train set. We
randomly sampled 5% of the data from S5 to
constitute test 3, and the remaining 80% is the
final training set.

Therefore, we have three testing splits setup as
shown in Table 1.

4 Methods

We describe the baseline models we used in experi-
ments and also several training strategies, adversar-
ial regularization and , to mitigate the distribution
shift issues.

4.1 Baseline models

1. Naive Bayes. We use discrete categorical fea-
tures, including genre, collection, provenance,
and size, to predict the time period as a cate-
gorical prediction problem. Note that when
there is only one feature, the performance in-
dicates a correlation between the feature and
the predicted class.

Char-LSTMs. We use a character-level
two-layer bi-directional LSTMs to process
cuneiform transliterations and sign tokens for
dating ancient texts. The model has a hidden
size of 128 and an embedding size of 256. We
train for 200 epochs using the ADAMW opti-
mizer with a learning rate of 5e-4 and a weight
decay of le-3.

ResNet. Our study utilizes the ResNet (He
et al., 2016) architecture, specifically ResNet-
50 and ResNet-101. We apply these models
to classify images of cuneiform inscriptions,
leveraging their powerful feature extraction
capabilities. The models are trained using a
cross-entropy loss function, with adjustments
made to the final layer to suit our specific class
labels. The training regimen includes a batch
size of 16, 30 epochs, ADAM with a learning
rate of 3e-5, and no weight decay.

4.2 Baseline Objective

For all the neural models, we use cross entropy
(CE) loss to train the models.

L = CE(y",p")
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4.3 Advanced Algorithms

To address the aforementioned issues, we explore
several different robust training algorithms in this

paper.

Adversarial Regularization. We use other at-
tributes such as provenience and genre, to optimize
a min-max objective. We attach a new branch of
MLP to calculate the p(ad”).
I = CE(y(t),p(t)) + KLD(y(const)’p(adv))
where CE is cross entropy loss and KLD is the
KL Divergence loss.

Correlation Alignment for Deep Domain Adap-
tation (CORAL). CORAL (Sun and Saenko,
2016) measures the divergence of means and co-
variance between batches of feature representations.
The goal of CORAL is to match the feature distri-
butions from different domains.

Invariant risk minimization IRM). IRM (Ar-
jovsky et al., 2019) penalizes feature distributions
that result in different optimal linear classifiers
across different domains. where where ® is the
entire invariant predictor, w = 1.0 is a fixed classi-
fier, and the gradient norm penalty is the measure
of the classifier at each environment.

5 Experiments and Results

5.1 Input Features

We have four different input features for training,
describing as below.

1. Raw image. The raw images downloaded
from CDLI. Each image usually contains pho-
tographs of six faces for each tablet.

Major-face image. The major-face cutout of
the raw images, which are usually the front
faces of the tablets.

. Raw transliteration. We use the post-
processed version from CuneiML, which re-
moves formatting string such as line numbers,
broken markers and etc.

Cuneiform sign (glyph) token. We tokenize
cuneiform glyph at a character-level, with a
vocabulary size of 764. See Figure 6 for an
example. We keep the space between words
and line break.


https://github.com/taineleau/CuneiML

Features Model test1 OOD p(y)shift test2 ID p(y) shift test3 ID
F1 Acc. F1 Acc. F1 Acc.
- random 2.92 7.80 291 7.12 296  6.30
- majority 6.56 74.29 6.56 74.29 6.02 7293
provenience NBayes 39.48 83.63 51.09 79.95 61.15 89.20
genre NBayes 15.31 72.88 19.77 75.11 2272 80.63
provenience & genre NBayes 37.94 83.49 56.98 83.24 62.72 91.91
museum (collection) NBayes 6.56 74.29 13.92 75.16 21.78 77.85
transliteration char-LSTM  16.14 10.72 26.52 10.87 8442 95.73
sign token char-LSTM  16.59 11.45 24.25 11.89 78.13  95.39
raw image ResNet-50  28.46 82.03 64.33 93.51 78.73  94.26
+ 00D mitigate 29.42 83.24 47.46 92.13 48.63 88.17
major cutout ResNet-50  34.82 87.36 68.69 94.74 80.60 95.19
+ 00D mitigate 41.06 88.37 49.55 91.62 54.78 88.03

Table 2: Main result table for cuneiform dating. Macro F; and Accuracy (Acc.) are reported. Macro F; denotes the

average F score calculated across all classes. Best F; scores for each subgroup are in bold face and the second best

ones are underlined. Colored background highlight the best overall model for each setting.

The bounding boxes for major-face images and
the Cuneiform sign (glyph) tokens are obtained
from Chen et al. (2023)*.

5.2 Maetrics

As the label distribution p(y) imbalance exists and
there is a distribution shift, we primarily use the
F; score and accuracy to evaluate our methods.
Specifically, we use Macro F; and accuracy? as our
major evaluation metrics.

Macro F; score computes the F; score indepen-
dently for each class and then takes the average,
thus treating all classes equally regardless of their
frequency. This dual approach allows us to address
both the overall accuracy and the individual class
performance, ensuring a thorough evaluation in the
face of skewed class distributions and shifts.

5.3 Results and Analysis

The main results for two split settings are shown
in Table 2 and several key observation are summa-
rized as follows.

1. Random and Majority Baseline Models.
These models provide basic benchmarks with
the majority model performing based on the
most frequent class, note that the majority
class contains more than 70% of the models,
which accounts for the big discrepency be-
tween macro F; and accuracy. The low F1

2https ://github.com/taineleau/CuneiML
3For single-label classification, Micro F; is equal to accu-
racy
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scores, indicating poor performance across all
classes evenly.

Neural models perform the best across all
settings. Both visual and textual neural mod-
els work fairly good in ID setting (test 3),
showing that both textual and visual features
provide sufficient information to date tablets.

. Raw images contain confounded undesired

features: collection. When using a ResNet-
50 model, features extracted from the raw im-
ages outperformed those obtained from front
face cutouts on ID split (test 3). However, this
performance was reversed on an OOD split
(test 1). This reversal clearly indicates that
raw images include collections as a confound-
ing factor.

Textual features are not effective for dating
when label shift exists. From test 3 to test
2, only the label distribution changes, while
the data remains in-domain. However, textual
models experience a dramatic drop in perfor-
mance by 57.9%, revealing that textual fea-
tures are not robust to label imbalance issues.
In contrast, image models are not affected as
significantly.

. Textual models are not robust to OOD shift;

visual models are better but still have room
for improvement. Textual models exhibit
nearly a 50% relative decrease in macro F;
for the OOD setting (test 1) compared to vi-
sual models. With the application of OOD



mitigating algorithms (see section 6.3 for de-
tails), visual models improve from 34.82% to
41.06%, achieving the best F; score on test 1.
This aligns with our earlier concerns that tex-
tual features do not capture any writing style
of the tablet, making it difficult to determine
the time period under OOD shift conditions.

6 Further Analysis

6.1 Zooming in on Textual Models

Macro F1 Scores for Different Tests and Methods

e T

Test 1 + Transliteration

=
S

Test 2 + Transliteration
Test 3 + Transliteration
Test 1 + Sign Token
Test 2 + Sign Token
Test 3 + Sign Token

Macro F1 Score (%)
PO

P

w
S

B e

15 20
Number of Lines

Figure 7: Analysis on best context length for textual
features using char-LSTM on three test split.

As shown in Figure 7, we conducted extensive
experiments on the number of lines per example fed
into the models. As mentioned earlier, we use ma-
jority vote by default to ensemble predictions when
we divide a full document. The performance of the
glyph token features (sign token) increases as the
number of lines in an example increases, while the
transliteration features typically achieve the best
performance with only one or two lines. This obser-
vation aligns with our understanding that transliter-
ation already encodes some contextual knowledge,
as signs are transliterated into Latin depending on
the context. In contrast, for sign token features,
the machine learning model requires more lines to
discern the underlying information effectively.

6.2 Mitigating Label Imbalance Issues

Table 3 presents the results of label imbalance meth-
ods using char-LSTM on transliteration and glyph
token features, with loss reweighing (LR) and up-
sampling (US). While both methods show varied
effects on the performance metrics, loss reweighing
generally improves F; scores and accuracy across
the test sets, particularly for transliteration features,
achieving a F; 86.06% on test 3.
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Features test 1 test 2 test 3
F, Acc. F. Acc. F1 Acc.
trans. 15.77 10.53 26.52 10.87 74.89 92.62
+LR 1654 1145 2498 11.89 86.06 85.33
+US 1263 9.89 2532 10.63 81.75 94.61
glyph 15.00 8.82 19.14 9.52 67.56 92.08
+LR 17.63 12.04 18.63 12.52 74.08 94.85
+USs 1557 1092 19.17 1238 7322 94.66

Table 3: Result for label Imbalance methods using char-
LSTM on transliteraion and glyph token features. LR:
loss reweighing, US: up sampling. The models trained
with num_of line=1.

6.3 Distribution shift and Confounds

Adversarial Regularization. Table 4 show re-
sults using adversarial regularization. Macro F;
does not change as much as the accuracy. We also
found that adversarial training requires very care-
ful hyper-parameter tuning; otherwise, the model
may completely underfit due to the noisy gradients
provided by the adversarial branch.

Input  adv. feat MacroF;  Acc.
raw none 25.73 58.34
raw collection 2544 62.12
cutout none 29.09 6491
cutout collection 30.39 68.64

Table 4: Adversarial study on image features. ResNet-
50 is used for all experiments in this table. We run each
experiments five time and report the mean F; scores.
Note that the result is trained on a slightly different split
than the main table.

OOD mitigation. Table 5 shows results using
OOD methods. Among the OOD mitigating algo-
rithms, CORAL consistently improves the perfor-
mance across all test sets for both raw and cutout
features. Notably, CORAL achieves the best F;
scores of 29.42% and 40.46% on test 1 for raw
and cutout features, respectively. The other algo-
rithms, IRM and groupDRO, generally show a de-
cline in performance, with groupDRO performing
the worst, especially for the cutout features. Over-
all, the results indicate that while textual models
struggle with domain shifts, visual models, par-
ticularly those enhanced with cutout features and
CORAL, demonstrate a more robust performance,
albeit with room for further improvement.



Features test 1 test 2 test 3
F Acc. F1 Acc. Fy Acc.

raw 28.46 82.03 64.33 93.51 7873 94.26
+ IRM 2697 85.28 47.28 9091 48.63 88.17
+CORAL 2942 8324 4746 92.13 4694 90.08
+groupDRO  24.02  77.97 35.18 87.69 56.54 89.54
cutout 34.82 87.36 68.69 94.74 80.60 95.19
+ IRM 28.31 87.46 4342 91.11 4434 83.81
+CORAL  40.46 8939 52.51 93.05 48.61 90.92
+groupDRO 2794 80.77 50.47 86.82 60.50 86.99

Table 5: OOD setting results trained on images features
using ResNet-50.

Num of ResNet-50 char-LSTM
Examples

Fy Acc. Fy Acc.
Full 8534 9440 53.19 85.89
10,000 67.18 90.86 49.46 84.73
5,000 59.17 89.99 3293 82.24
1,000 40.89 82.39 17.28 75.09
500 28.03 77.77 7.44 70.62
100 13.21 5549 5.66 65.67

Table 6: Ablation study on different number of training
data, on test 3 using ResNet-50 and BERT. Note that
this table is running on a slightly different data split
from the main table.

6.4 Cuneiform Dating at Scale

It is not possible to make an apple-to-apple compar-
ison on 2D and 3D scans features because most of
the HeiCuBeDa dataset (Bogacz and Mara, 2020)
does not accompany with a 2D photo. The paper
reported a weighted F; of 83% (which is roughly
comparable to accuracy in our case). We conduct a
set of experiments by varying the number of train-
ing examples, as shown in Table 6. Both models
show a clear trend of improved performance with
increased training data.

7 Related work

7.1 Automated classification for ancient
languages

Sommerschield et al. (2023) provides a detailed
overview of ancient languages processing using
machine learning. Resler et al. (2021) classified
artifact images using CNNs and nearest neighbors.
Assael et al. (2022) train a BE to restore ancient
Greek. There have been work on dating documents
in various ancient languages, like Arabic, Korean
and Chinese oracles bones among others (Sommer-
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schield et al., 2023)

7.2 Cuneiform studies

There have been important efforts in cuneiform
sign recognition, language identification (Bernier-
Colborne et al., 2019), and machine translation for
Akkadian have been explored (Gutherz et al., 2023).
Bogacz and Mara (2020) use high resolution 3D
scans to classify time periods, and more recently
Yugay et al. (2024) have explored the dating of first
millennium Assyrian and Babylonian documents,
using stylistic criteria and CNN. As mentioned ear-
lier, it is non-trivial to tokenize the transliteration.
Gordin et al. (2020) uses HMM and neural models
to automatically transliterate Unicode cuneiform
signs. On the contrary, in our paper, we reverse this
process by converting the transliteration back to
Unicode cuneiform signs to reduce transliteration
bias.

7.3 Distribution shift

Historical data always suffers from noise and there-
fore it is hard to have good generalization on held
out data. Specially for cuneiform, the systematic
distribution shift is the most salient one. The sys-
tematic distribution shift is a special cases in do-
main adaptation, and therefore can be mitigated
by general domain adaptation methods (Koh et al.,
2021)). Ahmed et al. (2020) analyses group invari-
ant predictions, where dominant simpler correla-
tions with the target variable. Zare and Nguyen
(2022) studied similar scenario in medical diag-
nosis, which has a shift on several attributes such
as sex, age and race. They use invariant risk min-
imization (IRM) (Arjovsky et al., 2019) to learn
invariant features. Another branch of methods is
adversarial regularization, which uses adversarial
training (Gokhale et al., 2021) to improve the gen-
eralization ability. Li et al. (2018) uses Maximum
Mean Discrepancy (MMD) to align loss in different
class.

8 Conclusion

In this paper, we explore end-to-end cuneiform
dating at scale using machine learning. We have
identified three major challenges—Iabel imbalance,
distribution shift, and circular reasoning—that are
prevalent in cuneiform dating. These issues and
solutions explored in our paper are broadly applica-
ble to the classification of other ancient artifacts as
well. We hope our initial analysis will inspire the



community to further adopt machine learning for
addressing problems in ancient language process-
ing.
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A Appendix

A.1 Tokenization

There are 7,000 glyphs across different time pe-
riods. We use Chen et al. (2023) tokenization of
text.

1. word boundary. Empty space is manually
inserted between word. We by default keep
the space by inserting.

. Logogram. A tilde sign before a sign indicate
it is a logogram. By default we differentiate
whether a sign is syllable or logogram.

3. Intrusions. (...) indicates unknown num-
ber of signs is missing.

4. Modifier. In ATF, at-sign precedes a sign or
group. For example, @ means curved.

5. Compound. |GAy ~ axEN|, means: “the
a-allograph of the sign GAs containing sign
EN”.

6. Breakage. Hash tag is used to mark breakage.

B Details
B.1 OOD Experiments Details
1. Raw
(a) IRM. We train for 30 epochs with a learn-
ing rate of 3e-5, an IRM lambda 1, and
seed 2.
(b) CORAL. We train for 30 epochs with a
penalty weight 10 and seed O.
(c) groupDRO We train for 30 epochs with
a learning rate of 3e-5 and seed 1.
2. Front

(a) IRM. We train for 30 epochs with a learn-
ing rate of 3e-5, an IRM lambda 1, and
seed 2.

(b) CORAL. We train for 30 epochs with a
penalty weight 10 and seed 2.

(c) groupDRO We train for 30 epochs with
a learning rate of 3e-5 and seed 2.

B.2 Hyperparameters and ablation study

We provide further analysis and conduct a com-
prehensive ablation study in the following section,



exploring the effects of hyperparameters, input fea-
ture selection, and the number of training examples
on our model’s performance.

As shown in Table ??, larger model or larger
resolution of input can boost model performance.

C Visualization of tablets counts

A full resolution with number annotated heatmap
for the time periods preserved in each museum
collection is shown in Figure 8.
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Visualization Of Time Periods Preserved In Each Museum Collection
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Abstract

The complex Ancient Egyptian (AE) writing
system was characterised by widespread use of
graphemic classifiers (determinatives): silent
(unpronounced) hieroglyphic signs clarifying
the meaning or indicating the pronunciation of
the host word. The study of classifiers has in-
tensified in recent years with the launch and
quick growth of the iClassifier project, a web-
based platform for annotation and analysis of
classifiers in ancient and modern languages.
Thanks to the data contributed by the project
participants, it is now possible to formulate
the identification of classifiers in AE texts as
an NLP task. In this paper, we make first
steps towards solving this task by implementing
a series of sequence-labelling neural models,
which achieve promising performance despite
the modest amount of training data. We dis-
cuss tokenisation and operationalisation issues
arising from tackling AE texts and contrast our
approach with frequency-based baselines.

1 Introduction

The Ancient Egyptian language and writing sys-
tem, which belong to the earliest stratum of intan-
gible cultural heritage available to researchers, pos-
sess a range of interesting features. One of them
is widespread use of classificatory signs, called
determinatives in earlier literature. These classi-
fiers (hereafter CLFs in ambiguous contexts, in
order to avoid confusion with classifier models)
are hieroglyphic signs attached, singly or in com-
binations, to words of different parts of speech
and used mostly to highlight some aspect of the
host word’s meaning or pronunciation (Goldwasser,
2023; Goldwasser and Grinevald, 2012). Egyptian
graphemic classifiers are usually understood to be
a purely written phenomenon, i.e., unlike classi-
fiers in contemporary spoken languages (Grinevald,
2015), they were not pronounced. Classifiers of
this type have been most intensively studied in An-
cient Egyptian, but they have been also described
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in Sumerian (Selz et al., 2017) and Luwian (Payne,
2017), and it is argued that the ancient Chinese writ-
ing system was built on similar principles (Gold-
wasser and Handel, 2024).

The computational research on the Ancient
Egyptian language is in its infancy. A compre-
hensive overview of studies of ancient languages
utilising machine-learning methods, prepared by
Sommerschield et al. (2023), mentions only a cou-
ple of works on Egyptian, and all of them deal with
technical tasks, such as optical character recogni-
tion and spectrography-based dating. Neither do
we know of any computational works tackling clas-
sifiers/determinatives in other ancient scripts.

At the same time, the field of classifier studies
has been progressing rapidly in recent years. To a
large extent this is due to the launch of iClassifier
(Harel et al., 2024), a dedicated platform for analy-
sis of classifiers in ancient and spoken languages,
which ensures comparability between annotated
corpora. By providing such a platform, the project
aims to facilitate both the study of individual clas-
sification traditions and, by means of semantic an-
notations with CONCEPTICON labels (List et al.,
2024), cross-cultural analyses of classification sys-
tems.

The particular structure of any given corpus is
dependent on its creator, and the project includes
resources of two basic types:

1. Full-text corpora, which include annotations
for both classified and unclassified wordforms
from a particular text or set of texts.

2. Topical corpora, which include data points of
a particular type, e.g., lexical borrowings or
items from a particular lexical class.

Corpora of the first type are more informative, but
in practice they presuppose the existence of already-
digitised texts that can be imported in iClassifier
wholesale and then annotated. In some cases, the
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target texts have not yet been digitised, and only
words or phrases of particular interest are manually
entered.

Work on projects of both types could be facili-
tated by the existence of a trained classifier model,
which would highlight potential CLF tokens in in-
puts. If such a classifier attains a high degree of
accuracy, it will then be possible to conduct fast
analyses of large digitised textual corpora, which
have been published for, e.g., Ancient Egyptian
(Richter and Werning, 2024), Sumerian,' Luwian,?
and ancient Chinese (Xu, 2024). From the research
perspective, an accurate discriminative classifier
model will serve as a first step towards building a
more interpretable generative model for word clas-
sification in ancient complex scripts and spoken
languages.

In this study, we take first steps towards develop-
ing such a classifier on the basis of the Coffin Texts
corpus, as of today the largest annotated full-text
corpus in the iClassifier system.

2 Data

2.1 The corpus

The main dataset used in this study is a subset of
the so-called Coffin Texts (de Buck, 1935-1956),
a collection of spells painted on burial coffins of
the First Intermediate period (c. 2130-1938 BCE)
and the Middle Kingdom (1938 — c. 1630 BCE).
A subset of the spells forms one of full-text projects
in iClassifier, i.e. it includes both classified and un-
classified data points in the proportions reflecting
the linguistic usage of the time, which makes it suit-
able for training a classifier-identification model.
The corpus is word based: individual data points
are wordforms, which is the standard annotation
practice for ancient texts in iClassifier.?

This corpus, similarly to other corpora in the
project, relies on a broad definition of the term
classifier that encompasses not only semantic
CLFs* but also phonograms presenting redundant
phonological information, such as phono-repeaters.
These sign functions can be tagged in the UI as

"https://etcsl.orinst.ox.ac.uk/

2http://web-corpora.net/LuwianCorpus/search/

*Modern languages usually need sentences as data points,
while the ancient Chinese corpora, conversely, decompose
individual signs into the phonetic and semantic component
and treat the latter as a classifier. See Xu (2024) for details.

“Including so-called ‘repeater CLFs’, where an unpro-
nounced pictorial logogram expresses the same meaning as
that conveyed by a phonologically-encoded word.
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D<>I<>I N

U33-24:021-21-D21-21-D56-D54

Figure 1: A form of the verb #rr ‘to race’ represented in
hieroglyphs and in the Manuel de Codage transcription.
The last two signs are unpronounced semantic classifiers
putting ‘race’ in the [MOVEMENT] category.

‘semantic classifiers’ and ‘phonetic classifiers’, re-
spectively. Additional tagged signs pertain to com-
mon ‘grammatical classifiers’, which represent the
number or gender of the host word. As a first step
we do not distinguish between different CLF types
but try and identify all non-autonomous signs (Po-
lis and Rosmorduc, 2015, 157).

The fully-annotated subset of the Coffin Texts
corpus contains 74106 data points. However, many
wordforms are repeated several times with the
same CLFs, which reduces the effective size of
the dataset to 8423 types, randomly split into 6739
train, 842 development, and 842 test data points.
Table 2 shows the statistics of the number of CLFs
per data point.

The setting therefore can be characterised as ex-
tremely low resource since not only the dataset
itself is small, but there are no language models
pre-trained on the target language.’

We also use a small (404 data points) corpus
of wordforms from Late Egyptian narratives® as a
separate out-of-domain test set. This smaller cor-
pus represents a different textual genre, a folktale,
and was compiled later, in the 13th century BCE,
compared to the Coffin Texts, which are dated to
22nd-17th c. BCE.

2.2 The transcription system

The representation format for Ancient Egyptian
texts used in iClassifier is the Manuel de Codage
(MdC; Buurman et al., 1988) transcription, which,
despite some criticism (Nederhof, 2013), remains
the standard in Egyptology. Hieroglyphic signs in
MdC are represented with their Gardiner numbers
(Gardiner, 1957, 438—548),7 with additional sym-

5The most closely related language with a sizeable cor-
pus is Coptic, which was written in an alphabetic script and
presents a tough low-resource scenario in itself, cf., e.g.,
Gessler and Zeldes (2022).

6https: //thesaurus-linguae-aegyptiae.de/text/
MTBRL3MIIJDKXAOF2336WRLMZA

7ht’cps: //en.wikipedia.org/wiki/Gardiner%27s_
sign_list
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bols used for denoting relative positions of signs,
damaged signs, ligatures, and other information.
An example transcription is shown in Figure 1.

Classifier signs in iClassifier are sur-
rounded with ~’s, so the annotated ver-
sion of the example from Figure 1 is
U33-Z4-D21-21-D21-Z1-~D56~-~D54~3 The

simplest operationalisation of the classifier-
identification problem is therefore seq2seq
transduction with bare transcriptions (in MdC
or any other suitable scheme) as inputs and the
same encodings with tildes added when necessary
as outputs. As we discuss below, however, this
operationalisation makes the transduction task
unnecessarily hard for the models and consid-
erable gains may be made by means of some
straightforward simplifications.

3 Methods

In this section, we describe our approaches to input
tokenisation and output formatting (§ 3.1), the base-
lines (§ 3.2), and the experimental setup (§ 3.3).

3.1 Preprocessing

The aim of the Manuel de Codage transcription
system is not only to represent several hundred
signs of Egyptian hieroglyphics using numbers and
Latin letters but also, as far as possible, to describe
their spatial relations in the original inscriptions
since the Ancient Egyptian writing was inherently
two-dimensional. Additional complexity comes
from the ability of the transcription system to han-
dle damaged inscriptionts, empty space, and edito-
rial emendations, among other things. As a result,
although it is possible to represent (a somewhat
simplified version of) MdC as a context-free gram-
mar,” which is used, for example, in the standard
MdC-visualisation tool JSesh,!? this grammar is
quite complex and it seems unreasonable to expect
seq2seq classifiers to learn it implicitly. Therefore
we preprocessed the input by (i) parsing it with a
simplistic CFG powerful enough to distinguish be-
tween signs, delimiters, and other elements,!! and
(ii) replacing everything except for hieroglyphs and
tildes, used to mark CLFs, with spaces.

8https ://thesaurus-linguae-aegyptiae.de/
sentence/IBUBAWH5CIXKnkyQhOCr1BiZSCA

ghttps://mjn .host.cs.st-andrews.ac.uk/
egyptian/res/mdc.html

10http: //jseshdoc.qgenherkhopeshef.org/

"The parser was implemented using the Python package
Lark. The CFG for the grammar is given in the Appendix.
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Tokenisation. The output of the previous step
is a sequence of hieroglyphs in MdC, with CLFs
flanked by tildes, separated by spaces. When fine-
tuning a pre-trained model with its own tokeniser,
the input must be represented as a string. If we train
a model from scratch, however, a trade-off can be
made between, on one hand, longer inputs and a
very small vocabulary (Latin letters, digits, and the
tilde) and, on the other hand, short inputs and a
large vocabulary, where each hieroglyph from the
dataset gets its own token (784 tokens in total in
our data). We call models using the small vocab-
ulary character based and models using the large
vocabulary sign based.

Output formatting. Regardless of the tokenisa-
tion approach, reference outputs can be represented
in several different ways, for example:

1. In the (simplified) original notation: U33 74
D21 Z1 D21 Z1 D56 D54 — U33 Z4 D21 Z1
D21 Z1 ~D56~ ~D54~

2. Without the first tilde, since each classifier
in the data is unambiguously identified by a
single marker: U33 Z4 D21 Z1 D21 Z1 D56
D54 — U33 Z4 D21 Z1 D21 Z1 D56~ D54~

3. As a sequence of binary labels: U33 Z4 D21
Z1 D21 Z1 D56 D54 —0 0 @ 0 @ @ 1 1

While the first approach preserves the structure of
the data, it forces the models to learn complicated
well-formedness constraints. The second approach
considerably simplifies them since the models can
always first copy the sign and then add a tilde when
necessary. However, copying can still be imperfect,
especially with character-based models. The third
approach completely dispenses with the original
data format, but it makes enforcing the structural
constraints almost trivial. Preliminary experiments
showed that resorting to binary labels gives a strong
boost in performance, and we used this approach
in all reported experiments.

3.2 Baselines

The existence of frequent classifiers and other im-
balances in the sign distribution suggest that we
may dispense with using complicated machine-
learning methods altogether and predict classifiers
using sign statistics. In this study, we use the fol-
lowing approaches as baselines to which we com-
pare our sequence-to-sequence methods:

1. Top-N: we mark N = 5,10, 20, 30, 50, 100
signs that are most-frequent classifiers in the
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training set as classifiers. N is selected using
the validation set.

CLF-only: we mark signs as classifiers if they
only appear as such in the training set.

. CLF-majority: we mark signs as classifiers
if they appear more frequently in this function
in the training set.

3.3 Experimental setup

Models and training. We contrast the perfor-
mance of sign-frequency-based baselines with
three neural seq2seq models: a character-based 3-
layer encoder-decoder LSTM with a hidden dimen-
sion of 512, a sign-based 3-layer encoder-decoder
LSTM with the same hidden size, and ByTS5-small
(Xue et al., 2022). We thus cover both RNN-based
and Transformer-based models. Given relatively
short input lengths, we keep RNNs simple and do
not equip them with attention.

Importantly, the small version of ByTS5 is still a
considerably larger model compared to the seq2seq
LSTMs and therefore harder to train on a small
dataset. However, there is a possibility that its
extensive pre-training on data from other languages
gives it enough inductive bias to tackle a novel
language, even with a non-orthodox transcription.

The batch size and learning rate for the models
reported below were selected using grid search on
the development set, and the models were trained
until there was no improvement on the development
set for 5 epochs.!?

Evaluation metric. As the evaluation metric, we
use the average number of mistakenly classified
signs in the test-set data points.

More precisely, we split the output of the de-
coder on whitespaces, pad the resulting vector of
labels with zeros if it is too short, and convert any
non-1 elements to zeros as well. This corresponds
to a conservative procedure that, given an input
sequence of signs, outputs a sequence of signs with
marked classifiers and without NAs, which is how
the system is arguably supposed to work in prac-
tice.

4 Results

The performance of the trained models on the de-
velopment and test subsets of the Coffin Texts cor-
The code and the dataset used for the analy-

ses are available at https://git.sr.ht/~macleginn/
ml4al-iclassifier-paper-code/tree

45

Model Dev Test Narratives
CLF only 1.23 1.23 1.39
Top-S0 CLF  0.46 0.47 1.07
CLF majority 0.27 0.28 0.49
LSTM (char) 0.2 0.21 3.07
LSTM (sign) 0.14 0.11 0.38
ByTS5 small 0.08 0.1 0.35

Table 1: Average number of misclassified signs per
data point on the Coffin Texts corpus (dev and test)
and the Late Egyptian narratives (out-of-domain). CLF
only: signs only found as CLFs in the training set are
marked as CLFs. Top-50 CLF: 50 signs that are most
frequently found as CLFs marked as CLFs. CLF ma-
jority: signs that are more frequently found as CLFs
than as regular signs marked as CLFs. LSTM (char):
character-based 3-layer encoder-decoder model with the
hidden dimension of 512. LSTM (sign): sign-based
3-layer encoder-decoder with the hidden dimension of
512.

pus and on the out-of-domain (OOD) data from
the Late Egyptian corpus is reported in Table 1.
Several observations can be made.

First, the Coffin Texts are shown to be quite
homogeneous: the performance drop between the
development and test sets is marginal, with one
model (sign-based seq2seq LSTM) even gaining 3
performance percentage points.

Secondly, the character-based LSTM model does
not perform well: it barely beats the CLF-majority
baseline and suffers performance collapse on the
OQOD data. The sign-based LSTM, on the other
hand, is very competitive, even on the OOD test
dataset, where, unlike ByT?3, it had to contend with
UNK tokens, mapped to SOS tokens.

Thirdly, ByT5, despite not being trained on any
directly comparable data and being character based,
beats the sign-based seq2seq LSTM model both
on the in-domain and on the out-of-domain test
sets. This suggests that there may be a decent pos-
sibility for knowledge transfer between classifier
languages.

Finally, the CLF-majority baseline, despite its
conceptual simplicity, demonstrates tolerable per-
formance and with some additional tuning may be
used as a lightweight method that can dynamically
respond as new data points are added.

It must be pointed out that the array of possible
CLFs is very wide, given the existence of phonetic
classifiers. Despite the homogeneity of the Coffin
Texts data, the test set contains 19 CLFs not found
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0 1 2 3
1403 4113 2195 573

4 5 6 7 8
112 20 6 0 1

Table 2: Counts of data points with different number of
CLFs in the train and dev subsets of the Coffin Texts
dataset.

in either test or dev subsets; 17 of them are only
used once. Conversely, 156 CLFs were encoun-
tered only once in the combined test and dev set.
The OOD test set, despite being twice smaller than
the in-domain one, also has 13 new CLFs. This
does not preclude the possibility of ever identifying
such classifiers (human expert annotators can do
this by, e.g., analysing the structure of different
lexical items across contexts), but this considerably
raises the demands on the size of the training set.

5 Conclusion

This study is a first step towards creating a trained
system for identification and analysis of classifiers
and other sign functions in ancient complex scripts.
It demonstrates that it is possible to achieve re-
spectable error rates on this task on in-domain data,
with ~ 0.1 mistakenly identified classifiers per
data point. Given a high number of data points
with several classifiers (cf. Table 2), this translates
to correct analysis of most wordforms. The accu-
racy falls significantly on out-of-domain data, but it
must be noted that our OOD test set is distinguished
from the training set not only by a different genre
(narratives vs. religious texts) but also by at least
400 years of language evolution.

Future work, in addition to improving model
accuracy, could be directed toward providing a
more fine-grained classification of sign functions
by leveraging the distinction between semantic and
grammatical classifiers and phono-repeaters.
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Appendix: A CFG for parsing MdC

In Lark notation:

token : sequence (delimiters sequence)x
delimiters : delimiter+

sequence : left_paren sequence right_paren
| tilde sequence tilde
| sequence delimiters sequence
| classified_sign

left_paren : "("
right_paren : ")"

classified_sign : code suffix?
| tilde code tilde suffix?

suffix : ligature_pos
| damage
| ligature_pos damage
| damage ligature_pos

code : /[a-zA-Z]+[0-9]*x[a-zA-Z]x/

| /[0-91+/
| "#b-. .#e"
| "y

| "#e"

| n[&u
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Abstract

In Japanese, “bunsetsu” is the natural mini-
mal phrase of a sentence; it serves as a natu-
ral boundary of a sentence for native speakers
rather than words, and thus grammatical anal-
ysis in Japanese linguistics commonly oper-
ates on the basis of bunsetsu units. By contrast,
because Japanese does not have delimiters be-
tween words, there are two major categories of
word definitions: Short Unit Words (SUWs)
and Long Unit Words (LUWSs). SUW dictio-
naries are available, whereas LUW dictionar-
ies are not. Hence, this study focuses on pro-
viding deep learning-based (or LLM-based)
bunsetsu and LUWSs parser for the Heian pe-
riod (AD 794-1185) and evaluating its perfor-
mances. We model the parser as a transformer-
based joint sequential labels model that com-
bines the bunsetsu BI tag, LUW BI tag, and
LUW Part-of-Speech (POS) tag for each SUW
token. We trained our models on the corpora
of each period including contemporary and
historical Japanese. The results ranged from
0.976 to 0.996 in the fl value for both bun-
setsu and LUW reconstruction indicating that
our models achieved comparable performance
with models for a contemporary Japanese cor-
pus. Through statistical analysis and a di-
achronic case study, it was found that the esti-
mation of bunsetsu could be influenced by the
grammaticalization of morphemes.

1 Introduction

In Japanese, “bunsetsu” (base-phrase) is the nat-
ural minimal phrase of a sentence. It serves as a
natural boundary of a sentence for native speak-
ers rather than words; thus grammatical analy-
sis in Japanese linguistics commonly operates on
the basis of bunsetsu units. For example, in Uni-
versal Dependencies (UD; Nivre et al., 2020), a
framework for the consistent annotation of lexi-
cal dependency grammar across different human
languages, some Japanese corpora have been con-
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verted from dependency relations between bun-
setsu (Asahara et al., 2018; Omura and Asahara,
2018).

In contrast, because Japanese does not have
delimiters between words, there are many def-
initions of “words” in Japanese. The National
Institute for Japanese Language and Linguistics
defines two hierarchical word tokenization cate-
gories: Short Unit Words (SUWs) and Long Unit
Words (LUWs). SUW is a minimal word to-
ken in Japanese, and is defined by a bottom-up
method that consists of at most two morphological
units. In contrast, LUW is defined by a top-down
method that divides a bunsetsu into two parts, and
it may contain several SUWs. For example, the
LUW “JbtPE KPE# (Northwest Atlantic)” consists
of two SUWs “JtPH (Northwest)” and “KPa7#
(Atlantic).”

Dictionaries of SUWs for historical and con-
temporary Japanese are already publicly avail-
able !, whereas there is no dictionary for LUWs.
Hence, a parser that outputs bunsetsu and LUWs
for historical Japanese is necessary to analyze the
grammatical changes in Japanese.

For existing historical Japanese literature, a suf-
ficient amount of bunsetsu and LUW annotated
text to train the parser is primarily available from
the Heian period (AD 794-1185) and later. There-
fore, this study mainly focuses on the Heian pe-
riod, with the subsequent Kamakura (AD 1185-
1336) and the Muromachi (AD 1336-1573) peri-
ods chosen for comparison.

The existing bunsetsu parser (Kozawa et al.,
2014) for these periods is based on Conditional
Random Field (CRF), which was used to create
the annotated corpus. Thus, this study focuses on
providing a deep learning-based (or LLM-based)
bunsetsu and Long Unit Words (LUW) parser and
evaluating its performances. We model the parser

"https://clrd.ninjal.ac. jp/unidic/
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Figure 1: Overview of bunsetsu and Long Unit Words (LUWSs) tokenization.

as a joint sequential label that combines the bun-
setsu BI tag, LUW BI tag, and LUW Part-of-
Speech (POS) tags for each SUW token. We used
a Transformer-based Language Model (TLM) to
output an SUW token representation by taking the
appropriate pooling of subword representations
for the last layer of the transformer. We preserved
the SUW boundaries when tokenizing a given sen-
tence into subwords. We trained our models on
the corpora of each period including contemporary
and historical Japanese.

The results indicate that the models trained
on historical Japanese achieve comparable perfor-
mance (0.976-0.996 f1 values) to a model for a
contemporary Japanese corpus. To trace gram-
matical changes in Japanese, we evaluated the
zero-shot transfer performance of the Heian, Ka-
makura, and Muromachi periods for each other.
The models trained with a corpus of the Heian and
Kamakura periods performed well on each other,
whereas the model trained with a corpus of the
Muromachi period did not. These results sup-
port the consensus among Japanese liguists that
the large grammatical changes occurred during the
Muromachi period. Furthermore, the analysis fo-
cusing on sentence-ending particles revealed that
new sentence-ending particle usage has emerged
in the Muromachi, and they are difficult to predict
by the models of the prior periods.”

2QOur code is publicly available at https://github.com/
komiya-1lab/monaka
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2 Related Work

Parser for Historical Japanese Comainu, a
Japanese bunsetsu and LUW parser, was originally
provided for contemporary Japanese (Kozawa
et al., 2014), although it can also be applied to his-
torical Japanese. Comainu takes SUW tokens as
input, which are tokenized by a CRF-based mor-
phological analyzer MeCab?, and then outputs the
bunsetsu and LUW tokens. As mentioned above,
Comainu is a CRF-based parser; thus, we focused
on deep-learning-based methods.

Parser for Contemporary Japanese Recent
Japanese corpora of UD contain bunsetsu and
LUW annotations (Omura et al., 2023); thus, some
parsers trained on these corpora support bunsetsu
segmentation and LUW tokenization. For exam-
ple, the spaCy-based # Japanese UD parser® sup-
ports LUW tokenization (Matsuda et al., 2022).
The parser was trained with a Transformer-
based language model (TLM) through the spaCy
pipeline, and it achieved better performance than
Comainu by adding some rules. GiNZA (Mat-
suda, 2020), which is also a spaCy-based parser,
supports bunsetsu output.

3 Bunsetsu and Long Unit Word

3.1 Short Unit Word

Short Unit Word (SUW) is a token close to the
granularity of typical Japanese word tokens. A

Shttps://taku910.github.io/mecab/

4https://spacy. io/

5https: //github.com/megagonlabs/UD_
Japanese-GSD/releases/tag/r2.9-NE/



Heian Kamakura Muromachi UD-Japanese-GSD

Number of

Sentence 196,680 332,575 154,080 8,100
SUW 5,084,245 6,519,090 2,077,960 193,654
LUW 4,576,115 6,003,790 1,923,300 150,244
Bunsetsu 1,986,150 2,700,520 881,015 65,966
Average numbers in a sentence

Characters 43.029 27.779 21.511 39.371
SUW 25.850 19.602 13.486 23.908
LUW 23.267 18.052 12.482 18.549
Bunsetsu 10.098 8.120 5.718 8.144

Table 1: Statistics of the Corpus of Historical Japanese (CHJ) (Heian, Kamakura, and Muromachi) and UD-

Japanese-GSD.

UD-Japanese-GSD CHJ

dropout rate 0.5 0.5
dim. POS emb. 256 256
learning rate 2e-05 5e-06
batch size 28 24
num. of epocsh 50 20
gradient clip 5.0 5.0
gradient decay  0.75 0.75
decay step 5000 5000

Table 2: Hyperparamters

dictionary (UniDic) was established for SUWs,
enabling high-performance morphological analy-
sis based on UniDic (Den et al., 2008). As shown
in the overview Figure 1, bunsetsu and LUWSs are
also composed of SUWs.

3.2 Bunsetsu (Base-pharase)

A bunsetsu is a (natural) minimal phrase that con-
sists of a Japanese sentence. Generally, a bun-
setsu boundary occurs after a particle or a se-
quence of particles. This is because Japanese func-
tional words typically follow their content words,
on which they depend. In Figure 1, all LUW noun
(NOUN) and adposition (ADP) pairs are com-
posed into bunsetsu segments.

3.3 Long Unit Word

The Long Unit Word (LUW) is a word unit based
on a bunsetsu. Identification of LUW involves
identifying bunsetsu and then dividing each bun-
setsu into independent and attached LUWSs. For
example, in Figure 1, bunsetsu “JEH 2B 3 %" is
divided into an independent LUW “JHH (items)”
and attached LUW “IZf83 % (regarding),” which

is categorized as adposition even if it contains
SUW verb “Bd3 %

4 Corpus

We used the Corpus of Historical Japanese (CHIJ;
NINJAL 2024), which collects documents from
the Nara (AD 710-794) to the Meiji (AD 1868-
1912). Bunsetsu and LUW annotations were per-
formed on sampled sentences sampled from the
CHJ.

We also used UD-Japanese-GSD®, a contempo-
rary Japanese corpus, for the model comparison
and searching for the best model, because there is
a deep-learning-based parser that can output bun-
setsu and LUW labels (Matsuda et al., 2022).

Table 1 shows the statistics of both the CHJ and
UD-Japanese-GSD. There is not a large difference
in the number of sentences in each historical pe-
riod, while that of UD-Japanese-GSD is one-tenth
of them. From the Heian to the Muromachi pe-
riods, the number of characters, SUWs, LUWs,
and bunsetsu per sentence gradually decreases. In
UD-Japanese-GSD, the average numbers of char-
acters and SUWSs per sentence are almost the same
as those of the Heian period, although the average
numbers of LUWs and bunsetsu are less than those
of the Heian period.

S Method
5.1 Bunsetsu and LUW Analyzer Model

Figure 1 shows the architecture of our model.
We used joint BI (beginning and inside) tagging-
based sequential modeling with a Transformer-
based language model (TLM). We combined the

6https://github.com/UniversalDependencies/UD_
Japanese-GSD
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sequential labels of LUW BI, LUW POS, and
Bunsetsu BI. For example, the target label of the
adposition “13” in Figure 1 is “I-B-ADP,” where
the first “I” represents the target SUW located in-
termediate of the bunsetsu, and the second “B-
ADP” represents the beginning of the LUW and
its POS tag. The total number of target labels is
237 for CHJ and 224 for UD-Japanese-GSD.

We first tokenized each SUW token into sub-
words instead of tokenizing a sentence directly, to
avoid breaking the SUW boundary. We then fed
each subword token to the TLM. We added a pool-
ing layer to combine each subword representation
produced by the TLM into SUW-level representa-
tion. We then fed the pooled SUW-level represen-
tations into an additional fully connected layer to
output the likelihood of the labels with a softmax
activation function. The variants of the pooling
layers are as follows:

sum Suppose the j-th subword representation
v; j corresponds to the i-th SUW token output
from TLM, the sum pooling u; is calculated as

u; = Zj ’Ui,j-

max The max pooling layer takes the max func-
tion instead of the summation of the sum pooling.

head The head pooling layer outputs the first
subword representation (v; 1).

We incorporate SUW POS information into the
model in a two-pronged way:

Embedding We concatenated POS embedding
with the pooled output u;. The POS embedding
was determined through the training.

Incontext We appended a text representing the
POS information to each word before subword
tokenization. For example, when the SUW “JH
H (item)” is tokenized into subwords, the input
SUW text representation is “JEH NOUN"". This
method increases the number of subword tokens
fed into the TLM.

5.2 Evaluation Method

Because our model requires SUW tokens as the in-
put, we feed gold SUWs to the model, throughout
the entire evaluation process.

We used span-based precision, recall, and f1
values to evaluate the segmentation of both bun-
setsu and LUW. We also used labeled span-based

"Though example POS tag is written in English, we add
POS tag name in Japanese with sub-tags; “# -2 B4 3-—
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Pooling P R F1
Emb. sum 98425 98264 98344
max 98446 98446 .98446
head 98532 .98456 .98494
Incontext sum 98433 96394 97403
(a) LUW, span-based
Pooling P R F1
Emb. sum 97487 97330 .97408
max 97228 97228 97228
head 97348 97279 97313
Incontext sum 97478 95377 .96416
(b) LUW, labeled span-based
Pooling P R F1
Emb. sum 97524 97459 97492
max 97158 97350 .97254
head 97505 97591 .97548
Incontext sum 97408 95488 .96434

(c) Bunsetsu

Table 3: Precision, recall and f1 values of LUW and
Bunsetsu tokenization on UD-Japanese-GSD.

P R F1
MeCab + Emb. + sum 0.978 0.978 0.978
Matsuda et al. 2022
Comainu
SudachiPy + spaCy

0.976 0.969 0.973
0.987 0.985 0.986

Table 4: Span-based LUW score comparison with the
previous study.

precision, recall, and f1 values for the LUW evalu-
ation. The labeled span-based evaluation is based
on a triple (b, e,!) reconstruction score, where b,
e, and [ represent the start, the end, and the POS
labels of the span, respectively.

To evaluate UD-Japanese-GSD, we used the
original train, dev, and test sets as intended. We
also compare the precision, recall, and f1 values
of LUW with the existing parse. Because the prior
work tokenized the SUW tokens by a morpholog-
ical analyzer, we also used predicted SUW tokens
by MeCab, instead of the gold SUW tokens.

To evaluate the CHJ samples, we calculated
these metrics through five times cross-validations
and averaged them to obtain the final scores. We
randomly sampled 5% of the sentences from the
corpus to create the dev and test sets for each CV.
In this procedure, we selected each test set not to
overlap.



Heian Kamakura Muromachi
P R F1 P R F1 P R F1
Trained on Heian
LUW span 99647 99622 99635 98184 97890 .98036 .90478 .91416 .90945
LUW labeled .99304 .99279 .99291 .95451 95165 .95308 .76438 .77231 .76832
Bunsetsu 96445 97612 97025 .93377 .94094 93734 74055 .80871 .77313
Trained on Kamakura
LUW span 99060 .99147 99103 .99492 .99452 99472 91162 .92650 .91900
LUW labeled .98252 .98338 .98295 .99089 .99049 .99069 .82257 .83600 .82923
Bunsetsu 94324 96250 95278 97385 97997 97690 .79196 .85138 .82059
Trained on Muromachi
LUW span 94672 95750 .95208 .96079 .95897 95988 .98913 .98996 .98954
LUW labeled .88427 .89435 .88928 .91468 .91295 .91381 .98039 .98122 .98080
Bunsetsu 80727 .86853 .83678 .87293 .89999 88625 .97810 .97927 97869
Table 5: Span-based precision, recall, and f1 values on CHIJ.
5.3 Hyperparameters Heian  Kamakura Muromachi
Table 2 lists the hyperparameters. We did not per- LUW span 74684 78141 17547
form an intense hyperparameter search, thus there labeled 62969 68091 66623
Bunsetsu 62397 67525 .67230

is a possibility for further performance improve-
ments. Since the number of sentences in CHJ
corpora is more than ten times compared to that
of in UD-Japanese-GSD, we decreased the total
number of epochs and the learning rate when we
trained on the CHJ. We used “cl-tohoku/bert-base-
japanese-whole-word-masking”® for the TLM.

6 Results and Discussions

6.1 Contemporary Japanese

We first compared the model variants using UD-
Japanese-GSD, as shown in Table 3. The variant
with the Embedding and sum pooling layers gen-
erally performed well. The head pooling layer
performed well for boundary predictions. This
suggests that sum pooling provides a better rep-
resentation of the entire SUW content, while head
pooling adequately preserves the boundary infor-
mation.

The variant with incontext and the sum pooling
achieved the highest precision, but a lower recall
value. This is because the incontext method in-
creases the number of subword tokens and often
exceeds the maximum subword token limit (512)
to represent an entire sentence. Table 4 presents a
span-based LUW score comparison with that in a
previous study (Matsuda et al., 2022). Our model
and that of Comainu used MeCab(Kudo et al.,

8https://huggingface.co/tohoku—nlp/
bert-base-japanese-whole-word-masking
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(a) F1 values of UD-Japanese-Models on samples of each pe-
riod.

Heian Kamakura  Muromachi
LUW span .84759  .85769 .88904
labeled .52768  .56726 .57092
Bunsetsu 57181 65828 75237

(b) F1 values of the models of each period on UD-Japanese-
GSD.

Table 6: Evaluations of zero-shot transfer between con-
temporary and historical Japanese.

2004) for the SUW tokenization using a UniDic
dictionary. The spaCy model uses SudachiPy °
for SUW tokenizer instead of MeCab. Our model
showed an improvement compared to Comainu,
while spaCy outperformed the other models. This
is because of the difference in the SUW tokeniz-
ers.

Because SudachiPy only supports contempo-
rary Japanese, we are supposed to use MeCab for
the SUW tokenizer and decided to use Embed-
ding + sum pooling model for historical Japanese
models.

6.2 Historical Japanese
Table 5 lists the overall results for the CHJ. The re-
sults evaluated on samples from the same period as

9https: //github.com/WorksApplications/
SudachiPy
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Figure 2: POS tags contained in bunsetsu versus error rate and normalized frequency.

during training ranged from 0.976 to 0.996. Thus,
our historical models have comparable or even su-
perior results to those of contemporary Japanese
(UD-Japanese-GSD), as shown in Table 3. This
was because the data size of the CHJ was sig-
nificantly larger than that of UD-Japanese-GSD.
The LUW performances degrades with time, while
the bunsetsu segmentation performances increase.
As time progresses and vocabulary becomes more
complex, it is suggested that styles that are more
conscious of syntactic structures such as bunsetsu,
increase.

Focusing on the transferability between the CHJ
corpora, the model trained on samples of newer
periods and applied to older periods yielded higher
performance than the reverse case. This is because
the vocabulary coverage of the newer samples is
larger than that of the older samples. The Heian
and Kamakura models work well on samples from
each other, however, they do not perform well on
samples from the Muromachi period, particularly
for labeled LUW and bunsetsu evaluations. This
implies drastic grammatical changes occured in
Japanese during the Muromachi period.

6.3 Transferability between Contemporary
and Historical Japanese

Table 6 shows the transferability performances of
contemporary and historical Japanese. In this eval-
uation, the POS embeddings may not work, be-
cause there is a large difference in fine-grained
POS categories between contemporary and histor-
ical Japanese. Thus, we used the highest level of
POS tags for the labeled LUW evaluations. The
model trained on UD-Japanese-GSD performed

53

35
30 35.00%
25 30.00% 5
2 g 25.00% S
4 20.00% &
15 o =
i - 15.00% 5
10 : : 10.00% (I
° " = | 5.00%
0 A AN - ) il 0.00%
5 £ 2 X g X 2 £ £ £ 3w
2388558338223
S Z 290 90932 522 38
«n < k=) F 8© 3 T35
= < =2 8 Z
X o R £ £
2 2 © 3
2 e
o
[+
 Heian #s Kamakura  #zzz Muromachi
—Heian - — Kamakura = - -Muromachi
(b) Trained on the Muromachi period
similarly in each period (Table 6a). However,

the performances of the models on samples from
each period increased with time, specifically for
the bunsetsu segmentation. This indicates that
the syntactic structure of sentences gradually ap-
proaches modern syntactic structures over time,
while the morphology of LUW is not as high.

6.4 Grammatical Changes during the
Muromachi Period

Figure 2 plots the error rates of bunsetsu contain-
ing the SUW of a particular POS tag. Figure 2
presents the results of the models trained on sam-
ples from the Heian and Muromachi periods. We
also plotted the normalized error frequency corre-
sponding to each POS tag for all errors in the same
period in Figure 2.

The model trained on Heian period data exhib-
ited a particularly higher error rate when it pre-
dicted bunsetsu containing auxiliary verbs or verbs
when evaluated on samples from the Muromachi
period. This tendency was also observed when
samples from the Heian period were evaluated us-
ing the Muromachi model. This indicates that
there may have been significant changes in sen-
tence endings that usually contained both verbs
and auxiliary verbs.

When evaluating samples from the Muromachi
period using the Heian model, the error frequency
relatively increased in bunsetsu-containing nouns
compared with the reverse scenario. This is be-
cause the newer model partially contains old vo-
cabularies.

In both cases, the bunsetsu-containing particles
resulted in a high error rates and frequencies.



Gold (Heian) and the Kamakura model prediction:

En One doesn’t do such things, there will surely be regrets

Ja | X3 | bX | F ok J|Hua|zr | B rR L KY
such things do not regrets there be surely will

LUW V N vV A P S v N P \Y% A A P

The Muromachi model prediction:

LUW| C | Vv A P S| V [N P| V vV A P |

Table 7: An example of bunsetsu and LUW analysis. V, N, A, P, S, and C stand for verb, noun, auxiliary verb,
particle, symbol, and conjunction, respectively. Vertical bars represent bunsetsu boundaries.

Evaluated on Heian Muromachi
C R C R
Sentence-ending 95 13.67 1835 43.74
Adverbial 1521 1541 462 27.26
Case-marking 11577 1046 7395 11.22
Binding 5216 11.55 2026 10.27
Conjunctive 2966 1599 1615 1249

Table 8: Error counts (C) and error rate (R) of bunsetsu
ending with a particle. We show a result of the Muro-
machi model evaluated on data in the Heian period, and
vice versa.

Case Study: Verbs and Auxiliary Verbs Ta-
ble 7 presents a sample sentence from the Heian
period data and the outputs of our models. The
Japanese space-separated tokens in Table 7 are
SUW tokens. In this case, the LUWs and SUWSs
are identical. V, N, A, P, S, and C denote verb,
noun, auxiliary verb, particle, symbol, and con-
junction, respectively. Vertical bars represent the
bunsetsu boundaries.

The Heian and the Kamakura models output
perfect LUW and bunsetsu boundaries, respec-
tively. The first word “X % (saru; do such)” is
a verb, however, it is often used as an adversative
conjunction, and thus the Muromachi model mis-
classified it as a conjunction. The second verb “
+ (se; do)” often composes a LUW with an an-
tecedent noun. The first noun “# X (waza; thing)”
has several senses, such as “ceremony” and “tech-
nique”; thus “# X is misunderstood as “do-
ing a ceremony” or “doing the technique” by the
Muromachi model. This is because a case marker
“% (wo; objective)” is required just after “4> X
to retain the meaning in the Muromachi period.

Both “X %” and “4” are common words; thus,
it is conceivable that the grammaticalization of
those words was progressing during the Muro-
machi period. Since the verbs and auxiliary verbs
are often contained in mispredicted bunsetsu in

54

Figure 2, the grammaticalization of those words
would be a major part of the grammatical changes.

The auxiliary verb “7% (na; complete)” is mis-
classified as a verb. This may be because the
expression “72{” became less common in the
Muromachi period.

Analysis of Particles Table 8 lists the error
counts and error rates of bunsetsu prediction when
the target bunsetsu ends with a particle for all par-
ticle subcategories. During the Heian period, ad-
verbial particles were frequently used. However,
during the Muromachi period, they became less
common. Conversely, while there were a few ex-
amples of sentence-ending particles in the Heian
period, they became commonly used in the Muro-
machi period !°. The error rates of bunsetsu pre-
diction ending with these particles significantly in-
creased when the Heian model was applied to data
from the Muromachi period. This could be be-
cause new usages for these particles emerged dur-
ing the Muromachi period alongside the changes
in verb conjugation forms, which often appear
with the sentence-ending particles.

7 Conclusion

This study focuses on providing a deep learning-
based (or LLM-based) bunsetsu, which is a min-
imal phrase in Japanese, and Long Unit Words
parser for the Heian period (AD 794-1185) to the
Muromachi period (AD 1336-1573) and evaluat-
ing its performances.

We model the parser as a joint sequential label
that combines the bunsetsu BI tag, LUW BI tag,
and LUW POS tags for each SUW token. We used
the transformer-based language model to output an
SUW token representation by taking the appropri-

"The samples of the Muromachi period are mainly
informal conversations, which used sentence-ending par-
ticles frequently. https://clrd.ninjal.ac. jp/chj/
muromachi-en.html



ately pooling of the subword representations for
the last layer of the transformer. We trained our
models on the corpora of each period, including
contemporary and historical Japanese.

The results ranged from 0.976 to 0.996 in the
f1 value for both bunsetsu and LUW reconstruc-
tions indicating that our models achieved compa-
rable performance to models trained on a contem-
porary Japanese corpus.

Through the statistical analysis and case stud-
ies comparing each period, the bunsetsu estima-
tion can be influenced by the grammaticalization
of morphemes.

In the future, we will expand the applicable pe-
riods. We will build a syntactic parser by annotat-
ing the dependencies between bunsetsu segments.
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Abstract

The Machine-Actionable Ancient Text
(MAAT) Corpus is a new resource provid-
ing training and evaluation data for restor-
ing lacunae in ancient Greek, Latin, and
Coptic texts. Current text restoration sys-
tems require large amounts of data for train-
ing and task-relevant means for evaluation.
The MAAT Corpus addresses this need by
converting texts available in EpiDoc XML
format into a machine-actionable format
that preserves the most textually salient as-
pects needed for machine learning: the text
itself, lacunae, and textual restorations.
Structured test cases are generated from the
corpus that align with the actual text resto-
ration task performed by papyrologists and
epigraphist, enabling more realistic evalua-
tion than the synthetic tasks used previ-
ously. The initial 1.0 beta release contains
approximately 134,000 text editions,
178,000 text blocks, and 750,000 individ-
ual restorations, with Greek and Latin pre-
dominating. This corpus aims to facilitate
the development of computational methods
to assist scholars in accurately restoring an-
cient texts.

1 Introduction

For the papyrologist and epigraphist, a fundamen-
tal task is the creation of an accurate transcription
of the text under consideration. Often the physical
medium supporting the text has undergone decay,
leaving gaps, or “lacunae,” in the text. Filling these
gaps is a painstaking task. Kleve and Fonnes
(1981) first recognized the potential of computer
science for assisting with text restorations of this
type, specifically by leveraging string-searching
algorithms. Advances in computational approaches
to text analysis, especially deep learning and large
language models, may be able to aid scholars in the
task of textual restoration. Developing such

1 [-ca?-] [-ca?-] [-ca?-]

_____ [ ... ]dwvovpévn() loalpodel()[ 1 v  Ipxovtl Iv[-ca.?- mnxdv kat’]
£uBad[olv éBdopnkovTa [fj Blowy éav Qo [-ca.?- kai xpnotnpiwv kai]
&vnkévTwy TrévTwy kal eilgédou kol EE6S0L v [BAwv yelToveg véTou oikia Ma-]

5 BWTou, ABOC dnpoaia poun év f eloodog kai ¥E[0dog T oikiag Seivog]

Naralog Bopp o Aottrot TéTOL TiG Wvovpévngloopl 1 [ ] [-ca?-]-
Twv vTwy év Tolg &T1o Boppd Tpog AiBa pépleat] TAg [klwpnlg -ca.?- ]

MNotp kéTwi(*), T[AV] 88 cuvtrepwvnplévnv TRV &pylupiov oeBooTod vopiopa-]
Tog dpaxH&g Tpltalkooiag &reaxnk[élval Tov TwAoOVT[x -ca.?- Top& Thg dvou-]
HéVNG BLX XELPXG(®) Kol Elvat THY TOD TrETpapévoL Whob T6TI[ou Kupeiay Kt kp&-]
[tnouv mept TNVl dlvou]lpévny [Klad Tod[g Talp’ adTiig Xplwpévoug -ca.?-]

Apparatus

. or (voupévn
. or’lg&[plov]
. L kéTw

2
2
8
10. I. xeLpog

1>1>1>1>

Figure 1: Leiden Transcription of P.Flor. 3 324, from
Aegyptus.89.240, 2011.
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systems typically requires large amounts of data,
both for training, and ideally for providing task-
relevant means for evaluation.

Here we introduce the 1.0 beta version of the
Machine-Actionable Ancient Text Corpus (MAAT
Corpus), which provides training and evaluation
data for the development of machine learning mod-
els that aid in the restoration of ancient Greek,
Latin, and Coptic texts.

2 Current text restoration corpora

There are several different corpora used in creating
systems for text restoration of ancient text. Two ex-
isting systems, Pythia (Assael et al., 2019) and its
successor Ithaca (Assael et al., 2022) use Greek in-
scription data from the Packard Humanities Insti-
tute (Packard Humanities Institute, 2023) that have
been converted to a modified Leiden Convention
(Wilcken, 1932) format. Papavassiliou et al. 2020
created a corpus of Mycenaean Linear B texts for
the restoration of Linear B tablets. Background
large-language models have been trained on cor-
pora as well, such as Latin BERT (Bamman &
Burns, 2020) and AristoBERTo (Myerston, 2022),
GreBerta (Riemenschneider & Frank, 2023).

Proceedings of the 1st Workshop on Machine Learning for Ancient Languages (ML4AL 2024), pages 56—60
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"corpus_id": "EDH",
"file id": "HD056774",
"block index": 1,
"id": "EDH/HD056774/1",
"title":
(Noricum)",
"material":
"language":

"gesteine",
"la",

"Epitaph from Municipium Claudium Virunum,

bei - S. Andr&/Lavanttal

"training text": " Ursuius vius sibi \nfecit et <gap/>\niurae uxo[ri]",

"test cases": [
{
"case index": 1,
"id": "EDH/HD056774/1/1",
"test case":
"alternatives": [

i

" Ursuius vius sibi \nfecit et <gap />\niurae uxol[..]",

Figure 2: Example JSON representation of a single ab block with one test case; \n reflects a Ib element.

3 Corpora of interest

Papyrologists and epigraphists have generally
agreed upon using a specialized schema developed
originally for epigraphy, EpiDoc (Elliott et al.,
2006), based on the TEI format (TEI, 1994). The
largest corpus of epigraphy stored in EpiDoc for-
mat is maintained by the Epigraphic Database Hei-
delberg (Epigraphic Database Heidelberg, 1993),
which focuses primarily on Latin inscriptions from
the Roman Empire. The largest corpus of papyro-
logical texts is Papyri.info, a collaboration among
several institutions that hosts papyrological data in
Greek, Latin, Coptic, and Arabic (Papyri.lnfo,
2007).

The EpiDoc format provides extensive capabili-
ties for describing metadata for inscriptions and pa-
pyri. It also has an XML-structured format as an
alternative to the Leiden Conventions. Texts are de-
scribed in ab blocks (originally standing for “anon-
ymous block™) and provide a richer description lan-
guage for text editions than the Leiden Conven-
tions. Because the Leiden Conventions format is
more compact, we will use this format for exam-
ples printed in this paper.

4 Features of MAAT corpus

Unfortunately, for many machine learning and
large language models, the structure of the ab
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blocks is too rich, since it provides internal struc-
ture for annotations, stylistic information and so on
(the Leiden Conventions also communicate some
of these features). With respect to building systems
for text restoration, a simpler system is required. As
Assael et al. 2022 note, these corpora need to be
“machine-actionable.” For this reason, they ought
to be easy to feed into machine learning systems for
learning and for evaluation.

Figure 1 shows the text from a typical edition
(P.Flor 3 324) from Papyri.info, a contract for the
sale of property (degyptus.89.240, 2011). For this
paper, three things should be noted. First, text res-
torations are provided in square brackets. For ex-

n

ample, in line three, the brackets in the phrase [1j
OJowy indicate that “fj & has been supplied by the
papyrologist and that the letter forms are not visible
on the papyrus itself. Second, missing text that the
editor has not restored is indicated by dots. One dot
corresponds to one missing letter; therefore, the
number of dots signifies the approximate number
of letters known to be missing. The marking “-ca.?”’
or “- - -” indicates a gap of unknown extent. Third,
alternate restorations of the text are sometimes
given in the apparatus criticus. These alternate
readings represent viable textual conjectures,
which were not ultimately chosen by the editor as
their preferred reading. While digital editions print
alternative restorations less commonly than print
editions, they are sometimes encoded in the XML




Corpus Edi- Blocks [ Resto-
tions rations

DCLP (Digital Corpus of Liter- 1,938 11,581 | 129,806

ary Papyri in EpiDoc XML)

DDbDP (Duke Databank of 59,693 |85,626 |507,985

Documentary Papyri)

EDH (Epigraphic Database Hei- | 72,353 | 80,753 [ 113,944

delberg)

Totals 133,984 | 177,960 | 751,735

Table 1: Counts of Editions, Blocks, and Restorations
from the corpora represented in the Machine-Actiona-
ble Ancient Text Corpus

data. In our sample text from Figure 1, two appa-
ratus notes appear for line two of the transcription.

To make a corpus machine-actionable for learn-
ing, especially for large language models, we
stripped away all but the most textually salient as-
pects of the text, using Unicode UTF-8 encoding.
Our corpus includes the preserved text, as well as
unclear letters and restorations. Although typo-
graphical conventions such as casing, interlinear
word space, punctuation, accents, breathing marks,
and other diacritics are typically not found on the
source material, such typography is retained. Line
breaks (indicated by the lb element in EpiDoc
XML) are also preserved. Unclear text, indicated
by Leiden Conventions with a sublinear dot, is
treated no differently than preserved text; text that
has been restored by an editor is bracketed. For ex-
ample, the text “kai g[iJoddov” converted to “kai
g[i]Joddov.” Occasionally (as in Figure 1) there are
alternative readings of a restored text, but since al-
ternative readings are difficult to process, the first
primary text restoration is chosen. Abbreviations,
especially prevalent in Latin inscriptions, are not
expanded.

Gaps in the text that have not been restored by
an editor must also be indicated. There are, essen-
tially, three types of gaps: gaps of known length,
gaps of approximately known length, and gaps of
unknown length. Gaps of known length are con-
verted to a dot for each missing letter. Similarly,
gaps of approximate length are treated as if the gap
length is known. The EpiDoc XML tag <gap/> is
used for gaps of unknown length. Gaps are some-
times indicated within a restored text, and such
gaps are moved outside. For example, the text “tov
nolobvi[a -ca.?- mapd]” is converted to “Tov
nolobvt[a]<gap/>[mapd]”.
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Figure 3: Distribution of gap lengths of text restora-
tions in the MAAT Corpus, logarithmic scale

In the end, all texts in the MAAT corpus are writ-
ten in a simplified format for easier use by machine
learning models. Texts from the ab blocks in Epi-
Doc XML format are converted to a light, Leiden-
like format, but with a bare minimum of annotative
markings: text and gaps of known and unknown
length, with restored text in brackets. Figure 2 pro-
vides our data for a 1*-2" century CE epitaph from
the Roman province Noricum (EDH HD056774,
2014).

Typically, in machine learning tasks, a portion of
a training corpus is set aside for evaluation. In the
most successful system to date for inscription res-
toration, Ithaca (Assael et al., 2022), one to ten
characters are artificially hidden during the testing
phase, and the machine (or parallel human evalua-
tor) is tasked with restoring these artificial lacunae.
A similar text-masking evaluation method is used
in Papavassileiou et al., 2023 for Mycenaean Lin-
ear B tablets, although they also ask the model to
perform text restoration of some real lacunae.

The large number of restorations created by pap-
yrologists and epigraphists found in the base cor-
pora of Greek, Latin, and Coptic texts provide a
rich opportunity to create evaluation data that are
aligned with the actual text restoration task. Alt-
hough it may be useful to train a system using arti-
ficial lacunae, it is more valuable to evaluate on the
text restorations done by working papyrologists
and epigraphists. These practitioners do not work
with random lacunae, since lacunae in situ are not
random: they follow a logarithmic distribution in
length (see Figure 3), and tend to occur in certain
locations. The immediate textual context of real la-
cunae also tends to be much deteriorated and un-
certain, in comparison to the sites of artificial lacu-
nae.




To that end, we can create test cases by using the
actual lacunae and text restorations that are present
in papyrological and epigraphic sources and use the
(retained) training data with the restored text for
evaluation. Because there are possible alternative
readings for a restored gap, though, it is better to
have a structured test case that retains those read-
ings. This will slightly complicate the evaluation
metrics. Rather than using, for example, character
error count for a single restoration, we need to use
the minimum character error count for a (possibly
singleton) set of alternatives. Similarly, calculating
the top-» rate will need to consider the presence of
the proposed restoration in the set of alternatives.

Thus, a single test case needs a little more struc-
ture, containing at least the text with a gap to be
filled, plus its alternatives. For example, for the text
“@vovpévn Ioal....]” the two alternative readings
“polc” and “prov” are required. Note that, because
letter forms of different types take up different
amounts of space on the material substrate (and
therefore calculations of the number of missing let-
ters are approximate), alternatives might, in fact,
have different character lengths. In these cases, the
mask to be restored will comprise the mode of al-
ternative lengths.

5 Format and distribution of data

Data in the MAAT Corpus is structured as a set of
JavaScript object notation (JSON) records (Bray,
2014), one record for each ab block. Each record
contains metadata about the block (an id field,
source corpus, source file id, block index within the
file, material, and language). It also has the training
text, as described above. For each restored text, a
test case is created, also containing an id, test case
index within the text, the test case itself, and the set
of alternatives. For statistical purposes, the number
of alternatives, the number, mode, maximum, and
minimum lengths of the alternatives are also de-
scribed.

Currently, there are approximately 134,000 edi-
tions processed in the MAAT Corpus, representing
approximately 178,000 ab blocks and 750,000 in-
dividual text restorations.

There is a small representation of Coptic texts in
the MAAT Corpus (around 1% of the total, mostly
papyri). Latin editions outnumber Greek editions
(54% and 45%, respectively). Papyrological texts
tend to be longer than inscriptions; papyrological
texts tend to be written in Greek and inscriptions in
Latin, so the number of Greek blocks is greater than
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the number of Latin ones (53% and 46%, respec-
tively). The number of text restorations in Greek
greatly outnumber Latin ones (83% and 16%, re-
spectively).

The gap lengths of restored text created by pap-
yrologists and epigraphists found in the MAAT
Corpus vary widely, and follow an unsurprising
logarithmic or Zipfian distribution. Gaps of length
1 (that is, one character) account for 30% of all
gaps, and gaps of length 4 or less account for 67%.
Gaps of length 10 or less account for 87% of all
gaps. Figure 3 shows the distribution.

6 Data availability and next steps

We are now releasing the Machine-Actionable An-
cient Text Corpus in a beta state at https://ze-
nodo.org/records/12518435 (Fitzgerald & Barney,
2024). The corpus is not meant to compete with
current systems, such as Papyri.info and EDH,
whose use cases are different. Instead, we hope that
the MAAT Corpus will aid the creation of software
systems that can help working papyrologists and
epigraphists accurately and efficiently hypothesize
text restorations in new editions of current and
newly recovered texts and inscriptions. Code for

creating the corpus can be found at
https://github.com/WMU-Herculaneum-Pro-
ject/maat.

We welcome the collaboration of other scholars
and institutions in the service of adding additional
data to the MAAT corpus, including data from
other ancient languages. Our specific interest is in
text restoration of Greek papyrological texts, but
we would like to expand this to Arabic and other
non-western texts as well. Given the similarities of
the text restoration task and its evaluation method-
ology among texts of different language traditions,
such expansions promise to be fruitful.

In the future, we also intend to create a pathway
by which any data made available in DSL-based
formats (Del Grosso et al., 2023; Williams et al.,
2015) can be converted for inclusion in future ver-
sions of the corpus.

7 Conclusion

This paper introduces and announces the publica-
tion of the MAAT Corpus, which provides an easily
accessible, versioned corpus of machine-actionable
ancient texts that can be used in machine learning.
It also makes available evaluation data, via its test
cases, that closely track the task of text restoration



as done by working papyrologists and epigraphists.
The MAAT Corpus currently includes approxi-
mately 60 Mb of ancient text, making it the largest
corpus available for evaluating text restoration
tasks. It is also the only dataset that uses actual la-
cunae and text restorations as test cases for evalua-
tion.
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Abstract

Ancient manuscripts are frequently damaged,
containing gaps in the text known as lacunae.
In this paper, we present a bidirectional RNN
model for character prediction of Coptic char-
acters in manuscript lacunae. Our best model
performs with 72% accuracy on single charac-
ter reconstruction, but falls to 37% when recon-
structing lacunae of various lengths. While
not suitable for definitive manuscript recon-
struction, we argue that our RNN model can
help scholars rank the likelihood of textual re-
constructions. As evidence, we use our RNN
model to rank reconstructions in two early Cop-
tic manuscripts. Our investigation shows that
neural models can augment traditional methods
of textual restoration, providing scholars with
an additional tool to assess lacunae in Coptic
manuscripts.

1 Introduction

Ancient manuscripts are an invaluable resource for
linguists and historians, offering insights into the
cultures and languages of the ancient world. Un-
fortunately, these manuscripts are often damaged,
with sections of text missing, known as lacunae. In
recent years, neural models have made significant
advances in various areas of linguistic research.
Nevertheless, attempts to apply neural methods to
manuscript reconstruction have been limited, and
none have specifically targeted Coptic (see Section
2.2).

In this paper, we explore the potential for neural
language models to be utilized in the reconstruction
of Coptic manuscripts. Leveraging a bidirectional
RNN language model trained for Coptic character
prediction, we explore how the model can be in-
tegrated into the workflow of scholars attempting
textual reconstruction. We consider the ability of
the model to predict the missing characters of la-
cunae directly, as well as to provide rankings for
the likelihood of reconstruction candidates already
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under consideration. We show that scholars can
use judgments from neural models as additional
quantitative evidence, in conjunction with more
traditional qualitative methods, to work towards
manuscript reconstruction.

2 Background and Related Work

2.1 Coptic

Coptic belongs to the Afro-Asiatic language family
and is the latest stage of the Egyptian language, the
longest continuously attested language on Earth.
Coptic utilizes the 24 glyphs of the Greek alpha-
bet and adds additional Demotic (Egyptian) glyphs
(a minimum of 6 depending on dialect) to repre-
sent sounds not found in Greek. In late antiquity,
more than a dozen regional dialects were spoken
and written (Layton, 2011). Owing to these di-
alect variations, the use of superlinear strokes and
other diacritical marks, and irregular orthography
of Greek loan words, Coptic provides a highly com-
plex dataset.

Coptic manuscripts preserve the diverse textual
tradition of late-antique and medieval Egypt. In-
scribed on papyrus and other perishable media,
many Coptic manuscripts contain small gaps or
holes (lacunae), which often cannot be restored
on the basis of other extant manuscripts. Scholars
use qualitative methods to restore lacunae, chiefly
through study of the manuscript’s context and
(con)textual parallels. Occasionally, appeal is made
to traditional canons of textual criticism, but here
too the scholar’s own judgment guides the restora-
tion (Wasserman, 2013). Initial testing has shown
that human methods of textual restoration have a
high error rate at both the word level and the char-
acter level (Sommerschield et al., 2023, 711-712).

2.2 Manuscript Reconstruction

Following early attempts using n-gram models to
approach the Indus Valley script (Rao et al., 2009),
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most previous work on reconstructing lacunae in
manuscripts, as well as in epigraphic data, has fo-
cused on Greek and Latin (Novokhatko and Maier,
2022; Matsumoto, 2022). Early projects included
eAQUA (Schubert, 2011), which pioneered propos-
ing automatic reconstructions of lacunae based on
statistical methods from larger datasets (in the con-
text of ancient languages). More recently, stud-
ies using neural methods for the reconstruction of
Greek (Assael et al., 2019) and Latin (Brunello
et al., 2023) have appeared, with papers in the last
three years specifically proposing to leverage trans-
former based language model architectures for both
born-digital and (OCRed) handwritten inputs in a
range of languages (Vogler et al., 2022).

We are not aware of previous papers applying
language models to the reconstruction of Coptic
texts, though a recent Web page prepared by the
CoptOT project! provides a ‘Manuscript Specula-
tion Tool” which helps in laying out missing letters
on predefined digitized manuscript spaces. How-
ever, in the tool’s operating scenario, a base text to
be laid out is known (e.g. a chapter of the Bible),
and the question is how many letters of each verse
might fit into each missing line or part of a line.
To our knowledge, this paper is the first attempt to
leverage language modeling for lacuna reconstruc-
tion in Coptic.

2.3 Masked Language Models

In 2019, Devlin et al. introduced BERT, a foun-
dational masked language model (MLM), where
random tokens in the input were masked, and the
model was trained to predict the masked token
based on the context. For 15% of the tokens in train-
ing, each one is replaced with either [MASK], a ran-
dom token, or the original token, without change.
Masking mimics gaps and teaches the model to
fill in missing segments of strings, which makes
the MLLM approach highly applicable to our lacuna
reconstruction task.

In the same paper, Devlin et al. found that a
model with only left to right context performed
worse than a bidirectional masked language model,
which is able to use context from before and after
the masked token. They advocate for a bidirec-
tional model that can use left and right context at
every layer over concatenating a left to right model
and a right to left model, as proposed earlier in
ELMo (Peters et al., 2018). As we are framing

1https://coptot.manuscriptroom.com/
manuscript-speculation-tool
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our lacuna reconstruction task as a prediction of
masked characters, parallel to the masked token
prediction done by models such as BERT, this find-
ing regarding bidirectionality leads us to adopt a
bidirectional strategy for our model as well.

As the masked language model strategy was pop-
ularized with transformer based models such as
BERT, there is not much existing work regarding
the implementation of masked language models
with an RNN-based architecture. However, in sce-
narios with relatively small quantities of data and
limited long distance dependencies, it can still be
preferable to use an RNN-based architecture over
a transformer-based architecture (Mishra, 2021).
Considering that we have almost 1.22 million to-
kens of Coptic data, and we are looking to fill in
character gaps at the sentence level, we consider
our Coptic lacuna prediction task to be one such
scenario, and we opt to use an RNN based architec-
ture in our model.

While we have done some preliminary prototyp-
ing with transformer based architectures, such as
ELECTRA (Clark et al., 2020), so far our exper-
iments with RNN-based architectures have made
the most progress. As such, we present those find-
ing here. However, we still believe it would be
worthwhile to return to the exploration of various
transformer architectures in future work.

3 Data

For training and testing the model, we leverage
the data from the Coptic SCRIPTORIUM Corpora
(Schroeder and Zeldes, 2016). This project com-
piles text from a variety of manuscript sources and
totals almost 1.22 million tokens of Sahidic Coptic.
The Coptic SCRIPTORIUM project is an ongoing
effort to create an open online database and tool set
for digital research in Coptic. This effort includes
creating normalized, machine readable versions
of Coptic manuscripts with a variety of linguistic
annotations created using the online, version con-
trolled GitDox annotation tools (Zhang and Zeldes,
2017). The full data set is publicly available on
GitHub? in various machine readable formats, and
the corpora are searchable via an online query in-
terface.?

The digitized manuscripts have a normalized
version (with regard to spelling, etc.) of the text

2https://github.com/CopticScriptorium/corpora
3https://annis.copticscriptorium.org/annis/
scriptorium
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as well as a version representing the original text.
We leverage the original text version, annotated as
orig_group, as we are creating a system to aid
scholars who want a reconstruction of the origi-
nal text of the manuscripts. Within the digitized
original text, damaged and missing sections of the
manuscripts are represented with brackets and dots,
which can be used to convey different levels of dam-
age and manual reconstruction in the manuscript.
This information is represented in the Leiden+*
documentation format: missing sections are de-
noted with brackets with dots inside, where the
number of dots is equal to the estimated number of
characters missing in the line of text (so [...] would
indicate 3 missing characters); brackets with letters
inside indicate a damaged section which was re-
constructed by a scholar; and characters with some
damage that have been manually reconstructed by
a scholar can appear outside of brackets with a
dot beneath them. Immediately below are example
sentences from the data showing these formatting
styles:

Blank Lacunae:

a9BeeBel. .. Jaaxice[ .. ]

Reconstructed Lacunae:
&TWAIWARA[ &9 T Tt00 vy

A TWLLNIETCR,0FOPTENETCONCLLNINTTE

The completely blank sections are the target use
case for our system, and we use the manually recon-
structed lacunae as the gold standard test data for
our model. As this gold standard test data is a lim-
ited proportion of the corpora, we also mask char-
acters from the sentences of the corpora without
lacunae to create training data and additional test
data for our model. The Coptic SCRIPTORIUM
Corpora have a total of 36,252 complete sentences
(no lacunae) with over 2.8 million characters. The
lengths of these sentences range from 5 characters
to 1067 characters, with an average sentence length
of 80 characters. We created a train/dev/test data
partition from these complete sentences, with the
proportions 90:5:5, giving us a training data set of
32,676 sentences, a dev data set of 1,815 sentences,
and a test set of 1,816 sentences.

In addition to the complete sentences, there is a
portion of sentences in the Coptic SCRIPTORIUM
Corpora which contain lacunae. There are a total
of 792 sentences, with approximately 60,000 char-
acters, which contain only those lacunae that have

*https://papyri.info/docs/leiden_plus

63

Qutput
RNN S

Backward LSTM
Forward LSTM
il yalll
(- \\ \/ \\ \/I\I Masked Inputs |/ \I
A4 A4 p_—

THIAEHTEP#NL Tad#YTEPI#A

TAlAEYTEPINA (SentecePiece Encoded) |

| Random

Smart
Masking

Masking

Preprocessing ‘

Figure 1: Model architecture and preprocessing

been manually reconstructed by Coptic language
scholars. This set of sentences is our gold stan-
dard test data. The average sentence length in this
set is 75 characters. The total number of missing
characters in this test set is 3,594, with an average
gap length of ~2 characters. There are also 780
sentences, with approximately 52,000 characters,
that contain at least one empty lacuna which has
not been reconstructed by a scholar. This set of
sentences is the target data that we are building our
system to fill in, so there is no gold standard to eval-
uate against directly. The average sentence length
in this set is 68 characters, and the total number of
missing characters is 3,658, with an average gap
length of ~3 characters. The similarities in average
sentence length and average lacuna gap length be-
tween these two data sets suggest that the model
should be able to perform well on the target data
set if it performs well on the test data set.

4 Model Architecture

For our lacuna prediction model, we implement a
character based bidirectional RNN model, trained
with a character-level masked language modeling
task. We start with a character-level vocabulary and
embedding layer, generated with SentencePiece
(Kudo and Richardson, 2018). The vocabulary is
134 characters, including some control symbols,
the mask token, the lower-cased Coptic alphabet,
and some punctuation. Our final model has an
embedding size of 200, hidden size of 300, and
projection size of 150. For the body of the model,
we then create a four layer bidirectional LSTM, an
AdamW optimizer, and learning rate of 0.0003 (se-
lected as the optimal parameters after conducting
an extensive hyperparameter search). The LSTM


https://papyri.info/docs/leiden_plus

architecture was chosen over other architectures,
such as GRU, for its ability to capture long distance
dependencies, which provide relevant context for
lacuna reconstruction. We use categorical cross
entropy for our loss criterion, evaluating only on
predictions for masked characters. A diagram of
our model architecture and preprocessing is shown
in Figure 1.

The resulting model is fairly small model, and
training on the full training data set can be ac-
complished in a few hours, with or without GPU
hardware. As such, with our model code and the
publicly available data from the Coptic SCRIPTO-
RIUM project, models at the performance level
presented in this paper will be accessible to in-
terested parties. The code for our model is avail-
able on GitHub’, and instructions for recreating
the data partition, training the model, and run-
ning/interacting with the model are included in the
README.

We explore several different masking strategies
in the training of our model. For the first masking
strategy, which we refer to as "random masking",
we used the BERT masking strategy of randomly
masking 15% of the characters. When creating the
index vector for the sentence, each character has
a 15% chance of being masked. If the character is
masked, there are three possible masking options.
80% of the time, the character is replaced with a
special mask token, while 10% of the time it is
replaced with a random character, and finally, 10%
of the time, the character is not replaced.

We also implement a masking strategy called
"smart masking", which mimics the distribution of
lacunae in the gold standard test set (described in
Section 3). In the reconstructed lacuna test set, the
sentences range from having one gap to as many
as twenty. Over 60% of the sentences have just
one gap, 35% have two to nine gaps, and just 5%
have more than nine gaps. To mimic the variable
number of gaps, we randomly incorporate one to
five gaps per sentence. Of the 1,470 gaps in the
782 sentences, almost half of them are just one
character long. The length of each gap has 48%
of being just one character long, 22% chance of
being two characters long, 12% chance of being 3
characters long, and for the final 18% of the time,
the gap length is randomly generated to be between
four and thirty-four characters.

5https ://github.com/lauren-1lizzy-levine/
coptic_char_generator.git
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In addition to the two different masking strate-
gies for distribution, we also had two strategies re-
lating to the re-masking frequency of the data. The
first strategy is to mask one time, when loading the
data initially, which we call "once masking". The
second option is to re-mask the training data at each
epoch, which we call "dynamic masking". Between
the two masking distribution strategies and these
two re-masking frequency strategies, we ended
up with four different model types: random-once,
random-dynamic, smart-once, and smart-dynamic.
For training, we auto-generated masked dev data
that matched the distribution masking strategy (ran-
dom or smart) of the model being trained.

5 [Evaluation

For evaluation, we had three different test sets.
From the test partition made from the complete
sentences that had no lacunae, we created two test
sets: one with random masking and one with smart
masking. Our final test data set was the gold stan-
dard data of manually reconstructed lacunae de-
scribed in Section 3. We had our models predict
on the data in all three test sets and scored their
performance with a simple accuracy metric (num-
ber of masked characters correctly predicted / total
number of masked characters in data set).

5.1 Baselines

We applied three rudimentary heuristic baselines
to our three test data sets, the results of which are
shown in the bottom half of Table 1. The first
baseline selected a random character from the Sen-
tencePiece character model vocabulary for each
character prediction. The second baseline always
predicted the most common letter in the data set
(mode character), "€". The third baseline is a sim-
ple tri-gram language model. Results for "Test
Random" and "Test Smart" are the performance of
the baselines on the auto-generated random masked
test data and smart masked test data respectively,
while "Test Reconstructed Lacunae" is the perfor-
mance on the gold standard data of manually re-
constructed lacunae.

5.2 RNN Evaluation

We started our model training by doing hyper-
parameter searches on four different model con-
figurations, using combinations of the masking
strategies for masking distribution and re-masking
frequency (random-once model, random-dynamic
model, smart-once model, smart-dynamic model).
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Test Random Test Smart

Test Reconstructed Lacunae

Models

Random-Once 0.703 0.323 0.336
Random-Dynamic 0.722 0.338 0.369
Smart-Once 0.610 0.366 0.334
Smart-Dynamic 0.603 0.359 0.319
Baselines

Tri-gram 0.259 0.134 0.155
Mode Character 0.126 0.124 0.121
Random 0.008 0.007 0.007

Table 1: Model and baseline accuracy results on the three test sets

After we selected the best performing hyperparam-
eters for each masking configuration with regard to
accuracy scoring on the correspondingly masked
dev data, we ran the four best performing models
(one for each masking configuration) on the three
test data sets outlined at the top of this section. The
results from these runs are shown in the top section
of Table 1.

The random test set has the highest scores on
average, while the reconstructed lacuna test set has
the lowest scores on average, indicating that the re-
constructed lacuna test set is the more difficult sce-
nario. However, it is also the most realistic scenario
out of all three test sets, so performance on this test
set should be considered the most significant. We
observe that all of the tested model configurations
outperform the baselines, showing a substantial in-
crease in performance on all test sets. Out of the
four different masking strategies we explored, we
found that the model utilizing the random-dynamic
masking strategy had the highest performance on
the random test set and the reconstructed lacuna
test set, while the smart-once masking strategy had
the highest performance on the smart test set.

It is somewhat surprising that the model utilizing
the random strategy outperforms the model using
the smart strategy on the reconstructed lacuna set,
considering that the smart masking strategy was
developed to better reflect the conditions in which
actual lacunae occur. This result is likely because
the reconstructed lacuna data set is composed of
only sentences with fully reconstructed lacunae,
and thus is biased towards containing shorter la-
cunae than we might otherwise expect. As such,
in Figure 2 we consider the accuracy of each of
our models with respect to the length (in charac-
ters) of the lacuna being reconstructed, and we
observe that overall performance decreases as la-
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Character Prediction Accuracy
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Figure 2: Accuracy of the various model configurations
and tri-gram baseline relative to lacuna length in charac-
ters

cuna length increases. We also see that while the
random-dynamic model has the best performance
for lacunae of length 1-2, the smart-once model ac-
tually has better performance for lacunae of length
6+. For this reason, we recommend the smart-once
model configuration for cases where the lacuna is
more than a few characters. For our use case stud-
ies in Section 6, we consider outputs from both the
random-dynamic model and the smart-once model.

5.3 Relative Ranking

As we saw in the previous section evaluating the
quality of our RNN model outputs, performance
on the more realistic reconstructed lacuna test set
was relatively low, peaking at 37% accuracy. As
such, we cannot consider the model by itself to be a
definitive means of manuscript reconstruction. The
model is better thought of as an additional tool in
the toolbox of scholars attempting to reconstruct
manuscript lacunae. To this end, we propose to
use the RNN model as a means of ranking the
likelihood of potential candidates for the lacuna
reconstruction.

If a scholar has several candidates for a lacuna



from various qualitative methods of reconstruction,
in addition to getting the model to predict what
it considers to be the most likely reconstruction,
we can also extract the probabilities associated
with each of the scholar’s potential reconstructions.
Once we have these probabilities, we can sort them
in descending order to get a ranking of which po-
tential reconstructions the model considers to be
more likely.® This will give a sense of which op-
tion is statistically the most likely considering the
distribution of characters present in the training
data of the model. While still not definitive, this
ranking gives scholars another piece of evidence to
consider when putting forward an argument for a
particular reconstruction.

6 Case Studies

In this section, we demonstrate how our RNN
model may be integrated into the workflow of a
Coptic scholar working on manuscript reconstruc-
tion by looking at use cases in two early Coptic
manuscripts. We use the model to predict recon-
structions, or to produce relative rankings of po-
tential reconstructions under consideration. We
explore how this additional information may con-
tribute to a scholar’s considerations during the re-
construction process.

6.1 Isaiah 37:24

The manuscript P.Duk. inv. 282 comprises four
contiguous fragments from a parchment codex and
is currently held at Duke University, pictured in
Figure 3 (Wagner, 2022). The manuscript contains
portions of Isaiah chapters 36—38 in the Sahidic
dialect. The manuscript’s date is unknown. Some
lacunae in the manuscript can be restored on the ba-
sis of the only other Sahidic manuscript containing
these chapters, Morgan Library M 568. For exam-
ple, at Isaiah 36:16 there are two small lacunae in
the Duke manuscript: &[..JnTe[ . JRceasoow. We
can restore the original reading with confidence
from the Morgan manuscript: &[vw] nTe[T Jtce
22.007% (“and you will drink water”).

Other lacunae in the Duke manuscript can-
not be restored entirely on the basis of the
Morgan manuscript. For example, at Isaiah
37:24 there are four lacunae: axto[

]&Puul'[

®One limitation of this is that in order for the probabilities
to be compatible, the input context for the model must be the
same. This means that all candidates being compared must be
of the same character length.

66

Figure 3: P.Duk. inv. 282 fr. B verso

[....] The Morgan manuscript helps restore
the passage excluding the penultimate lacuna:
axno[6te6 nxoleic alkxooc] xepeen[awai
nrp, Japasa [ €2, pai en[xice] (“You
have reproached the Lord. You said, ‘with the
multitude of my chariots [...] to the height.”).
Where the Duke manuscript has [, the Morgan
manuscript contains the past tense conjugation base
verb: aiaxe eg,pai enxice (“I have gone up to
the height.”). Still, as in the Morgan manuscript,
the Duke manuscript must contain a verb in the
lacuna followed by eg,pa1 “up”. Thus the letter
before the lacuna can only be the personal sub-
ject prefix T - “I”, which must be followed by a
present or future tense verb. Restricting our search
to verbs that are both contextually appropriate and
appear in high frequency in the database of the
Coptic SCRIPTORIUM project, we propose three
reconstructions. The models rank each reconstruc-
tion as a sequence of consecutive characters, in-
cluding uninterrupted context following and espe-
cially before the gap: axmno6febnixoeicakxoo-
cxep,aanayainngapeeat| Jeo,par.  The
three reconstructions from the random-dynamic
model are as follows, in order of probability (the
log probability’ of each sequence is included in
parenthesis):

"Log probabilities are used to avoid potential numerical
underflow that can result from the multiplication of standard
probabilities when calculating the likelihood of a sequence.



1. 2200we (-11.16) — T[aroowe] e2,pa
“I am walking up”

2. nalwk (-12.27) — T{nalwk] eg,pas
“I will go up”

3. naaae (-12.60) — T[raaae] eg,pas
“I will rise up”

The first result, which is in the durative present
tense, is less appealing than the other results when
considering the other ancient language witnesses to
this passage in Isaiah. To the best of our knowledge,
all witnesses approximate the Morgan manuscript’s
past tense, except for two witnesses that give the
future: the Syriac Peshitta ('n’ ’sq, ‘I will go up”)
and some manuscripts of Jerome’s Commentary
on Isaiah (11.7: ego ascendam, “1 will go up”).
These two witnesses increase the probability of the
second and third result, both of which are in the fu-
ture tense (signaled by the auxiliary na.). Although
ranked lower by the model, some scholars would
surely prefer the third result over the second, since,
as we saw above, the same verb (&.A€) appears
in this passage in the Morgan manuscript. On the
other hand, beyond its higher ranking, 8wk appears
far more often in Old Testament books and espe-
cially in Isaiah: in the Morgan manuscript 8wk is
used five times in ch. 37 alone, while &a€ appears
only here at the point of disagreement with the
Duke manuscript. Thus the most plausible restora-
tion of the passage: a[kxooc] xep,een[awai
ng Japar s T rafwxk e, Jpai enxice “You have
reproached the Lord. You said, ‘with the multitude
of my chariots I will go up to the height.”

6.2 The Nag Hammadi Library — Gospel of
Philip

The Gospel of Philip (GPhilip) is the third composi-
tion included in codex II of the Nag Hammadi (NH)
library, a collection of thirteen papyrus codices
containing a diverse range of ancient Christian
texts. Unlike the example discussed in Section
6.1, there are no other surviving manuscript ver-
sions of (GPhilip). The codex sustained moderate
damage to the top and bottom margins and most of
its leaves contain peninsula-shaped lacunae®.

The restoration of Saying 55 (63.30-64.5) has
been a particular point of scholarly intrigue.
While smaller gaps in the Saying can be restored

8Archival photo of the manuscript: https:

//ccdl.claremont.edu/digital/collection/nha/
id/2962/rec/182
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with some confidence, scholars have proposed
various readings for one lacuna of 5-6 letters,
which contains the object of the verb acna.ze or
“kiss.” The passage, which describes Jesus kissing
Mary Magdalene, reads: neqa.cna.ge 22.200c &.-
Tec...n,a2, ncon, "He used to kiss her on the
many times" (63.35-36).

This case presents an especially challenging re-
construction due to the size of the lacuna. As dis-
cussed above (Section 5.2), the accuracy of the
model degrades as the size of the lacuna increases.
We consider outputs from both the smart-once
model, which provides the highest accuracy rates
for longer lacunae, and the random-dynamic model,
which provides the highest accuracy rates for short
lacunae.

Since the model is trained on Sahidic texts, the
Saying needs to follow the orthographic conven-
tions of the Sahidic dialect. Thus we changed the
prenominal preposition &.- ‘towards, on’ to €- (in
the Sahidic dialect & is the past tense marker),
resulting in the input text: a&cnaze 2a220C €-
1 sto,&.2, stcom “kissed her on her ... on
many occasions”.

The four letters before the lacuna includes an in-
direct object construction headed with preposition
& followed by a feminine possessive article Tec-
“hers.” Due to this syntactic environment, recon-
structions are limited to feminine nouns, likely a
body part in this case. To fill the lacuna, we have
the models produce their predictions for either a 5
character gap or a 6 character gap:

Smart-Once:

5 spaces: 2,R¥er
6 spaces: 2,Rveee

Random-Dynamic:

5 spaces: 2,00€€
6 spaces: 2,00€€€

Unfortunately, none of the reconstructions produce
an attested Coptic lemma.

However, the models can still be leveraged to
compare editorial suggestions and assign greater
or lesser probability of editorial reconstructions. In
this case, editors Bentley Layton and Hans-Martin
Schenke propose several options for a 5 letter femi-
nine body part: Schenke proposes “mouth” (Ta.-
npo). Layton offers multiple readings: “mouth”
(m&i6€ or Tamnpo), “cheek” (owo6e€), “foot” (6a-
aox), and "forehead"(Teg,ne) as possible candi-
dates (Schenke, 1997; Layton and Isenberg, 1989).
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The editors present these candidates in an un-
ordered manner, not singling out any one as being
particularly more likely than the others.

Table 2 compares the output of smart-once
model and the random-dynamic model, and con-
trasts the confidence of each model’s top two pre-
dictions (again, not attested Coptic lemmas) with
the list of attested feminine nouns supplied by the
editors. As the table details, the lemma (o%06€),
“cheek” is favored by the smart-once model and
the lemma (Teg,ne), “forehead” is preferred by
the random-dynamic model. Both of these results
differ from Schenke’s reconstruction of vamnpo,
“mouth” (Schenke, 1997).

Table 2 also compares the effect of normalization
on the model reconstructions. As discussed above
in Section 3, the Coptic SCRIPTORIUM data uti-
lized to train the model includes both normalized
and original (un-normalized) data. We hypothe-
sized that the normalization of dialect differences
to conform to Sahidic orthography would greatly
impact the results. However, in the end, the normal-
ization had little impact and only slightly modified
the ranking orders and confidence as Table 2 docu-
ments. Note the slightly different ranking of na.i6e
and Tanpo, two different words meaning "mouth,"
by the smart-once model.

These models provide quantitative data about
reconstructions and offers a relative ranking of the
alternatives proposed by text editors. In cases like
the one discussed above in GPhilip where editors
have provided multiple possible reconstructions to
fill the lacuna and comparison to other manuscripts
is not possible, this is an especially valuable tool
in assisting readers in deciding which reading best
fits within their comprehension of the passage.

7 Conclusion

In this paper, we presented a bidirectional RNN
architecture to reconstruct lacunae in Coptic
manuscripts. When training our masked language
model for character prediction, we explored dif-
ferent masking strategies for masking distribution
(random and smart) and re-masking frequency.
We evaluated our models against both artificially
masked data and scholar-reconstructed lacunae.
We found that the performance of our models de-
clined as the length of the lacunae being recon-
structed increased, peaking at above 70% for sin-
gle character reconstruction and below 40% for
lacunae of length 6+ characters. And while the
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model trained with random masking performed
with higher accuracy for single character recon-
struction, the model trained with smart masking
performed with higher accuracy on the reconstruc-
tion of longer lacunae, which is more similar to
the real world use case, as it is more difficult for
scholars to qualitatively reconstruct longer lacunae.

Using the judgments from these models, we ex-
plored two use cases of lacuna reconstruction from
ancient Coptic manuscripts. We considered not
only the direct predictions from the models, but
also the likelihood ranking of reconstruction can-
didates already under consideration from the past
proposals of various scholars of Coptic. Despite
the low accuracy of the models on reconstructing
lacunae of more than a few characters, we see that
the rankings can still be leveraged to provide ad-
ditional quantitative evidence alongside traditional
qualitative methods. This initial application of neu-
ral methods to Coptic manuscript reconstruction
shows the potential for integrating the judgments of
models with the existing qualitative methods used
by scholars working on manuscript reconstruction.

Limitations

As previously discussed in Section 5, the quality
of our RNN models is relatively low, limiting the
utility of its judgments. As we primarily consider
a single model architecture in this investigation, in
future work it would be beneficial to explore archi-
tectures beyond RNNs and training tasks beyond
masked language modeling. In addition to differ-
ent architectures, we believe there is much room
for exploring different inputs for model training,
including lexicographic information (what possible
words might be, for example using a digital Coptic
dictionary such as Feder et al. 2018), or linguistic
annotations, such as morphosyntactic information
provided by Coptic treebank data and correspond-
ing parsers (Zeldes and Abrams, 2018; Zeldes and
Schroeder, 2016).

Additionally, our current model does not account
for the diacritics used in Coptic writing, and it is
trained on a sentence-wise basis without incorpo-
rating document-level information, such as the sur-
rounding sentences, or details about the page lay-
out. Future work may benefit from incorporating
diacritics and additional context into the training
paradigm for the model. Future work should also
include the ability to give a ranking of lacuna can-
didates of different lengths, which is not currently



Smart-Once Norm Smart-Once Orig

Random-Dynamic Norm

Random-Dynamic Orig

2,nvent NA ,nwent NA 2,00ee NA 2,00ee NA
(-6.89) (-7.69) (-7.88) (-8.05)
2,00ee NA 2,00ee NA 2nven NA 2,Hwen NA
(-8.08) (-7.99) (-11.51) (-11.90)
0%06€ cheek ovo6€ cheek Tep,ne forehead Tep,Nne forehead
(-16.11) (-15.64) (-12.95) (-13.08)
Tep,ne forchead  Tep,ne forehead oro6€ cheek 07°06€ cheek
(-16.53) (-16.42) (-13.16) (-14.39)
6a20X foot 6a20X foot Tanpo mouth Tanpo mouth
(-17.35) (-17.42) (-14.66) (-14.79)
nai6e mouth Tanpo mouth nai6e mouth nai6e mouth
(-18.74) (-18.64) (-16.12) (-15.36)
Tanpo mouth nai6e mouth 620X foot 6ar0X foot
(-19.02) (-18.71) (-16.94) (-16.48)

Table 2: Rankings of lacuna candidates for the GPhilip use case (English translation in italics and log probabilities

in parenthesis)

possible because model inputs must be of the same
sequence length for their probabilities to be com-
parable.
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Abstract

This work explores the potential of Trans-
former models focusing on the translation of
ancient Egyptian hieroglyphs. We present a
novel Hieroglyphic Transformer model, built
upon the powerful M2M-100 multilingual
translation framework and trained on a dataset
we customised from the Thesaurus Linguae
Aegyptiae database. Our experiments demon-
strate promising results, with the model achiev-
ing significant accuracy in translating hiero-
glyphic into both German and English. This
work holds significant implications for Egyp-
tology, potentially accelerating the transla-
tion process and unlocking new research ap-
proaches. Source code at https://github.
com/mattia-decao/hiero-transformer.

1 Introduction

Egyptology, with its rich trove of texts and inscrip-
tions, has recently begun to embrace the poten-
tial of computational linguistics. However, a no-
table scarcity of publications on the topic is evident,
with existing efforts primarily focused on optical
recognition of hieroglyphs rather than their trans-
lation (Sommerschield et al., 2023). Notably, the
development of these resources primarily originates
from computer science disciplines and highlights
the need for deeper integration with Egyptology
field.

We bridge this gap by proposing an Egyptology-
driven automatic translation approach, merging

*Mattia De Cao made the most significant contributions
to this study, including developing the study conception and
its elaboration, designing the experiments, mining/analyzing
the data and writing the manuscript. Nicola De Cao supported
the implementation of computational models, created the pa-
per layout, and revised the manuscript. Angelo Colonna re-
viewed the human evaluation process and ancient Egyptian
background material. Alessandro Lenci contributed to widen-
ing the automatic evaluation phase and provided technical
review.
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Egyptology with Natural Language Processing
(NLP) tools. Our Hieroglyphic Transformer trans-
lates ancient Egyptian using an adaptation of M2M-
100 multilingual model (Fan et al., 2021) to address
hieroglyphic writing’s challenges. We construct
a meticulously curated dataset derived from the
renowned database project Thesaurus Linguae Ae-
gyptiae (TLA; Richter and Werning, 2023),! ensur-
ing its compatibility with the model through rigor-
ous data filtering, cleaning and structuring.

Experiments yield promising results, with the
Hieroglyphic Transformer achieving reasonable ac-
curacy in translating hieroglyphs into both German
and English. Furthermore, we evaluate the model’s
performance on texts of varying grammatical com-
plexity and literary styles, highlighting its capacity
to handle diverse linguistic structures.

This work holds significant implications for
Egyptology. NLP-powered approaches like ours
can potentially accelerate and improve translation
accuracy and depth. Furthermore, it paves the way
for applying Deep Learning models to decipher and
translate other ancient languages.

The main contributions of our work can be sum-
marised as follows:

1. presenting a new dataset extracted from the

TLA database;

adapting a pretrained model to translate Hiero-

glyphic;

. showing an automatic and a human evaluation
of the model’s performance.

2 Background

2.1 Machine Translation for Ancient

Languages

The linguistic diversity of the world encompasses
over 7,000 distinct languages. Of these, En-
glish, Chinese, Spanish, Japanese, and other Eu-

'https://thesaurus-linguae-aegyptiae.de
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ropean languages represent the most extensive cor-
pora (Summer Institute of Linguistics, 2024; UN-
ESCO, 2024), while languages spoken primarily
in Asia and Africa often lack comparable data re-
sources (even thousands of times less). These “low-
resource” languages attract research from both hu-
manistic and engineering perspectives, with studies
offering novel ideas (Aharoni et al., 2019) or explor-
ing understudied niches (Ahia and Ogueji, 2020).

Ancient languages are also part of this wave, but
most of their data remains non-machine-readable
(i.e., images of objects with text on them or scans
of parchment or papyri). Thus most of the re-
cent attention from the machine learning commu-
nity was directed to Optical Character Recognition
(OCR). Major case of these studies include: (i)
Kuzushiji, a Japanese cursive script of 8th-18th
centuries (Lamb et al., 2020); (ii) Mayan hiero-
glyphs (Roman-Rangel et al., 2009); (iii) ancient
Chinese character manuscripts (Sun et al., 2022);
(iv) Sumerian cuneiform (Ahmed H. et al., 2020);
and (v) Akkadian cuneiform (Gutherz et al., 2023).

While ancient Egyptian has a decent amount of
data available, a substantial portion remains non-
machine-readable, primarily in physical books and
articles. Even though these sources are accessi-
ble online, they necessitate significant digitization
efforts for effective utilization in language process-
ing.?

Fortunately, the Egyptian language benefits from
the numerous publications digitized and translated
into German and English collected in the monu-
mental project Thesaurus Linguae Aegyptiae (TLA;
Richter and Werning, 2023) which we use as the
source of data in this work.

2.2 Related Work

The majority of recent research in Egyptology using
Al focuses primarily on OCR. Examples of such
studies include those conducted by Franken and
Van Gemert (2013); Hossam et al. (2018); Barucci
et al. (2021); Moustafa et al. (2022); Barucci et al.
(2023).

Apart from OCR, to the best of our knowledge,
only a single publication addresses the task of trans-
lation. This work was undertaken by Wiesenbach
and Riezler (2019), who sought to address the

2 A significant portion of Egyptological articles and books
available online have been digitized as images or in a format
that hinders machine data extraction. Thus, the first step in
making these data usable would be transcribing them into a
machine-readable format.

72

scarcity of resources by incorporating transliter-
ation and POS tags into the training process. This
scarcity of publications highlights the need for fur-
ther research in the application of Al to Egyptology.

2.3 Ancient Egyptian Language

The ancient Egyptian language is a member of the
so-called Afro-Asiatic language family and one of
the longest continuously attested, having been used
from approximately 3200 BCE to 1100 CE (Allen,
2014). Its historical development is usually artic-
ulated in six phases: Archaic Egyptian, Old Egyp-
tian, Middle Egyptian, Late Egyptian, Demotic, and
Coptic.

Notably, Middle Egyptian (2100-1600 BC) re-
tained its status as a “classical” language for the
production of historical and religious texts even
after its decline as a spoken language, persisting
until the end of ancient Egyptian history. For this
reason, we opted for Middle Egyptian as the refer-
ence language to train the models in our study (to
which we added Old Egyptian as later explained in
Section 3.2).

Throughout its existence, ancient Egyptian em-
ployed four primary writing systems: hieroglyphic,
hieratic, demotic, and coptic. Hieroglyphic con-
sists of pictorial signs mostly carved in stone and
used in monumental contexts. Hieratic, was a sim-
plified and cursive form of hieroglyphic, used for
writing on ostraca and papyri. Demotic, a late cur-
sive script developed from hieratic, was exclusively
employed during the language phase of the same
name. Coptic writing was derived from the Greek
alphabet, with seven additional letters from De-
motic to express sounds absent in Greek , and was
solely used to write Coptic.

In this work, we used hieroglyphic (or hieratic
transcribed to hieroglyphic) because demotic and
coptic scripts were used to write language phases
other than the ones we chose to employ, i.e., Old
and Middle Egyptian. Therefore we will not expand
on the other writing systems. For more information
about the ancient Egyptian language system, we
redirect the reader to Loprieno (1995).

2.4 Hieroglyphs

A hieroglyph can be classified into three distinct cat-
egories: ideogram, phonogram, and determinative

(Allen, 2014).

Ideograms indicate the word that they depict. In
this way, for example, the hieroglyph < repre-



Sign Gardiner code Transliteration Description
& Gl 3 Egyptian vulture
— 19 f Horned viper
? V24 wdl’ Cord wound on stick
I S12 nbw Bead collar

Table 1: Example of hieroglyphs and their Gardiner code, Transliteration and Description.

senting a mouth writes the word “mouth”, while
the hieroglyph CJ representing a house’s top view
is actually the word “house”.

Phonograms represent the phonetic structure
(sounds) of the individual word depicted according
to the rebus principle. For example the sign < 1is
used to express the phoneme 7.

Determinatives are used to indicate the semantic
sphere of the preceding words, and so these signs
are not meant to be pronounced. For example, the
hieroglyph C1 , used as determinative, refers to
words belonging in the semantic sphere of enclosed
spaces and is not read.

2.5 Gardiner Code

The Gardiner code, also called Gardiner’s Sign
List, represents the standard system used to iden-
tify hieroglyphic signs through alphanumeric codes.
It was compiled by the English egyptologist and
pholologist Alan H. Gardiner as an integral part of
his Egyptian grammar (Gardiner, 1957), which re-
mains a standard reference in the Egyptian language
study.

The Gardiner code consists of main categories
identified by a capital letter of the English alphabet
and a descriptive label (e.g., “A. Human beings,
male”). Within these sections, each hieroglyph is

assigned a progressive number (e.g., £ = Al,

= A2). For subsequent additions of sign variants,
later than the original Gardiner’s list itself, a lower-
case letter was added after the number (e.g., in the
section “N. Sky, earth, water”, we find ... = N35,
e = N35a).

2.6 Transliteration

In Egyptology, transliteration is the process of con-
verting hieroglyphs into alphabetical symbols to
represent the consonants of ancient Egyptian. It
is a convention that makes it possible to organize
hieroglyphic signs into dictionaries. The transliter-
ation can also be pronounced, but it should always
be remembered that only consonants were written
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(not vowels), and in many cases, the phonetic value
of the signs is unknown. We can only infer the pro-
nunciation based on the Coptic forms as well as on
the spelling of Egyptian words in other ancient lan-
guages, and vice versa (Allen, 2014). Phonograms
and most ideograms can be transliterated into one,
two, or three consonants, depending on the number

of sounds they represent. For instance, the sign

represents one consonant m, the sign ﬁﬁ represents
ms, and the sign ] represents nbw. See Table 1
for examples of hieroglyphs with their Gardiner
code, transliteration, and description.

3 Dataset Construction

This work is based on a snapshot collected from
the database that also feeds the Thesaurus Linguae
Aegyptiae (TLA; Richter and Werning, 2023)* and
last updated in 2018.

3.1 Thesaurus Linguae Aegyptiae

The TLA project aims “to document and annotate
the Ancient Egyptian language through its entire
lifespan” (Richter and Werning, 2023). This ob-
jective manifests in two primary digital outcomes:
the text corpus (corpus dataset) and the lemma list
(vocabulary dataset).

The corpus encompasses a vast collection of
hieroglyphic texts, transliterations, and transla-
tions. All entries come enriched with metadata
such as production dates, script types and connec-
tions among data points. Notably, each corpus word
is “lemmatized”, i.e. linked to a specific entry in
the lemma list. This allows researchers to access
broader information spectrum per data point, includ-
ing part-of-speech (POS) tags, for each element.

While most texts have German translations, some
include English or both, promoting cross-language
accessibility and the project’s global reach.

SProject  Strukturen und  Transformationen des
Wortschatzes der dgyptischen Sprache: Text- und Wis-
senskultur im Alten Agypten (Structure and Transformation
in the Vocabulary of the Egyptian Language: Texts and
Knowledge in the Culture of Ancient Egypt).



3.2 Data Extraction

One of the major contributions of this study consists
in the construction of a new dataset from the data
collected by the TLA project. We chose Middle
Egyptian as the reference language, as explained in
section 2.3. However, limited data availability led
us to include Old Egyptian (2700-2100 BC) due to
its close linguistic relationship with Middle Egyp-
tian, enriching the language representation. Our
dataset includes specific elements for each data
point. Unfortunately, not all elements were consis-
tently present, preventing a complete construction.
In Figure 1 we outline the structure of a data point
in our dataset. Taking into account all the diverse
elements, these include:

Gardiner code: A unique identifier for each
hieroglyph.

Transliteration: The alphabetical represen-
tation of hieroglyphs.

Translation: Either German or English.
Lemma IDs: Numerical identifiers for lem-
mas (basic forms of words).

Token inflection codes: Information about
the inflectional forms of the lemmas morpho-
logically marked in the script, such as gender
and number of nouns.

Datapoint ID: A unique identifier for the dat-
apoint (each one is a text* containing several
sentences).

Sentence ID: A unique identifier for a single
sentence in a text.

Part-of-speech tags: Labels used to classify
the lexical category of lemmas (e.g., noun,
verb, adjective).

Metadata: Unique IDs for data such as lan-
guage phase, and historical period.

During the mining process, preliminary cleans-
ing was performed to eliminate inconsistencies
and irregularities, including: (i) tabs, (ii) carriage
returns, (iii) line separators, (iv) excessive white
space, and (v) multiple hyphens within hieroglyphs.

The total number of data points extracted was
103,906. We then focused on selecting Old and
Middle Egyptian data points delving into language
phase metadata. In cases where this information
was absent but reliably inferable, we examined his-

*From Richter and Werning (2023): “A ‘text’ [...] in the
TLA is an entity marked as an independent textual unit by
clearly marked text delimiters (beginning and end). An indi-
vidual text may either consist of writing only, or it may be a
multimodal composition of writing and illustrations.”
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"source": <Source as Gardiner code>,
"transliteration": <Transliteration>,
"target": <Translation>,

"1Key": <Lemma IDs>,

"wordClass": <Part-of-speech tags>,
"flexCode": <Inflection codes>,
"metadata": {

"target_lang": <Target language>,

"id_datapoint": <Datapoint ID>,
"id_sentence": <Sentence ID>,
"language": <Language phase>,
"date": <Historical period>,
"script": <Script type>,
"id_tree": <Assigned ID"

Figure 1: Structure of a datapoint.

torical metadata to reconstruct it.> The total number
of datapoints after filtering was 61,605.

3.3 Data Cleaning

A crucial aspect of our work was the development
of comprehensive cleansing operations. Initially,
we meticulously hand-cleaned several texts, en-
abling the identification of recurring patterns and
the formulation of generalizable cleansing proce-
dures. This iterative process resulted in the cre-
ation of over 280 distinct cleaning operations (e.g.,
elimination of brackets ‘(’, )’ and their contents
in German translation, elimination of brackets ‘[’
and ‘]’ while maintaining the content in the translit-
eration, elimination of ‘!’ from the hieroglyphs).
In particular, lacunae were treated differently if
they were reconstructed or not. If reconstruction
was present, we used it; if not, we discarded the
datapoint element (e.g. transliteration) as the train-
ing process could be altered. Reconstructions were
always used.

An example of a datapoint cleansing process
is presented in Table 2. A comprehensive com-
pendium of the cleansing operations, including de-
tailed descriptions, treatment methods, and under-
lying motivations, is provided in the GitHub repos-
itory for our project. ©

3.4 Validation and Test sets

We randomly selected a validation and a test
set comprising 100 distinct sources each. Some

>In Appendix A we reported datapoint counts relating to
both language and historical phases.

*https://github.com/mattia-decao/
hiero-transformer
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Gardiner code Translation

Transliteration

Raw

Aal-D21 MI17-S29 [2-*"[1"-
*[10-%797-%7]-:[2-%7117-*D46-
292 %9] N25-:X1-*Z1 V30

and then every foreign land [says]:

hr js €TdJd"? hls,t nb(.t)

Cleaned

Aal D21 M17 S29 110 D46 N25
X1Z71V30

and then every foreign land says:

hr js d[0d h3s,t nb.t

Table 2: Example of raw and cleaned datapoint (ID Sentence: IBUBd91QAVzxpUWnqYiwnwLVrbI. ID tree:

aaew_corpus_sawlit_687_107).

sources had multiple translations (i.e., both in En-
glish and German) thus we included both versions
in the set to (i) increase its size, and (ii) avoid con-
tamination in the training set. Eventually, the vali-
dation set had 125 parallel data points, 25 of which
possessed English translation, 75 German trans-
lation, and 25 containing only transliteration and
hieroglyphic. Similarly, the test set had 150 data
points, comprising 50 that possessed English trans-
lation, 50 German translation, and 50 containing
only transliteration and hieroglyphic.

4 Experimental Design

4.1 Data Pairing

Prior to feeding the data into the model, it was
essential to organize the data points into source-
target pairs. These represent the input-output pair-
ings employed during training (e.g. Hieroglyphs to
German). We used two sources as inputs: egy, i.e.
Gardiner code of ancient Egyptian hieroglyphs; and
T, i.e., transliteration. Both of them were paired
with five targets as outputs: (i) de, i.e. German; (ii)
en, i.e. English; (iii) 7 ; (iv) [Key, i.e. lemma IDs;
and (v) wordClass, i.e. part-of-speech tags. We
reported in Table 3 the list of all different data pairs
employed, together with the count of data points in
which each pair is present.

4.2 Training

We did not aim to develop novel machine learn-
ing techniques or models but rather to harness the
capabilities of an existing one and apply it to the
Ancient Egyptian language. We then chose to use
the finetune M2M-100 model (Fan et al., 2021) for
its versatility and effectiveness in multilingual ma-
chine translation. M2M-100, originally designed
for translating between 100 modern languages, in-
cluding English and German, was a compelling
choice due to its open-source availability and rela-
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Source Target Datapoints
egy de 16,075
egy en 2,105
egy T 20,155
egy IKey 21,036
egy wordClass 20,045
T de 45,760
T en 2,174
T IKey 56,240
T wordClass 54,039

Table 3: Data pairs and their distribution among the dat-
apoints.

tive novelty. By utilizing this pre-trained model, we
effectively employed transfer learning, a powerful
technique that leverages knowledge acquired from
a related task to improve performance on a new
task. For each experiment, we trained for between
6 and 20 epochs.’

We checked validation loss for model selection
every 10% per epoch and employed early stopping
if no improvement happened for the past 15-20 eval-
uations.® We used the Adam optimizer (Kingma
and Ba, 2015) with batch size 16 and a fixed learn-
ing rate 3e-5.

We experimented with different mixtures of
source and target (e.g., some included/ excluded
the use of transliteration or POS tags). Overall, 11
models were trained,’ and we reported a selection

"Initial experiments used 20 epochs, subsequently reduced
due to: (i) no improvements after the third epoch, (ii) in-
creased data pairs significantly extended execution time, and
(iii) the 12-hour execution limit of the experimentation plat-
form (Google Colab) rendered maintaining the same epochs
impractical.

8This value was dynamically adjusted for each experiment
due to variations in the amount of data-pairs.

°Due to cost constraints, we conducted most of our ex-
periments with one NVIDIA T4 Tensor Core (16 GB), and
the last model (ALL) that mixes all the data available, with
one NVIDIA A100-SXM4 Tensor Core (40 GB). For ALL we



SacreBLEU RougeLL

Source egy T egy T

Target de en T de en de en T de en
DE (raw) 4.0 - - - -] 18.4 - - - -
DE 54.4 - - - - | 62.8 - - - -
DE+EN 52.6 284 - - -1 63.1 335 - - -
DE+EN® 61.5 364 - - -1 67.7 38.1 - - -
DE+T 43.2 - 57.7 1 54.0 - 554 - 789 ] 61.8 -
DE+7T+EN® 47.6 20.1 584 |47.1 303 | 58.8 279 80.2|63.1 375
ALL 544 31.6 599 | 56.2 353 | 645 355 821|627 38.1

Table 4: Results of automatic evaluation (SacreBLEU,
best.

in Table 4. The comprehensive table of all experi-
ment metrics results can be found in Tables 8 and 9
in Appendix E.

In the training phase, we gave single data (e.g.,
transliteration or German translation) to the model
by assigning them a special language id token (used
as prefix in both the source and target text) already
present within the model itself. These were en for
English, de for German, ar (Arab) for ancient Egyp-
tian, ¢h (Thai) for POS tags, /o (Lao) for translitera-
tion and my (Burmese) for lemma IDs. Except for
German, English, and ancient Egyptian'?, the codes
were arbitrarily selected from Fan et al. (2021) in
order to avoid their duplication in the list where
data quantities derived from other languages and
language groups are presented (Figure 3 of the same
article).

Backtranslation Due to the scarcity of data
points containing English translations, we em-
ployed the M2M-100 model to translate our entire
dataset from German to English and incorporated
these translations into training.

4.3 Metrics

To assess the performance of the conducted ex-
periments, we employed two automated evaluation
metrics: SacreBLEU (Post, 2018) and RougeL (Lin,
2004).

Automatic metrics do not always correlate with
human judgment, so we also employed a human
evaluation. For that, we applied the model to a se-
ries of examples, 16 in total,!! exhibiting a variety

increased the batch size to 180.

%We hypothesized that using Arab for ancient Egyptian
could potentially enhance model performance due to its similar-
ities in sentence construction, i.e. verb-subject-object. Further
research is required to corroborate this hypothesis.

1Of these, 15 were composed of one to three sentences, 1
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RougeL). Bold results are best and underlined are second

of grammatical constructions (listed in Appendix
B), subsequently comparing the model’s output
against our own translations or those derived from
established publications (Bresciani, 1969; Allen,
2015; Grapow, 1952; Gardiner, 1969; Vogelsang,
1913). During the comparison, we rigorously ex-
amined all the distinct data pairs generated by the
model, evaluating both the quantity and quality of
its correct and erroneous outputs.

5 Results
5.1 Data Cleaning

To assess the effectiveness of our cleaning oper-
ations, we conducted and compared two experi-
ments: (i) DE (raw), with raw data; (ii) DE, after the
cleaning. Cleaning the data increased the resulting
SacreBLEU from 4.0 to 54.4 and RougeL from 18.4
to 62.8. As evident, results have demonstrated that
our cleaning procedure significantly improves the
model’s training performance.

5.2 Main Results

As evident in Table 4, for translation and translit-
eration the ALL model (i.e., trained with all data)
exhibits the best or second-best performance. This
suggests that the model successfully incorporates
signals from different forms (e.g., POS tags and
transliteration).

Unsurprisingly, mixing back-translation data
(DETEN v.s. DE+ENP) significantly increases per-
formance in English (SacreBLEU 52 — 61 and
RougeL 33 — 38). However, it surprisingly in-
creases performance in German as well.

Notably, the DE+EN® model shows the highest
accuracy from hieroglyphic to German and English
translation. Moreover, both DE+7 and DE+7+EN®

of eleven.



do not perform better than DE and DE+EN® in Ger-
man and English. These results suggest that adding
transliteration during training may have some detri-
mental effects on accuracy. We reported a compre-
hensive list of results in Tables 8 and 9 in Appendix
E.

5.3 N-fold cross validation analysis

We did a 10-fold cross-validation to DE and ALL ex-
periments.'?> The M2M-100 model was subjected
to the same conditions as the previous DE and ALL
experiments, allowing for a direct comparison of
their performance under different evaluation meth-
ods.

The results for the DE experiment exhibited a sig-
nificant discrepancy, while the performance met-
rics for ALL were more consistent with the previous
findings. This suggests that the validation and test
datasets employed previously may have introduced
a selection bias, which was mitigated by the larger
and more diverse data submitted to training ALL.
We reported the full results of n-fold cross valida-
tion analysis in Table 10 of Appendix E.

This finding highlights the importance of em-
ploying rigorous evaluation strategies to ensure
reliable machine learning models, particularly in
the context of low-resource languages like ancient
Egyptian.

5.4 Human Evaluation

Following the training phase, the model ALL was
identified as the most promising candidate due to
its superior performance across all data pairs. In
this phase, its effectiveness was assessed through a
comprehensive trial procedure.

We divided the evaluation process into three dis-
tinct steps: (i) Grammatical Complexity, (ii) Liter-
ary Passages, and (iii) Stress Test. For every step
our evaluation proceeded to analyze all the data
pairs (detailed in Section 4.1).

For each Human Evaluation step, the model was
submitted to two separate testing waves. In the
first wave, the input was presented to the model as
Gardiner code, while in the second wave, it was
presented as transliteration.

We assessed the sentences based on specific cri-
teria, including: (i) Morphological accuracy; (ii)
Grammatical correctness; (iii) Verb-subject agree-
ment in number and gender; (iv) Adequacy of ter-
minology; (v) Semantic coherence.

12 This technique was not applied to every experiments due
to resource limitations.
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This two-pronged approach aimed to assess the
model’s performance under both input representa-
tions, i.e. hieroglyphic and transliteration. Through
this trial procedure, the effectiveness of the ALL
model was thoroughly evaluated, demonstrating
its potential for a quite accurate and versatile writ-
ing of hieroglyphic into transliteration, and both
inputs into German, English, Lemma IDs and POS
tags. We reported the list of grammatical forms
submitted as input in Appendix B.

5.4.1 Grammatical Complexity

We presented exercises of increasing grammatical
complexity to the model to assess its ability to han-
dle diverse grammatical structures. All the exer-
cises were extracted from Gardiner’s grammar (Gar-
diner, 1957). An excerpt is reported in Table 5. The
model exhibits no significant difficulties, but rather,
it is more sensitive to variations in sentence con-
struction due to low-resource training.

5.4.2 Literary Passages

Passages taken from literary works, encompassing
a wide range of grammatical elements and one to
three clauses in length, were fed into the model to
examine its performance in natural language con-
texts. The works selected were the “Story of Sin-
uhe”, the “Tale of the Shipwrecked Sailor”, the
“Admonitions of Ipuwer”, and "The Eloquent Peas-
ant”. We observed that the model performs slightly
better than the previous phase. Additionally, we
noticed higher translation accuracy with translitera-
tion input compared to the Gardiner code.

5.4.3 Stress Test

We submitted a lengthy passage extracted from
the “Story of Sinuhe” to thoroughly evaluate the
model’s robustness, testing its ability to handle ex-
tended and complex linguistic structures. After that,
we submitted the same passage divided into single
units. Due to the length of the passage, it has been
reported in the GitHub repository for our project. '
We observed that the model fails with lengthy sen-
tences that exceed three clauses but, when provided
with a sentence of one or two clauses, it produces
quite accurate results.

5.4.4 Human Evaluation Conclusion

The ALL model performed better with short and
medium-length input texts comprising one to two
sentences. The generated outputs were effective,

Bhttps://github.com/mattia-decao/
hiero-transformer


https://github.com/mattia-decao/hiero-transformer
https://github.com/mattia-decao/hiero-transformer

Source

D21 Aal Y1 V31 G43 A1 V13 G43 D21 Aal Y1 V31 G43 A1 D21 N35 V31

(from transliteration)

Reference

Ich kenne dich und ich kenne

I know you, I know your

95620 174900 95620 94700

verb_2-lit personal pronoun

Target Prediction Prediction
(from hieroglyphic)
DE Ich kenne dich, ich kenne
deinen Namen deinen Namen
EN You know me, I know your
name name
T r.kwj tw r.kwj m =k -
lkey 95620 44000 174900 95620
44000 94700 10110 10110
pos verb 2-lit  personal pro-
noun personal_pronoun

verb_2-lit personal pronoun

verb 2-lit substantive masc
personal_pronoun

Ich kenne dich, ich kenne
deinen Namen

I know you, I know your
name

rh.kw tw rh.kw rm =k

95620 174900 95620 94700
10110

verb_2-lit personal pronoun
verb 2-lit substantive masc
personal pronoun

personal pronoun substanti

Table 5: Example of a grammar complexity exercise manually evaluated.

but there are occasional inconsistencies in com-
pleting the fields of transliteration, POS tags and
occasionally lemma IDs. For input texts exceeding
three sentences, the model struggles to produce ex-
act predictions, particularly in terms of precision
and completeness of writing.

Regarding the choice of input, despite transliter-
ation is more accurate than Gardiner code, we rec-
ommend comparing both results to obtain a more
comprehensive understanding.

We observed great accuracy in generating lemma
IDs, indicating that they could be actively used
to extract additional information from the TLA
database.

Finally, the model exhibits no significant difficul-
ties when submitted to an increasing grammatical
complexity. Conversely, it struggles as the input
length grows and the rare terms increase.

6 Conclusions

We publicly released our dataset and source code
and designed them for easy utilization and assess-
ment. The Al model produces suitable results for
research applications and is user-friendly.

This work opens up avenues for future research,
including expanding the dataset by incorporating
other language phases (Late Egyptian, Demotic and
Coptic), integrating additional modern languages ,
and conducting more comprehensive and diversi-
fied experiments.

These efforts could pave the way for enhanced
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model precision and contribute significantly to the
advancement of research in Egyptology and the
application of NLP to the translation and study of
ancient languages.
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A Taxonomy Analysis of Data Mining

Language Datapoints
Absent 70,559
Egyptian 28
Middle Egyptian 23,997
Late Egyptian 8,615
Demotic 707

Table 6: Amount of datapoints for each language phase.
Counts done on the datapoints mined from TLA (before
filtering) and corresponding to 103.906.

Date Datapoints
Absent 1,165
Old Kingdom 35,849
First Intermediate Period 571
XI Dynasty 466
Middle Kingdom 7,633
Second Intermediate Period 3,634
New Kingdom 38,078
Third Intermediate Period 3,590
Late Period 2,191
600 to 200 BC 2,977
Hellenistic Period 7,133
Roman Period 619

Table 7: Amount of datapoints for each historical pe-
riod. Counts done on the datapoints mined from TLA
(before filtering) and corresponding to 103.906.

B Grammatical Inputs of Human
Evaluation

The examples submitted to the model during the
human Evaluation comprised various type of sen-
tences. The Grammatical Complexity included: ad-
verbial, nominal (A B), verbal (sdm =f), negative
verbal (sdm =f), pseudo-verbal and stative. The Lit-
erary passage included: verbal (sdm =f and sdm.n
=f), verbal negative (sdm.n =f), adverbial, nominal
(A + pw), infinitive, participle, and two longer sen-
tences. The Stress Test included: infinitive, verbal
(causative (sdm =f), stative, subject-stative, adver-
bial and containing dates or epithets.

C Data Entry Methods

The approach described below ensures that the
model receives a clean and standardized representa-
tion of hieroglyphic and transliteration, minimizing
potential misinterpretations that could arise from
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extraneous elements and enhancing its ability to
produce accurate translations.

C.1 Hieroglyphic Input

To input hieroglyphs, it is essential to employ Gar-
diner code. Each hieroglyph must be meticulously
cleansed of any brackets, letters, or graphic sym-
bols that extraneously adhere to it, altering its visual
representation (it can be checked using Jsesh'?).
To divide hieroglyphs, a single space should be in-
serted between them, while any other extraneous
character should be eliminated.

The model has been trained on Ancient and Mid-
dle Egyptian hieroglyphs and may encounter chal-
lenges with inputs from later linguistic phases and
grammatical structures postdating the Second In-
termediate Period.

We recommend utilizing signs list of Gardiner’s
grammar (Gardiner, 1957), or preferably Allen’s
(Allen, 2014), for a more accurate use of Gardiner
code.

C.2 Transliteration Input

For transliteration input, it is necessary to adhere
to conventions similar to the one employed by the
TLA.

* Proper nouns should have the first letter capi-
talized.

* It may be beneficial, but not compulsory, to in-
corporate hyphens between individual lemmas
of proper nouns or concepts (e.g., shtp-jb-r or
wid-wr)

* The equal sign (=) to indicate a suffixed pro-
noun must always be preceded by a space and
followed directly by the pronoun, without any
additional characters (e.g., z3 =f'm pr)

» The is utilized for the strong yod while i for
the weak yod.

* A dot should be employed to distinguish the
root of verbs from a suffix other than a pro-
noun (e.g., n in sdm.n =f form) and occasion-
ally for the plural/dual.

* A comma should be employed for the feminine
ending and occasionally also for the plural/d-
ual.

“https://jsesh.qenherkhopeshef .org


https://jsesh.qenherkhopeshef.org

Transliterated characters can be submitted to the
model both as a proper character (e.g., 3) or accord-
ing to the computer-encoding system of Manuel
de Codage (e.g., A for the 3; Buurman et al., 1988;
Van den Berg, 1997).

To enable the insertion of both upper and lower-
case letters, while preserving the encoding of MdC,
we have implemented a simple mechanism that al-
lows you to capitalize a letter by preceding it with
an asterisk. In practice, a straightforward substitu-
tion operation has been created in the section where
inputs are entered. For instance, since to obtain d
you must insert D, then to get D you have to type
*D; similarly, to attain D, you must enter *d. To
input the weak radical i simply enter an i.
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D Experiments Graphs
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Figure 2: Validation losses of different models and at which step the loss is at its minimum.
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E Taxonomy Analysis of Generated Models: SacreBLEU, RougeL and 10-fold Cross
Validation

SacreBLEU

Source egy T

Target de en 7 lkey POS de en lkey POS
DE (raw) 4.0 - - - - - - - -
DE 54.4 - - - - - - - -
EN - 226 - - - - - - -
DE (lem) 259 - - - - - - - -
DE+EN 52.6 284 - - - - - - -
DE+EN® 61.5 364 - - - - - - -
DE+T 43.2 - 577 - -1 54.0 - - -
DE+T+EN®  47.6 20.1 584 - -1 471 303 - -
DE+7+POS  53.2 - 60.0 - 821 | 49.6 - - 871
DE+T+LKEY 55.1 - 594 644 - | 58.9 - 709 -
ALL 544 31.6 599 639 790|562 353 740 864

Table 8: Results of automatic evaluation, in particular SacreBLEU, of all models along with POS tags and 1Key.
Bold results are best and underlined are second best.

RougeL

Source egy T

Target de en 7 lkey POS de en lkey POS
DE (raw) 18.4 - - - - - - - -
DE 62.8 - - - - - - - -
EN - 251 - - - - - - -
DE (lem) 42.0 - - - - - - - -
DE+EN 63.1 335 - - - - - - -
DE+EN® 67.7 38.1 - - - - - - -
DE+T 554 - 789 - - 1618 - - -
DE+7T+EN®  58.8 27.9 80.2 - - 1631 375 - -
DE+7+POS  62.9 - 831 - 838673 - - 87.6
DE+T+LKEY 59.6 - 826 715 - | 63.8 - 754 -
ALL 64.5 355 821 717 82.6|62.7 38.1 777 884

Table 9: Results of automatic evaluation, in particular RougeL, of all models along with POS tags and 1Key. Bold
results are best and underlined are second best.
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SacreBLEU

Source egy T
Target de en T lkey POS de en lkey POS
DE 32.0x20 10.2+12 - - - | 54x20 0.2+03 - -
ALL 45.5+14 359+37 52.7x13 57.9+51 71.9+13 | 59.6£14 42.6x29 T4.3x24 79.2207
RougeLL
Source egy T
Target de en T lkey POS de en lkey POS
DE 41.1x09 14.7+11 - - -1 3.9x13  0.3:04 - -
ALL 53411 40.9+24 789z06 65.2+43 81.6:06 | 68.0t1.0 47.9+15 79.1x21 88.0:08

Table 10: Results of 10-fold cross validation.
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Neural Lemmatization and POS-tagging models for Coptic, Demotic and
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Abstract

We present BabyLemmatizer models for lem-
matizing and POS-tagging Earlier Egyptian,
Coptic and Demotic to test the performance
of our pipeline for the ancient languages of
Egypt.! Of these languages, Demotic and Ear-
lier Egyptian are known to be difficult to anno-
tate due to their high extent of ambiguity. We
report lemmatization accuracy of 86%, 91%
and 99%, and XPOS-tagging accuracy of 89%,
95% and 98% for Earlier Egyptian, Demotic
and Coptic, respectively.

1 Introduction

Lemmatization is an annotation task that aims to la-
bel word forms with their dictionary forms, known
as lemmata. This is necessary for languages with
complex writing systems or morphology that would
otherwise preclude effective word searches using
simple keywords. By enabling the location of all in-
flected forms and spelling variants of any searched
word, lemmatization opens several interesting av-
enues for quantitatively studying historical texts
and their language.

POS tagging is another annotation task that aims
to label word forms with their part-of-speech tags.
This can be useful for simple named entity recog-
nition, syntactic parsing, and disambiguation of
lemmatization results. The more fine-grained the
POS tagging is, the more information it can provide
about the words in the corpus.

In this paper, we present lemmatizer and POS-
tagger models for Earlier Egyptian, Coptic, and
Demotic. Earlier Egyptian and Demotic pose par-
ticular challenges for lemmatization due to their
ambiguous word forms, which are often only one
or two characters long. To our knowledge, neural
lemmatization of these languages has not been at-
tempted before. Our models are based on BabyLem-
matizer, an OpenNMT-based neural lemmatizing

'The models are available at https://huggingface.co/
asahala
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and POS-tagging pipeline designed primarily for
historical languages. Previously, BabyLemmatizer
has been evaluated on Sumerian, Babylonian, Neo-
Assyrian, Urartian, Latin, and Ancient Greek with
promising results (Sahala and Lindén, 2023).

2 Languages and Datasets

Egyptian-Coptic existed as a spoken language long
before its first written records (Pre-Old Egyptian,
(Kammerzell, 2005)). It is attested in writing from
approximately 3000 BCE until around 1400 CE.
For several millennia, it was the majority language
of the lower Nile valley until it was gradually dis-
placed by Arabic, leading to its eventual extinction.
Today, only the Bohairic dialect of Coptic remains,
serving as the liturgical language of the Coptic Or-
thodox Church. Egyptian-Coptic is classified as the
only member of a now extinct branch of Afroasi-
atic, with its closest relatives being the Semitic and
Berber languages (Schenkel, 1990; Grossman and
Richter, 2015). Its placement within the Afroasiatic
language family has recently become a topic of re-
newed debate (Almansa-Villatoro and Stubfiova
Nigrelli, 2023). The language history is gener-
ally divided into two major phases: Earlier Egyp-
tian, which includes Old Egyptian (2700-2000
BCE) and Middle Egyptian (2000—1400 BCE), and
Later Egyptian, which encompasses Late Egyp-
tian (1350-600 BCE), Demotic (800 BCE-450 CE),
and Coptic (300-1400 CE). Numerous comprehen-
sive linguistic overviews discuss the phonology,
morphology, and syntax of the language and its
long-term developments (Allen, 2013; Haspelmath,
2015; Loprieno, 1995, 2004; Loprieno and Miiller,
2012; McLaughlin, 2022; Miiller, 2020; Schenkel,
1990; Stauder, 2020).

According to Egyptological conventions, Egyp-
tian texts (including Demotic) are presented in sev-
eral layers: (1) in the original script (e.g., as a fac-
simile, as a handcopy, or printed in a hieroglyphic

Proceedings of the 1st Workshop on Machine Learning for Ancient Languages (ML4AL 2024), pages 87-97
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font) or, in the case of hieratic, transliterated into hi-
eroglyphs, (2) in Egyptological transcription (com-
monly referred to as transliteration in English), and
(3) in translation. In linguistic studies, morpho-
logical analyses are often presented as interlinear
glosses following the Leipzig Glossing Rules (Di
Biase-Dyson et al., 2009). Coptic, using a Greek-
based alphabetic script, is usually not transliterated
unless it is presented to an audience not familiar
with ancient languages (Grossman and Haspelmath,
2015).

Like the native writing systems that do not repre-
sent vowels—except for the Coptic script—Egyp-
tological transcription focuses exclusively on con-
sonants. It does not attempt to encode the spellings
on a character level, but rather aims to represent the
consonantal skeleton (roots). Consequently, dis-
tinctions made in the indigenous Egyptian scripts
are not captured, leading to a high number of homo-
graphs in the scholarly representation of Egyptian,
including Demotic (see Figure 1). In response to
this, lexicographical projects have adopted lemma
IDs in addition to lemma forms, and have estab-
lished chronolect-specific lemma lists (Egyptian
and Demotic: TLA = Thesaurus Linguae Aegyp-
tiae, (Grallert et al., 2024); Coptic: CCL = Compre-
hensive Coptic Lexicon, (Burns et al., 2020)). As
a result, a lemmatizer designed for scholarly pur-
poses must be trained to map tokens to lemma IDs,
not just to lemma forms, to effectively integrate
with existing digital corpora.

For Coptic, which is typically not transliterated,
the issue of homonymy is less pronounced but
nonetheless present, often resulting from phonetic
changes or only obvious when considering material
from several different dialects (see Figure 2).

2.1 Earlier Egyptian

Earlier Egyptian encompasses the chronolects
Old Egyptian (Allen, 2015) and Middle Egyptian
(Schenkel, 2001). It is classified as a fusional lan-
guage, characterized by root-and-pattern morphol-
ogy (roots inflection). The word order is relatively
fixed; in sentences with a verbal predicate, the struc-
ture follows a V-S-O schema (Loprieno, 1988). Ad-
ditionally, there are three other sentence types with
non-verbal predicates: nominal, adjectival, and ad-
verbial (Loprieno et al., 2017).

Texts from these periods are written either in
monumental hieroglyphic or in hieratic, a cursive
script. Both scripts are mixed systems that uti-
lize various sign function classes (Polis and Ros-
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morduc, 2015; Polis, 2023): logograms, mono- or
multiconsonantal phonograms, classifiers (tradi-
tionally termed determinatives), and interpretants
(also known as phonetic complements). Some re-
searchers propose more nuanced categorizations of
these sign functions, e.g. by including radicograms
(Schenkel, 2003; Polis and Rosmorduc, 2015: pp.
166-167).

Although the Thesaurus Linguae Aegyptiae cur-
rently includes almost 1.16 million tokens, a signif-
icant number of corpora and texts, while published
in print, remain unavailable in digital format. This
includes important works such as the Coffin Texts,
the Netherworld Books, and the Heqanakhte pa-
pyri (letters). Other materials still not digitized
include most temple inscriptions or recently dis-
covered texts like the letters from Balat and the
Wadi al-Jarf papyri. Additionally, many inscrip-
tions on objects located on-site, in collections and
storerooms have yet to be cataloged and are neither
available in print nor electronically.

The Earlier Egyptian dataset (TLA-Egy 2024)
is derived from the Thesaurus Linguae Aegyptiae,
corpus v18, 2023 (Richter et al., 2023). The TLA
is the largest digital corpus of Egyptian texts, cur-
rently comprising approximately 1.16 million to-
kens (Grallert et al., 2023). This dataset includes
texts from the 3rd to the early 2nd millennium BCE
(Old Kingdom to the so-called Second Intermediate
Period) across various genres: archival, historical-
biographical (royal and non-royal), tomb inscrip-
tions (non-royal), Letters to the Dead, religious
texts (Pyramid Texts), literary works (narratives,
dialogues, wisdom literature, hymns), magical and
medical texts, votive labels and inscriptions, rock
inscriptions, and stelae inscriptions (offering formu-
las). From this corpus, only sentences from the pre-
New Kingdom era without emendations, lacunae,
questionable readings or questionable translations
were selected, ensuring the dataset consists solely
of complete sentences from Old and Middle Egyp-
tian. Sentences were further filtered to include only
those with fully encoded hieroglyphic spellings and
lemmatization. The final dataset comprises 12,773
sentences, totaling 70,267 tokens.

The data is organized in a spreadsheet for-
mat, with each sentence displayed on a separate
row (tokens are separated by spaces) and vari-
ous columns providing detailed annotations: hi-
eroglyphic spelling (hieratic script is transliterated



Egyptian Demotic . ng;i‘? o Translation
. = airic,
(Old-Late Egyptian) else: Sahidic)
e 29 mn d2418 MN- C1890 there is no (non-existence)
1l mn 69560
— mn dm733 MMON C1897 really
f mn 69590 <"3_ mn d2422 MOYN C1913 remain, continue
= mn 69610 y<na_ mn d2419 M2aN (B) C1900 so and so (a certain person)
5 mn o 69630 7;¢% mn  d2424  aun(B) C89 jug, pot
qu\ﬁﬁ mn 70110 l-|("9_ mn d2429 establish, examine
ff& mn 69660 — mn d9203 be ill, suffer
¥ mn 69670 sick person
T mn 69640 [a kind of fabric]
ui mn dm5140  uooNe C1925  pasture, feed
— mn dm7835  uN- C1903 prefix of neg. imperative
1.;_/.3_ mn d2420 MAEIN C1904 dvine statue; sign, mark
= mn d9297 amoni (B) €91 seize, possess

Figure 1: Homonymy (homography) in Egyptological transcription illustrated by the lemma "'mn’. (Lemma forms and
IDs from the Thesaurus Linguae Aegyptiae (TLA) for Earlier Egyptian and Demotic, and from the Comprehensive
Coptic Lexicon (CCL) for Coptic. Demotic spellings—written right-to-left— are sourced from the variant list of the
Demotic Palacographical Database Project (Quack et al., 2024).

into hieroglyphs) presented in Unicode?, Egypto-
logical transcription (following the Leiden Uni-
fied Transliteration),> lemmatization (including
both lemma-ID numbers from the TLA and lemma
forms), Part-of-speech tags (UPOS),* morpholog-
ical glossing of the word form (in the following
treated as XPOS), and contextual translation into
German (translating the entire sentence rather than
word-by-word). The dataset also includes the dates
(post quem and ante quem) of the manuscripts and
credits to the editors/translators. All annotations
have been made by trained Egyptologists. This
dataset is published under the CC-BY-SA 4.0 In-
ternational license.

2Currently, not all hieroglyphs are available as Unicode
code points. Those not included in the Unicode standard are
represented by alphanumeric codes (e.g., Gardiner numbers,
JSesh numbers) and enclosed within a tag, e.g., <g>M134</g>.

*https://www.iae-egyptology.org/
the-leiden-unified-transliteration/

*https://universaldependencies.org/u/pos/
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2.2 Demotic

The term ‘Demotic’ refers to the chronolect pre-
dominantly used in the second half of the 1st mil-
lennium BCE and the early part of the current era,
as well as to the cursive script used to write it. Fol-
lowing Alexander the Great’s conquest (332 BCE),
Greek emerged as the prestige and administrative
language, significantly influencing the linguistic en-
vironment. Demotic, however, remained dominant
in the literary and religious genres as well as for
personal communication and in documentary texts.
Demotic represents the stage of the language where
the evolutionary trends initiated in (late) Middle
Egyptian or Late Egyptian fully manifest, such as
the shift from a V-S-O to an (AUX-)S-V-O word
order (McLaughlin, 2022, pp. 274-275), the analyt-
icization of constructions that were still synthetic
in Middle and Late Egyptian, and the (re-)syntheti-
cization of Late Egyptian analytic constructions
(McLaughlin, 2022). Thus, Demotic exhibits par-
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Egyptian
Coptic .
P (Old-Late Egyptian)
Me ‘to love’ C1785
o mri ‘to love’ 72470
E M€E ‘love’ C1786
&
ME ‘truth, justice’ C1789 ms-t ‘truth, rightorder’ 66620
- s C1901 L s
° M€e ‘with, and Cig02 /™ together with 29840
g
= Me ‘thereisno’ C1890 mn ‘there is no’ 69560
S L
€ Me ‘place’ C1771  myit ‘loom’(?) 68200
$
@
g M€E ‘there’ C2155 (m/n-)jm ‘there’ 24640

Figure 2: Homonymy in the Coptic dialects Sahidic, Fayyumic and Mesokemic illustrated by a selection of lemmata
with the form me. (Lemma forms and IDs for Earlier Egyptian from the Thesaurus Linguae Aegyptiae (TLA);
lemma IDs for Coptic from the Comprehensive Coptic Lexicon (CCL); lemma forms for Sahidic also from the
Comprehensive Coptic Lexicon, for Fayyumic and Mesokemic from (Westendorf, 1977)).

tial alignment with both Late Egyptian and Cop-
tic. This dual alignment is reflected in linguistic
overviews, where Demotic is often characterized
by its similarities to or contrasts with Late Egyptian
(Quack, 2006; Winand, 2018) and Coptic (Richter,
2023), respectively.

Despite its significance for understanding the
Egyptian Late and Greco-Roman periods, and the
substantial amount of material preserved, Demotic
remains largely underrepresented in digital corpora.
This underrepresentation is attributed to the chal-
lenging nature of the material—marked by frag-
mentation and extremely cursive script—and the
limited number of experts capable of editing it. In
1998, Kim Ryholt estimated that since the 1930s,
’less than one per cent of the known material’ in the
literary corpus had been published (Ryholt, 1998,
p. 151). Although many texts have been edited and
are available in print since that time, the number of
texts available in electronic form remains limited,
both for literary and documentary texts.

The Demotic dataset (tla-demotic-v18-premium,
TLA-Dem 2024) represents a well-balanced selec-
tion of genres, encompassing literary works (nar-
ratives, mythological texts, wisdom texts, etc.), re-
ligious texts, documentary/administrative records
(priestly decrees, temple inventories, letters, re-
ceipts, ration lists, among others), legal documents
(codes, marriage and divorce settlements, sales
deeds, wills, guarantees), graffiti/dipinti, oracular,
omen, dream, medical and magical texts, as well
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as school exercises. Similar to the Earlier Egyp-
tian dataset, this dataset is derived from corpus
v18 of the TLA from 2023. It comprises 13,383
sentences totaling 117,314 tokens. The selection,
presentation, and licensing criteria mirror those of
the Earlier Egyptian dataset, with the exceptions
that (1) the tokens are represented exclusively in
scholarly transcription (‘transliteration’), not in any
indigenous script, and (2) XPOS pertains to the
lemma, not to the word form. The corpus has been
annotated by trained Demotists.

2.3 Coptic

Coptic was the vernacular language during the
Christian period in Egypt, while Greek continued
to serve as the prestige and administrative language.
Following the Arab conquest of Egypt, Arabic be-
gan to spread. By the 8th century CE, Greek had
been replaced by Coptic in all domains, only to be
gradually overtaken by Arabic. During the emer-
gence of Coptic, indigenous writing systems were
abandoned in favor of an alphabetic script that in-
cluded vowels, primarily based on Greek with an
addition of 6 or 7 characters borrowed from De-
motic, varying by dialect. Coptic does not exhibit
root inflection and displays polysynthetic features,
including noun incorporation (Grossman, 2019;
Miyagawa, 2023). Grammatical morphemes are
typically affixed, which categorizes Coptic as an ag-
glutinative language. Particularly in the early cen-
turies CE, the linguistic landscape was marked by
significant dialectal variation (Funk, 1988; Richter,



2023). The commonly preferred Coptic word or-
der is (AUX-)S-V-0O, and the adjectival sentence
pattern has disappeared.

The Coptic data utilized in this study is sourced
from the Coptic Scriptorium project (Schroeder and
Zeldes, 2016). The corpus, spanning versions 4.2.0
to 4.5.0, primarily comprises Christian literary and
biblical texts, along with some letters from a monas-
tic setting in the Sahidic dialect. Awvailable for
download in various formats, including CoNLL-U,
from the Coptic Scriptorium’s GitHub repository,
the CoNLL-U formatted data includes 515,142 to-
kens. The annotation layers in the CONLL-U files,
used for this paper, adhere to the standard CoNLL-
U format specifications: ID, form, lemma, Uni-
versal POS (UPOS), project-specific POS (XPOS),
morphological features, and, to some extent, syntac-
tic head, Universal Dependencies Relation, along
with other annotations not pertinent to our study.
Unlike the Earlier Egyptian and Demotic corpora,
the lemmatization in this corpus maps tokens to
surface forms (strings) rather than to IDs, and does
not disambiguate homonyms. The numerous Greek
loanwords in Coptic are annotated in the same man-
ner like the Egyptian-based vocabulary. The anno-
tation quality varies across three levels: automatic
(machine-only annotations), checked (verified for
accuracy by a Coptic expert), and gold (extensively
reviewed for accuracy). The data is licensed under
CC-BY-SA 3.0 and 4.0, except for the ‘Sahidica’
New Testament sub-corpus, which is copyrighted
(c) 2000-2006 by J Warren Wells.

3 Previous Work

Schroeder and Zeldes trained the TreeTagger for
POS-tagging and lemmatization, achieving an av-
erage accuracy of 95.12% for POS-Tagging and of
96.78% for lemmatization (Zeldes and Schroeder,
2016, 2015), both in ten-fold cross-validation. The
same authors implemented a look-up based lemma-
tizer for the Coptic Scriptorium in Python, which
first POS tags the word forms and then assigns the
wordform + POS combination to its most common
lemma (Schroeder and Zeldes, 2016). As of now,
this system does not do disambiguation in case mul-
tiple lemmatization options are possible. Smith
and Hulden built the first finite-state grammar for
Sahidic Coptic (Smith and Hulden, 2016). The lex-
icon of this implementation comprised 95 verbs,
50 nouns, 65 productive prefixes, 36 closed-class
words such as demonstratives and conjuctions, and
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numerous proper names, all represented in Latin
transliteration. The authors reported their system
to achieve a recall of 94.6% (precision is not re-
ported), every input word form having 2.9 analyses
on average. This implementation does not feature
lemma disambiguation either.

SIGTYP 2024 Shared Task on Word Embedding
Evaluation for Ancient and Historical Languages
had Coptic as one of its languages. The tasks in-
cluded POS-tagging, lemmatization, prediction of
morphological labels and gap filling. In the con-
strained track that disallowed the use of additional
data the best POS-tagger model was reported to
have an accuracy of 96.92% (predicting top-1 label)
and the lemmatizer an weighted average accuracy
of 95.07% over predicting top-1 and top-3 labels
(Dereza et al., 2024, Table 5).

4 Preprocessing

For Earlier Egyptian and Demotic we converted
the JSON into CoNLL[JU. For Coptic, the data
was already in the CONLL U format, and could
be used for BabyLemmatizer as it was.

The Demotic and Earlier Egyptian lemmatiza-
tion use identifiers to disambiguate between homo-
phonic lemmata. This is necessary, because De-
motic and Earlier Egyptian word forms are often
ambiguous and short, as already demonstrated ear-
lier in this paper. The identifiers are encoded as
integer sequences up to six digits in length, sepa-
rated from the lemma with a pipe, as in 550034|n fr.
In our initial tests, these sequences seemed to cause
slight performance issues for the lemmatizer in
terms of accuracy, as accidental incorrect predic-
tion of a single identifier digit resulted into a wrong
lemma even if the phonetic part of the lemma
was predicted correctly. In addition, it turned out
that prediction of long arbitrary integer sequences
with no relation to the phonetic form for out-of-
vocabulary (OOV) lemmata was very unreliable,
rendering predictions for word forms with OOV
forms nearly impossible.

To overcome this issue, we compressed the iden-
tifiers by replacing them with shorter number se-
quences tied to the phonological representations of
the lemmata. For instance, in the case of a lemma
wr having four different senses, we enumerated
them as O|wr, I|wr, 2|wr and 3|wr instead of using
arbitrarily long integer sequences. We based the
compressed identifiers on the lemma frequency, 0
having the highest frequency. We hoped that this



decision would make leading zero the most likely
prediction for OOV word forms, and therefore, the
model would suggest the statistically most probable
lemmata for word forms the model has not seen in
the training data.’

Based on our experiments, identifier compres-
sion effectively doubles the accuracy of OOV
lemmatization and increases the overall accuracy
on average by 3%. After the lemmatization, the
original identifiers can be restored by a simple dic-
tionary mapping for all in-vocabulary words with
known lemmata. For OOV word forms with pre-
viously unseen lemmata, the identifiers have to be
defined manually. As Babylemmatizer marks the
predictions for OOV word forms automatically in
the output CoNLL-U, finding these instances is
relatively easy.

Due to character encoding issues with the Egyp-
tian hieroglyphs, we represented them as their Uni-
code code points in 8-character long sequences sep-
arated from each other with a dash symbol.® The
input encoding will be discussed in a closer detail
in the following section.

5 BabyLemmatizer

BabyLemmatizer is a lemmatization and POS-
tagging pipeline designed especially for historical
languages.” It has been optimized for the cuneiform
writing system used in Mesopotamia from 3200
BCE to 100 CE, but its tokenizer has been recently
extended to also support alphabetic scripts (Sahala
and Lindén, 2023).

BabyLemmatizer uses a deep attentional encoder-
decoder network, with a two layer BILSTM encoder
that reads the input as a character sequence. The
output sequence is generated by a two layer unidi-
rectional LSTM decoder with input feeding atten-
tion. In our models we use the default batch size of
64 and start the learning rate decay halfway through
the training process.

The system is based on the Open Neural Ma-
chine Translation Toolkit (Klein et al., 2017) and
it handles POS-tagging and lemmatization as ma-
chine translation tasks by mapping two sequences
of symbols with each other and trying to learn their

5 Alternative option would have been to handle the ID se-
quences as monolithic tokens, but this would have required
modifications to the BabyLemmatizer source code.

8We had issues reading UTF-16 characters when convert-
ing the JSON data into ConLL-U on Windows and had to read
them in binary to get the code points.

"The tool is available at https://github.com/asahala/
BabyLemmatizer
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relation to each other. Examples are given in the
following section.

BabyLemmatizer combines the strengths of neu-
ral and look-up based lemmatizers by first lemma-
tizing the input text using the neural network and
then using a look-up to verify the labels predicted
for all in-vocabulary words. The system also scores
the lemmatizations by their confidence, which al-
lows human annotators to first focus on the most
likely incorrect lemmata instead of going through
the whole dataset. This scoring system is designed
for cuneiform languages and has a slightly less rele-
vance for non-logosyllabic scripts, but it still labels
the words with scores as shown in Table 1. These
scores are included in the output CoNLL-U file.

5.1 Input Encoding

For all models except the Egyptian Hieroglyphic
model, we use BabyLemmatizer’s alphabetic tok-
enization, which splits the inputs into character se-
quences. We use the default context window sizes
for POS and lemma prediction: two preceding and
two following word forms for POS tagging, and the
preceding and following POS tags for lemmatiza-
tion. Examples of the source and target sequences
are shown for the POS tagger in Table 2 and for the
lemmatizer in Table 3, using Demotic translitera-
tion.

We use transliteration as input for Demotic be-
cause the Demotic script is not supported by Uni-
code. For Coptic, we use the Unicode represen-
tation of the Coptic script. For Earlier Egyptian,
which appeared to be the most difficult dataset
to annotate, we use two different input formats:
transliteration and a concatenation of hieroglyphs
and transliteration. In our initial tests, using the
hieroglyphic script alone yielded poor results, so
we have not reported these results.

We represent hieroglyphs as their Unicode
code points in hexadecimal format merged in
pairs, the pairs separated from each other with
dashes, as in DS80CDEA2-DS0CDCID from
\ud80c\udea2\ud80c\udc9d. We concatenated
these representations in the beginning of the translit-
erations and used BabyLemmatizer’s cuneiform
tokenizer to treat the hieroglyphs as monolithic in-
divisible tokens, but preserving the transliterations
as divisible character sequences to retain substring
information.

Our motivation for concatenating hieroglyphs
and transliteration came from the transliteration of
the cuneiform script, where homophonic transliter-


https://github.com/asahala/BabyLemmatizer
https://github.com/asahala/BabyLemmatizer

Score Description of the word form

0 & 1 Reserved for cuneiform languages only (out-of-vocabulary logograms)
2 Out-of-vocabulary (does not occur in training data)
3 Ambiguous (distribution of lemmata assigned for this word form in training
data is close to uniform)
4 Slightly ambiguous (of all lemmata given to this word form in training data
one occurs 70% of the time.)
5 Likely unambiguous (as in score 4, and occurs in a known XPOS context)
Table 1: Confidence scoring.
Source =y|(r)|[«dy.t»|wy|=1 source code to use a larger context window when
Target V predicting POS tags and lemmata for Earlier Egyp-

Table 2: POS-tagger input and output label. The center
word is enclosed in double angle brackets and the words
are separated from each other with pipes.

Source
Target

dy.tPO0=PTCL P1=V P2=V
0|dy

Table 3: Lemmatizer input and output label. The input
word form is given first, followed by its POS tag and
the POS tags immediately before and after it.

ations are distinguished from each other by adding
an index number to indicate which sign was used in
the original text (for example, us and u3 are written
using different cuneiform signs despite having the
same phonetic value in Akkadian). Since Egyp-
tological transliteration does not use indexing, we
hypothesized that adding information about the hi-
eroglyphs would alleviate some of the ambiguity in
the transliterations. As reported in the evaluation
section, this did not significantly impact the results,
but it did improve the out-of-vocabulary (OOV)
lemmatization accuracy.

We made various unsuccessful attempts to deal
with the ambiguity, especially in the Earlier Egyp-
tian texts, by altering the input and output strings.
First, we attempted to use the UPOS tags instead
of XPOS tags as context information for the lem-
matizer, due to UPOS tags being easier to predict
correctly and being simpler. Second, we predicted
lemmata without the numeric identifiers alongside
the XPOS tags and used these simplified lemmata as
context information for predicting the final lemma.
Third, we attempted to produce the lemmata with
identifiers by using a concatenation of word forms
as the input format, taking one or more preceding
and following word forms into account.

Finally, we also modified the BabyLemmatizer
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tian, but this did not improve the results either. In
fact, increasing the context window for lemmatiza-
tion was generally detrimental to accuracy, possibly
due to the small dataset, which rendered the model
unable to make generalizations based on very long
input sequences.

As none of these experiments consistently im-
proved accuracy, we will report only the results for
the default BabyLemmatizer settings in the evalua-
tion section.

6 Evaluation

We make a 80/10/10 train/dev/test split of our
datasets and evaluate our models using 10-fold
cross-validation. We use accuracy as our evalu-
ation metric, that is, the percentage word forms that
were assigned the correct label (LEMMA, XPOS,
UPOS) by the system. As out baseline, we use
a dictionary-based lookup that assigns the word
forms with their most common UPOS, XPOS and
LEMMA labels (see Table 5). Our final results are
summarized in Table 6, confidence intervals of the
cross-validation shown in parentheses.

Category Coptic Demotic E. Egy.
XPOS 61 46 234
UPOS 15 11 10
LEMMA 8557 5683 6270
FORM 8977 7807 8109
Tokens 515,142 117,314 70,267

Table 4: Number of unique labels and word forms in
our datasets. Earlier Egyptian word form count is based
on the number of unique Latin transliterations.

The performance for Coptic is high, but this is
partly explainable due to the low number of out-of-
vocabulary words, and as for lemmatization, due to
the lack of lemma identifiers. Yet, even when the



Coptic Demotic E. Egyptian T E. Egyptian H+T
XPOS 83.74  87.06 71.52 68.09
UPOS 8741  88.22 84.99 78.54
LEMMA 90.20 81.19 75.73 71.21

Table 5: Baseline results. Average labeling accuracy (%) over the test sets.

Whole dataset

Coptic Demotic E. Egyptian T E. Egyptian H+T
XPOS 97.98 (x0.05) 95.14 (+0.13) 88.43 (+0.18)  88.65 (+0.10)
UPOS 97.96 (+0.07) 96.83 (+0.31) 94.32(+0.22)  94.70 (+0.21)
LEMMA  98.60 (£0.03) 91.40 (+0.20) 85.52(+0.33)  85.42 (+0.33)
OOV-rate 091 3.90 5.90 14.59

OOV word forms only

Coptic Demotic E. Egyptian T E. Egyptian H+T
XPOS 77.60 (x1.15) 71.11 (1.53) 59.14 (1.99)  66.70 (+0.89)
UPOS 75.33 (£2.13) 82.51 (2.05) 76.88 (£2.15)  82.92 (+1.11)
LEMMA  87.44 (£0.76) 48.16 (x1.57) 50.47 (+1.36)  61.38 (+2.16)

Table 6: Results of the 10-fold cross-validation. OOV-rate shows the average percentage of OOV word forms in the
test set in respect to training corpus. E. Egyptian T stands for transliteration and H+T for concatenated hieroglyphs
and transliteration. The upper table shows overall results and the lower table the results for OOV word forms only.

number of OOVs are taken into account, the labels
seem to be easy to predict compared to our other
two datasets. Coptic dataset is also likely easier
due to it being almost five times larger than that of
Demotic, for instance. The word form to corpus
size ratio is thus significantly lower, allowing the
system to better learn their relations to the labels in
context (cf. Table 4). For bench marking purposes,
we also evaluated our system on the SIGTYP 2024
Shared Task dataset for Coptic. Our POS-tagger
achieved an accuracy of 94.76% and our lemmatizer
an accuracy of 96.20%. Although our POS-tagger
underperformed the winner by 2.16%, the perfor-
mance of our lemmatizer was at least on par with
the best implementation, taking into account our
system predicted only one label, whereas the best
SIGTYP 2024 model’s accuracy of 95.07% was
based on the average two scores: predicting the
correct lemma among the top-3 predictions and pre-
dicting only the top-1 lemma (Dereza et al., 2024).

The results for Demotic are on par with those
earlier reported for Akkadian, Greek and Latin (Sa-
hala and Lindén, 2023), except for lemmatization
that performs slightly worse than expected due to
high degree of ambiguity.

Low performance on Earlier Egyptian XPOS tag-
ging is partly explainable by the size of its XPOS
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label set that also encodes the morphological analy-
sis of the word. This makes the set four times larger
than that of Coptic and five times the size of that of
Demotic (Table 4). Another factor is the ambiguity
of Egyptian word forms, which makes predicting
the morphological labels difficult. The ambiguity
also affects lemmatization performance, which is
untypically low compared to other languages lem-
matized with BabyLemmatizer. For UPOS tagging
the results are better, but still slightly lower than
for our other two datasets.

It seems that using the concatenation of hiero-
glyphs and transliteration yields slightly better re-
sults, but as it increases the portion of OOV word
forms, the overall accuracy remains same. Notice-
able improvement takes place in OOV lemmatiza-
tion and POS-tagging, where including information
about the hieroglyphs increases the accuracy up to
ca. 10% (compare the E. Egyptian T and E. Egyp-
tian H+T results in the lower section of Table 6).

7 Conclusions

We presented models for predicting lemma, UPOS
and XPOS labels for Earlier Egyptian, Demotic
and Coptic. Our models achieved an accuracy of
88% to 98% for XPOS tagging and 85% to 99%
for lemmatization, depending on the input format



and the language in question. We attempted vari-
ous techniques to improve the accuracy of Earlier
Egyptian lemmatization and POS tagging but were
unable to achieve significantly better results. We
hypothesized that the poor results are likely due to
the small corpus size and the proportionally higher
number of word form types compared to our other
datasets.
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Abstract

Oracle bone script (OBS) is the earliest writ-
ing system in China, which is of great value in
the improvement of archaeology and Chinese
cultural history. However, there are some prob-
lems such as the lack of labels and the difficulty
to distinguish the glyphs from the background
of OBS, which makes the automatic recogni-
tion of OBS in the real world not achieve the
satisfactory effect. In this paper, we propose a
character recognition method based on an unsu-
pervised domain adaptive network (UFCNet).
Firstly, a convolutional attention fusion module
(CAFM) is designed in the encoder to obtain
more global features through multi-layer fea-
ture fusion. Second, we construct a Fourier
transform (FT) module that focuses on the dif-
ferences between glyphs and backgrounds. Fi-
nally, to further improve the network’s ability to
recognize character edges, we introduce a ker-
nel norm-constrained loss function. Extensive
experiments perform on the Oracle-241 dataset
show that the proposed method is superior to
other adaptive methods. The code will be avail-
able at https://github.com/zhouynan/UFCNet.

1 Introduction

The oracle bone inscriptions (OBIs) mainly refer to
the OBIs of Yinxu, which are carved on tortoises in
the Shang Dynasty. It is the earliest self-contained
writing system in China,which is of great signifi-
cance to the improvement of Chinese cultural his-
tory and the study of the formation and evolution
of Chinese characters (Xie et al., 2020). The oracle
bone character (OBC) image of rubbings is mainly
the original image obtained by experts on the un-
earthed tortoise shell, animal bone, and other text
carriers. As the oracle bones have been buried un-
derground for a long time, they are badly damaged
or contaminated, and there is serious noise (Huang
et al., 2019), which makes it very challenging to
recognize OBCs.

*Corresponding author: 2208283102 @stu.htu.edu.cn
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Early research methods mainly combine graph
theory and topological properties. (Li and Zhou,
1996) proposed an OBIs recognition method based
on graph theory. They abstracted oracle into an
undirected graph composed of only points and
lines, and extracted its topological features. (Li
and Zhou, 1996) introduced the information of the
adjacent points of the endpoint, and improved the
recognition accuracy through the continuous recog-
nition of multi-level feature coding. However, these
methods cannot meet the real-world oracle recog-
nition, which requires a lot of manpower and time.

To help with the excavation of new oracle bones
and the identification of unseen characters, the ad-
vent of deep neural networks has a great impact
on the recognition of oracle bone character (OBC)
images. (Zhang et al., 2019) used CNNs to map
character images into Euclidean space for classifi-
cation by nearest neighbor rules. (Guo et al., 2015)
utilized a low-level representation associated with
Gabor and an intermediate representation associ-
ated with a sparse encoder and combines it with
a CNN-based model. However, training a depth
model requires a large number of labeled samp