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Abstract

Few-shot Event Detection (FSED) is a meaningful task due to the limited labeled data and expensive manual labeling.
Some prompt-based methods are used in FSED. However, these methods require large GPU memory due to the
increased length of input tokens caused by concatenating prompts, as well as additional human effort for designing
verbalizers. Moreover, they ignore instance and prompt biases arising from the confounding effects between prompts
and texts. In this paper, we propose a prototype-based prompt-instance Interaction with causal Intervention (2xInter)
model to conveniently utilize both prompts and verbalizers and effectively eliminate all biases. Specifically, 2xInter
first presents a Prototype-based Prompt-Instance Interaction (PPII) module that applies an interactive approach for
texts and prompts to reduce memory and regards class prototypes as verbalizers to avoid design costs. Next, 2xInter
constructs a Structural Causal Model (SCM) to explain instance and prompt biases and designs a Double-View
Causal Intervention (DVCI) module to eliminate these biases. Due to limited supervised information, DVCI devises a
generation-based prompt adjustment for instance intervention and a Siamese network-based instance contrasting for
prompt intervention. Finally, the experimental results show that 2xInter achieves state-of-the-art performance on
RAMS and ACE datasets.

Keywords: Few-shot event detection, Prompt learning, Causal intervention

1. Introduction

Event Detection (ED) aims to extract specific event
types from text with provided trigger words. We
usually consider ED as supervised learning, which
requires a substantial amount of annotated data
(Walker et al., 2005). However, the labeled data is
insufficient and manual annotation is costly. As a
result, researchers have shifted their focus toward
Few-Shot Event Detection (FSED).

Recently, some researchers conduct FSED us-
ing prototype-based methods (Lai et al., 2020a,
2021; Deng et al., 2020; Zhang et al., 2022; Zhao
et al., 2022), which aim to learn a metric space that
measures the distance between instances and pro-
totypes for prediction. Although they are effective
for few-shot data, they can be sensitive to inter-task
data distribution variations.

Another powerful way for FSED is prompt-based
methods (Song et al., 2023a,b; Li et al., 2022;
Yue et al., 2023), which transform downstream
tasks into ones that pre-trained language models
are familiar with, thereby relaxing distribution con-
straints about prototypical approaches. However,
these methods usually concatenate original text
and prompt, increasing input length and exacer-
bating GPU memory usage. Meanwhile, devising
appropriate verbalizers can be challenging (see
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Figure 1: (a) An example of the use of prompts and
verbalizers. (b) An example of confounding effects.

Fig. 1(a)).
Additionally, in prompt-based models, the con-

founding effects between instances and prompts
may result in biases (see Fig. 1(b)). On the one
hand, instances may mislead the effect of prompts
on predictions, which we call instance bias. For
example, when learning the effect of the prompt
“talked and Entity of [MASK]” on the correct result
“Contact:Phone-Write”, the feature of the instance
“I’ve talked to people in Pennsylvania.” may lead
to the wrong result “Contact:Meet”. On the other
hand, prompts may disturb the impact of instances
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Figure 2: The performance of 4 seeds using 3
different prompts on the ACE dataset for a 5+1-way
5-shot setting.

on predictions, which we refer to as prompt bias.
For example, an altered prompt “talked . Entity .
[MASK]” might lead a model to predict the incor-
rect category “Contact:Online-Chat”. Moreover, we
visualize the prompt bias in Fig. 2, which shows
that different prompts with the same instance yield
different outcomes. Therefore, these biases can
incur poor stability and robustness for FSED.

In this paper, we propose a prototype-based
prompt-instance Interaction with causal In-
tervention (2xInter) model to mitigate the above
problems. Firstly, we present a Prototype-based
Prompt-Instance Interaction (PPII) module to
efficiently and conveniently employ prompts and
verbalizers. Specifically, the module uses an
interactive method rather than a concatenating
approach to combine prompts and instances,
which reduces the GPU memory usage. Mean-
while, class prototypes serve as verbalizers in the
module, which avoids design difficulties.

Secondly, from a causal view, we establish a
prompt-based Structural Causal Model (SCM) to
explain the instance bias and prompt bias. Subse-
quently, we propose a Double-View Causal Inter-
vention (DVCI) module to eliminate these biases.
Moreover, traditional methods usually employ back-
door adjustments for causal intervention, but such
adjustments are difficult to implement because of
the limited supervised information. As a result,
we devise a generation-based prompt adjustment
for instance intervention and a Siamese network-
based instance contrasting for prompt intervention.

We conduct experiments on three benchmark
FSED datasets: RAMS (Ebner et al., 2020), ACE
(Walker et al., 2005), and LR-KBP (Lai et al., 2021).
Experimental results show that 2xInter consistently
attains State-of-the-Art (SOTA) results across most
datasets and few-shot settings, thus verifying the
validity of our model. The main contributions of this
paper are as follows:

• We propose a novel FSED model called 2xInter.
Experimental results demonstrate that 2xInter1

achieves SOTA performance on RAMS and
ACE datasets.

1https://github.com/manderous/2xInter

• We present a Prototype-based Prompt-
Instance Interaction (PPII) module, which
leverages prompt information in a memory-
saving manner and utilizes prototypical
verbalizer in a labor-saving design.

• We construct a Structural Causal Model (SCM)
to explain the causes of instance bias and
prompt bias. Then we propose a Double-View
Causal Intervention (DVCI) module to de-bias
them. In DVCI, we devise a generation-based
prompt adjustment for instance intervention
and a Siamese network-based instance con-
trasting for prompt intervention.

2. Methodology

In this section, we introduce the prototype-
based prompt-instance interaction with causal in-
tervention (2xInter) model, whose overall frame-
work is presented in Fig. 3. 2xInter consists of three
modules: Prototype-based Prompt-Instance Inter-
action (PPII), Structural Causal Model (SCM), and
Double-View Causal Intervention (DVCI).

2.1. Task definition
In this paper, Few-Shot Event Detection (FSED) is
framed as an “N + 1-way K-shot” few-shot classifi-
cation (Lai et al., 2020a). Here, N + 1 represents
the number of event types plus one “NULL” type,
and K represents the number of samples for each
category.

Moreover, X denotes event instances, R denotes
actual labels, T denotes prompts, and Y denotes
predicted labels. Since the input data is categorized
into support set and query set, these variables can
be represented as a concatenation of two variables,
i.e., X = [Xs, Xq], R = [Rs, Rq], T = [T s, T q], and
Y = [Y s, Y q]. The superscript s annotates the sup-
port variables and q annotates the query variables.
Additionally, Xs =

[
xs
1, . . . , x

s
(N+1)·K

]
and other

support variables follow the same mathematical
form. Similarly, Xq =

[
xq
1, . . . , x

q
(N+1)·L

]
and other

query variables follow the same pattern. Here, L
denotes the number of samples for each query cat-
egory. Therefore, FSED is designed to predict the
labels of the query samples based on the support
samples.

2.2. Prototype-based Prompt-Instance
Interaction

This section proposes the PPII module to efficiently
integrate prompts and to conveniently use verbal-
izers. First, we utilize the interactive method to
combine prompts and instances, considering that
the concatenating method consumes more GPU

https://github.com/manderous/2xInter
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Figure 3: The overall framework of 2xInter. The PPII module aims to classify event types. Secondly, the
SCM is built using the PPII module with the goal of analyzing biases. Finally, the MVCI module aims to
eliminate the biases identified by the SCM.

memory. Specifically, the instances X is fed into
the BART encoder (Lewis et al., 2020) fenc and the
output of the encoder interacts with the prompts
T at the BART decoder fdec. The equations corre-
sponding to this process are shown below:

X ′ = fenc (X) , H = fdec (T ;X
′) , (1)

where H means the instance-interacted prompt
representations. Following these formulas, we ex-
tract the vector h[MASK] viewed as the final event
representation from [MASK] position of H.

Second, we regard category prototypes as ver-
balizers to avoid design difficulties. Specifically, the
event representation h[MASK] is initially fed into an
MLP with parameter W :

M = Wh[MASK]. (2)

Subsequently, we obtain the prototype represen-
tation pc of each class c by averaging the repre-
sentation m

s(c)
i ∈M of all support samples under

that class: pc = 1
K

∑K
i=i m

s(c)
i , c = 0, 1, . . . , N + 1.

Then, we compute the predicted probability of each
category yqi for a sample xq

i and prompt tqi :

P (yqi |x
q
i , t

q
i ) =

exp (−d (mq
i , pyi))∑N+1

c=1 exp (−d (mq
i , pc))

, (3)

where d (·) denotes a metric function for measuring
the similarity between the query sample mq

i ∈ M
and the prototype pc. Eq. (3) serves as a prototyp-
ical verbalizer to obtain scores for each category.

Finally, we optimize the PPII module using cross-
entropy loss:

L = −
∑(N+1)·L

i=1

∑N+1
c=1 [I (rqi = c) · logP (yqi = c|xq

i , t
q
i )] , (4)

where rqi ∈ Rq, yqi ∈ Y q, tqi ∈ T q, and I (rqi = c)
is an indicator function representing whether rqi is
equal to c.

2.3. Structural causal model and bias
analysis

In this section, we first establish a SCM based on
the PPII module, and then use the SCM to analyze
instance bias and prompt bias.

2.3.1. Structural causal model

We construct a PPII-based SCM, as shown in
Fig. 4(a). This SCM comprises five variables: event
corpus (A), instances (X), event prompts (T ), pro-
totypical verbalizers (V ), and predictions (Y ). Fur-
thermore, the SCM includes three causal paths
based on these five variables:
X ← A→ T : signifies that event instances and

prompts are derived from event corpus.
X → V ← T : indicates that the verbalizers are

calculated from event instances and prompts.
V → Y : represents that the results are obtained

from the verbalizer.
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Figure 4: The structural causal model and causal
intervention. (a) represents the structural causal
model for PPII. (b) indicates the instance interven-
tion. (c) denotes the prompt intervention. In addi-
tion, the red cross represents causal intervention.

2.3.2. Instance bias and prompt bias

We utilize the SCM to analyze all biases in the
prompt-based models. First, X can confound the
effect from T to Y due to the backdoor path A→
X → V , which we refer to as instance bias. For
instance, when learning the effect of the prompt
“talked and Entity of [MASK]” on the correct result
“Contact:Phone-Write”, the characteristics of the
instance “I’ve talked to people in Pennsylvania, yes.”
might lead to the incorrect outcome “Contact:Meet”
because of the backdoor path.

In addition, T can confound the effect from X to
Y due to the backdoor path A→ T → V , leading
to what we term as prompt bias. In prompt learn-
ing, we assign a specific prompt to each instance.
However, different instances are suitable for differ-
ent prompts. For example, the instance “I’ve talked
to people from Pennsylvania, yes.” favors prompt
“[Trigger] and [Argument type] of [MASK]”, while
the instance “we read all of your e-mail” prefers
prompt “[Trigger] . [Argument type] . [MASK]”. To
illustrate this issue, we select three semantically
equivalent but differently expressed prompts, and
train our PPII with these prompts under four differ-
ent random seeds. The results are presented in
Fig. 2, which demonstrates that different prompts
yield varying performance rankings across these
random seeds.

In summary, PPII contains the instance bias and
prompt bias, which may incur poor stability and
robustness for FSED.

2.4. Double-View causal interventions

In this section, we propose the DVCI module to
eliminate the instance bias and prompt bias. Specif-
ically, we intervene in the samples and prompts to
block the two backdoor paths (A → X → V and
A → T → V ) in the SCM, respectively, as shown
in Fig. 4(b) and Fig. 4(c). Consequently, the loss
function transforms from Eq. (4) into the following

form:
L = Linstance + Lprompt =

−
(N+1)·L∑

i=1

N+1∑
c=1

[I (rqi = c) · logP (yq
i = c|do (xq

i = x0))]

−
(N+1)·L∑

i=1

N+1∑
c=1

[I (rqi = c) · logP (yq
i = c|do (tqi = t0))] ,

(5)
where do (·) denotes causal intervention, while x0

and t0 denote the text and prompt of the current
sample, respectively. Furthermore, we apply the
backdoor adjustment to calculate the do operation:

P (yqi |do (x
q
i = x0)) =

∑
tdi ∈Td P (tqi )P

(
yqi
∣∣x0, t

d
i

)
, (6)

P (yqi |do (t
q
i = t0)) =

∑
xd
i ∈Xd P (xq

i )P (yqi |x
q
i , t0), (7)

where T d stands for all possible prompts for the
current text, and Xd signifies all possible texts for
the current prompt. However, it is challenging to
traverse all possible instances and prompts. There-
fore, we address this issue in the following section.

2.4.1. Generation-based prompt adjustment
for instance intervention

It is intractable to iterate over all prompts for in-
stance intervention (i.e., Eq. (6)). Therefore, we
utilize the Text-to-Text Transfer Transformer (T5)
(Raffel et al., 2020) to generate a sequence of
prompts Td = {t1, t2, . . . , tm}. Specifically, we ini-
tially format all samples as “[Sentence] [Trigger] [U]
[Argument type] [V]” to input into the T5 model be-
cause we aim to acquire prompts containing both
trigger words and argument types. In this input
format, “[Sentence]” indicates the sentence, “[Trig-
ger]” denotes the trigger words, and “[Argument
type]” represents the argument type. In addition,
“[U]” and “[V]” serve as placeholders, which will
later be filled with specific words when they are
outputted from T5. Following this, we view the top
m texts generated by T5 as m prompts. We briefly
visualize the generation process in Fig. 5.

Assuming that the tokens of each prompt are
represented as ti =

{
k1i , k

2
i , . . . , k

|ti|
i

}
, where |ti|

represents the length of the tokens, the probabil-
ity of generating the tokens by the T5 model is
li =

∑|ti|
j=1 logPT5

(
kji

∣∣∣k1i , . . . , kj−1
i

)
, where PT5

represents the output probability distribution of the
T5. Thus, the P (tqi ) c in Eq. (6) can be computed
as follows:

P (tqi ) =
exp (li)∑
j exp (lj)

. (8)

Additionally, P
(
yqi
∣∣x0, t

d
i

)
in Eq. (6) can be calcu-

lated by Eq. (3). Therefore, we can obtain the loss
Linstance by generation-based prompt adjustment.
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Figure 5: Prompt generation process, where [S], [T], and [A] serve as placeholders of a sentence, trigger
word, and argument type respectively.

2.4.2. Siamese network-based instance
contrasting for prompt intervention

We need to iterate through all instances for prompt
intervention (i.e., Eq. (7)), but the supervised infor-
mation is limited for few-shot tasks. Thus, we apply
a surrogate method, which is a Siamese network-
based instance contrasting, to compute Eq. (7).
This method provides two positive instances for
each original instance, thereby adding extra super-
vised information. Concretely, an event instance is
fed into the BART-Encoder twice, resulting in two
positive samples, x1

i and x2
i , with different dropout

masks in the two calculations:
x1
i = fθ (xi, ϕ1) , x

2
i = fθ (xi, ϕ2) , (9)

where xi ∈ X, and ϕ1 and ϕ2 represent the dif-
ferent random masks used for dropout in BART,
respectively. After that, the two positive instances
are separately input into a projection MLP head g,
which shares weights for the two instances:

z1 = g
(
x1
i

)
, z2 = g

(
x2
i

)
. (10)

Furthermore, the outputs of g are passed through
a prediction MLP head j, which converts a repre-
sentation of a positive instance into that of another
one:

p1 = j (z1) , p2 = j (z2) . (11)
Finally, we optimize the model using the following

surrogate loss function:

Lprompt =
1

2
D (p1, stopgrad (z2))

+
1

2
D (p2, stopgrad (z1)) ,

(12)

where D (·) stands for cross entropy, i.e.,
D (p1, z2) = −softmax (z2) · logsoftmax (p1).
Therefore, we can get the loss Lprompt by Siamese
network-based instance contrasting. Moreover,
Fig. 6 illustrates the process of the Siamese
network-based instance contrasting.

3. Experiments

3.1. Dataset
We evaluate our model on three datasets: RAMS
(Ebner et al., 2020), ACE (Walker et al., 2005), and

Split RAMS ACE LR-KBP
#C #S #C #S #C #S

Train 95 5340 18 2865 72 6732
Dev 17 1934 11 1227 10 561
Test 22 1793 11 1226 10 1291

Table 1: Statistics of three datasets. #C and #S
denote the number of classes and the number of
samples, respectively.

LR-KBP (Deng et al., 2020). LR-KBP integrates
ACE-20052 and TAC-KBP-20173 datasets and ex-
pands some event types from Freebase (Bollacker
et al., 2008) and Wikipedia (Milne and Witten, 2008)
datasets. The partition details of all datasets are
exhibited in Table 1.

3.2. Baselines
We divided the baselines utilized in our experiments
into three groups and summarized them as follows:

Prototype-based methods comprise Proto
(Snell et al., 2017), InterIntra (Lai et al., 2020a),
DMB-Proto (Deng et al., 2020), ProAcT (Lai
et al., 2021), HCL-TAT (Zhang et al., 2022), and
KE-PN (Zhao et al., 2022). These methods tackle
few-shot tasks using a prototype network. To
maintain experimental fairness, we additionally
fine-tune both Proto (the typical prototype-based
model) and ProAct (the best-performing model)
for comparison as our model is also fine-tuned.
Furthermore, the results were reported for Proto,
InterIntra, DMB-Proto, and ProAcT on both the
BERTMLP (Yang et al., 2019) and BERTGCN (Lai
et al., 2020b) sentence encoders.

Prompt-based methods include P4E (Li et al.,
2022) and MetaEvent (Yue et al., 2023). These
methods resolve few-shot event detection through
prompt learning. Since MetaEvent reported results
only on the LR-KBP dataset in the 10+1-way 10-
shot setting, we employed its code to reproduce
results for other datasets and settings.

2http://projects.ldc.upenn.edu/ace/
3https://tac.nist.gov/2017/KBP/Event/index.html

http://projects.ldc.upenn.edu/ace/
https://tac.nist.gov/2017/KBP/Event/index.html
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Figure 6: Siamese network-based instance contrasting.

Hyperparameters RAMS ACE LR-KBP
The max length of sentence tokens 72 74 84
The max length of prompts tokens 20 18 19
Learning rate 0.0001 0.0001 0.0001
Dropout rate 0.3 0.3 0.3
Number of layers in the Projection MLP 3 3 3
Number of layers in the Prediction MLP 2 2 2

Table 2: The hyperparameter setting for our models
on three datasets.

Causal models consist of FS-Causal (Chen et al.,
2021), CausalProbe (Cao et al., 2022), and PAIE-
debias (Lin et al., 2022). These models apply
causal inference to deal with all biases in event
detection or prompt learning. We executed Causal-
Probe and PAIE-debias since they did not provide
results on our experimental datasets.

3.3. Hyperparameters and
implementation details

We evaluate all models on “5+1-way 5-shot” and
“10+1-way 10-shot” task. That is to say, we use
5+1 or 10+1 event types for validation and testing.
Besides, we use Stochastic Gradient Decent (SGD)
optimizer for training. In addition, the total epoch for
training is 6000, and we evaluate the validation/test
set every 400 epochs.

Other hyperparameter settings of our model on
the three datasets are shown in Table 2.

3.4. Overall results
Table 3 presents the F-scores of development and
testing sets on three datasets. From this table, we
can observe that:

Our 2xInter outperforms the top prototype-based
method by a margin of [2.5%-4.3%] on three
datasets. This improvement is attributed to prompt
learning in applying pre-trained language models
to promote few-shot tasks and causal intervention
in mitigating biases.

Our model surpasses prompt-based approach
by a range of [3.1%-14.8%] on RAMS, ACE, and
LR-KBP in the 5+1-way 5-shot setting. This re-
sult demonstrates that our generated prompts and
prototype-based verbalizers are more effective than

those in MetaEvent. Moreover, causal interven-
tion in our model further benefits the performance.
Lastly, MetaEvent achieves the best performance
on LR-KBP in the 10+1-way 10-shot setting, as the
prompts and verbalizers in the model are suitable
for the specific situation.

2xInter outperforms the leading causal model by
a range of [0.7%-2%]. Our 2xInter addresses both
instance and prompt bias, whereas PAIE-debias
only consider one confounder bias, explaining the
superior performance. Secondly, 2xInter applies
Double-View causal interventions, leading to more
precise outcomes compared to intervention calcu-
lation in CausalProbe. Furthermore, incorporating
prompt learning is crucial in 2xInter’s superior per-
formance over FS-Causal.

In summary, comprehensive results underscore
the effectiveness of our 2xInter on few-shot event
detection.

3.5. Discussion
Our 2xInter combines the PPII and DVCI modules.
DVCI consists of two modules: Instance Interven-
tion (II) and Prompt Intervention (PI). We designed
four baselines: (1) 2xInter w/o II expresses that we
ablate the II module. (2) 2xInter w/o PI denotes
that we ablate the IC module. (3) 2xInter w/o DVCI
means that we ablate the DVCI module. (4) 2xInter
w/o DVCI-PPII indicates that we ablate the DVCI
and PPII modules. After removal, we regard BERT-
GCN as an encoder and prototype network as a
classifier for few-shot event detection. Meanwhile,
we devise the following experiments to analyze the
effectiveness of these modules.

3.5.1. Ablation study

Table 4 presents the results of the ablation study.
From the table, we can observe the following:

PPII enables effective interaction between input
texts and prompts, and allows prototypical verbaliz-
ers to assign appropriate event types. As a result,
2xInter w/o DVCI achieves a 0.8% to 3.6% lead
over 2xInter w/o DVCI-PPII.

2xInter shows a range of [1.2% to 1.7%] improve-
ment over 2xInter w/o II, which indicates that the II
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Models
5+1-way 5-shot 10+1-way 10-shot

RAMS ACE LR-KBP RAMS ACE LR-KBP
Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test

BE
RT

M
LP

Proto* 79.7 68.2 82.9 79.3 83.9 82.1 73.4 61.7 81.5 78.4 80.7 78.0
InterIntra* 79.7 69.2 82.7 79.8 84.9 82.4 74.3 61.8 81.4 78.5 80.2 78.4
DMB-Proto* 73.2 66.9 72.9 71.9 79.8 75.2 60.1 53.8 69.5 68.2 67.4 66.2
ProAcT* 79.7 74.3 84.5 83.0 84.1 83.1 73.2 62.3 82.5 80.5 80.7 78.7
Proto-tuning 82.8 75.3 87.1 85.6 92.1 89.3 74.9 64.1 84.1 82.8 89.2 85.9
ProAcT-tuning 82.0 76.4 86.3 84.3 91.6 89.0 74.2 63.2 83.7 82.0 89.2 86.0

BE
RT

G
C

N

Proto* 82.0 71.0 83.5 82.1 87.2 84.8 72.4 60.7 83.3 80.4 83.2 80.0
InterIntra* 81.3 72.4 82.8 82.3 87.1 85.0 73.7 61.9 83.0 80.7 82.8 80.5
DMB-Proto* 54.9 47.2 61.4 60.9 70.8 63.3 54.3 43.0 69.4 69.7 65.8 60.4
ProAcT* 82.1 75.7 86.7 84.7 84.7 87.3 73.6 62.9 83.7 81.9 85.4 83.1
Proto-tuning 83.6 76.4 87.7 87.5 91.5 88.4 75.3 64.8 84.9 84.5 87.9 84.1
ProAcT-tuning 83.5 77.2 88.5 88.1 92.0 89.2 75.0 64.0 86.2 84.9 88.9 85.7
HCL-TAT* – – – – – 66.9 – – – – – 66.0
KE-PN* – – – 69.8 – 78.2 – – – – – –
P4E* – – – – – – – – – – – 92.7
MetaEvent – 71.2 – 87.5 – 89.0 – 54.3 – 74.3 – 95.8*
FS-Causal – – – 76.9 – – – – – – – –
PAIE-debias 85.2 78.9 91.5 89.9 94.4 91.0 77.5 67.5 87.3 85.7 93.8 88.5
CausalProbe 85.1 78.8 88.9 88.1 94.5 91.2 77.3 67.2 86.8 85.6 92.6 88.0
2xInter 86.0 80.9 91.1 90.6 95.3 92.6 80.0 69.1 88.2 87.7 93.7 90.0

Table 3: Overall results. Models with * are taken from their original paper.

module effectively alleviates the prompt bias.
2xInter outperforms 2xInter w/o PI by a range

of [0.2% to 2.4%], which demonstrates that the PI
module effectively mitigates the instance bias.

2xInter surpasses 2xInter w/o DVCI by a margin
of [1.3% to 3.0%], signifying the effectiveness of
the MVCI module in obviating both instance bias
and prompt bias.

3.5.2. The effect of DVCI on robustness

To better understand the impact of DVCI on robust-
ness, we ran 2xInter and 2xInter w/o DVCI five
times on the ACE dataset, and then presented the
averages and variances of the F-scores for these
two methods in Table 5.

As demonstrated in Table 5, the variances of
the F-scores increase when DVCI module is re-
moved. This result signifies that we construct a
suitable SCM and employ the causal intervention
to eliminate the prompt and instance biases from
our model, consequently improving the robustness.

3.5.3. The effect of prompt intervention on
generalization

To investigate the influence of the prompt interven-
tion, a Siamese network-based instance contrast-
ing, on generalization, we show the F-scores for
2xInter and 2xInter w/o PI across all datasets in
Fig. 7. The top bar graph displays results for the
development set, and the bottom bar graph shows
results for the test set.

Fig. 7 demonstrates that 2xInter outperforms
2xInter w/o PI on the test set, although they ex-
hibit similar performance on the validation set. This
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Figure 7: Two bar charts depicting F-scores of two
models across all datasets.

result implies that the PI module can enhance the
generalization ability, as it leverages the instance
contrasting method to yield more discriminative rep-
resentations.

3.5.4. The interactive method vs. the
concatenating method

In our 2xInter model, instances are fed into the
BART-Encoder, and the output of the encoder in-
teracts with the prompts at the BART-Decoder. In
a concatenating method, sentences and prompts
are concatenated and fed into an encoder. Here,
we compare the experimental performance and
GPU memory usage for the interactive and con-
catenating methods, respectively. For the concate-
nating method, we utilize BERTMLP as the encoder
and prototype network as the classifier. To ensure
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Models
5+1-way 5-shot 10+1-way 10-shot

RAMS ACE LR-KBP RAMS ACE LR-KBP
Dev Test Dev Test Dev Test Dev Test Dev Test Dev Test

2xInter w/o DVCI-PPII 83.6 76.4 87.7 87.5 91.5 88.4 75.3 64.8 84.9 84.5 87.9 84.1
2xInter w/o DVCI 84.8 79.6 88.7 88.3 93.2 89.6 76.1 66.5 87.3 85.9 92.8 87.7
2xInter w/o PI 85.9 80.7 91.0 90.0 95.4 92.1 77.0 66.7 88.0 86.5 93.7 88.6
2xInter w/o II 86.1 79.7 89.5 88.9 94.8 91.2 78.6 67.3 87.0 86.4 92.5 88.8
2xInter 86.0 80.9 91.1 90.6 95.3 92.6 80.0 69.1 88.2 87.7 93.7 90.0

Table 4: Ablation study of our proposed components on “5+1-way 5-shot” and “10+1-way 10-shot” settings
on RAMS, ACE, and LR-KBP datasets.

Models dev test
2xInter w/o DVCI 89.75 ± 1.11 88.72 ± 0.73
2xInter 91.25 ± 0.13 90.47 ± 0.32

Table 5: The averages and variances of F-scores
on ACE dataset for 5+1-way 5-shot setting.

Models Dev (F-score) Test (F-score) GPU memory (MB)
PPII 88.7 88.3 16487
Concatenating 85.1 84.3 22933

Table 6: The comparison of interactive and con-
catenating methods on ACE dataset for 5+1-way
5-shot setting.

fairness, both methods share the same hardware
platform4 and version of the Torch package5. The
results are presented in Table 6.

From Table 6, we can observe that the concate-
nating method obtains lower performance and con-
sumes more GPU memory. This result suggests
that the interactive approach integrates the prompts
better and reduces the GPU memory usage.

4. Related works

4.1. Prototype-based methods for
few-shot event detection

Snell et al. (Snell et al., 2017) utilized a prototype
network to implement few-shot classification. After
that, Lai et al. (Lai et al., 2020a) introduced Few-
Shot Event Detection (FSED) and presented an
Intra-cluster matching and Inter-cluster information
(InterIntra) method. Following this, Lai et al. (Lai
et al., 2021) proposed the Prototype Representa-
tions Across Few-Shot Tasks (ProAct) method to
obviate sample bias and abnormal samples. These
methods solely classify event types for FSED. Deng
et al. (Deng et al., 2020) regarded FSED as a two-
stage task and devised a Dynamic-Memory-Based
Prototypical Network (DMB-PN). However, DMB-
PN struggles with error propagation. Zhang et al.
(Zhang et al., 2022) proposed a Hybrid Contrastive
Learning method with a Task-Adaptive Threshold
(HCL-TAT) , which jointly conducts identification and

4GPU: NVIDIA GeForce RTX 3080(10 GB) * 1
5Torch: 1.7.0 + cu110

classification, avoiding this issue. Zhao et al. (Zhao
et al., 2022) also considered joint learning and
presented a Knowledge-Enhanced self-supervised
Prototypical Network (KE-PN).

Our method aligns with the works of Lai et al. (Lai
et al., 2021), which focuses on event classification.

4.2. Prompt-based methods for few-shot
event detection

Li et al. (Li et al., 2022) proposed the P4E model,
which splits event detection into identification and
location. Unlike this two-stage method, Yue et al.
(Yue et al., 2023) devised a joint learning method
called MataEvent, which employs a cloze-based
prompt and a trigger-aware soft verbalizer. Fur-
thermore, Song et al. (Song et al., 2023a) only
focused on event classification and proposed a
taxonomy-aware prompt learning framework (Tax-
onPrompt). In that same year, Song et al. (Song
et al., 2023b) devised a knowledgeable augmented-
trigger prompt FSEC framework (AugPrompt) for
event classification.

We use T5-generated prompts and prototype-
based verbalizers for FSED. Besides, we identify
and eliminate the instance and prompt biases in
prompt-based methods from a causal perspective.

4.3. Causal intervention in event
detection and prompt learning

Chen et al. (Chen et al., 2021) solved the trigger
curse in FSED from a causal view. Moreover, Cao
et al. (Cao et al., 2022) utilized sampling-based
approximation to implement causal intervention,
which is used to mitigate three biases in prompt-
based probing. Besides, Lin et al. (Lin et al., 2022)
employed causal intervention to alleviate the con-
founder bias in prompt-based event argument ex-
traction.

In our work, we propose a Double-View Causal
intervention (DVCI) module to eliminate instance
and prompt biases in FSED. Our DVCI uses
a generation-based prompt adjustment and a
Siamese network-based instance contrasting to fa-
cilitate calculation.
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5. Conclusion

This paper proposes a novel FSED model called
2xInter. In the 2xInter, we first propose a PPII mod-
ule to efficiently integrate sentences and prompts
and directly build verbalizers from class prototypes.
Next, we establish an SCM to analyze all biases in
PPII and devise a DVCI module to eliminate these
biases, thereby improving both performance and
robustness for FSED. Moreover, the DVCI module
comprises a generation-based prompt adjustment
module and a Siamese network-based instance
contrasting module to facilitate causal intervention.
Finally, the experimental results verify the effective-
ness of 2xInter.
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