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Abstract

Since the release of ChatGPT, the field of Natu-
ral Language Processing has experienced rapid
advancements, particularly in Large Language
Models (LLMs) and their multimodal coun-
terparts, Large Multimodal Models (LMMs).
Despite their impressive capabilities, LLMs of-
ten exhibit significant performance disparities
across different languages and cultural contexts,
as demonstrated by various text-only bench-
marks. However, current research lacks such
benchmarks for multimodal visio-linguistic set-
tings. This work fills this gap by introducing
M5, the first comprehensive benchmark de-
signed to evaluate LMMs on diverse vision-
language tasks within a multilingual and mul-
ticultural context. M5 includes eight datasets
covering five tasks and 41 languages, with a fo-
cus on underrepresented languages and cultur-
ally diverse images. Furthermore, we introduce
two novel datasets, M5-VGR and M5-VLOD,
including a new Visio-Linguistic Outlier Detec-
tion task, in which all evaluated open-source
models fail to significantly surpass the random
baseline. Through extensive evaluation and
analyses, we highlight substantial task-agnostic
performance disparities between high- and low-
resource languages. Moreover, we show that
larger models do not necessarily outperform
smaller ones in a multilingual setting.

1 Introduction

Since the release of ChatGPT, Natural Language
Processing has experienced a significant surge in
interest and research, with a particular focus on
LLMs finetuned to follow human instructions. Be-
sides proprietary models like GPT-4 (Achiam et al.,
2023), Claude (Bai et al., 2022), or Gemini (Anil
et al., 2023), there are also successful open-source
variants such as Llama (Touvron et al., 2023),
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Phi (Gunasekar et al., 2023; Abdin et al., 2024),
or Mistral (Jiang et al., 2023). While LLMs of-
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Figure 1: An overview of the average performance of the
models on the datasets included in the M5 benchmark.
For xFlickrCO and XM3600, we report BERTScore F1.
For the other datasets, the accuracy metric is reported.
ten demonstrate impressive performance on a wide

range of tasks, quantifying and measuring this per-
formance is challenging. Nevertheless, recent eval-
uation studies have shown that LLMs generally
perform well in English but much worse in other
languages (Ahuja et al., 2023a,b; Holtermann et al.,
2024).

In this work, we focus on multimodal variants of
LLMs, Large Multimodal Models (LMMs), such
as GPT 4V (OpenAl, 2023), Gemini Pro V (Anil
et al., 2023), or the popular open-source model,
LLaVA (Liu et al., 2023a,b). LLMs are not text-
only but are also capable of processing images
in addition to text. Most open-source LMMs
comprise three major components: an LLM, a
vision-encoder model, and a mapping network that
projects image embeddings into the text embed-
ding space. With this architecture, where an LLM
serves as the core, we argue that LMMs inher-
ently suffer from the same issue as LLMs: they
generally perform much worse in non-English lan-
guages. However, existing benchmarks are either
text-only (Ahuja et al., 2023a) or multimodal but
monolingual (Yue et al., 2023), thus unable to prove

4309

Findings of the Association for Computational Linguistics: EMNLP 2024, pages 4309-4345
November 12-16, 2024 ©2024 Association for Computational Linguistics


mailto:florian.schneider-1@uni-hamburg.de
mailto:sitaram@microsoft.com

Multi-Lingual: 41 languages, 16 scripts, 13 language families
Multi-Modal: Text + image as input and text as output
Multi-Cultural: Cultural diversity in images taken across the globe
Multi-Task: Five different vision-language tasks
Multiple Models: 18 different LMMs, 10 model families, S to XL sizes
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Figure 2: An informative overview of the M5 Benchmark introduced in this work.

this hypothesis. In other words, current research
lacks multimodal multilingual benchmarks to ex-
amine LMMs’ multilingual capabilities. In this
work, we fill this gap by introducing the M5 Bench-
mark, taking a significant step towards identifying
and measuring the performance disparities of cur-
rent LMMs between various languages. Figure 2
and Figure 1 present a high-level summary of our
benchmark. Moreover, we introduce two new eval-
uation datasets, including a novel vision-language
task. Both datasets focus on African and Asian
cultures, which are underrepresented or even non-
existent in previous benchmarks. Our exhaustive
analyses additionally investigate the influence of
different factors on the performance, such as the
models’ size or language fidelity.

Major Contributions The major contributions
of this work are (a) M3, the first multimodal bench-
mark to assess the performance of current LMMs
across five tasks, eight datasets, and 41 languages;
(b) Two novel datasets spanning 10 underrepre-
sented African and Asian languages, English and
German, with images depicting the respective cul-
tures. (c) A novel vision-language task: Visio-Lin-
guistic Outlier Detection (VLOD); (d) A large-s-
cale evaluation of 18 recent LLMs and a thorough
analysis of their multilingual performance. (e) A
public release of our codebase and all datasets in a
uniform schema to foster future research for more
equitable and accessible LMMs or Al in general'.

2 Related Work

Large Multi-Modal Models This work focuses
on the multimodal counterpart of large language
models (LLMs), often referred to as Large Mul-
timodal Models (LMMs). LMMs are language

"https://github.com/floschne/m5b

models capable of processing and “understanding”
data other than text. While this generally subsumes
images, video, audio, or more, we concentrate on
visio-linguistic LMMs, i.e., models that take text
and/or images as input and generate textual output.

The vast majority of open-source LMMs com-
prise three major components: a pretrained genera-
tive LLM as the core, a pretrained vision-encoder
model that computes semantically rich image em-
beddings, and a shallow mapping network that
learned to project image embeddings into the text
embedding space. One of this architecture’s suc-
cessful open-source implementations with a re-
cent LLM, i.e., the Llama-based Vicuna (Chiang
et al., 2023; Touvron et al., 2023), is LLaVA (Liu
et al., 2023b), from which many others took in-
spiration also regarding the training data and pro-
cess. Besides this, LMMs also exist, which use
Cross-Attention (Wang et al., 2023; Bai et al.,
2023), Q-Formers (Li et al., 2023; Geigle et al.,
2023), Adapters (Eichenberg et al., 2022), or Pre-
ceiver Resamplers (Alayrac et al., 2022; Awadalla
et al., 2023) to process image embeddings. For
an overview including architectural details and the
number of parameters of the 18 LMMs’ compo-
nents we employed in this work, please see Table 8.

Evaluation Benchmarks With the recent surge
in the research of LLMs and LMMs, analyzing
the models’ performances is crucial yet challeng-
ing. Popular benchmarks like BIG-Bench (bench
authors, 2023), HELM (Liang et al., 2022), or
MMLU (Hendrycks et al., 2020) are the defacto-
standard to evaluate LLMs on text-only tasks pri-
marily in English. Efforts like MEGA (Ahuja et al.,
2023a), MEGAVERSE (Ahuja et al., 2023b), or
MultiQ (Holtermann et al., 2024) extended these
monolingual benchmarks to a large set of diverse
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languages and showed that the LLMs’ performance
in English versus non-English languages differs sig-
nificantly.

Similarly, efforts have been made to eval-
vate multimodal models.  Benchmarks like
MMMU (Yue et al., 2023), MME (Fu et al., 2023),
or MMBench (Yuan et al., 2023) assess the per-
formance of LMMs on a vast number of text-
image tasks. However, these benchmarks primar-
ily focus on English, with some tasks available in
Chinese. Like MMMU, there is CMMMU (Ge
et al., 2024), which focuses on text-image tasks in
Chinese. Nonetheless, evaluating state-of-the-art
LMMs in a massively multilingual large-scale set-
ting remains largely unexplored. There are only
a few multimodal multilingual evaluation datasets
(see Section 3.2 and 8.6) and only two benchmarks:
IGLUE (Bugliarello et al., 2022) and MEGA-
VERSE. However, IGLUE evaluates only non-
autoregressive transformer-encoders, thus lacking
state-of-the-art LLMs. In MEGAVERSE, only five
recent LMMs are evaluated on two datasets.

3 The M5 Benchmark

This section describes the setup of the M5 Bench-
mark introduced by this work. Details about the
experimental setup, including prompts and hyper-
parameters, are reported in Appendix A.

3.1 Models

We chose the LMMs included in this benchmark for
the following reasons: Firstly, we focussed on pub-
licly available models released on Hugging Face
except for GPT-4 Vision and Gemini Pro. Sec-
ondly, we included LMMs well-performing on pop-
ular multimodal English-only benchmark s such as
MMMU (Yue et al., 2023) and MME (Fu et al.,
2023). Thirdly, we aimed to cover a mixture of
different model families and a broad model size
spectrum, including small models with 3B to 9B,
medium models with 10B to 19B, and large models
with 20B to 40B parameters. For an overview of
all models, including their number of parameters
and other architectural details, see Table 8.

3.2 Datasets

This section briefly introduces the existing datasets
included in our benchmark. In addition to these,
we crafted two novel datasets described in Sec-
tion 4. For details about the languages covered by
the datasets, please refer to Table 6.

xGQA The xGQA dataset (Pfeiffer et al., 2022)
is a cross-lingual visual question-answering dataset.
It extends the well-known English-only GQA
dataset (Hudson and Manning, 2019) by manually
translating the questions in the balanced fest-dev
set. Each of the 9666 questions is available in eight
languages covering five scripts, while the answers
are in English only. The dataset holds 300 unique
images from Visual Genome (Krishna et al., 2017).

MaXM The MaXM dataset was introduced
by Changpinyo et al. (2023) and is a VQA dataset
comprising seven languages in five scripts. In
MaXM, the questions and their respective answers
are in the same language. The images are a subset
of the XM3600 (Thapliyal et al., 2022) dataset and
are chosen to match a region where the language
of the question-answer pair is spoken. This ensures
cultural diversity in the images in addition to the
language diversity in the question-answer texts.

XVNLI The XVNLI dataset (Bugliarello et al.,
2022) introduces the task of Cross-lingual Vi-
sual Natural Language Inference where a model
needs to predict whether a textual hypothesis en-
tails, contradicts, or is neutral concerning a visual
premise. XVNLI comprises five languages cov-
ering three scripts and 357 unique images from
Visual Genome.

MaRVL The MaRVL dataset (Liu et al., 2021)
aims to benchmark models on Multicultural Rea-
soning over Vision and Language. A task sample
comprises two images, a textual statement, and a
binary true or false answer grounded in the im-
ages. MaRVL comprises five languages covering
three scripts and 4914 culturally diverse images
that match the respective languages. The images
in a sample are chosen to match the culture of the
annotator who has written the textual statement in
his or her native language.

XM3600 The XM3600 dataset (Thapliyal et al.,
2022) is a large multilingual image captioning
dataset comprising 36 languages with 261375 cap-
tions covering 13 different scripts for 100 unique
images per language. The images are selected to
match the language’s cultural background, ensuring
cultural and linguistic diversity. The captions were
not automatically translated but manually created
by professional annotators who are native speakers
of the respective language.
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xFlickrCO The xFlickrCO dataset (Bugliarello
etal., 2022) is an image captioning dataset and com-
prises 1000 images from Flickr30k (Young et al.,
2014) and 1000 images from COCO (Lin et al.,
2014). Each image is captioned in eight languages,
covering four different scripts. For all languages
except English and German, the captions were man-
ually crafted by crowdsourcing workers instead of
translated from English to prevent bias and increase
linguistic diversity.

4 Novel M5 Datasets

In addition to the existing datasets introduced in
the previous section, we crafted two novel multi-
modal and multilingual evaluation datasets. The
principal motivation behind this is to fill the gap
in existing vision-language datasets concerning the
lack of underrepresented languages, tasks, and cul-
tural diversity. Moreover, we aim to enable further
examination of LMMs and their performance on
non-English and non-Western data with a partic-
ular focus on African and Asian regions. More
details, statistics, and examples are reported in Ap-
pendix B.

Common Characteristics

Languages Both datasets comprise samples in
12 languages covering seven scripts (see Table 6):
Amharic, Berber, Bengali, German, English, Fil-
ipino, Hausa, Hindi, Russian, Swahili, Thai, Zulu.
The languages were selected to enrich the set of
languages covered by existing datasets, focusing
on underrepresented languages from Asian and
African countries or regions. To our knowledge,
no other visio-linguistic evaluation dataset covers
Ambharic, Berber, Hausa, or Zulu.

Data Annotation The textual data in both
datasets is manually created by professional anno-
tators who are native speakers of the respective lan-
guages. All annotators work for a data annotation
company, and fluent English-speaking correspon-
dents handle communication and task delegations.
In order to ensure that the annotators can fulfill
the tasks as well as possible, detailed guidelines,
including multiple good and bad examples, have
been drawn up in English. These guidelines were
explained in detail to the correspondents. The corre-
spondents then delegated the tasks to the annotators
by having internal company guidelines drawn up
in the target languages. After the annotation tasks

were finished, we conducted the following quality
assessment procedure:

1. We translated all manually created annotations
to English using the Bing Translate API.

2. We developed a small tool that displays a sam-
ple, including the images, target language,
original and English-translated annotations,
and other metadata.

3. We used the tool to manually inspect 20% of
the samples and tagged them as “good”, “bad”,
or “ambiguous/problematic”.

4. We discussed in detail our findings with the
annotators’ correspondents, who then dele-
gated the tasks to improve the quality of the
annotations.

5. This loop was executed two times until no
more issues were found by the authors and the
annotators’ correspondents.

Depicting Cultural Diversity The images in
our datasets originate from the Dollar Street
dataset (Gaviria Rojas et al., 2022), comprising
around 38K photos taken in 63 different regions
or countries around the globe. These photos de-
pict the lives of families, including their homes,
neighborhoods, or everyday objects, in a culturally
diverse way. Further, each image in the original
dataset is tagged with one or more “topics” that
roughly describe its visual content.

Image Basis For our datasets, we sampled
a subset of images from the Dollar Street
dataset (Gaviria Rojas et al., 2022) taken in re-
gions where the 12 target languages are spoken.
In this subset, which forms the visual basis for
both of our datasets and is referred to as B, each
image i} € B is tagged with exactly one topic
t € T = {to,...,tss} and was taken in a region
r; where language [ € L = {lp,...,l11} is spoken.
More information about the image topic distribu-
tion per language can be found in Appendix B.1.3.

41 MS5-VGR

Inspired by MaRVL, the goal of the M5-VGR
dataset is to provide a visually grounded reason-
ing (VGR) evaluation dataset that covers a wide
range of topologically different languages and, at
the same time, visually represents a diverse set of
cultures in which the respective languages are spo-
ken. However, since the MaRVL dataset contains
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Figure 3: An Zulu example of the novel M5-VGR
dataset. Hypothesis: “Isithombe sokuqala nesithombe
sesibili sibonisa iganda elisehhokweni. (The first pic-
ture and the second picture show the egg on the head.)”,
Label: False

only five languages, we chose 11 additional topo-
logically diverse languages for our dataset. To guar-
antee visual and linguistic diversity and high data
quality in our dataset, we hired professional native-
speaker annotators of the respective languages to
annotate the data. Moreover, we performed several
rounds of data quality assessment in close collabo-
ration with the annotators.

A task sample s in M5-VGR contains two im-
ages i, and iy, a textual visually grounded hypoth-
esis h, and a binary label ¢ which is either true or
false concerning the two visual premises (see Fig-
ure 3). More specifically, for each language ! € L,
we created 120 tasks s; € S; as follows: In the first
step, we sampled 120 unique images a! € B from
our image basis so that each topic £ € T occurs at
least once across all 12 languages. Then, for each
of the 120 images, we randomly selected another
image b}; € B associated with another language
lo # 1 € L that shares the topic ¢t. In the third
step, we asked the native-speaker annotators of the
language [ to manually create a hypothesis & and a
label ¢ which is either true or false concerning the
image premises (af, be). Further, the annotators
were instructed to generate a hypothesis semanti-
cally related to the topic ¢ if possible.

4.2 MS5-VLOD

Figure 4: A Swahili example of the novel M5-VLOD
dataset. Hypothesis: “Picha zote zinaonyesha sabuni
inayotumika kwa mikono na mwili bila mtu yeyote. (All
the images show soap applied to the hands and body
without anyone.)”, Outlier: 1.

With the M5-VLOD dataset, we introduce a

novel multimodal task: Visio-Linguistic Outlier
Detection. The objective of the task is to detect
an outlier image from a set of images consider-
ing a textual statement. An example of the task is
shown in Figure 4, where five images related to the
topic “soap for hands and body” are shown. The
machine-translated English statement is: “All the
images show soap applied to the hands and body
without anyone.”. Because only the first image
shows a person, the statement is incorrect for the
first image and, therefore, is considered the outlier
image.

The dataset was collected similarly to M5-VGR,
as described in the previous section. The major dif-
ference is that instead of sampling only one image
in the second step, we sample four images so that
a sample s;, € S, for language ly € IL comprises
of five images: {a; ,b; ,c},,dj, €], } associated
with five different languages {lo, ..., l4 € L} that
share one topic ¢ € T. In the third step, we asked
the native-speaker annotators of the language [ to
manually create a textual statement h, valid for all
but one of the images labeled as the outlier image.

5 General Results Discussion

This section discusses the models’ performance on
the datasets considered in our benchmark. Table 1
provides an overview of the performance in En-
glish compared to non-English languages for all
models and datasets. Note that we use friendly
names for the models for better readability (see Ta-
ble 8). Detailed results for each dataset and all their
respective languages are provided in Appendix D.

5.1 Summary of Findings

Table 1 shows a clear pattern: Generally, LMMs
perform significantly worse in non-English lan-
guages across all tasks. More specifically, the av-
erage performance across all models and datasets
in English is 0.63 versus 0.47 in non-English lan-
guages. Most models have an average performance
difference from English to non-English larger or
equal to 0.12. However, for GPT 4V and despite
their much smaller size also for mBlip BloomZ,
and mBlip T, the difference is smaller than 0.1.
For the two mBLIP models, the authors explicitly
stated in their paper the language distribution in the
training data, which covers 96 languages. Hence, it
can be assumed that this is the reason for this slight
absolute performance difference, and, further, this
might indicate that GPT 4V was also trained in a
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Model Dataset

xGQA MaXM XVNLI MaRVL M5-VLOD M5-VGR xFlickrCO XM3600 ALL
E NE E NE E NE E NE E NE E NE E NE E NE E NE A

CogVLM 0.59 10.30 || 0.43 [0.02 || 0.47 [0.29 || 0.60 [0.51 || 0.10 "0.08 || 0.68 0.55 || 0.87 '0.60 || 0.88 0.65 || 0.58 [0.38'|| —0.20
BakLLaVA 0.62 0.32 || 0.53 0.08 || 0.48 0.34 || 0.59 0.53 || 0.14 0.20 || 0.71 | 0.48 || 0.91 0.63 || 0.88 0.64 || 0.61 | 0.40 || —0.21
LLaVA 1.6 7B 0.60 0.34 || 0.34 0.16 || 0.59 0.45 || 0.62 0.53 || 0.14 0.21 || 0.55 0.42 || 0.88 0.64 || 0.88 0.67 || 0.57  0.43 || —0.15
LLaVA 1.57B 0.62 0.30 || 0.52 0.15 || 0.60 0.47 || 0.57 ' 0.52 || 0.15 0.20 || 0.48 0.42 || 0.92 0.68 || 0.89 0.67 || 0.59 0.43 || —0.17
Yi-VL 6B 0.57 0.32 || 0.53 0.20 || 0.56 | 0.38 || 0.59 0.53 || 0.20 0.19 || 0.73 0.61 || 0.91 0.64 || 0.91 0.66 || 0.62 0.44 || —0.18
MiniCPM-V 0.55 ' 0.31 || 0.56 0.19 || 0.66 0.49 || 0.61 0.53 || 0.20 0.20 || 0.80 0.56 || 0.91 0.65 || 0.90 0.65 || 0.65 0.45 [| —0.20
LLaVA 1.5 13B 0.62 0.34 || 0.56 0.19 || 0.59 0.49 || 0.60 0.54 || 0.16 0.21 || 0.57 0.46 || 0.91 0.69 || 0.90 0.69 || 0.61 0.45 || —0.16
Qwen-VL 0.59 0.33 || 0.50 0.23 || 0.62 0.54 || 0.60 0.53 || 0.16 0.21 || 0.82 0.54 || 0.89 0.62 || 0.90 0.65 || 0.64 0.46 (| —0.18
Yi-VL 34B 0.58 0.38 || 0.53 0.20 || 0.59 0.51 || 0.62 0.58 || 0.26 0.19 || 0.77 0.52 ([ 0.91 0.64 || 0.90 0.66 || 0.65 0.46 (| —0.19
Gemini Pro V 0.46 ' 0.34 || 0.48 0.23 || 0.49 0.49 || 0.55 0.55 || 0.52 0.36 || 0.79 0.66 || 0.86 0.67 || 0.63 ' 0.41 || 0.60 0.46 || —0.13
OmniLMM 12B 0.49 0.36 || 0.48 0.11 || 0.64 0.54 || 0.64 0.56 || 0.19 0.21 || 0.78 0.59 || 0.91 0.66 || 0.89 0.68 || 0.63 0.46 || —0.16
LLaVA 1.6 13B 0.65 0.38 || 0.46 0.24 || 0.61 0.55 || 0.65 0.65 || 0.14 0.21 || 0.78 0.50 || 0.90 0.67 || 0.88 0.68 || 0.63 0.48 || —0.15
mBIliP BloomZ 0.44 0.39 || 0.55 0.29 || 0.40 0.44 || 0.55 0.56 || 0.14 0.21 || 0.69 0.56 || 0.92 0.72 || 0.91 0.71 || 0.58 0.49 || —0.09
InternVL V1.1 0.63 0.48 || 0.58 0.34 || 0.61 0.56 || 0.63 0.60 || 0.13 0.21 || 0.73 0.62 || 0.92 0.66 || 0.91 0.68 || 0.64 0.52 || —0.12
LLaVA 1.634B | 0.65 0.46 || 0.58 0.32 || 0.62 0.58 || 0.64 0.66 || 0.26 0.22 || 0.87 0.64 || 0.89 0.68 || 0.88 0.70 || 0.67 0.53 || —0.14
mBIiP mT0 0.44 0.40 || 0.50 0.42 || 0.59 0.57 || 0.60 0.63 || 0.12 0.17 || 0.74 0.69 || 0.92 0.73 [| 0.91 0.71 || 0.60 0.54 || =0.07
InternVL V1.2+ [0.67 0.43 || 0.60 0.42 || 0.63 0.58 || 0.68 0.61 || 0.28 0.23 || 0.86 0.68 || 0.92 0.71 || 0.90 0.70 || 0.69 0.55 || —0.15
GPT 4V 0.45 0.41|] 0.49 0.53 || 0.69 0.68 || 0.64 0.66 || 0.70 0.42 || 0.88 0.81 || 0.90 0.70 || 0.89 0.72 || 0.70 0.62 || —0.09
Random Baseline - - 0.33 0.50 0.20 0.50 - - - -

Average 0.57 0.37]| 0.51 0.24 ]| 0.58 0.50 || 0.61 0.57 || 0.22 0.22 ]| 0.73 0.57 || 0.90 0.67 || 0.88 0.66 || 0.63 0.47 || —0.15

Table 1: Average performance in English (E) and non-English languages (NE) on all datasets for all models. For
each dataset and the A column, the heatmaps are created individually, indicated by the column gutter. The column
“ALL” represents the average across all datasets. For xFlickrCO and XM3600, we report BertScore F1 and for the

rest of the datasets, we report the relaxed accuracy.

multilingual fashion. Due to the difference in size
and the architecture? of the mBlip models and GPT
4V, applying this multilingual training strategy for
LMMs would generally lead to more robust multi-
lingual performance.

The average performance difference of the mod-
els is most significant on the MaXM, XM3600,
and xFlickrCo datasets, for which the models are
required to generate non-English text.

Interestingly, for the M5-VLOD dataset, the
models that performed worse than the random base-
line of 0.2 in English performed better in non-
English languages. An explanation for this could
be false assumptions drawn from the English text.
This finding also explains why the average English
versus non-English performance disparity across
all models is equal for the dataset and lies around
the random baseline, indicating the challenge intro-
duced by our dataset.

5.1.1 Dataset-Specific Discussion

Note that due to brevity constraints, we report ex-
act numbers and diagrams of the language-specific
results for each dataset in Appendix D.

xGQA All models perform best in English
mostly, with a significant gap in accuracy to the
second-best language from up to 0.62 in English
to 0.36 in Russian for LLaVA 1.6 7B. In Bengali,
where the models have the lowest average accuracy
of 0.19, all models besides GPT 4V, which achieves

>While the architecture of GPT 4V is not known, it is likely

different from the mBlip models’ architecture, which employs
Q-Formers, rarely used in state-of-the-art LMMs.

0.44, perform worst by far. The best-performing
model in English and the best-performing model on
average over all languages are the InternVL v1.2
and InternVL v1.1 models. Notably, despite their
(estimated) much larger size, GPT 4V and Gemini
Pro V are among the worst-performing models
in English. After manually inspecting the results,
we found the reason for this to be that the models
did not respond in a single word but with a brief
sentence, which is considered a false answer ac-
cording to the applied metric (see Appendix A.2
and Section 8.2).

MaXM The average accuracy of the models for
Hindi (0.22), Hebrew (0.19), Romanian (0.27),
Thai (0.25), and Chinese (0.24) is much lower than
for English (0.51) and French (0.35). It is also
worth pointing out that most models, regardless of
their size, perform remarkably worse in languages
other than English (and French). In contrast, on
xGQA, which is also a VQA dataset, the differ-
ences between the languages are much more minor.
This is likely due to the difference between the two
datasets, i.e., that XGQA has multilingual questions
but only English answers, while MaXM has mul-
tilingual questions and expects the answers in the
respective language, too. We further underline this
in our language fidelity analysis in Section 6.3.

XVNLI English accuracy is the best for most
models, with an average of 0.58, whereas Arabic
accuracy is the worst, with an average of 0.43. The
performance drop from English to the other lan-
guages, i.e., Spanish (0.51), French (0.52), and
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Russian, with average accuracy scores of 0.51,
0.52, and 0.52, is less substantial. Note that
XVNLI is an NLI dataset, i.e., the random base-
line is at % All models surpass this baseline in
all languages, except for CogVLM in Arabic (0.26)
and French (0.27). The best-performing model is
GPT4 V with an average accuracy across all lan-
guages of 0.68, followed by LLaVA 1.6 34B and
InternVL V1.2+ with average scores of 0.59 and
0.58, respectively.

MaRVL The dataset’s random baseline is 0.5,
which is often only slightly surpassed by most mod-
els, especially for Swahili and Tamil languages,
with an average accuracy of 0.53 and 0.54, respec-
tively. Notably, only 8 of 18 models perform best
in English, with an average accuracy of 0.61. For
the other models, the English performance is sur-
passed by Chinese, Indonesian, or Turkish, with
an average accuracy of 0.60, 0.60, and 0.59, re-
spectively. GPT-4V is on par with LLaVA 1.6 34B
despite the latter having much fewer parameters.

M5-VGR As with MaRVL, this dataset’s ran-
dom baseline is at 0.5. Only one of 18 models,
i.e., InternVL V1.2+, could surpass or reach this
baseline in all languages. As expected, most mod-
els performed best in English, German, or Rus-
sian, with average accuracies of 0.73, 0.68, and
0.69, respectively. They performed worst in low-
resource languages such as Amharic, Berber, Ben-
gali, Hausa, or Zulu, with an average accuracy
of 0.53, 0.49, 0.55, and 0.52, respectively. Only
three models, i.e., Gemini Pro V,mBlip mT@, and
GPT 4V, consistently and significantly surpass the
random baseline in all languages except for Berber.
The only languages where the average performance
is significantly higher than the 0.5 random baseline
are English (0.73), German (0.68), Russian (0.69),
and Thai (0.62). The average scores of the other
languages range from 0.49 in Berber to 0.57 in
Hindi.

MS-VLOD The dataset’s random baseline is 0.2
since the models need to find the outlier within
five images. Only GPT 4V and Gemini Pro V sig-
nificantly surpassed that baseline in all languages,
with an average accuracy of 0.42 and 0.36, respec-
tively. They achieve the best scores in English with
an average accuracy of 0.70 (GPT 4V) and 0.52
(Gemini Pro V. However, in Berber, both mod-
els only achieve scores around the random base-
line. All other models do not surpass the random

baseline in all languages, including English, by
more than 0.1, with average scores between (.08
(CogVLM) and 0.23 (InternVL V1.2+) This high-
lights the challenge introduced by our dataset and
the performance gap between proprietary and open-
source models.

xFlickrCO The majority of models perform best
in English, often with a significant margin in av-
erage chrF++, i.e., 24.93 in English and 12.49 in
non-English languages. Other languages where
the models perform comparably well are German
and Spanish, with average chrF++ scores of 19.95
and 19.55, respectively. Interestingly, all mod-
els perform worse in non-Latin script languages,
i.e., Russian (9.70), Chinese (4.53), and Japanese
(4.05). Unexpectedly, the proprietary models GPT
4V and Gemini Pro V are surpassed by mBliP
BloomZ, mB1iP mT9Q, and InternVL V1.2+, which
are much smaller open-source models. Even in
English, most open-source models outperform the
proprietary models.

XM3600 Note that due to limited resources, we
evaluated GPT 4V only on a subset of 12 of 36
languages. Most models perform best in English
(27.14 average chrF++) by a large margin, followed
by other Latin scripts in high-resource languages
such as French (23.65), Spanish (23.52), or Dutch
(21.01). On average, the models perform worst on
non-Latin script languages like Korean (3.50), Tel-
ugu (4.79), and Bengali (5.11). However, although
the chrF++ metric claims to be script and language-
independent, the low scores in high-resource lan-
guages like Chinese (3.95) and Japanese (5.13)
make the metric questionable. While detailed anal-
ysis is out of the scope of this work, in future
work, we will investigate this issue further (see
Section 8.1).

6 Aggregated Result Analyses

6.1 Performance per Language

Figure 5 shows the average performances ag-
gregated by language’ or language taxonomy
classes (Joshi et al., 2020). These taxonomy classes
indicated how well a respective language is rep-
resented and considered within the research field
of NLP based on papers published at CL confer-
ences. High-resource languages such as English
or German are in Class 5, whereas low-resource

*We do not show all 36 languages of XM3600 for better
readability.
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languages such as Berber are in Class 0. For details
about the languages and their taxonomy classes,
please refer to Table 7.

As can be observed from Figure 5a and Fig-
ure 5b, the models perform best in English, fol-
lowed by other European languages across all
datasets. Our newly presented M5-VLOD dataset
is an exception, where the average performance
for all languages is around the random baseline,
indicating the challenge it implies. As expected,
the models consistently perform worse on low-
resource languages than on high-resource lan-
guages on all datasets. This is also displayed in
Figure 5c, where it can be observed that the av-
erage performance decreases with the language
taxonomy class. Note that this is not precisely true
for xFlickrCO and XVNLI because the average
on Class-5 languages is lowered by outliers, as in-
dicated by the large error bars. In contrast, the
models performed comparably well in only one
Class 3 or 4 language, respectively.

bn =N ru iw ro es . tr . am
. ko pt hi fr sw ber mm ha
id N de th ar W ta zu fil

Accuracy
000000000
ORNWAUO N

xGQA MaxM  XVNLI MaRVL ~ M5BVGR M5B-VLOD
(a) Performance on VQA, VGR, and VNLI datasets aggre-
gated by language.
. ja - tr N de bn ar fil
zh id . en th sw pt
.y es mEE ko hi ro T

fi

xFlickrCo

(b) Performance on image captioning datasets aggregated by
language.

e mm Cl Cc2 . C3 m C4 mm C5

(c) Performance on datasets aggregated by language taxonomy
class as introduced by Joshi et al. (2020).

Figure 5: Models’ performances on all datasets aggre-
gated by language or language taxonomy classes.
6.2 Performance vs. Model Parameters

In Figure 6, we plot the English and non-English
average performance on the employed datasets ver-

sus the models’ sizes in multiple regression plots.
Note that, on the x-axes, we indicated the unknown
sizes of GPT 4V and Gemini Pro Vby “???”, which
are estimated to be of magnitudes larger than all
other models evaluated in this benchmark hence
should be much further right. However, we did not
do so to improve the readability of the plots.

In the figures, we can make several observa-
tions: Firstly, the average English performance
is higher than the non-English performance for
all models on all datasets. Secondly, the mark-
ers, which represent the average performance of a
specific model on a dataset, show that the largest
model does not always perform best and that the
difference between smaller and larger models is of-
ten neglectable. The same finding is shown by the
relatively flat slope of the regression lines. How-
ever, for the M5-VLOD and VGR datasets, the
regression line for the average English scores is
steeper, meaning that larger models perform con-
siderably better than the smaller models. Since this
work introduces the datasets and M5-VLOD even
introduces a novel task, it can be concluded that
larger models can better generalize to unseen data.

mm xGQA . MaxMm N XVNLI

English

BN MaRVL  mEE M5B-VGR s M5B-VLOD

Non-English

4
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Accuracy
o
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Non-English
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Figure 6: Regression plots showing the English and
average non-English performance versus model size
on different datasets. On the x-axis, we indicated the
unknown sizes of GPT 4V and Gemini Pro V by “7?7?”.

6.3 Language Fidelity Analysis

Inspired by Holtermann et al. (2024), we report
the results of a language fidelity analysis, which
assesses how often a model responds in the re-
quested language on average. For this, we used
GlotLIDv3 (Kargaran et al., 2023) to predict the
language based on the output text of the respective
models. Since it is hard to predict the language of
a word or a multi-word expression due to ambigu-
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ity, we selected the xFlickrCO dataset, where the
expected response of a model is an image caption,
i.e., a sentence, in one of eight languages. As it can
be observed from Table 2, all models achieve (al-
most) perfect fidelity in English where, whereas for
Japanese, Russian, and Turkish, the average fidelity
drops to two-thirds. Interestingly, the small-sized
mBLIP models have almost perfect fidelity in all
languages, (slightly) surpassing larger models like
InternVL V1.2+ and GPT 4V.

Table 2: Language fidelity results on the xFlickrCO
dataset.

Model Language

zh en de id ja ru es tr ‘ Avg.
BakLLaVA .00 1.0 .39 .06 .00 .00 .44 .00 .24
Yi-VL 6B .14 1.0 .20 .00 .20 .01 .57 .00 .28
Qwen-VL .95 .99 .18 .11 .15 .08 .15 .07 .33
Yi-VL 34B .43 1.0 .79 .45 .58 .22 .25 .33 .51
CogVLM .44 95 .74 .76 .38 .43 .82 .54 .63
LLaVA 1.5 13B .88 1.0 .75 .55 .90 | .26 .75 .40 .69
LLaVA 1.57B .83 WNON .96 .83 09 -228 .97 | .67 .70
MiniCPM-V 20N .93 .79 .89 | .96 .91 .68 .80
LLaVA 1.6 7B .99 99 .66 .91 .59 .88 .91 .89 .85
InternVL V1.1 .96 1.0 93 .78 .88 .89 @ .97 .66 .89
OmniLMM 12B | .63 = 1.0 .95 .92 .83 .92 | .98 .88 .89
Gemini Pro .95 .95 .95 .88 .91 @ .96 .97 .96 .94
LLaVA 1.6 13B I .00 BNO6N .91 .87 ERO@N .93 .94
LLaVA 1.6 34B .88 NUENOOEENOON .36 [IEOSEENGORENGO .96
GPT 4V 97 1.0 1.0 .98 .88 .99 .99 1.0 .98
InternVL V12+ | .99 1.0 1.0 .95 .97 .99 .99 .96 .98
mBIiP BloomZ 96 1.0 1.0 .99 .99 1.0 1.0 .99 899
mBIiP mTO .96 1.0 1.0 .99 .99 1.0 1.0 1.0 .99
Avg. .73 1,99 .79 .72 | .67 .65 | .81 | .66 .75

While the language fidelity of a model focuses
on the generated text, we argue that the fidelity
is also an indicator of the model’s general lan-
guage capabilities. To prove this hypothesis, we
computed Pearson correlation coefficients between
the reported fidelity and the models’ performance
on the datasets for the xFlickrCO languages. As
shown in Table 17, there is a positive moderate or
high correlation between the average fidelity and
the average score for most datasets. However, for
xGQA and M5-VLOD, there is only a minor posi-
tive average correlation.

7 Conclusion

We introduced M5, a diverse benchmark in
which we evaluated 18 Large Multimodal Mod-
els (LMMs) with varying sizes across five visio-
linguistic tasks in eight datasets comprising 41
unique languages. Further, we presented two novel
datasets — M5-VGR and M5-VLOD — which focus
on underrepresented languages and depict cultur-
ally diverse scenes. With M5-VLOD, we intro-
duce a new visio-linguistic outlier detection task
in which only proprietary models achieve reason-
able scores. Our experiments revealed that model

size does not always correlate with better perfor-
mance, especially in non-English languages, un-
derscoring the importance of diverse, multilingual
training data and robust architectures. Performance
disparities were prominent between high-resource
languages like English and low-resource languages
across all datasets and models, highlighting on-
going challenges in achieving globally equitable
multilingual AL. With M5, we aim to impel the de-
velopment of more inclusive models suitable for
diverse languages and cultures.

8 Limitations

This section outlines several limitations of our cur-
rent study that will be addressed in future work.

8.1 Metrics for Multilingual Image
Captioning

Our benchmark and current research generally lack
robust metrics for evaluating multilingual image
captioning, especially for non-Latin script lan-
guages. The issue, which is the same for ma-
chine translation tasks, arises because of the na-
ture of most metrics, such as chrF (Popovi¢, 2017),
CIDEr (Vedantam et al., 2015), ROUGE (Lin,
2004), BLUE (Papineni et al., 2002), or ME-
TEOR (Banerjee and Lavie, 2005), which are based
on comparing word or character n-grams between
the source and target sequence. For non-Latin
scripts, tokenization or segmentation can be chal-
lenging because it might not contain spaces or punc-
tuation, or the characters are logographic. Hence,
their usability or effectiveness is doubtful in such
scenarios because the metrics rely on tokenization.

Other metrics, such as BERTScore (Zhang
et al., 2020), CLIPScore (Hessel et al., 2021), or
COMET (Rei et al., 2020), do not rely on the cap-
tions’ surface forms but on their token or sentence
embeddings. However, they suffer from other is-
sues: They require strong multilingual or cross-
lingual encoder models capable of computing em-
beddings for many languages, which itself is a chal-
lenging task. Further, the scores computed with
these metrics are often not calibrated across lan-
guages and thus not directly comparable between
different languages.

A promising currently popular solution might
be the use of robust multilingual state-of-the-art
LLMs such as GPT 40*, Claude 3 Opus5, or Gem-

4ht’cps: //openai.com/index/hello-gpt-40/
Shttps://www.anthropic.com/news/
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ini 1.5 Ultra® as a judge (Zheng et al., 2024). How-
ever, this would require more computational and
financial resources and, most importantly, more
investigation.

8.2 VQA Metrics for Generative Models

The problem when employing and evaluating gener-
ative language models on question-answering tasks
is that the models can generally output arbitrary
token sequences. However, the gold label answers
are limited and often comprise only a short phrase,
a single word, or even a binary label. Hence, map-
ping the predicted answers to their gold labels is
not straightforward, and the difficulty drastically
increases in multilingual scenarios. The relaxed
accuracy metric employed in this study (see Sec-
tion A.1) has been found to occasionally incorrectly
classify correct answers, leading to false negatives,
especially in open vocabulary visual question an-
swering (VQA). One way to address this issue is
to leverage strong state-of-the-art LLMs as judges,
as described above, to enhance the accuracy of the
evaluations.

8.3 Influence of Prompting

Another limitation of this and most, if not all, other
current studies is grounded in the model prompting.
Since different models might react differently to
specific prompting styles, and we only employ a
single prompt per dataset for all models’ (see Fig-
ure 7), the results might not be optimal. This issue
has been partially addressed by Ahuja et al. (2023a)
but is out of the scope of this work.

8.4 ““Outdated” Models

Since the pace of current research in NLP, CV, and
multimodal machine learning is swift, the models
employed in our benchmarking exercise might be
considered slightly outdated. Note that we consid-
ered models released until March 2024. Since then,
numerous improved LMMs based on state-of-the-
art LLMs, such as Llama3® and novel image en-
coders techniques such as NaVIT (Dehghani et al.,
2024), have been publicly released. Because this
was foreseeable, we designed our benchmark to be
easily extendable with newer models, which we
will include in future work.

claude-3-family
®https://blog.google/technology/ai/

google-gemini-next-generation-model-february-2024/

"We do apply the model-specific prompt or chat templates,
though.
8https://ai.meta.com/blog/meta-1lama-3

8.5 Small M5 Datasets

This work introduced two datasets, M5-VGR and
MS5-VLOD, which comprise about 115 samples
for each of the 12 languages. Compared to other
datasets, they can be considered small. We will
increase their sizes in future work to obtain more
robust and generalizable results.

8.6 Missing multimodal and Multilingual
Datasets

Currently, the M5 Benchmark comprises 5 text-
image tasks, i.e., VQA, VGR, VNLI, and image
captioning, thus missing other suitable tasks like
multimodal and multilingual summarization. Fur-
ther, other multimodal multilingual VQA and VGR
datasets have emerged while writing this paper. We
will include both new tasks and new datasets in
future versions of the M5.
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A Experimental Setup Details

This section details the employed metrics, prompts, and generation hyperparameters.
Note that we ran all experiments on A6000 (50GB) and A100 (80GB) GPUs. The largest evaluated
model (40B) fits on an A100.

A.1 Metrics

Following Geigle et al. (2023), we report a relaxed accuracy metric for the xGQA, MaXM, XVNLI, and
MaRVL datasets due to the generative nature of the considered models. More specifically, we post-process
the generated answers by, e.g., lowercasing, stripping, or removing punctuation. We then consider the
processed generated answer correct if it matches the gold answer or starts or ends with the gold answer.
Further, we allow synonyms for boolean and numerical values. Examples can be found in Table A.2.

Inspired by Ahuja et al. (2023b), we report the chrF++ (Popovié, 2017) metric for the xFlickrCo and
XM3600 datasets.

A.2 Relaxed Accuracy Metric

Table 3: Examples of generated answers considered correct or incorrect in the relaxed accuracy metric used to
measure the performance on the xGQA, MaXM, MaRVL, XVNLI, M5-VGR, and M5-VLOD datasets. For more
details, please refer to our GitHub repository.

Generated Answer Gold Answer Considered Correct
{Yes, 1, True} true yes
{No, 0, False} false yes
A car. car yes
Yes, it is correct. yes yes
It is not correct, no. no yes
The color of the leaf is green. green yes
There are three birds. three birds yes
Five 5 yes
{yes, true} entailment yes
{no, false} contradiction yes
maybe neutral yes
There are three birds in the image. three birds no
There are three birds. 3 no
three birds 3 no
three birds 3 birds no

A.3 Prompts

Figure 7 presents the dataset-specific textual prompts we used for all models in this benchmark. Note that
this does not include model-specific prompt templates, image placeholders, special tags, or symbols, only
the “raw” textual prompt, which is then embedded in the template as required by the respective model.
The placeholders {QUESTION}, {LANGUAGE}, or {HYPOTHESIS} are replaced by the sample specific text.
The prompts are partially inspired by Geigle et al. (2023) or Bugliarello et al. (2022).

A.4 Hyperparameters
This section briefly reports hyperparameters used within our experiments for better reproducibility.

A.4.1 Generation Parameters

We used the same generation hyperparameters to generate responses with all the employed open-source
models on all datasets (see Table 4). Those are inspired by the default parameters in the “transformers”
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xGQA

Question: {QUESTION} Short answer in English:

MaXM

|

Question: {QUESTION} Short answer in {LANGUAGE}:

|

MaRVL

Based on the two images, is it correct to say “{HYPOTHESIS}”? Yes or no? One word answer in
English:

|

XVNLI

Is it guaranteed true that “{HYPOTHESIS}”? Yes, no, or maybe? One word answer in English:

|

M5-VGR

Based on the two images, is it correct to say “{HYPOTHESIS}”? Yes or no? One word answer in
English:

|

M5-VLOD

Based on the 5 images ordered from top-left to bottom-right, which image does not match the
hypothesis “{HYPOTHESIS}”? Choose one from [A, B, C, D, E] and only output a single letter:

|

xFlickrCo

Brief caption in {LANGUAGE}:

XM3600

|

Brief caption in {LANGUAGE}:

7~

Figure 7: Prompts employed for the different datasets.

library®. Because for CogVLM, beam search is not supported, we set “num_beams” to 1. For GPT 4V
and Gemini Pro V, we use the default parameters of the respective Python clients.

Table 4: Generation hyperparameters to generate responses with all the employed models on all datasets.

Parameter Value
num_beams 2
do_sample True
max_new_tokens 50
temperature 1.0
top_k 50
top_p 0.95

A.4.2 Image Order for Multi-Image Datasets

Most models employed in our dataset only support a single image per prompt. For datasets where a
sample comprises more than one image, i.e., for MaRVL, M5-VGR, and M5-VLOD, we use the following
strategy: We first stack the images horizontally with a gutter of 10 pixels, provide them as a single image
in the prompt, and generate the response. Then, we do the same again but stack the images vertically. For

*https://huggingface.co/docs/transformers/en/main_classes/text_generation
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M5-VLOD, we also create a stacked image with two columns and three rows. The reported scores are the
average of all variants.
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B Dataset Details

B.1 M5-VGR and M5-VLOD Details
B.1.1 M5-VGR Examples

ID: a06bcb6431fb4a7cb4335bbfb02e2047
Topic: paper

Language: Amharic

Hypothesis:

VAP PadeTF ME&H AL TPa(M: OLe+TF ALA:
Machine Translation:

Both images show papers sitting on a table.
Answer: True

Figure 8: Amharic M5-VGR Sample.

ID: 90059df935e843f3a59b3b86c36cee96

Topic: tooth paste

Language: Bengali

Hypothesis:

A 25T 7B GGG BRI Mediy 932 a6f BAPGTD B3 Sramfse medi_e T 25wt

Machine Translation:

The left picture shows two toothpaste tubes and one toothpaste tube is shown on the right
Answer: True

Figure 9: Bengali M5-VGR Sample.

ID: acc84d8170bc4cf492af35235731f437

Topic: water outlet

Language: Berber

Hypothesis:

Olot+ +UNoHZI oA OOHUAI+ cOHOO | UoLol | +XLCLZ.
Machine Translation:

Olo+ +UNoHZlI oA OOHUAI+ cOHOO | UoLol | +XLLE.
Answer: False

Figure 10: Berber M5-VGR Sample.

ID: 7b86a95366dd424e8d24597936e89434

Topic: paper

Language: English

Hypothesis:

The first image shows green paper in a printer, and the second image shows yellow paper on a wooden floor.
Machine Translation:

The first image shows green paper in a printer, and the second image shows yellow paper on a wooden floor.
Answer: False

Figure 11: English M5-VGR Sample.
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ID: cc82590e83a846ch9edbebcf753055e6

Topic: water outlet

% Language: Filipino

Hypothesis:

Ang pinagmumulan ng tubig ay marumi at nagkalat sa parehong larawan.
Machine Translation:

The source of the water is dirty and scattered in the same picture.
Answer: False

Figure 12: Filipino M5-VGR Sample.

ID: e0740bcbc03c406cb099eaa5c2040eda

Topic: table with food

Language: German

Hypothesis:

Das erste Bild zeigt eine Frau, die am Tisch Weintrauben isst, wahrend das zweite Bild Essen flr drei Personen zeigt.
Machine Translation:

The first image shows a woman eating grapes at the table, while the second image shows food for three people.
Answer: False

Figure 13: German M5-VGR Sample.

ID: 1668e4ad23d247909860a3d32eb2dba2

Topic: lock on front door

Language: Hausa

Hypothesis:

Dukka hotunan biyu kofar daki ne wanda aka rufe da kwadon rufe daki
Machine Translation:

Both pictures are a closed room with a closed door.

Answer: True

Figure 14: Hausa M5-VGR Sample.

ID: ba3a8016212e4ba58c2f8adeaa3ad2ba
Topic: shower

Language: Hindi

Hypothesis:

T TR FAT =R A ¢l

Machine Translation:

Both pictures are of the bath house.
Answer: False

Figure 15: Hindi M5-VGR Sample.

ID: 1610f5e020a9435f9e773ef424033e73
Topic: shower
Language: Russian

L .
o '-n ~ ‘ Hypothesis:
Ha nepBoM n3o6paxxeHun B AyLLEBON CTeHbl XKENTbIe, @ Ha BTOPOM U306pa)keHnn B AyLLIEBO CTEeHbl KpacHbIe.

Machine Translation:
In the first image, the shower walls are yellow, and in the second image in the shower walls, they are red.

Answer: False

Figure 16: Russian M5-VGR Sample.
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ID: eb2af5af22c2418ea83c7d148c125687
. Topic: wardrobe
Language: Swahili
Hypothesis:
Katika picha zote mbili kuna kabati la nguo.
Machine Translation:
In both pictures there is a dresser cupboard.
Answer: False

Figure 17: Swahili M5-VGR Sample.

ID: 53ecad00e365421b8cfc9c220468e9ca
Topic: washing clothes/cleaning
Language: Thai

Hypothesis:

neanen WL JunwauRNaNTnEN

Machine Translation:

Both images are of people doing laundry.
Answer: False

Figure 18: Thai M5-VGR Sample.

ID: ¢50c1001121a4454aed3b1884ff04167

Topic: guest bed

Language: Zulu

o~ Hypothesis:

Isithombe sokugala yigumbi elicocwe kahle elinezingubo zokulala ezimhlophe kanti isithombe sesibili yigumbi elingacocwe kahle elidlala ezingane.
Machine Translation:

The first picture is a well-cleaned room with white bedding and the second picture is a poorly cleaned room that plays with children.

Answer: False

Figure 19: Zulu M5-VGR Sample.
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B.1.2 MS5-VLOD Examples

ID: f07848da8e4544a8a34d6c3e8141e88c¢

Topic: source of cool

Language: Amharic

+ Hypothesis:

VAP PANT ReATFT AS9PHPH 9P 1MPP T DALY SALA:
Machine Translation:

All images show a device that we use to cool ourselves.
Outlier: 5

Figure 20: Amharic M5-VLOD Sample. The images are ordered from top-left to bottom-right.

ID: 11a37d8036f841d8ba028a501cf856¢2
© Topic: bedroom
‘ Language: Bengali
Hypothesis:
Machine Translation:
Bed room bed contins in all images
Outlier: 2

Figure 21: Bengali M5-VLOD Sample. The images are ordered from top-left to bottom-right.

ID: c5149f4ac81e439eadbe741elf2e722d
{ [ S Topic: cooking utensils
5 [ Language: Berber
= -+ Hypothesis:
+2UNoHZI oA OOSHY I+ KZXol | ZOolWI | S+CE.
Machine Translation:

+3XUNoHZI o\ OOSHYI+ RZXol | 20U | S+CGE.
Outlier: 4

Figure 22: Berber M5-VLOD Sample. The images are ordered from top-left to bottom-right.
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ID: 843fac7edeff4fb4a2edc7c3ad1db388

. v /| Topic: drainage
. @ \ Language: English
Hypothesis:
All images show a drain or drainage in a metal, ceramic surface or outside the house.

-*4 Machine Translation:
= All images show a drain or drainage in a metal, ceramic surface or outside the house.
Outlier: 2

Figure 23: English M5-VLOD Sample. The images are ordered from top-left to bottom-right.

ID: 9af172b955dd4bb29e4d1c8601d504b2
' Topic: armchair
Language: Filipino
Hypothesis:
Ang mga upuan sa mga larawan ay may armchair.
Machine Translation:
The chairs in the pictures have armchairs.
Outlier: 5

Figure 24: Filipino M5-VLOD Sample. The images are ordered from top-left to bottom-right.

ID: 8f4008857b4c4bfab8135d40a9419219

Topic: plate of food

Language: German

Hypothesis:

Die Bilder zeigen Teller mit Essen, das gegessen wird.
Machine Translation:

The pictures show plates of food being eaten.
Outlier: 4

Figure 25: German M5-VLOD Sample. The images are ordered from top-left to bottom-right.

ID: 97ba6f364e38430eb779c56ad24cf89c

Topic: drainage

Language: Hausa

Hypothesis:

Dukka hotunan akwai hanyyoin magudanar ruwa na waje da cikin gida.
Machine Translation:

All images are available on the exterior and exterior of the house.
Outlier: 3

Figure 26: Hausa M5-VLOD Sample. The images are ordered from top-left to bottom-right.
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ID: efa9c9642f4545849405e080a666ee56
Topic: hand washing

! Language: Hindi

~ Hypothesis:

1 qoft Dafdt & gearer X gU AT gdearw shi i wmmfer §

-- Machine Translation:
All of these images include handwashing or handwashing things

Outlier: 4
Figure 27: Hindi M5-VLOD Sample. The images are ordered from top-left to bottom-right.

ID: da46b1729e8b4871bd1c401d48fad715

Hypothesis:

Ha n3obpa>keHUn nokasaH HeyrnakoBaHHbIA NpeaMeT AJ1S1 YACTKM NOBEPXHOCTEN.
Machine Translation:

The image shows an unwrapped surface cleaning item.

Outlier: 2

Figure 28: Russian M5-VLOD Sample. The images are ordered from top-left to bottom-right.

ID: a0f64574c38f45b888b18da6032d5547
AT Topic: bathroom privacy
&l Language: Swahili
" Hypothesis:
Picha zote zinaonyesha faragha ya bafuni.
Machine Translation:
All photos show the privacy of the bathroom.
Outlier: 5

Figure 29: Swahili M5-VLOD Sample. The images are ordered from top-left to bottom-right.

ID: 47d9120f8ff541d19aeb988cab28d62b
] Topic: dish racks
m Language: Thai
™ Hypothesis:
vgnmwLﬁumwﬁawmuuuuéw 9
Machine Translation:

Every picture is a picture of a different type of plate place.
Outlier: 1

Figure 30: Thai M5-VLOD Sample. The images are ordered from top-left to bottom-right.
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ID: a8e7cc284e8c4d4794f5a811d09df92e

p | Topic: storage room
m Language: Zulu
) Hypothesis:
Izithombe zibonisa amagumbi agcwele izinto zasekhaya ezingasetyenziswa.
Machine Translation:
Pictures show rooms full of usable household items.

Outlier: 3

Figure 31: Zulu M5-VLOD Sample. The images are ordered from top-left to bottom-right.
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B.1.3 Topics

tagged with a certain topic in the M5-VGR (A) and M5-VLOD (B) datasets.

images

Number of i

Table 5

Language

Topic

Berber Bengali German English Filipino  Hausa Hindi  Russian  Swahili Thai Zulu
A B A A

Ambharic
A

A B A B A B B A B A B

B

B

B

armchair
backyard

bathroom privacy
bathroom/toilet

b

ed

bedroom
books

ceiling

children room

cleaning equipment

cooking pots

cooking utensils

couch

cups/mugs/glasses

cutlery

dish racks

2

dish washing brush/cloth
dish washing soap

drainage

drinking water

drying

everyday shoes

family
floor

front door
grains

guest bed

hair brush/comb

hand back

hand palm

hand washing

home

jewelry
kitchen

kitchen sink

1
1

light source in kitchen

light source in livingroom

living room

lock on front door

make up

meat or fish
medication

most loved item
most loved toy
nicest shoes

oven

paper

pen/pencils

phone

1

place where eating dinner
plate of food

plates

play area

power outlet
refrigerator
roof

shampoo
shower

sitting area

1

soap for hands and body

social drink

sofa

source of cool

spices

storage room
stove/hob

street detail
street view

switch on/off

table with food

teeth

toilet

toilet paper
tooth paste

toothbrush

toys

trash/waste
tv

vegetables
wall

wall clock

wall decoration
wall inside
wardrobe

1

washing clothes/cleaning
washing detergent
water outlet
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B.2 Dataset Language Details

Table 6: Language support of the datasets considered in this work. More details one the languages are reported in
Table 7.

Language Script MaXM xGQA XNLVI MaRVL M5-VLOD M5-VGR xFlickrCO XM3600
Ambharic Ethiopic no no no no yes yes no no
Arabic Arabic no no yes no no no no yes
Bengali Bengali no yes no no yes yes no yes
Berber Tifinagh no no no no yes yes no no
Chinese Hanzi yes yes no yes no no yes yes
Croatian Latin no no no no no no no yes
Czech Latin no no no no no no no yes
Danish Latin no no no no no no no yes
Dutch Latin no no no no no no no yes
English Latin yes yes yes no yes yes yes yes
Filipino Latin no no no no yes yes no yes
Finnish Latin no no no no no no no yes
French Latin yes no yes no no no no yes
German Latin no yes no no yes yes yes yes
Greek Greek no no no no no no no yes
Hausa Latin no no no no yes yes no no
Hebrew Hebrew yes no no no no no no yes
Hindi Devanagari yes no no no yes yes no yes
Hungarian Latin no no no no no no no yes
Indonesian Latin no yes no yes no no yes yes
Ttalian Latin no no no no no no no yes
Japanese Japanese no no no no no no yes yes
Korean Hangul no yes no no no no no yes
Maori Latin no no no no no no no yes
Norwegian Latin no no no no no no no yes
Persian Perso-Arabic no no no no no no no yes
Polish Latin no no no no no no no yes
Portuguese Latin no yes no no no no no yes
Quechua Latin no no no no no no no yes
Romanian Latin yes no no no no no no yes
Russian Cyrillic no yes yes no yes yes yes yes
Spanish Latin no no yes no no no yes yes
Swahili Latin no no no yes yes yes no yes
Swedish Latin no no no no no no no yes
Tamil Tamil no no no yes no no no no
Telugu Telugu no no no no no no no yes
Thai Thai yes no no no yes yes no yes
Turkish Latin no no no yes no no yes yes
Ukrainian Cyrillic no no no no no no no yes
Vietnamese Latin no no no no no no no yes
Zulu Latin no no no no yes yes no no
Unique Languages 7 8 5 5 12 12 8 36
Unique Scripts 4 5 3 3 7 7 4 12
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B.3 Language Details

Table 7: Details and statistics of languages comprised in the datasets of this benchmark. The continent and
subregion columns refer to the content or subregion where the respective language is mostly spoken. The number of
speakers is an estimate of the number of L1 and L2 speakers based on different public sources such as Wikipedia!®,
Ethnologue !!, and Statista'?. The “Taxonomy” column indicates the taxonomy class of the language based on Joshi

et al. (2020).

Language IS0 639 Lang. Family Script Continent Subregion Taxonomy Speakers / 108
Arabic ar Afro-Asiatic Arabic Afrika & Asia North Africa & Middle East 5 630.00
Chinese zh Sino-Tibetan Hanzi Asia Northeastern Asia 5 1330.00
English en Indo-European Latin America North America 5 1457.00
French fr Indo-European Latin Europe Western Europe 5 310.00
German de Indo-European Latin Europe Western Europe 5 175.00
Japanese ja Japonic Japanese Asia Northeastern Asia 5 128.00
Spanish es Indo-European Latin Europe Southern Europe 5 600.00
Croatian hr Indo-European Latin Europe Central & Eastern Europe 4 6.80
Czech cs Indo-European Latin Europe Central & Eastern Europe 4 11.00
Dutch nl Indo-European Latin Europe Western Europe 4 30.00
Finnish fi Uralic Latin Europe Northern Europe 4 5.80
Hindi hi Indo-European Devanagari Asia Central & South Asia 4 600.00
Hungarian hu Uralic Latin Europe Central & Eastern Europe 4 17.00
Italian it Indo-European Latin Europe Southern Europe 4 68.00
Korean ko Koreanic Hangul Asia Northeastern Asia 4 82.00
Persian fa Indo-European Perso-Arabic Asia Middle East 4 130.00
Polish pl Indo-European Latin Europe Central & Eastern Europe 4 41.00
Portuguese pt Indo-European Latin Europe & America Southern Europe & South America 4 360.00
Russian ru Indo-European Cyrillic Asia Central Asia 4 260.00
Swedish sV Indo-European Latin Europe Northern Europe 4 13.00
Turkish tr Turkic Latin Asia Middle East 4 90.00
Vietnamese vi Austroasiatic Latin Asia Southeastern Asia 4 85.00
Bengali bn Indo-European Bengali Asia Central & South Asia 3 270.00
Danish da Indo-European Latin Europe Western Europe 3 6.00
Filipino fil Austronesian Latin Asia Southeastern Asia 3 83.00
Greek el Indo-European Greek Europe Central & Eastern Europe 3 13.50
Hebrew he & iw Afro-Asiatic Hebrew Asia Middle East 3 9.00
Indonesian id Austronesian Latin Asia Southeastern Asia 3 300.00
Romanian o Indo-European Latin Europe Central & Eastern Europe 3 28.50
Tamil ta Dravidian Tamil Asia Central & South Asia 3 86.00
Thai th Kra-Dai Thai Asia Southeastern Asia 3 80.00
Ukrainian uk Indo-European Cyrillic Europe Central & Eastern Europe 3 32.80
Ambharic am Afro-Asiatic Ethiopic Africa Eastern Africa 2 57.00
Hausa ha Afro-Asiatic Latin Africa Western Africa 2 79.00
Swahili SW Niger-Congo Latin Africa Eastern Africa 2 73.00
Zulu zu Niger-Congo Latin Africa Southern Africa 2 28.00
Maori mi Austronesian Latin Australia & Oceania Australia & Oceania 1 0.19
Norwegian no Indo-European Latin Europe Northern Europe 1 4.32
Quechua quz Quechuan Latin America South America 1 9.00
Telugu te Dravidian Telugu Asia Central & South Asia 1 96.00
Berber ber Afro-Asiatic Tifinagh Africa Northern Africa 0 26.20

3https ://en.wikipedia.org/wiki/List_of_languages_by_total_number_of_speakers

4https ://www.ethnologue. com/

Shttps://www.statista.com/statistics/266808/the-most-spoken-1languages-worldwide/
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C Model Details

Table 8: Architectural details of the LMMs evaluated in this study. The columns LM, VM, and ML are “Language
Model”, “Vision Model”, and ‘“Mapping Modules”, respectively, and show the number of parameters of the
particular module. “ITotall” shows all parameters of the model. Note that we report friedly names of the models
which are enriched with hyperlinks pointing to the respective Huggingface repositories (when viewed digitally). For
Gemini Pro Vision and GPT-4 Vision, we used the gemini-1.0-pro-vision and gpt-4-1106-vision-preview

variants, respectively.

Model LM VM MM ‘ ITotall ILMI VMl IMMI
MiniCPM-V [27; 50] MiniCPM-2B SigLIP 400M MLP 3.43B 3.01B 397.75M 29.51M
mBIiP mTO [22] Flan-T5-XL EVAO1 CLIP-ViT-g ~ QFormer 4.84B 3.74B 985.95M 106.71M
Yi-VL 6B [5] Yi-6B-Chat CLIP-ViT-H-14 MLP 6.71B 5.80B 631.75M 22.04M
LLaVA 1.6 7B [38] Vicuna-7B-v1.5 CLIP-ViT-L MLP 6.76B 6.61B 303.51M 20.98M
LLaVA 1.5 7B [39] Vicuna-7B-v1.5 CLIP-ViT-L MLP 7.06B 6.74B 303.51M 20.98M
BakLLaVA [39] Mistral 7B v0.1 CLIP-ViT-L MLP 7.57B 7.24B 303.51M 20.98M
mBIiP BloomZ [22] BloomZ 7B EVAO1 CLIP-ViT-g  QFormer 8.16B 7.07B 985.95M 108.29M
Qwen-VL [9] Qwen-7B CLIP-VIT-bigG CrossAttn 9.66B 7.10B 1.94B 80.00M
OmniLMM 12B [50] Zephyr 7B 3 EVAO02 CLIP ViT-E ~ MLP 11.61B 7.24B 4.28B 93.36M
LLaVA 1.6 13B [38] Vicuna-13B-v1.5 CLIP-ViT-L MLP 13.05B 12.85B 303.51M 31.47TM
LLaVA 1.5 13B [39] Vicuna-13B-v1.5 CLIP-ViT-L MLP 13.35B 13.02B 303.51M 31.47TM
CogVLM [48] Vicuna-7B-v1.5 EVAO02 CLIP ViT-E  CrossAttn 17.64B 6.74B 4.28B 6.62B
InternVL V1.1 [15] Llama-2-13B InternViT 6B MLP 19.11B 13.12B 5.91B 91.79M
LLaVA 1.6 34B [38] Nous-Hermes-2-Yi-34B ~ CLIP-ViT-L MLP 34.45B 33.93B 303.51M 58.73M
Yi-VL 34B [5] Yi-34B-Chat CLIP-ViT-H MLP 35.08B 33.93B 631.75M 60.60M
InternVL V1.2+ [15] Nous-Hermes-2-Yi-34B InternViT-6B V1-2 MLP 40.07B 34.39B 5.54B 143.17TM
Gemini Pro Vision [7] ? ? ? ? ? ? ?
GPT-4 Vision [40] ? ? ? ? ? ? ?
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D Results Details

D.1 General Results
D.1.1 xGQA
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Figure 32: A bar plot showing the average accuracy per language and model on the XxGQA dataset. The models on
the x-Axis are ordered by their average score across all languages so that the best performing model is on the right
and the worst is on the left.

Table 9: The average accuracy per language and model on the XxGQA dataset. The column “NEA” stands for the
average of Non-English languages.

Model Language
bn de en id ko pt ru zh  NEA

LLaVA 1.57B 0.06 035 062 033 029 035 036 035 0.30

CogVLM 0.05 038 059 034 030 033 033 037 0.30
MiniCPM-V 0.11 0.42 0.55 0.33 0.40 0.45 0.35 0.08 0.31
BakLLaVA 0.06 039 062 0.16 0.34 0.37 0.44 045 0.32
Yi-VL 6B 0.11 039 0.57 035 034 039 041 022 0.32
Qwen-VL 0.13 043 059 034 034 037 039 031 0.33

LLaVA 1.6 7B 0.07 042 060 037 0.33 039 037 038 0.34
Gemini Pro V 033 037 046 034 034 034 031 035 0.34
LLaVA1513B 0.10 0.44 0.62 034 031 038 040 040 0.34
OmniLMM 12B  0.21 042 049 035 037 038 041 039 0.36
LLaVA1.613B 0.11 0.52 0.65 037 039 040 044 041 0.38

Yi-VL 34B 0.18 0.50 0.58 0.42 0.39 047 041 032 0.38
mBIiP BloomZ 040 038 044 041 029 043 039 041 0.39
mBIliP mTO 039 042 044 039 039 041 041 040 0.40
GPT 4V 0.44 042 045 0.42 041 041 0.38 0.41 0.41

InternVL V1.2+ 0.22 0.51 0.67 046 049 052 047 037 043
LLaVA1.634B 0.21 0.54 0.65 048 044 052 0.50 0.56 0.46
InternVL V1.1 0.31 053 0.63 0.48 0.48 0.51 0.49 0.55 0.48

Average 0.19 0.43 0.57 037 037 041 040 037 0.37
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D.1.2 MaXM
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Figure 33: A bar plot showing the average accuracy per language and model on the MaXM dataset. The models on
the x-Axis are ordered by their average score across all languages so that the best performing model is on the right
and the worst is on the left.

Table 10: The average accuracy per language and model on the MaXM dataset. The column “NEA” stands for the
average of Non-English languages.

Model Language
en fr hi iw o th zh  NEA
CogVLM 0.43 0.03 0.01 0.04 0.02 0.00 0.03 0.02
BakLLaVA 0.53 0.14 0.02 0.02 0.06 0.14 0.07 0.08

OmniLMM 12B  0.48 0.28 0.03 0.01 0.17 0.13 0.06 0.11
LLaVA 1.57B 052 034 0.13 0.056 0.16 0.09 0.12 0.15
LLaVA 1.6 7B 034 038 0.09 0.11 0.14 0.10 0.12 0.16
LLaVA1513B 056 0.35 0.09 0.05 032 0.12 0.19 0.19
MiniCPM-V 0.56 0.28 0.12 0.09 0.13 0.13 0.39 0.19

Yi-VL 34B 0.3 0.21 0.14 0.14 0.16 0.23 0.31 0.20
Yi-VL 6B 0.53 032 013 0.16 0.12 0.18 0.29 0.20
Qwen-VL 0.50 0.37 0.15 0.20 0.20 0.29 0.17 0.23

LLaVA1.613B 0.46 043 0.13 0.16 0.38 0.17 0.17 0.24
mBIliP BloomZ 0.55 0.23 0.53 0.18 0.32 0.19 042 0.31
LLaVA 1.634B 0.58 044 0.25 0.27v 043 0.25 0.32 0.32
InternVL V1.1 0.58 047 033 0.22 036 028 040 0.34
mBIliP mTO0 0.50 0.42 0.50 0.37 041 0.58 0.24 0.42
InternVL V1.2+ 0.60 0.52 035 0.35 044 0.31 0.55 0.42
Gemini Pro V 0.48 0.50 047 043 043 0.61 0.29 0.45
GPT 4V 0.49 0.55 052 0.62 0.53 0.64 0.31 0.53

Average 0.51 035 022 0.19 027 025 024 0.25
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D.1.3 XVNLI
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Figure 34: A bar plot showing the average accuracy per language and model on the XVNLI dataset. The models on
the x-Axis are ordered by their average score across all languages so that the best performing model is on the right
and the worst is on the left.

Table 11: The average accuracy per language and model on the XVNLI dataset. The column “NEA” stands for the
average of Non-English languages.

Model Language
ar en es fr ru  NEA
CogVLM 0.26 0.47 031 0.27 0.32 0.29
BakLLaVA 0.32 0.48 0.33 0.33 0.36 0.34
Yi-VL 6B 0.34 056 038 0.39 0.41 0.38

mBIliP BloomZ 0.40 0.40 0.45 0.48 0.44 0.44
LLaVA 1.6 7B 0.36 0.59 046 0.50 0.46 0.45
LLaVA 1.57B 0.34 0.60 0.52 0.53 0.50 0.47
Gemini Pro V 046 049 048 0.50 0.52 0.49
LLaVA1513B 039 0.59 0.53 0.54 0.52 049
MiniCPM-V 0.36 0.66 0.53 0.57 0.51 0.49

Yi-VL 34B 0.39 059 0.55 056 0.54 0.51
OmniLMM 12B 043 0.64 0.55 0.57 0.59 0.54
Qwen-VL 0.46 0.62 0.57 0.57 057 0.54

LLaVA 1.6 13B 049 0.61 0.57 0.56 0.57 0.55
InternVL V1.1 0.50 0.61 0.57 0.57 0.57 0.56
mBIliP mTO 0.55 0.89 0.56 0.57 0.58 0.57
InternVL V1.2+ 0.53 0.63 0.59 0.60 0.59 0.58
LLaVA1.634B 054 0.62 0.59 0.60 0.59 0.58
GPT 4V 0.67 0.69 0.66 0.68 0.70 0.68

Average 0.43 0.58 0.51 0.52 0.52 0.50
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D.1.4 MaRVL

Hl en id  ta e zh sw . tr
0.7
0.6
0.5 I
>
[}
o
S 0.4
(9]
Q
<
0.34
0.2
0.14
0.0
Q«°Q ";\Q) o‘(ﬂ/ A\S‘\ \,’b&? 4\/& 0’4\/ \?"b QQ"A Q;\Q’ \i& ’5& @‘@ A\"\’ \?’Q’ »
3 N 5° O & R @ e, N SRR ~ ©
(&o‘ & Q2 C Q;gt- B\ o o 6\@\ RN W& N @4 o -
& ) 3 W $ ¢ & S o
v & V¢ v o RS GINA (4

Figure 35: A bar plot showing the average accuracy per language and model on the MaRVL dataset. Note that
MaRVL does not contain English data originally and we machine-translated English from the other languages and
averaged the results. The models on the x-Axis are ordered by their average score across all languages so that the

best performing model is on the right and the worst is on the left.

Table 12: The average accuracy per language and model on the MaRVL dataset. Note that MaRVL does not contain
English data originally and we machine-translated English from the other languages and averaged the results. The

column “NEA” stands for the average of Non-English languages.

Model Language

en id SW ta tr zh  NEA
CogVLM 0.60 0.53 0.51 049 0.51 053 0.51
LLaVA 1.5 7B 0.57 0.53 0.51 0.51 0.51 0.53 0.52
BakLLaVA 0.59 0.54 0.51 050 0.53 0.55 0.53
LLaVA 1.6 7B 0.62 0.57 0.51 0.50 0.51 0.54 0.53
Qwen-VL 0.60 0.52 0.50 0.50 0.54 0.59 0.53
Yi-VL 6B 0.59 053 0.49 050 0.54 0.61 0.53
MiniCPM-V 0.61 0.53 0.50 0.50 0.56 0.58 0.53
LLaVA1513B 0.60 0.60 0.51 0.50 0.54 0.56 0.54
Gemini Pro V 0.55 0.55 0.53 0.55 0.56 0.55 0.55
OmniLMM 12B  0.64 0.62 0.51 0.51 0.57 0.57 0.56
mBIliP BloomZ  0.55 0.57 0.56 0.57 0.56 0.56 0.56
Yi-VL 34B 0.62 0.62 0.53 0.51 0.59 0.65 0.58
InternVL V1.1 0.63 0.61 0.54 0.58 0.65 0.63 0.60
InternVL V1.2+ 0.68 0.67 0.53 0.53 0.64 0.70 0.61
mBIiP mTO 0.60 0.63 0.60 0.64 0.66 0.62 0.63
LLaVA1.613B 0.65 0.66 0.60 0.65 0.69 0.64 0.65
LLaVA1.634B 0.64 0.72 0.56 0.57 0.70 0.76 0.66
GPT 4V 0.64 0.71 0.59 0.63 0.73 0.66 0.66
Average 0.61 0.60 0.53 0.54 0.59 0.60 0.57
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D.1.5 MS5-VGR
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Figure 36: A bar plot showing the average accuracy per language and model on the M5-VGR dataset. The models
on the x-Axis are ordered by their average score across all languages so that the best performing model is on the
right and the worst is on the left.

Table 13: The average accuracy per language and model on the M5-VGR dataset. The column “NEA” stands for the
average of Non-English languages.

Model Language
am ber bn de en fil ha hi ru sw th zu NEA

LLaVA157B 0.43 0.50 0.36 0.44 0.47 0.52 0.42 0.38 0.41 0.36 0.38 0.36 0.42
LLaVA 1.6 7B 0.43 0.50 0.36 0.47 0.55 0.52 0.42 0.39 0.45 0.36 0.36 0.36 0.42
LLaVA 1.513B 0.43 0.50 0.37 0.65 0.57 0.52 0.42 0.45 0.56 0.37 0.41 0.36 0.46
BakLLaVA 0.42 0.51 0.37 0.62 0.71 0.55 0.48 0.37 0.68 0.42 0.48 0.33 0.48
LLaVA 1.6 13B 0.44 0.50 0.36 0.79 0.78 0.49 0.42 0.53 0.81 0.33 0.48 0.37 0.50
Yi-VL 34B 0.43 0.50 0.51 0.74 0.77 0.60 0.42 0.44 0.69 0.40 0.57 0.36 0.52
Qwen-VL 0.30 0.17 0.60 0.63 0.82 0.53 0.57 0.56 0.66 0.63 0.62 0.61 0.54
CogVLM 0.53 0.46 0.54 0.74 0.68 0.53 0.54 0.59 0.61 0.54 0.60 0.41 0.55
mBIiP BloomZ 0.46 0.50 0.64 0.61 0.69 0.50 0.42 0.64 0.60 0.60 0.46 0.69 0.56
MiniCPM-V 0.61 0.64 0.55 0.69 0.80 0.55 0.43 0.64 0.68 0.38 0.56 0.41 0.56
OmniLMM 12B 0.51 0.69 0.58 0.65 0.78 0.62 0.49 0.51 0.78 0.47 0.64 0.51 0.59
Yi-VL 6B 0.62 0.31 0.64 0.74 0.72 0.54 0.70 0.62 0.72 0.55 0.63 0.59 0.61
InternVL V1.1  0.48 0.50 0.63 0.76 0.73 0.68 0.47 0.68 0.75 0.58 0.81 0.47 0.62
LLaVA 1.6 34B 0.51 0.65 0.57 0.80 0.87 0.58 0.47 0.67 0.82 0.63 0.74 0.59 0.64
Gemini ProV ~ 0.71 0.50 0.64 0.62 0.79 0.63 0.62 0.66 0.68 0.68 0.83 0.66 0.66
InternVL V1.2+ 0.51 0.55 0.66 0.78 0.86 0.73 0.54 0.67 0.85 0.64 0.90 0.66 0.68
mBIliP mTO0 0.81 0.42 0.67 0.68 0.74 0.56 0.87 0.67 0.75 0.67 0.75 0.73 0.69
GPT 4V 0.82 0.47 0.80 0.81 0.88 0.84 0.93 0.79 0.88 0.80 0.94 0.83 0.81

Average 0.53 0.49 0.55 0.68 0.73 0.58 0.53 0.57 0.69 0.52 0.62 0.52 0.57
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D.1.6 MS-VLOD
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Figure 37: A bar plot showing the average accuracy per language and model on the M5-VLOD dataset. The models
on the x-Axis are ordered by their average score across all languages so that the best performing model is on the
right and the worst is on the left.

Table 14: The average accuracy per language and model on the M5-VLOD dataset. The column “NEA” stands for
the average of Non-English languages.

Model Language
am ber bn de en fil ha hi ru sw th zu NEA
CogVLM 0.10 0.07 0.08 0.06 0.10 0.07 0.09 0.08 0.06 0.06 0.07 0.09 0.08
mBIliP mTO 0.14 0.22 0.16 0.10 0.12 0.24 0.24 0.15 0.10 0.22 0.15 0.14 0.17
Yi-VL 6B 0.14 0.21 0.20 0.12 0.20 0.26 0.21 0.21 0.13 0.24 0.22 0.19 0.19

Yi-VL 34B 0.15 0.22 0.14 0.27 0.26 0.21 0.17 0.27 0.21 0.16 0.16 0.17 0.19
MiniCPM-V 0.17 0.19 0.20 0.11 0.20 0.19 0.22 0.16 0.15 0.29 0.23 0.24 0.20
LLaVA 1.57B 0.18 0.22 0.15 0.13 0.15 0.19 0.25 0.19 0.19 0.25 0.27 0.19 0.20
BakLLaVA 0.25 0.19 0.21 0.12 0.14 0.21 0.22 0.15 0.17 0.22 0.26 0.26 0.20
LLaVA 1.513B 0.18 0.23 0.19 0.17 0.16 0.24 0.25 0.14 0.13 0.26 0.28 0.20 0.21
InternVL V1.1  0.18 0.22 0.20 0.11 0.12 0.24 0.29 0.16 0.11 0.29 0.29 0.19 0.21
LLaVA 1.6 7B 0.17 0.22 0.18 0.14 0.14 0.24 0.27 0.18 0.15 0.29 0.27 0.19 0.21
LLaVA 1.6 13B 0.18 0.23 0.19 0.13 0.14 0.25 0.29 0.16 0.13 0.28 0.26 0.22 0.21
Qwen-VL 0.18 0.22 0.20 0.14 0.16 0.25 0.29 0.16 0.13 0.29 0.27 0.19 0.21
mBIliP BloomZ 0.20 0.20 0.19 0.15 0.14 0.24 0.29 0.17 0.12 0.26 0.28 0.21 0.21
OmniLMM 12B 0.18 0.16 0.25 0.17 0.19 0.25 0.30 0.17 0.25 0.20 0.21 0.22 0.21
LLaVA 1.6 34B 0.19 0.24 0.20 0.14 0.26 0.30 0.28 0.16 0.19 0.26 0.25 0.18 0.22
InternVL V1.2+ 0.24 0.20 0.28 0.29 0.28 0.20 0.14 0.20 0.24 0.24 0.28 0.24 0.23
Gemini ProV ~ 0.33 0.19 0.37 0.42 0.52 0.43 0.27 0.38 0.40 0.43 0.37 0.39 0.36
GPT 4V 0.36 0.22 0.38 0.42 0.70 0.53 0.38 0.47 0.50 0.44 0.48 0.46 0.42

Average 0.20 0.20 0.21 0.18 0.22 0.25 0.25 0.20 0.19 0.26 0.26 0.22 0.22
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D.1.7 xFlickrCO

H de N en es id l ja B ru . tr zh
304
251
201
+
+
&
£ 154
o
104
5]
0
\% & \§\ K\s Q \‘\,4 \;, N\ g NG 2 < NS g\ 04 AX Q
& & 3 P NG q Ky “ o> © N P ) & S Q€ S N
0& N ® Y N =N R\ v:\r ~ V:\, \‘\Q‘ ~ A [ N Q O N
P B\ & g & \;3\ W \? > @AV" ,OQV Q,\g & &A é&
S A% \>:O NV O@ NY% NY% & () N &7/

Figure 38: A bar plot showing the average chrF++ score per language and model on the xFlickrCO dataset. The
models on the x-Axis are ordered by their average score across all languages so that the best performing model is on
the right and the worst is on the left.

Table 15: The average chrF++ score per language and model on the xFlickrCO dataset. The column “NEA” stands
for the average of Non-English languages.

Model Language
de en es id ja ru tr zh  NEA
Qwen-VL 9.00 18.68 8.69 488 0.77 074 391 5.62 480
Yi-VL 6B 11.53 2454 1461 837 0.78 090 815 0.79 6.45
CogVLM 11.08 16.76 12.32 11.27 0.56 3.71 7.62 0.46 6.72
BakLLaVA 13.21 26.79 14.17 1048 0.06 0.75 949 0.09 6.89
Yi-VL 34B 17.02 24.62 11.36 11.79 2.00 2.57 9.50 244 8.10

MiniCPM-V 19.06 2743 1881 14.62 4.69 10.73 13.18 1.40 11.78
InternVL V1.1 18.21 2798 20.74 14.69 431 7.07 867 938 11.87
LLaVA 1.57B 23.22 2832 21.95 1758 0.44 445 10.77 5.29 11.96
LLaVA 1.513B 21.66 29.39 19.37 15.59 6.63 5.02 1045 6.72 12.21
LLaVA 1.6 7B 19.70 19.31 2148 19.32 4.60 11.27 13.14 6.78 13.75
OmniLMM 12B  23.39 30.76 22.05 20.50 2.89 13.29 14.55 2.59 14.18
LLaVA 1.6 13B 22,55 23.94 21.98 20.73 7.57 13.26 14.79 6.39 15.33
LLaVA 1.634B 2438 23.52 2398 2236 5.08 16.40 15.05 6.34 16.23
GPT 4V 24.56 24.17 22.82 2329 4.73 15.82 1758 5.60 16.34
mBIliP BloomZ 24.39 25.99 25.12 2356 7.18 15.31 17.16 3.93 16.67
Gemini Pro V 24.17 2213 2350 23.10 5.75 17.28 18.03 5.24 16.73
InternVL V1.2+ 2581 28.41 24.13 20.48 7.25 17.34 16.73 8.54 17.18
mBIliP mTO 26.10 26.07 24.74 2241 7.56 18.64 19.58 3.87 17.56

Average 19.95 2493 19.55 16.95 4.056 9.70 12.69 4.53 12.49
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D.1.8 XM3600

ar da N en e fi he s hu . ja s nl pt s v . te B uk
bn HEE de es il e hi id | ) B no quz sv mm th . vi
B s el l fa fr hr it S mi . pl s ro sw . tr e zh

304

25
+ 2041
+
[T
—
Ny
O 154
10
5
" N 3
S RO Q > Q@ O @ Q © x > Q
QA\/ &04 & .4"6 \:‘)b‘ 4(3\‘\ © \;’)’\ < & \/4» \ooé‘ @\;‘v x&’/\ 6),3; A'\”L b"; b,,)b\ Q&u
[ex ,SF O-$ NS K\ \(‘\ \(\\ K\a Q}* é : Q% \3‘\ W~ N R\ > > ©
¢ AR S P S P e
e A N 9 e NS (V4 W

Figure 39: A bar plot showing the average chrF++ score per language and model on the XM3600 dataset. Due to
resource restrictions, we evaluated GPT 4V only on a subset of languages. The models on the x-Axis are ordered by
their average score across all languages so that the best performing model is on the right and the worst is on the left.
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Table 16: The average chrF++ score per language and model on the XM3600 dataset. Due to resource restrictions,
we evaluated GPT 4V only on a subset of languages. The column “NEA” stands for the average of Non-English
languages.

Model Language
ar bn cs da de el en es fa fi fil fr
CogVLM 0.07 0.04 9.30 11.92 12.50 0.25 24.26 14.25 0.02 10.52 10.96 13.18
BakLLaVA 0.21 0.22 8.65 11.45 14.33 0.24 25.39 17.13 0.64 10.02 11.41 18.33
Qwen-VL 2.08 0.17 9.89 14.38 13.14 2.32 27.89 16.00 4.09 7.13 11.36 14.70
Yi-VL 6B 4.65 2.98 9.48 13.55 15.58 4.54 28.59 18.58 3.50 9.29 12.42 17.12
Yi-VL 34B 4.24 4.14 9.52 15.40 17.00 8.00 27.11 17.86 10.06 9.17 14.73 16.93
MiniCPM-V 6.38 1.96 9.05 15.52 19.60 2.98 28.53  23.54 3.57 12.33 16.19  23.98
Gemini Pro V 14.90 4.94 17.79 18.32 17.63 10.36  21.81 18.64 0.21 14.50 2.25 20.15
LLaVA 1.57B 6.30 3.71 13.80 15.93 21.18 7.42 26.02  23.60 7.45 15.67 17.38  23.83
mBIliP mTO 12.68 10.79 17.20 19.43 18.74 15.76  28.68  20.71 16.19 13.26  20.79  20.52

InternVL V1.1 12.23 2.55 14.74  22.82 23.77 10.20 32.10 27.91 11.94 16.47  19.20  25.95
mBliP BloomZ 18.10 14.92 16.99 19.16  21.17 11.03  28.05 26.73 15.59 11.86 14.47  25.28
OmniLMM 12B 9.48 3.51 14.24  23.15 25.05 7.37 24.42  26.75 10.65 13.78  20.92 28.18
LLaVA 1.6 7B 12.52 6.13 15.79 14.50  24.06 11.11 26.41 27.37 13.07 17.23 17.76  27.48
LLaVA 1.5 13B 7.07 1.80 14.75 21.74  24.15 6.49 29.55  26.59 14.90 19.51 22.91 29.14
InternVL V1.2+ 13.59 6.19 15.34  24.85 27.05 11.20 29.84 29.50 15.69 17.01 27.22 29.80
LLaVA 1.6 13B 14.07 5.42 17.51 22.30 25.95 11.90 26.42  28.39 14.72  20.44 23.14 29.42
LLaVA 1.6 34B 13.85 6.20 16.94 24.44 26.51 12.17  26.52  28.90 16.09 18.08  28.35 29.83

GPT 4V 22.67  16.27 - - 29.24 - 26.89  30.86 - - - 31.82
Average 9.73 5.11 12.83 17.16  20.92 7.41 27.14  23.52 8.80 13.13  16.19  23.65
Model Language
he hi hr hu id it ja ko mi nl no pl

CogVLM 0.52 0.38 10.25 8.25 10.70 13.11 0.07 0.13 10.00 13.59 11.73 9.98

BakLLaVA 1.07 0.71 10.33 8.98 12.59  16.12 0.07 0.16 10.62 14.56 11.48 10.97
Qwen-VL 0.58 2.32 11.33 9.60 11.50 13.76 2.75 0.70 8.73 15.91  12.64 10.59
Yi-VL 6B 2.78 3.86 9.82 9.12 10.90  14.69 2.40 1.32 8.81 16.04 13.30 10.88
Yi-VL 34B 5.58 5.64 10.31 9.23 13.30  16.55 2.21 2.02 9.55 17.43  13.79  10.40
MiniCPM-V 4.86 2.36 11.96 10.91 16.94 19.06 2.92 0.39 10.49 18.47 14.27 11.51
Gemini Pro V 7.12 6.98 13.48 9.22 16.98 18.44 6.63 6.43 3.55 19.67 17.43  17.29
LLaVA 1.5 7B 3.76 6.29 13.05 11.69 19.33  20.73 3.48 3.93 10.10 23.30 19.79 16.10
mBliP mT0 11.16  12.08 10.26  14.59 17.39  17.92 5.79 6.00 11.88 24.20 19.97 14.49
InternVL V1.1 8.80 6.47 15.05 12.49 24.31 23.13 6.09 4.83 15.93 25.02 2245 17.58

mBIliP BloomZ 9.16 16.18 9.78 13.84 21.44  21.39 6.53 3.67 5.99 26.17 17.35 16.07
OmniLMM 12B 3.99 9.91 18.84 16.72  25.07 22.50 3.16 2.31 14.94  26.47 21.36 19.16
LLaVA 1.6 7B 10.61 10.26 16.52 18.26  24.05 24.71 6.66 6.09 13.12 25.07  20.49 19.38
LLaVA 1.5 13B 11.63 9.13 16.87 16.54 25.13 26.11 8.16 6.86 13.98  27.52 23.77 17.96
InternVL V1.2+ 10.88 7.69 17.07  14.70  24.65 25.94 7.96 5.53 14.17  29.11 23.02 18.37
LLaVA 1.6 13B 12.54 11.00 19.99 19.52  26.15 26.66 8.27 6.95 13.73  27.15 21.19  21.03
LLaVA 1.6 34B 11.30 7.27 18.16 16.57 27.69  27.40 7.75 5.60 16.69  28.42 24.45 19.49
GPT 4V - 17.16 - - 33.24 - 11.46 - - - - -

Average 6.46 7.54 12.95 12.23  20.08 19.35 5.13 3.50 10.68 21.01 17.14  14.51
Model Language

pt quz ro u sV sw te th tr uk vi zh NEA
CogVLM 12.87 9.75 11.23 0.86 12.57 9.41 0.51 0.26 9.58 0.46 6.74 0.29 7.04
BakLLaVA 14.00 9.00 11.30 0.85 11.61 9.37 1.47 0.57 9.36 0.31 7.11  0.03 7.58
Qwen-VL 14.17 825 13.60 4.30 13.59 8.75 1.44 1.28 8.26 5.66 5.76  6.20 8.20
Yi-VL 6B 13.77 825 10.04 6.57 15.64 8.94 4.93 2.57 9.55 2.65 776 2.61  8.82
Yi-VL 34B 14.57 7.64 1095 6.95 14.42 9.71 5.62 2.92 10.84 4.19 8.74 282 9.78
MiniCPM-V 18.21 7.21 14.94 3.69 15.36 11.16 1.83 2.24 13.47 1.74 8.88  2.46 10.30

Gemini Pro V 20.60  4.72 10.98 15.27 20.60 15.80 1.87 12.45 15.62 10.82 16.48 4.88 12.37
LLaVA 1.57B 21.57  9.55 12.38 10.08 20.68 9.59 2.23 5.51 11.78 5.84 14.34 3.87 12.44
mBIliP mTO 19.35 7.70 13.05 14.63 20.66 14.45 12.42 14.76 14.13 13.60 18.73 2.59 14.80
InternVL V1.1 24.47 791 17.55 16.39 23.40 9.82 4.73 6.85 13.22 11.26 10.80 7.76 14.97
mBIiP BloomZ 23.93 4.32 14.59 16.25 18.31 14.82 14.12 9.19 15.34 13.35 22.14 2.65 15.20
OmniLMM 12B 22.75 10.61 18.61 17.49 22.09 13.68 5.41 6.84 14.68 17.49 16.58 3.00 15.34
LLaVA 1.6 7B 23.42 10.04 15.55 15.18 21.42 11.69 4.60 9.62 14.81 11.40 15.54 5.58 15.46
LLaVA 1513B  26.51 9.70 21.33 8.53 24.80 13.81 3.39 10.84 1598 6.36 21.66 6.22 16.05
InternVL V1.2+ 26.63  6.20 18.06 19.30 26.27 14.83 7.79 5.30 17.30 13.79 17.22 7.71 17.05
LLaVA1613B  25.07 10.60 21.96 14.86 21.01 14.80 5.18 11.11  17.03 14.03 21.44 6.02 17.44
LLaVA 1.634B  22.85 10.39 20.08 20.11 24.92 18.73 8.70 7.19 18.83 15.36 16.23 7.02 17.79
GPT 4V 30.13 - 25.41 - - - - - 25.70 - - - 24.91

Average 20.83  7.88 15.65 10.63 18.19 11.63 4.79 6.08 14.19 8.24 13.12 3.98 13.64

D.2 Language Fidelity Analysis
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Table 17: Pearson correlation coefficients between language fidelity on xFlickrCO and Performance on other

datasets.

Dataset Language

Avg. zh en de id ja ru es tr
xFlickkCO 91 8 .65 086 .88 91 92 90 .84
XM3600 81 74 63 063 69 .74 76 .67 .82
MaXM S5 17 43 - - - - - -
XVNLI Sl - 46 - - - 47 20 -
MaRVL 46 21 41 - S0 - - - .50
M5-VGR .34 - .11 015 - - 42 - -
xGQA 21 35 47 008 37 - -04 - -
M5-VLOD .14 - 44 020 - - 14 - -
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