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Abstract

This tutorial provides an in-depth exploration of Knowledge-enhanced Dialogue Systems (KEDS), diving into their
foundational aspects, methodologies, advantages, and practical applications. Topics include the distinction between
internal and external knowledge integration, diverse methodologies employed in grounding dialogues, and innovative
approaches to leveraging knowledge graphs for enhanced conversation quality. Furthermore, the tutorial touches
upon the rise of biomedical text mining, the advent of domain-specific language models, and the challenges and
strategies specific to medical dialogue generation. The primary objective is to give attendees a comprehensive
understanding of KEDS. By delineating the nuances of these systems, the tutorial aims to elucidate their significance,
highlight advancements made using deep learning, and pinpoint the current challenges. Special emphasis is placed
on showcasing how KEDS can be fine-tuned for domain-specific requirements, with a spotlight on the healthcare
sector. The tutorial is crafted for both beginners and intermediate researchers in the dialogue systems domain, with a
focus on those keen on advancing research in KEDS. It will also be valuable for practitioners in sectors like healthcare,
seeking to integrate advanced dialogue systems.

1. Introduction ployed to incorporate both internal and external
knowledge sources, thereby enriching the conver-

In the realm of artificial intelligence, dialogue sys-  Sational experience. We delve into internal knowl-
tems have evolved as crucial interfaces facilitat- ~ €dge sources embedded in the input text, such as
ing human-machine interaction through natural lan-  topics, keywords, and internal graph structures, as
guage conversations. These systems are broadly ~ discussed in (Ahmad et al., 2023; Mishra et al.,
categorized into task-oriented and open-domain ~ 2022b; Firdaus et al., 2021a; Xie and Pu, 2021;
dialogue systems. While task-oriented systems  Priya et al., 2023a). Concurrently, we investigate
are designed to assist users in specific tasks like external knowledge acquisition from resources like
restaurant booking (Firdaus et al., 2020d, 2021¢; ~ uni-and-multi-modal knowledge bases, knowledge
Varshney and Singh, 2021), open-domain systems ~ 9raphs, and grounded text such as persona infor-
engage in a broader spectrum of conversational mation, Wikipedia information as elucidated in (Di-
topics without a defined objective (Firdaus et al., nanetal., 2018; Zhou et al., 2018b; Firdaus et al.,
2020a; Varshney et al., 2020). The integration of ~ 2020f; Varshney and Singh, 2021; Ghazvininejad
deep learning, particularly neural language mod- et al., 2018; Varshney et al., 2022a).

els, has significantly elevated the performance of The discourse further extends to domain-specific
these systems, yet challenges like understanding  applications, particularly in the healthcare sector.
user opinions, integrating visual data, and ambigu- | the healthcare domain, having a thorough under-
ity in open-domain interactions persist (Chen etal.,  standing of a person’s medical history, mental state,
2017). In addressing the limitation of generating symptoms, and treatment plan is crucial. Stud-
bland or generic responses common in traditional  jes have indicated that the integration of extensive
dialogue systems, Knowledge Enhanced Dialogue  knowledge resources into healthcare dialogue sys-
Systems (KEDS) have emerged as a prominent  tems presents multiple significant benefits. These
solution. The crux of KEDS lies in grounding the jnclude improving the system’s understanding of
dialogues in external or internal knowledge, thereby  medical terminology and concepts, equipping the
enriching the conversation with insightful and con- system with the ability to reason and make infer-
textua”y relevant responses. This tutorial prOVideS ences, grasping the emotional nuances within con-
an in-depth examination of KEDS, shedding light  yersations, and discerning beneficial response pat-
on its integral components, various approaches,  terns that contribute to emotional alleviation (Varsh-
and the benefits derived from such systems. ney et al., 2023b; Liang et al., 2021). Motivated by

In this tutorial, we first introduce the foundational  these insights, this tutorial session aims to explore
frameworks of Knowledge-enhanced Dialogue Sys-  various research endeavors that incorporate exter-
tems (KEDS), establishing a solid understanding  nal knowledge into healthcare dialogue systems,
of how they augment dialogue systems. Follow- thereby facilitating personalized and effective sup-
ing this, we explore the diverse methodologies em-  port (Shen et al., 2022; Deng et al., 2023; Varshney
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et al., 2022c, 2023b,c; Liu et al., 2021).

In the conclusion section, we highlight the short-
comings of conventional dialogue systems to pro-
vide a clearer pathway for newcomers to further
research in KEDS systems.

2. Target Audience

We believe that the potential target audience could
be the students at all levels (Doctorals, Masters,
Bachelors), and anyone who is associated with
healthcare, customer care, & related application
areas, and researchers. We would assume an
acquaintance with basic concepts about chatbots
and neural networks, such as those included in
most introductory Machine Learning (ML), Deep
Learning (DL) and Natural Language Processing
(NLP) courses. We expect an audience size of
about 25-30 participants.

3. Outline

This tutorial is organized as follows:

* Introduction (15 minutes) We will briefly in-
troduce dialogue systems, including the differ-
ent types of dialogue systems and limitations
of traditional dialogue systems (Chen et al.,
2017). Afterward, we will discuss the notion of
knowledge-enhanced response generation in
dialogue systems and the different categories
of knowledge sources, viz. internal knowledge
and external knowledge. Precisely, we will
delve into the concepts of (i) Internal knowl-
edge sources embedded in the input text, in-
cluding but not limited to topic, keyword, and
internal graph structure (Xing et al., 2017; Xu
et al., 2020; Li and Sun, 2018; Chen and Yang,
2023), and (ii) External knowledge acquisition,
including but not limited to the multimodal in-
formation, persona, knowledge base, external
knowledge graph, and grounded text (Firdaus
et al., 2020b, 2022d; Dinan et al., 2018; Zhou
et al., 2018b; Ghazvininejad et al., 2018).

* Need and Challenges of Knowledge-
enhanced Response Generation in
Dialogues (15 minutes)

An effective dialogue system should be able to
generate coherent, contextually relevant, user-
centric, and informative responses. To achieve
this, these systems require diverse information
sources, including textual and structured data
from external sources, user attributes (like sen-
timent, emotions, politeness, personal profile
information - age, gender, persona, etc.), and
contextual information (Wang et al., 2023a).
Integrating the knowledge into the generated
responses poses challenges concerning the
retrieval or selection of pertinent knowledge
and effective comprehension and utilization of
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the acquired knowledge to facilitate response
generation (Wang et al., 2023Db).

In this section, we will discuss how the var-
ied knowledge resources enhance response
generation and improve the interpretability of
dialogue systems by incorporating explicit se-
mantics. Subsequently, we will address the
challenges inherent in knowledge-enhanced
response generation within dialogue systems.
Internal Knowledge-enhanced Response
Generation in Dialogue Systems (60 min-
utes)

In this part of the tutorial, we aim to delineate
the internal knowledge-enhanced response
generation methods and applications. The
information from internal knowledge sources
helps enlighten and drive the generated re-
sponses to be informative and avoids gener-
ating universally relevant replies with little se-
mantics. The internal knowledge can be ob-
tained from topical information, keywords, and
internal graph structures. We will point out
the works that incorporate these knowledge
sources for response generation.

(i) Response enhanced by Topic: A dia-
logue system frequently employing responses
such as “I don't know”, “Okay” “I see” may
appear repetitive and uninformative. While
these off-topic replies are generally harmless
for addressing various inquiries, they lack en-
gagement and are likely to prematurely con-
clude conversations, significantly diminishing
the overall user experience (Xing et al., 2017;
Ahmad et al., 2023). Consequently, there is a
pressing demand for on-topic response gener-
ation. This part of the tutorial delves into the
works that have incorporated topical knowl-
edge to guide the informative response gener-
ation (Xing et al., 2017; Xu et al., 2020).

(ii) Response enhanced by Keywords: Re-
cent research has incorporated personalized
data into the dialogue generation process to
enhance the quality of dialogue responses,
particularly concerning emotional aspects, viz.
emotion (Rashkin et al., 2019), sentiment
(Chen and Nakamura, 2021), and politeness
(Mishra et al., 2022b; Wang et al., 2020). We
will discuss the works that attempt to integrate
emotion (Zhou et al., 2018a; Firdaus et al.,
2021a; Madasu et al., 2022; Majumder et al.,
2022; Mishra et al., 2022c; Samad et al., 2022),
sentiment (Firdaus et al., 2021b, 2022a), po-
liteness (Golchha et al., 2019; Firdaus et al.,
2020c; Mishra et al., 2022a; Firdaus et al.,
2022a; Mishra et al., 2023a,c,b; Priya et al.,
2023b), and intent (Xie and Pu, 2021) into the
generated responses to make them personal-
ized and engaging.



(iii) Response enhanced by Internal Knowl-
edge Graph: Internal knowledge graphs are
valuable for comprehending lengthy input se-
quences. They serve as intermediaries to
consolidate or eliminate redundant data, re-
sulting in a concise representation of the in-
put document (Fan et al., 2019; Priya et al.,
2023a). Furthermore, KG representations en-
able the creation of structured summaries and
emphasize the connections between related
concepts, particularly in cases where complex
events associated with a single entity extend
across multiple sentences (Huang et al., 2020).
In this part of the tutorial, we will present works
integrating an internal knowledge graph to en-
hance response generation capabilities (Liang
et al., 2022; Firdaus et al., 2020e).

External Knowledge-enhanced Response
Generation in Dialogue Systems (60 min-
utes)

(i) Persona Information. Research focused
on personas in dialogue systems requires that
the agent adopts a specific character when
engaging with users. This persona is closely
linked to personality, which influences the emo-
tional and personal aspects of users. In this
section of the tutorial, we discuss studies that
have employed persona-aware techniques to
enhance the efficacy of response generation in
dialogue systems (Firdaus et al., 2020f; Saha
and Ananiadou, 2022; Firdaus et al., 2022d,b;
Zhong et al., 2022). Findings from these stud-
ies suggest that persona information drives
empathetic and personalized conversations
more than non-empathetic ones.

(ii) Multimodal Information. Lately, the utiliza-
tion of multimodal information has witnessed a
surge in popularity in the field of dialogue sys-
tems. This approach is instrumental in compre-
hensively understanding users’ emotional and
mental states, as it leverages textual and non-
textual attributes (Firdaus et al., 2023). In this
part of the tutorial, we aim to discuss several
notable studies in the literature that have har-
nessed multimodal data to enhance response
generation within dialogue systems (Tavabi
et al., 2019; Firdaus et al., 2020a, 2022c).
(iii) External Knowledge Bases. Knowledge-
grounded systems utilize external resources
such as Wikipedia documents to enhance
response generation. (Dinan et al., 2018)
released the first Wikipedia knowledge-
grounded conversation dataset. (Varshney
et al., 2023a) utilized the knowledge on vari-
ous topics such as politics, and movies using
the Topical Chat (Gopalakrishnan et al., 2019)
and CMU_DoG (Zhou et al., 2018c) dataset
to propose a knowledge-emotion enabled con-
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versational model. (Lin et al., 2020) introduced
a model that combined knowledge decoders
with a pointer network to effectively handle out-
of-vocabulary words. Experts suggest con-
verting unstructured knowledge into organized
knowledge graphs, composed of triplets (entity,
relation, entity/item). Models, such as CCM,
retrieve subgraphs from these graphs, espe-
cially using knowledge bases like Concept-
Net (Speer and Havasi, 2012), and employ
attention mechanisms to blend this knowledge
into conversations (Zhou et al., 2018b). Con-
cept Flow expands this by including extended
subgraph ranges, integrating knowledge from
two sources (Zhang et al., 2019). (Varshney
et al., 2022a) utilizes both knowledge graphs
and Wikipedia documents with a coreference-
based knowledge graph augmenting method
to improve factual accuracy in dialogue sys-
tems.

Knowledge-grounded Dialogue Systems in
Healthcare (20 minutes) In healthcare, back-
ground knowledge is vital in understanding an
individual’s medical history, mental condition,
symptoms, and treatment plan. Research has
shown that integrating comprehensive knowl-
edge resources in the healthcare dialogue sys-
tems offers several key advantages, such as
enhancing the system’s grasp of medical con-
cepts and terminology, empowering the sys-
tem with reasoning and inference capabilities,
comprehending emotional dynamics in con-
versations, and identifying useful response
patterns leading to emotional relief (Varshney
et al., 2022b; Liang et al., 2021). Driven by
these considerations, in this tutorial session,
we will discuss the studies that infuse external
knowledge in healthcare dialogue systems for
providing personalized and effective support
(Shen et al., 2022; Deng et al., 2023; Varshney
et al., 2022c, 2023b,c; Liu et al., 2021).
Hands-on Session (50 minutes)

1. Setting up a basic knowledge-enhanced
dialogue system for healthcare domain
(Varshney et al., 2023c¢,b).

2. Integrating a sample knowledge base
(e.g., Unified Medical Language System).

3. Evaluating the performance of the dia-
logue using automated metrics such as
BLEU, F1, and embedding-based metrics.

Conclusion and Future Perspectives (20
minutes)

This tutorial explores notable studies on
knowledge-enhanced dialogue generation,
showcasing how leveraging diverse informa-
tion sources can enhance dialogue model ef-
ficacy. Despite advancements, several chal-
lenges remain, highlighting exciting future re-



search avenues. We’'ll delve into four key
research directions: (i) Knowledge Acquisi-
tion from Pre-trained Language Models: Pre-
trained models harbor vast implicit knowledge
without external memory reliance (Lewis et al.,
2020), opening avenues for efficient knowl-
edge extraction methods like knowledge dis-
tillation, data augmentation using pre-trained
models as knowledge sources (Petroni et al.,
2019), and prompting of language models (Li
and Liang, 2021). (ii) Knowledge Acquisition
from Limited Resources: In real-world scenar-
ios, new domains often have scarce examples,
necessitating rapid adaptation of knowledge-
enhanced dialogue models via efficient meta-
learning algorithms that minimize task-specific
fine-tuning. (iii) Continuous Knowledge Ac-
quisition: A noteworthy exploration is done
in (Mazumder et al., 2018), where authors
devised a knowledge acquisition engine for
chatbots, enabling continuous learning from di-
verse information sources during interactions.
(iv) Leveraging Emotional Knowledge through
External Sources: Utilizing emotional knowl-
edge bases like SenticNet aids in discerning
user emotional states and background, thus
generating emotionally coherent responses,
crucial in healthcare and social good applica-
tions like persuasion and negotiation.

4. Proposed Length of the tutorial

Half-day (4h long including a coffee break (30m
long))

5. Diversity Considerations

This tutorial on Knowledge-enhanced Dialogue Sys-
tems (KEDS) emphasizes inclusivity and diversity
in three ways: (i) Enhancing Fairness: It educates
on designing less biased, more inclusive dialogue
systems, promoting equity in healthcare commu-
nication tools. (ii) Addressing Unique Needs: It's
relevant to underrepresented groups like health-
care professionals and researchers from certain
countries, offering tailored insights. (iii) Diverse
Presenters: The presenters, originating from an un-
derrepresented country, embody the commitment
to diversity and inclusivity in computational linguis-
tics.

6. Reading List

Extensive reading list is available at Reading List
for Knowledge-enhanced Dialogue Systems.

7. Presenters

1. Priyanshu Priya, Indian Institute of Technology
Patna, India (priyanshu_2021cs26@iitp.ac.in;
priyanshu528priya@gmail.com; LinkedIn)
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2. Deeksha  Varshney, Indian  Institute
of Technology Patna, India  (deek-
sha_1821cs13@iitp.ac.in; deek-

sha.varshney2695@gmail.com; LinkedIn)
Mauajama Firdaus, University of Alberta,
Canada (mauzama.03@gmail.com; LinkedIn)
Asif EKbal, Indian Institute of Tech-
nology Patna, India. (asif@iitp.ac.in;
asif.ekabl@gmail.com); Webpage:
http://www.iitp.ac.in/ asif/; LinkedIn.

3.

4.

8. Other Information

While we are dedicated to accommodate a flexible
number of participants, we anticipate an audience
of 25-30 people. Our estimate is based on the previ-
ous attendance at the tutorial delivered on the topic
“Empathetic Conversational Artificial Intelligence
Systems: Recent Advances and New Frontiers”
was presented at the 32¢ International Joint Con-
ference on Artificial Intelligence, held from 19-25
August, 2023 at Macao, S.A.R, China., as well as
the outreach efforts we have undertaken to promote
the tutorial.

We would appreciate access to standard audio-
visual equipment, such as microphones, projectors,
and screens, to guarantee the tutorial’s success.
Furthermore, a high-speed internet connection is
essential to ensure a seamless hands-on session
during the tutorial, and an interactive whiteboard
might be useful during the presentation for explana-
tory reasons. This configuration will assist us in
facilitating interesting and informative discussions.

9. Ethics Statement

Dialogue systems are becoming ubiquitous in daily
applications like healthcare and customer care,
necessitating ethical considerations in develop-
ment and usage. Key considerations include: (i)
Knowledge-enhanced dialogue systems can col-
lect sensitive user information, including personal
and health data. To safeguard users’ privacy, the
data used in the research presented here has been
anonymized, and personal details have been pro-
tected; (ii) In the context of knowledge-enhanced
dialogue systems, user-centric design is essential,
ensuring that users have control over the conver-
sation and information sharing. Respecting user
autonomy, these systems should offer options to
conclude the conversation or seek further assis-
tance. The datasets created for various research
topics covered in this tutorial have been crafted to
preserve user autonomy.
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