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Abstract

This article describes an efficient method
of adding terminology support to existing
machine translation models. The train-
ing of the pre-trained models is contin-
ued with parallel data where strings iden-
tified as terms in the source language data
have been annotated with the lemmas of
the corresponding target terms. Evaluation
using standard test sets and methods con-
firms that continued training from generic
base models can produce term models that
are competitive with models specifically
trained as term models.

1 Introduction

One of the major challenges of using machine
translation (MT) to enhance the productivity of hu-
man translators in professional translation is en-
forcing the use of correct terminology in MT out-
put. In general, a translator is expected to adhere
either to standard domain-specific terminology, or
to a client-specific terminology, which can be pro-
vided as a dedicated terminology database (usually
referred to as a termbase) or implicitly in the form
of a translation memory. In the professional trans-
lation setting, when the output of a MT system di-
verges from the specified terminology, a translator
needs to correct the output manually, significantly
reducing the utility of MT. It is therefore impor-
tant that a translator has the capability of influenc-
ing the terminological choices that the MT system
makes by providing terminology to the system.

In this article, we introduce a method of adding
support for enforcing user-provided terminology
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into existing MT models. The method is based on
continued training of the model using data anno-
tated with terminology information.

2 Related work

2.1 Constraining terminology in neural
machine translation

The majority of methods of constraining an neu-
ral machine translation (NMT) model to use user-
provided terminology in translations belong to four
distinct categories.

Pass-through placeholders
Source terms in the source sentence are replaced

by placeholders, and the NMT model reproduces
the placeholders in the translation (Michon et al.,
2020). The reproduced placeholders in the trans-
lation are then replaced by the target terms corre-
sponding to the source terms that the placeholder
had originally replaced. This approach requires
that the model is trained with data that has been
augmented with sentence pairs containing aligned
placeholders on source and target sides. Using
pass-through placeholders usually ensures that the
target terms are generated in correct positions, but
the information contained in the source term is lost
and cannot be utilized by the model when generat-
ing the translation, which can lead to translation
errors. It is also difficult to generate the correct
morphological features for the target terms, espe-
cially for morphologically complex languages.

Constrained decoding
In constrained decoding, the search algorithm of

the MT system is modified to ensure that target
terms are generated for each source term identi-
fied in the source sentence. For instance, Hokamp
and Liu (2017) introduce a variant of beam search
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called Grid Beam Search, which only produces
hypotheses that contain the required target terms.
The benefit of constrained decoding is that it can
be used as an add-on component to any MT model.
However, most constrained decoding implementa-
tions are much slower than normal beam search,
and they may cause translation quality issues, as
the required target terms will be used even in inap-
propriate contexts.

Adding target terms as soft constraints
The pass-through placeholder and constrained

decoding methods treat terms as unconditional:
they should always be included in the generated
translation. In those methods, terms can therefore
be referred to as hard constraints on the MT output.

It is also possible to add terms as soft con-
straints, which the MT model can override. The
most common method of implementing terminol-
ogy as soft constraints is to annotate the source
data with terminology information. These anno-
tations can be added in different ways. For in-
stance, in the first published work on soft termi-
nology constraints (Dinu et al., 2019), two meth-
ods were tested: the target term was either ap-
pended after the corresponding source term or the
target term replaced the source term. Factors were
used to signal that the target terms were to be pro-
cessed differently from normal source tokens. Like
the pass-through placeholder method, the soft con-
straint method requires that training data of the
model is augmented, in this case with sentence
pairs, where the source sentence has been anno-
tated with target term information that also occurs
in the target sentence. This causes the model to
associate a target term in the source sentence with
having the same target term in the target sentence.

The annotation-based soft constraint method
seems to currently be the most popular and widely
used method of enforcing user-provided terminol-
ogy, and it has also been most successful and com-
mon in recent terminology MT shared tasks (Alam
et al., 2021b; Semenov et al., 2023).

Using large language models
Large language models (LLMs) provide an-

other way to apply terminology as soft constraints.
With LLMs, the use of user-provided terminol-
ogy can be enforced in several ways. Moslem et
al. (2023a) implement constrained terminology
in LLM translation by adding terminology trans-
lations to the prompts they use to elicit transla-

tions from the GPT-3.5 text-davinci-003
model. Bogoychev and Chen (2023) use the
gpt-3.5-turbo-0613model to correct termi-
nology in an unconstrained LLM translation by
providing a refined prompt containing the required
terminology changes. LLMs can also be used
to post-edit the terminology in translations gener-
ated by conventional NMT systems (Moslem et al.,
2023b).

2.2 Continued training

In continued training (also called fine-tuning), the
training of a pre-trained NMT model is contin-
ued with a training set that is usually either a dis-
tinct subset of the original training data of the pre-
trained model or a new data set which was not
included in the original training data, at least not
in its entirety. The most common use case for
continued training is domain adaptation, for in-
stance adapting a pre-trained generic NMT model
to speech translation using speech data (Luong and
Manning, 2015). Continued training has also been
used for adding new language pairs to a multi-
lingual NMT model (Neubig and Hu, 2018), and
to alleviate the effects of large amounts of back-
translated data on translation quality by continuing
training with only genuine parallel data (Bawden
et al., 2019).

Continued training is widely used in NMT re-
search and industry, and its effectiveness has been
demonstrated with manual evaluation (Dogru and
Moorkens, 2024). However, continued training al-
ways entails a risk of catastrophic forgetting (Mc-
closkey and Cohen, 1989), where the model par-
tially or completely loses the ability to translate
source text that is not present in the training set
used for the continued training.

3 Model training

We generate models with terminology support
(term models) for multiple language pairs by con-
tinuing the training of generic base models with
data annotated with terminology information.

Pre-trained models published as part of the
Tatoeba-Challenge (Tiedemann, 2020)1 project are
used as the base models for the continued train-
ing. Tatoeba-Challenge project includes MT mod-
els for hundreds of language pairs, and for many
language pairs there are multiple models available.
According to automatic evaluations performed on
1https://github.com/Helsinki-NLP/Tatoeba-Challenge
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the Tatoeba-Challenge models, the models with
the best performance are based on the transformer-
big architecture. However, as we intend to de-
ploy these terminology models for low-latency
CPU inference on desktop computers, we use the
transformer-base models, which generate transla-
tions much quicker.

Base model
en-bg opus+bt-2021-04-13
en-da opus+bt-2021-04-13
en-de opus+bt-2021-04-13
en-es opus+bt-2021-04-10
en-et opus-2019-12-18
en-fi opusTCv20210807+bt-2021-09-01
en-fr opus-2021-02-22
en-it opus+bt-2021-04-14
en-lt opus+bt-2021-04-14
en-nl opus+bt-2021-04-14
en-sv opus+bt-2021-04-14
fi-en opusTCv20210807+bt-2021-08-25

Table 1: Models that were used as base models for term fine-
tuning (all are different bilingual models).

For the experiments, we selected a subset of
language pairs for which base models of rea-
sonable quality (according to the published au-
tomatic metrics2) were available. The selection
includes 12 medium- and high-resource transla-
tion directions between different pairs of Euro-
pean languages. For some language pairs, such
as English to Estonian, transformer-base models
are not available among Tatoeba-Challenge mod-
els, and models from the OPUS-MT model col-
lection (Tiedemann and Thottingal, 2020) are used
instead. All models have been trained on data
that has been segmented with SentencePiece
(Kudo and Richardson, 2018) (see table 1 for the
model names).

The continued training is performed with
MarianNMT (Junczys-Dowmunt et al., 2018) us-
ing the default settings (v1.11.13). While adjust-
ing hyperparameters, such as learning rate, might
make the continued training more efficient, the ini-
tial automatic metric results indicated that the de-
fault settings were sufficient for the task, so we de-
cided not to experiment with any hyperparameter
adjustments. The duration of continued training
was one epoch.

2https://opus.nlpl.eu/dashboard/

3.1 Data
The training of each model is continued with a
subset of the Tatoeba-Challenge data set v2023-
09-26 for the language pair in question. Tatoeba-
Challenge data sets contain most of the data avail-
able in the OPUS corpus collection (Tiedemann,
2009). The base models were originally trained
with an earlier version of the Tatoeba-Challenge
data set, so the original training data and the data
for continued training overlap significantly. Since
the data sets contain large proportions of crawled
data, which often has quality issues (Kreutzer et
al., 2022), Bicleaner-AI (Zaragoza-Bernabeu et
al., 2022) scores (model version 2.0) are used to
extract the best quality parallel sentence pairs to
be used as the continued training set. Ten million
best-scoring sentence pairs are extracted as fine-
tuning data for each language pair.

3.2 Training pipeline
A modified version of Mozilla’s firefox-
translations-training3 pipeline was used to
train the models. This pipeline, which is based
on the Snakemake workflow management system
(Mölder et al., 2021), can perform all the steps re-
quired for building NMT models, such as loading,
pre-processing, cleaning and filtering the training
data, and training and evaluating the NMT models.
For the work described in this article, terminology
annotation and evaluation components were added
to the pipeline. The code for the modified pipeline
is available on GitHub.4

3.3 Terminology annotation
As mentioned, training data for soft constraint
terminology training needs to be annotated with
terminology information. Two different methods
are commonly used for generating such annotated
training data:

1. Annotating a corpus using a termbase (e.g.
Dinu et al. (2019)): Given a termbase, such
as IATE,5 and a parallel corpus, search the
parallel corpus for sentence pairs where the
source sentence contains source terms from
the termbase. For those sentence pairs with
source terms, check for each source term
whether the corresponding target term also

3https://github.com/mozilla/firefox-translations-training
4https://github.com/Helsinki-
NLP/OpusDistillery/tree/eamt_opuscat_terms
5https://iate.europa.eu/home
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occurs in the target sentence. Then annotate
those source terms that have corresponding
target terms with terminology information.

2. Annotating a corpus using aligned pseudo-
terms (e.g. Bergmanis and Pinnis (2021)):
Given a parallel corpus, align source and tar-
get tokens with an alignment tool such as
FastAlign (Dyer et al., 2013). Then se-
lect aligned subsets of tokens and use them as
pseudo-terms.

There are benefits and disadvantages to both
of these methods: using a termbase ensures that
the annotated terms are reasonable, but it also re-
stricts the annotations to the subject matter of the
database making them uniform, and unless the
database is very large, there may not be enough
term matches found in the parallel data to gener-
ate an annotated training set that is large enough.
On the other hand, pseudo-terms may not bear
much resemblance to actual terminology, unless
their generation is restricted in some way. One
major benefit of the pseudo-term approach is that
it is language-independent, while the database ap-
proach is only usable for language pairs for which
suitable termbases exist.

We use the aligned pseudo-term approach for
reasons of simplicity. The pseudo-term genera-
tion is restricted to aligned noun and verb phrase
chunks, as real-world terminology generally also
consists of noun and verb phrases. The process for
generating the annotated training data from paral-
lel data is the following:

1. Parse data to identify POS and depen-
dencies: Generate the parts-of-speech (POS)
and dependency relations of source and tar-
get sentence tokens using Stanza (Qi et al.,
2020).

2. Create noun and verb chunks: Identify
noun and verb phrase chunks in the source
and target sentences based on the POS and
dependency information.

3. Token alignment: Align parallel corpus on
token-level with FastAlign, using the grow-
diag-final-and heuristic.

4. Chunk alignment: Use alignment informa-
tion from step 3 to identify source noun
chunks that are aligned to target noun chunks

and source verb chunks that are aligned to tar-
get verb chunks.

5. Appending target chunk lemmas to source
chunks: Append lemma forms of target
chunks after the corresponding source chunks
in the source sentence.

Our pseudo-term generation method is very sim-
ilar to that used in (Bergmanis and Pinnis, 2021).
The difference is that we align chunks instead of
words, and the alignment is performed on the sub-
word units of the sentences instead of the lemma
forms of words in the sentence.

The parallel data is annotated with the pseudo-
terms by appending the target term after the corre-
sponding source term in the source sentence. The
term annotation is indicated by using three indica-
tor tags: one before the source term, one between
the source term and the target term, and one after
the target term. See table 2 for an example of the
annotation scheme.

The annotation scheme is similar to the append
method used in (Dinu et al., 2019). The main
difference is that like Ailem et al. (2021) we
use tags and not factors to indicate target terms.
Lemma forms of target terms are used in the source
sentence in order to make the model associate a
lemma form in the source sentence with an in-
flected form in the target sentence, which is the be-
haviour that the model should ideally adapt during
the training.

Any number of terms can occur in a source
sentence, so the training data needs to contain
source sentences with varying amounts of anno-
tated terms. Our annotation script keeps a running
count of the number of sentences with n terms that
have been annotated, and ensures that there is vari-
ability in the amounts of terms in the training data
sentence pairs. The amount of sentence pairs per
term count approximates a geometric series, where
the amount of sentence pairs is halved for each
term. The ratio is chosen on the assumption that
only a few terms will occur in most sentences, al-
though in actual production cases the frequency of
terms will probably vary greatly by domain and
the scale and level of detail of the terminology
database that is used.

For some sentence pairs in the training corpus,
no aligned term chunks are found using the above
method, so for each language pair there is a vary-
ing amount of sentence pairs without term annota-
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Source British Library releases a million images on Flickr
Annotated British Library <term_start> releases <term_end>
source veröffentlichen <trans_end> a million <term_start>

images </term_end> Bild <trans_end> on Flickr

Table 2: Example of the annotation method scheme used in the experiments (note in the actual training data the sentences are
split into sub-word units, here they appear unsegmented for clarity)

tions. To see the effect of having a mix of anno-
tated and unannotated sentence pairs in the train-
ing corpus, two models are trained for each lan-
guage pair: one with both unannotated and anno-
tated sentence pairs, and one with only annotated
sentence pairs (referred to as the only-terms model
in the tables). See table 3 for amounts of sentences
annotated with terms for each language pair.

Annotated sentences
en-bg 7,604,181
en-da 7,441,517
en-de 6,092,623
en-es 5,782,967
en-et 7,226,641
en-fi 6,706,819
en-fr 4,599,385
en-it 3,143,592
en-lt 7,495,889
en-nl 7,358,655
en-sv 7,330,407
fi-en 6,510,906

Table 3: The amounts of sentences annotated with terms for
each language pair. Annotated sentences contain 1.99 terms
on average. only-terms models are trained with this data only,
while term models are trained with the whole 10 million sen-
tence pair training set, including sentence pairs without terms.

3.4 Vocabulary adaptation

The vocabularies of the base Tatoeba-Challenge
models contain only symbols that have occurred
in the original training corpus, i.e. the Tatoeba-
Challenge data set segmented with SentencePiece.
There are no spare symbols that can be used as
terminology tags, so naturally occurring symbols
have to be repurposed to act as the terminology
tags. We use an automatic method to choose three
uncommon vocabulary units to act as the terminol-
ogy tags. As the symbols chosen as the terminol-
ogy tags do not occur in the filtered training data
(they are extremely rarely occurring tokens, such
as characters from non-Latin scripts), re-purposing
them should have no effect on translation quality.

4 Evaluation

There are three important aspects to the evaluation
of NMT models with terminology support:

1. Overall translation quality without termi-
nology: how well the model translates source
sentences with no terms present.

2. Terminological accuracy: how many of the
source terms have a corresponding target term
present in the translation.

3. Overall translation quality with terminol-
ogy: if the source sentence is annotated with
terms, how well does the model translate the
sentence (regardless of how many terms it
gets correct).

Ideally, a terminology model translates terms
accurately, while maintaining an overall transla-
tion quality level comparable to the base model,
both when translating sentences with terms or
without them. This kind of model can be used in-
dependently, with no supplementary models.

Minimally, a terminology translation model has
to have a reasonable level of term accuracy with-
out causing the overall translation quality of sen-
tences with terminology to degrade too much. A
term model with this kind of minimal performance
can still be useful, as long as it is used together
with a generic back-off model that translates sen-
tences without terms.

4.1 Overall translation performance without
terminology

The purpose of evaluating translation performance
without terminology is to see if catastrophic for-
getting occurs, i.e whether the continued train-
ing significantly degrades the term model’s perfor-
mance in general translation.

Metrics
Terminology models are compared against

the base models using two automatic evalua-
tion metrics. BLEU scores are generated us-
ing sacrebleu (Post, 2018), and additionally
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COMET (Rei et al., 2020) scores are generated
with the wmt22-comet-da model.

Data for evaluating translation performance
without terms

For each language pair, a maximum of four
test sets are downloaded using sacrebleu and
mtdata (Gowda et al., 2021) tools. For most lan-
guage pairs, WMT test sets from different years
are used. If no WMT test sets are available for
a language pair (such as English to Swedish), the
FLORES test set (Goyal et al., 2021) is used in-
stead. The test sets were compared with the fine-
tuning sets to verify that there was no overlap that
could affect the results.

The results of evaluation without terminology
are listed in table 4.

4.2 Terminological accuracy
Term models are assessed on how well they re-
produce the specified terminology in their outputs.
The evaluation is primarily performed with the
methods outlined in (Alam et al., 2021a), using the
terminology_evaluation 6 script provided
by the authors. As the script assumes tokenized
and truecased input, we use a modified script that
tokenizes and truecases the SentencePiece output
from the models using Stanza. Due to this and
other changes, the modified script is made sepa-
rately available. 7

The main evaluation metric included in the
script is Exact-Match Accuracy, which scores a
translation based on how many of the required tar-
get terms it contains. Despite the name, the metric
also accepts inflected forms of the target terms in
addition to exact matches.

The principal difficulty in judging the termino-
logical correctness of a translation is that while
it is simple to check if a translation contains the
lemma or inflected forms of required target terms,
it is not easy to check whether the target term
has the correct form or that it is placed grammat-
ically in the translation. If terminological correct-
ness is evaluated solely by counting the occurrence
of target terms in any inflection form, the evalua-
tion becomes very easy to cheat in (purposefully
or by accident): the model simply needs to add the
terms in any position in the translation. This cheat-
ing problem particularly affects hard terminology
constraint methods, i.e. constrained decoding and
6https://github.com/mahfuzibnalam/terminology_evaluation
7https://github.com/TommiNieminen/soft-term-constraints

pass-through placeholders, since they will always
produce the target terms, but soft constraint mod-
els are not immune to it either.

(Alam et al., 2021a) proposes multiple solutions
to the cheating problem:

1. Window overlap: When a target term occurs
in a translation, extract n content words sur-
rounding the target term and check how many
of those content words also occur in the n con-
tent words surrounding the same target term
in a reference translation. This will reward
terms that are placed similarly to the corre-
sponding term in a reference translation.

2. Terminology-biased TER (TERm): A modi-
fied TER metric, where the edit cost is dou-
bled for any reference word belonging to a
target term.

It should be noted that both of these metrics
rely on reference translations, so they are are af-
fected by the same problem as all reference-based
metrics: the single reference translation avail-
able represents only one of many possible valid
translations, and many valid translations are there-
fore scored incorrectly. However, combined with
Exact-Match Accuracy, these metrics can provide
some extra information about the term accuracy of
MT models.

Data for term accuracy evaluation
Evaluating term accuracy requires minimally a

terminology and a collection of source language
sentences which contain terms present in the ter-
minology. This type of data is easy to obtain in
theory, since monolingual data is plentiful, and
there are many freely available and extensive ter-
minology databases, such as IATE. However, test
data created in this manner is artificial and may
not reflect actual use cases of terminology, unless
the data is carefully prepared and reviewed. Be-
cause of this, we use publicly available terminol-
ogy test sets for evaluation. We found three poten-
tially suitable test sets:

1. Annotated Tico-19 test set published for the
WMT21 term task (Alam et al., 2021b).8

2. Test set for a case study on terminology trans-
lation for the Canadian Parliament (Knowles
et al., 2023). 9

8https://www.statmt.org/wmt21/terminology-task.html
9https://github.com/nrc-cnrc/PFT-ef-EAMT23

26



Base Term Only-terms Change:
Test sets model model model base to term

en-bg FLORES 41.64 / 0.866 42.91 / 0.875 43.33 / 0.877 1.27 / 0.009
en-da FLORES 45.85 / 0.865 46.71 / 0.866 47.10 / 0.865 0.86 / 0.001
en-de WMT17,18,19+FLORES 40.55 / 0.787 40.65 / 0.787 41.60 / 0.788 0.1 / 0
en-es WMT11,12,13+FLORES 38.20 / 0.816 37.70 / 0.814 38.06 / 0.817 -0.5 / -0.002
en-et WMT18+FLORES 23.71 / 0.824 25.55 / 0.848 25.56 / 0.849 1.84 / 0.024
en-fi WMT17,18,19+FLORES 26.63 / 0.862 25.91 / 0.866 25.94 / 0.866 -0.72 / 0.004
en-fr WMT11,12,13+FLORES 35.98 / 0.798 33.68 / 0.795 34.94 / 0.805 -2.3 / -0.003
en-it WMT09+FLORES 33.11 / 0.816 32.84 / 0.817 34.38 / 0.825 -0.27 / 0.001
en-nl FLORES 26.49 / 0.824 27.76 / 0.826 27.11 / 0.825 1.27 / 0.002
en-lt WMT19+FLORES 20.63 / 0.782 22.84 / 0.814 22.68 / 0.813 2.21 / 0.032
en-sv FLORES 44.29 / 0.868 45.43 / 0.867 45.56 / 0.865 1.14 / -0.001
fi-en WMT17,18,19+FLORES 31.70 / 0.849 30.82 / 0.845 30.96 / 0.846 -0.88 / -0.004

Table 4: General translation performance measured as BLEU/COMET. Note that the input to the term models was not annotated
with terms when translating these test sets, they translated the same unannotated input as the base model. Therefore it would
be expected that the term models would perform worse in this evaluation due to being further trained for another task.

3. Automotive Test Suite, an automotive corpus
annotated with terms (Bergmanis and Pinnis,
2021). 10

Out of these three, only the Tico-19 set includes
term annotations on the target side, which are
required by the terminology_evaluation
script (the Tico-19 test set uses the exact format-
ting that the script expects, as they were both used
in the WMT21 terminology shared task). The ter-
minology in the Canadian Parliament test set ap-
pears to be fairly generic and sparse in terminol-
ogy, so we decided not the use it (especially since
the English to French language pair is already cov-
ered by Tico-19). For the Automotive Test Suite,
we only evaluated term accuracy, using the same
script as in (Bergmanis and Pinnis, 2021) in order
to produce comparable results.

We do not include results for the only-terms
model for these test sets, as all other results point
to there being very little difference in performance
between the term and only-terms models.

The test sets are primarily used to compare base
model and term model performance to see if any
improvement in term translation occurs. Although
we include the results from the articles connected
to these sets in our result tables (tables 5 and 6)
for reference, they are not directly comparable to
the results obtained with our models. First of all,
the base models we use have been trained on a
larger parallel corpus, which affects the COMET
and BLEU metrics and may also affect the term
10https://github.com/tilde-nlp/terminology_translation

accuracy score. Secondly, even though we use the
same scripts as in the referred articles for evalua-
tion, there may be subtle differences due to post-
publication changes to the scripts.

Artificial test sets
The available test sets are relatively small and

cover only a few of the language pairs for which
we have trained models for, so we additionally
test the models on artificial test sets which have
been generated with the same method as the an-
notated training set. These test sets are cre-
ated by concatenating the normal test sets for
a language pair, annotating the concatenated file
with pseudo-terms, and then generating source and
target files in the .sgm format required by the
terminology_evaluation script. One limi-
tation of the artificial test sets is that the pseudo-
terms tend to be common words and phrases,
which often have only one suitable translation in
the context. This means they probably overesti-
mate the term accuracy of the base models. The
results of the artificial test set evaluation are listed
in table 7.

Discussion of automatic evaluation results
Automatic evaluation with both the previously

published test sets and the artificial test sets clearly
indicate that the continued training with terminol-
ogy annotations increases terminology accuracy
significantly, without degradation in overall trans-
lation quality, whether or not the source sentence
contains terms. Term models consistently have
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Exact Match Window Window 2
Accuracy Overlap 1 Overlap 2 TERm BLEU COMET

base 0.838 0.253 0.264 0.609 46.80 0.802
term 0.931 0.245 0.257 0.582 42.54 0.806
best in WMT21 0.974 0.359 0.352 0.625 47.69

Table 5: Evaluation results for the Tico-19 test set from WMT21 shared terminology task (EN-FR only). Note that the best
WMT21 model scores are not directly comparable due to possible differences in evaluation setup (WMT21 COMET score is
omitted completely, as it is based on a different COMET model).

Base Term
model model TLA

en-de 29.5 / 47.6 33.2 / 95.1 33.5 / 94.0
en-et 19.8 / 40.2 22.6 / 82.5 21.0 / 87.2
en-lt 17.9 / 38.8 20.3 / 59.9 30.1 / 90.3

Table 6: BLEU scores and terminology accuracy scores for
the Automotive Test Suite. TLA (Target Lemma Annotations)
refers to results from Bergmanis and Pinnis (2021).

better term accuracy than base models, and term
accuracy is usually very high (over 0.95 for all
term models with the artificial test sets). The im-
provement of the term model Window Overlap
scores compared to the base model scores also in-
dicates that the placement of the terms in the out-
put is reasonable.

One exception to the high term accuracy is the
EN-LT term model, where term accuracy is fairly
low with the ATS test set. This may be due to the
low quality of the base model for EN-LT, which is
reflected in the large disparity between the BLEU
score (17.9 vs 30.1) of the base model and the
model used by Bergmanis and Pinnis (2021).

In general, the term models perform better with
the artificial test sets than with the Tico-19 and
ATS test sets. This is probably due to the large
amount of generic terms in the artificial test sets,
which are easy for the model to get right. How-
ever, the term model performance still remains at
a reasonably high level, and is considerably better
than base model performance.

The evaluation of translation performance with-
out terms indicates that no catastrophic forgetting
takes place during the continued training. With
most language pairs, the continued training even
increases the BLEU score, although the COMET
scores remain similar. This may be partly due to
the fact that the training set for the continued train-
ing has been filtered with Bicleaner-AI, and should
be of higher quality than the rest of the Tatoeba-
Challenge data.

4.3 Manual evaluation

Since automatic evaluation cannot conclusively
judge whether the term models improve terminol-
ogy translation without degrading general transla-
tion quality, we conducted a short manual evalu-
ation to determine the effect more reliably. The
manual evaluation is conducted with the English
to Finnish language direction. Finnish is a mor-
phologically complex language, so problems in the
grammaticality of the terms should be more appar-
ent than with morphologically simpler target lan-
guages. The evaluator is an experienced profes-
sional English-to-Finnish translator, who is a na-
tive Finnish speaker.

51 sentence pairs were selected for manual eval-
uation from the artificial term test set. As men-
tioned, the artificial term test set contains a large
amount of cases where the terms are obvious, i.e.
there are only few realistic term translations, and
therefore any decent model will likely translate the
term according to the terminology. To extract in-
teresting test cases, the evaluation set was picked
from those sentences where the base model trans-
lation did not contain the required terms. These
are more likely to be sentences for which the base
model would struggle to produce correct terminol-
ogy. From this set, 51 sentences for which the
term model had produced a terminologically cor-
rect translation were randomly selected as the final
manual evaluation set.

In the first phase of the manual evaluation, the
evaluator was presented with the source sentences
one by one, along with the base model and term
model translations for each sentence in random or-
der. The reviewer was instructed to select from
three options for each pair of translations A and B:
1. translation A is better, 2. translation B is better
or 3. translations A and B are equally good. The
purpose of this phase was to determine whether
the term model translations are noticeably inferior
to the base model translations. Note that in this
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Exact Match Window Window 2
Model Accuracy Overlap 1 Overlap 2 TERm BLEU COMET

en-et base 0.739 0.272 0.292 0.402 23.71 0.824
only-terms 0.962 0.334 0.362 0.460 27.49 0.854
term 0.964 0.337 0.364 0.457 27.71 0.855

en-nl base 0.715 0.366 0.369 0.412 26.49 0.824
only-terms 0.966 0.437 0.445 0.448 29.58 0.829
term 0.970 0.439 0.448 0.452 29.83 0.831

en-fi base 0.731 0.296 0.309 0.407 26.63 0.862
only-terms 0.964 0.354 0.374 0.454 29.45 0.873
term 0.967 0.356 0.376 0.454 29.59 0.874

en-sv base 0.750 0.464 0.478 0.604 44.29 0.868
only-terms 0.983 0.539 0.559 0.650 48.68 0.873
term 0.980 0.537 0.556 0.655 48.78 0.874

en-bg base 0.772 0.374 0.407 0.571 41.64 0.866
only-terms 0.959 0.443 0.482 0.607 45.41 0.881
term 0.965 0.442 0.481 0.609 45.39 0.879

en-es base 0.750 0.364 0.388 0.512 38.20 0.816
only-terms 0.975 0.421 0.451 0.553 40.85 0.825
term 0.979 0.419 0.450 0.553 40.79 0.824

en-da base 0.775 0.428 0.459 0.620 45.85 0.865
only-terms 0.986 0.499 0.532 0.658 49.72 0.872
term 0.987 0.495 0.531 0.656 49.57 0.871

fi-en base 0.697 0.311 0.342 0.476 31.70 0.849
only-terms 0.982 0.387 0.424 0.527 34.96 0.856
term 0.982 0.386 0.424 0.528 34.85 0.855

en-fr base 0.735 0.323 0.352 0.481 35.98 0.798
only-terms 0.974 0.376 0.412 0.525 37.80 0.816
term 0.978 0.375 0.410 0.524 37.57 0.815

en-it base 0.763 0.350 0.367 0.463 33.11 0.816
only-terms 0.960 0.410 0.440 0.520 37.38 0.834
term 0.967 0.415 0.442 0.523 37.42 0.836

en-lt base 0.708 0.212 0.236 0.333 20.63 0.782
only-terms 0.961 0.277 0.308 0.386 25.06 0.821
term 0.967 0.280 0.307 0.386 24.96 0.821

en-de base 0.733 0.367 0.399 0.540 40.55 0.787
only-terms 0.985 0.442 0.481 0.603 45.46 0.802
term 0.986 0.440 0.479 0.601 45.24 0.802

Table 7: Term translation performance measured with the terminology_evaluation script using artificial term test sets.
Pseudo-terms have been annotated in the term model input, but not in the base model input. Note that since the annotated terms
occur in the reference translation, BLEU and COMET scores favour the term models. Test sets are the same as in Table 2.

phase the translator was not given details of the
terms used in generating the translation, and they
only ranked the sentences based on overall quality
according to the normal translation industry stan-
dards. In this phase, the reviewer was also not yet
informed that the evaluation concerned terminol-
ogy.

Since the term model had access to terms that
had been used in at least one acceptable trans-

lation (the reference translation based on which
the pseudo-terms were generated), it would be ex-
pected to perform better than the base model in
the first phase. Again, the purpose of this phase
was not to compare the base and term model trans-
lations on even ground, but to determine whether
noticeable quality degradation takes place with the
term model.

In the second phase of the manual evaluation,
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Source The students gathered on the pier.
Terms the student = uimakoululainen,

pier = laituri
Target Uimakoululaiset kokoontuivat

laiturille.

Table 8: Example of the term model inflecting lemma forms
of terms. The term model clearly utilizes the term informa-
tion, as the Finnish translation of the student here means a
student of a swimming school, and would be a very unlikely
translation without the term information.

the evaluator was instructed to judge whether
the term translations in the output of the term
model were syntactically and/or semantically cor-
rect. The purpose of this phase was to determine
whether the term placement in the term model out-
put is reasonable, i.e. that the model is not cheat-
ing the automatic evaluation metric by placing the
term in an incorrect place and/or in an incorrect
morphological form. For each source sentence in
the evaluation set, the reviewer was presented with
the term model output and a list of terms that were
expected to be in the output, in addition to the
source sentence. For each translation, the reviewer
recorded the number of terms which had been cor-
rectly used in the translation.

4.4 Results of manual evaluation

The results of the manual evaluation clearly indi-
cate that the term model performs well, even if the
target language is morphologically complex. In the
first phase, the term model was ranked as perform-
ing better than base model in 20 cases, while the
base model was judged to be better than the term
model in 11 cases. In 20 cases, the model outputs
were judged to be of equal quality. The results of
the second phase also indicate that the term model
performs well, with the reviewer judging 171 out
of 178 terms as being correctly used. Since the
morphological forms of the terms present in the
output are very varied, it is clear that the model is
capable of inflecting the lemma forms of the terms.
Table 8 shows one example of the term model cor-
rectly inflecting several terms.

5 Energy use considerations

Training of NMT models consumes considerable
amounts of energy. Strubell et al. (2019) esti-
mate that training a transformer-base model of the
type used in our experiments consumes 27 kWh
of energy. Since we do not train from scratch but

use continued training, the energy consumption of
actual model training is considerably lower than
the 27 kWh baseline. Unfortunately, we could not
track the exact energy consumption of the exper-
iments due to the nature of the computing infras-
tructure that was used (shared dual GPU in a su-
percomputer, where energy measurement data of
the GPU includes the data for other jobs running
on the same dual GPU). Based on the partial en-
ergy consumption data that we have recorded and
the running times on jobs, we estimate that the con-
tinued training consumed approximately 0.35 kWh
per model.

While the energy consumption of the contin-
ued training is low, using Stanza to annotate the
training corpus with terminology information con-
sumes significant amounts of energy. We estimate
that the terminology annotation consumes around
5 kWh per language pair. The energy use could
be minimized by switching to a less resource-
intensive parser (such as spaCy11).

While the energy consumption of Bicleaner-AI
is also significant, it is not included here, since we
used publicly available pre-existing Bicleaner-AI
scores from the Tatoeba-Challenge project.12

Based on a survey by Donnellan et al. (2023),
the estimates above have been multiplied with a
Power Usage Effectiveness (PUE) value of 1.58.

6 Conclusions

The experiments described in this article demon-
strate that continued training can be used to add
soft terminology constraints to pre-trained generic
MT models. Automatic and manual evaluation of
the model outputs clearly indicate that high lev-
els of terminology accuracy can be achieved at a
fraction of the energy cost of training a new model
from scratch.
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Bergmanis, Toms and Mārcis Pinnis. 2021. Facilitat-
ing terminology translation with target lemma anno-
tations. In Proceedings of the 16th Conference of
the European Chapter of the Association for Com-
putational Linguistics: Main Volume, pages 3105–
3111, Online, April. Association for Computational
Linguistics.

Bogoychev, Nikolay and Pinzhen Chen. 2023.
Terminology-aware translation with constrained de-
coding and large language model prompting. In
Koehn, Philipp, Barry Haddow, Tom Kocmi, and
Christof Monz, editors, Proceedings of the Eighth
Conference on Machine Translation, pages 890–
896, Singapore, December. Association for Compu-
tational Linguistics.

Dinu, Georgiana, Prashant Mathur, Marcello Federico,
and Yaser Al-Onaizan. 2019. Training neural ma-
chine translation to apply terminology constraints.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
3063–3068, Florence, Italy, July. Association for
Computational Linguistics.

Dogru, Gokhan and Joss Moorkens. 2024. Data aug-
mentation with translation memories for desktop ma-
chine translation fine-tuning in 3 language pairs. The
Journal of Specialised Translation, (41):149–178,
Jan.

Donnellan, Douglas, Daniel Bizo, Jacqueline Davis,
Andy Lawrence, Owen Rogers, Lenny Simon, and
Max Smolaks. 2023. Uptime Institute’s Global Data
Center Survey Results 2023. Technical report, Up-
time Institute.

Dyer, Chris, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparame-
terization of IBM model 2. In Vanderwende,
Lucy, Hal Daumé III, and Katrin Kirchhoff, edi-
tors, Human Language Technologies: Conference of
the North American Chapter of the Association of
Computational Linguistics, Proceedings, June 9-14,
2013, Westin Peachtree Plaza Hotel, Atlanta, Geor-
gia, USA, pages 644–648. The Association for Com-
putational Linguistics.

Gowda, Thamme, Zhao Zhang, Chris Mattmann, and
Jonathan May. 2021. Many-to-English machine
translation tools, data, and pretrained models. In
Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing: System Demonstrations, pages 306–
316, Online, August. Association for Computational
Linguistics.

Goyal, Naman, Cynthia Gao, Vishrav Chaudhary,
Peng-Jen Chen, Guillaume Wenzek, Da Ju, San-
jana Krishnan, Marc’Aurelio Ranzato, Francisco
Guzmán, and Angela Fan. 2021. The flores-101
evaluation benchmark for low-resource and multilin-
gual machine translation.

Hokamp, Chris and Qun Liu. 2017. Lexically con-
strained decoding for sequence generation using grid
beam search. In Annual Meeting of the Association
for Computational Linguistics.

Junczys-Dowmunt, Marcin, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceed-
ings of ACL 2018, System Demonstrations, pages
116–121, Melbourne, Australia, July. Association
for Computational Linguistics.

Knowles, Rebecca, Samuel Larkin, Marc Tessier, and
Michel Simard. 2023. Terminology in neural ma-
chine translation: A case study of the Canadian
Hansard. In Proceedings of the 24th Annual Con-
ference of the European Association for Machine
Translation, pages 481–488, Tampere, Finland,
June. European Association for Machine Transla-
tion.

Kreutzer, Julia, Isaac Caswell, Lisa Wang, Ahsan Wa-
hab, Daan van Esch, Nasanbayar Ulzii-Orshikh, Al-
lahsera Tapo, Nishant Subramani, Artem Sokolov,
Claytone Sikasote, Monang Setyawan, Supheak-
mungkol Sarin, Sokhar Samb, Benoît Sagot, Clara
Rivera, Annette Rios, Isabel Papadimitriou, Sa-
lomey Osei, Pedro Ortiz Suarez, Iroro Orife, Kelechi

31



Ogueji, Andre Niyongabo Rubungo, Toan Q.
Nguyen, Mathias Müller, André Müller, Sham-
suddeen Hassan Muhammad, Nanda Muhammad,
Ayanda Mnyakeni, Jamshidbek Mirzakhalov, Tapi-
wanashe Matangira, Colin Leong, Nze Lawson,
Sneha Kudugunta, Yacine Jernite, Mathias Jenny,
Orhan Firat, Bonaventure F. P. Dossou, Sakhile
Dlamini, Nisansa de Silva, Sakine Çabuk Ballı,
Stella Biderman, Alessia Battisti, Ahmed Baruwa,
Ankur Bapna, Pallavi Baljekar, Israel Abebe Azime,
Ayodele Awokoya, Duygu Ataman, Orevaoghene
Ahia, Oghenefego Ahia, Sweta Agrawal, and Mofe-
toluwa Adeyemi. 2022. Quality at a glance: An au-
dit of web-crawled multilingual datasets. Transac-
tions of the Association for Computational Linguis-
tics, 10:50–72.

Kudo, Taku and John Richardson. 2018. Sentence-
Piece: A simple and language independent subword
tokenizer and detokenizer for neural text processing.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium,
November. Association for Computational Linguis-
tics.

Luong, Minh-Thang and Christopher Manning. 2015.
Stanford neural machine translation systems for spo-
ken language domains. In Federico, Marcello, Se-
bastian Stüker, and Jan Niehues, editors, Proceed-
ings of the 12th International Workshop on Spoken
Language Translation: Evaluation Campaign, pages
76–79, Da Nang, Vietnam, December 3-4.

Mccloskey, Michael and Neil J. Cohen. 1989. Catas-
trophic interference in connectionist networks: The
sequential learning problem. The Psychology of
Learning and Motivation, 24:104–169.

Michon, Elise, Josep Maria Crego, and Jean Senellart.
2020. Integrating domain terminology into neural
machine translation. In International Conference on
Computational Linguistics.

Mölder, Felix, Kim Philipp Jablonski, Brice Letcher,
Michael B. Hall, Christopher H. Tomkins-Tinch,
Vanessa V. Sochat, Jan Forster, Soohyun Lee,
Sven O. Twardziok, Alexander Kanitz, Andreas
Wilm, Manuel Holtgrewe, Sven Rahmann, Sven
Nahnsen, and Johannes Köster. 2021. Sustain-
able data analysis with snakemake. F1000Research,
10:33.

Moslem, Yasmin, Rejwanul Haque, John D. Kelle-
her, and Andy Way. 2023a. Adaptive ma-
chine translation with large language models. In
Nurminen, Mary, Judith Brenner, Maarit Kopo-
nen, Sirkku Latomaa, Mikhail Mikhailov, Frederike
Schierl, Tharindu Ranasinghe, Eva Vanmassenhove,
Sergi Alvarez Vidal, Nora Aranberri, Mara Nun-
ziatini, Carla Parra Escartín, Mikel Forcada, Maja
Popovic, Carolina Scarton, and Helena Moniz, edi-
tors, Proceedings of the 24th Annual Conference of
the European Association for Machine Translation,

pages 227–237, Tampere, Finland, June. European
Association for Machine Translation.

Moslem, Yasmin, Gianfranco Romani, Mahdi Molaei,
John D. Kelleher, Rejwanul Haque, and Andy Way.
2023b. Domain terminology integration into ma-
chine translation: Leveraging large language models.
In Proceedings of the Eighth Conference on Machine
Translation, pages 902–911, Singapore, December.
Association for Computational Linguistics.

Neubig, Graham and Junjie Hu. 2018. Rapid adapta-
tion of neural machine translation to new languages.
In Riloff, Ellen, David Chiang, Julia Hockenmaier,
and Jun’ichi Tsujii, editors, Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 875–880, Brussels, Bel-
gium, October-November. Association for Compu-
tational Linguistics.

Post, Matt. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels, October. Association for
Computational Linguistics.

Qi, Peng, Yuhao Zhang, Yuhui Zhang, Jason Bolton,
and Christopher D. Manning. 2020. Stanza: A
Python natural language processing toolkit for many
human languages. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations.

Rei, Ricardo, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Webber, Bonnie, Trevor Cohn, Yulan
He, and Yang Liu, editors, Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 2685–2702, On-
line, November. Association for Computational Lin-
guistics.

Semenov, Kirill, Vilém Zouhar, Tom Kocmi, Dongdong
Zhang, Wangchunshu Zhou, and Yuchen Eleanor
Jiang. 2023. Findings of the WMT 2023 shared
task on machine translation with terminologies. In
Koehn, Philipp, Barry Haddow, Tom Kocmi, and
Christof Monz, editors, Proceedings of the Eighth
Conference on Machine Translation, pages 663–
671, Singapore, December. Association for Compu-
tational Linguistics.

Strubell, Emma, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Korhonen, Anna, David
Traum, and Lluís Màrquez, editors, Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 3645–3650, Florence,
Italy, July. Association for Computational Linguis-
tics.

Tiedemann, Jörg and Santhosh Thottingal. 2020.
OPUS-MT — Building open translation services for
the World. In Proceedings of the 22nd Annual Con-
ferenec of the European Association for Machine
Translation (EAMT), Lisbon, Portugal.

32



Tiedemann, Jörg, 2009. News from OPUS - A Collec-
tion of Multilingual Parallel Corpora with Tools and
Interfaces, volume V, pages 237–248.

Tiedemann, Jörg. 2020. The Tatoeba Translation Chal-
lenge – Realistic data sets for low resource and mul-
tilingual MT. In Proceedings of the Fifth Conference
on Machine Translation, pages 1174–1182, Online,
November. Association for Computational Linguis-
tics.

Zaragoza-Bernabeu, Jaume, Gema Ramírez-Sánchez,
Marta Bañón, and Sergio Ortiz Rojas. "2022". "bi-
cleaner AI: Bicleaner goes neural". In "Proceed-
ings of the Thirteenth Language Resources and Eval-
uation Conference", pages "824–831", "Marseille,
France", June. "European Language Resources As-
sociation".

33


