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Abstract

While transformer models exhibit strong capa-
bilities on linguistic tasks, their complex archi-
tectures make them difficult to interpret. Re-
cent work has aimed to reverse engineer trans-
former models into human-readable representa-
tions called circuits that implement algorithmic
functions. We extend this research by analyz-
ing and comparing circuits for similar sequence
continuation tasks, which include increasing
sequences of Arabic numerals, number words,
and months. By applying circuit interpretability
analysis, we identify a key sub-circuit in both
GPT-2 Small and Llama-2-7B responsible for
detecting sequence members and for predicting
the next member in a sequence. Our analy-
sis reveals that semantically related sequences
rely on shared circuit subgraphs with analo-
gous roles. Additionally, we show that this
sub-circuit has effects on various math-related
prompts, such as on intervaled circuits, Span-
ish number word and months continuation, and
natural language word problems. This mecha-
nistic understanding of transformers is a critical
step towards building more robust, aligned, and
interpretable language models.

1 Introduction

Transformer-based large language models (LLMs)
like GPT-4 have demonstrated impressive natu-
ral language capabilities across a variety of tasks
(Brown et al., 2020; Bubeck et al., 2023). How-
ever, these models largely remain black boxes due
to their complex, densely connected architectures.
Understanding how these models work is important
for ensuring safe and aligned deployment, espe-
cially as they are already being used in high-impact
real-world settings (Zhang et al., 2022; Caldarini
et al., 2022; Miceli-Barone et al., 2023).

Several researchers argue that the ability to inter-
pret AI decisions is essential for the safe implemen-
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tation of sophisticated machine learning technolo-
gies (Hendrycks and Mazeika, 2022; Barez et al.,
2023). Previous studies show that AI interpretabil-
ity is vital for AI safety, for catching deception,
and for addressing misalignment (Barredo Arrieta
et al., 2020; Amodei et al., 2016). Mechanistic in-
terpretability, a sub-field of interpretability, aims to
reverse engineer models into understandable com-
ponents (such as neurons or attention heads) (El-
hage et al., 2021). By uncovering underlying mech-
anisms, researchers can better predict model behav-
iors (Mu and Andreas, 2020; Foote et al., 2023)
and understand emergent phenomena (Nanda et al.,
2023; Quirke and Barez, 2023; Marks et al., 2023).

To analyze computations within models, a re-
cent approach has been to find circuits, which are
subgraphs of neural networks that represent algo-
rithmic tasks (Elhage et al., 2021). Recent work
in interpretability has uncovered transformer cir-
cuits that implement simple linguistic tasks, such
as identifying indirect objects in sentences (Wang
et al., 2022). However, only a few studies have fo-
cused on the existence of shared circuits (Merullo
et al., 2023), in which circuits utilize the same sub-
circuits for similar tasks. Identifying shared circuits
assists in aligning AI via methods such as model
editing (Meng et al., 2023), which precisely targets
problematic areas for more efficient re-alignment
without erroneously altering healthy components.
Documenting the existence of shared circuits en-
ables safer, more predictable model editing with
fewer risks, as editing a circuit may affect another
if they share sub-circuits (Hoelscher-Obermaier
et al., 2023). Therefore, interpretability enables
safer alignment by understanding adverse effect
prevention.

While models use the same components for
different tasks, such as when there are far more
tasks/features than neurons (Elhage et al., 2022),
our focus is on locating components which are
shared due to similar, re-usable functionality, and
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not for vastly different functionalities. Our work
tackles the hypothesis that LLMs may re-use cir-
cuits across analogous tasks that share common ab-
stractions. For instance, similar sequence continua-
tion tasks, such as number words ("one two three")
and months ("Jan Feb Mar"), can be analogously
mapped to one another via the natural number ab-
straction (for example, one and Jan are mapped
to 1). As these tasks share a common abstraction,
LLMs may have learned to efficiently re-use com-
ponents that utilize shared patterns. Understanding
how LLMs re-use components based on commonal-
ities can shed light on how they represent and asso-
ciate semantic concepts with one another (Gurnee
and Tegmark, 2023). Not only would this enhance
understanding of how LLMs actually perceive in-
formation, but it may have potential applications in
transfer learning (Zhuang et al., 2020).

Thus, in this paper, we demonstrate the existence
of shared circuits for similar sequence continuation
tasks, as the similarity across these tasks is clear,
allowing us to cleanly pinpoint functionality. Our
key finding is that there exist shared sub-circuits
between similar tasks in GPT-2 Small (Radford
et al., 2019) and Llama-2-7B (Touvron et al., 2023),
where the shared components have the same func-
tionality across tasks.

The main contributions of this work are1:

1) The discovery of shared circuits for similar
sequence continuation tasks.

2) The finding of similar sub-circuits across
models with analogous functionality.

3) Showing that these circuits affect natural
language math-related prompts.

2 Background and Related Work

Transformer Models. A transformer model learns
the importance of different parts of the data in rela-
tion to each other via query-key attention mecha-
nisms. We analyze LLM transformer-based mod-
els that take in text inputs as token sequences
(x1, . . . , xL) of length L. Tokens are mapped to
d-dimensional embeddings by a function Ψ : D →
Rd (Vaswani et al., 2017).

Attention Head. A transformer consists of blocks
of attention heads, each consisting of two matrices:

1To encourage reuse and further development our code
and datasets can be found here: https://github.com/
apartresearch/seqcont_circuits

the query-key QK matrix that outputs the attention
pattern Ai,j , and the output-value OV matrix that
outputs to the residual stream. An attention layer
output is the sum of attention heads hi,j . We use
the notation L.H for attention heads, where L is a
layer index and H is a head index in layer L.

Multi-Layer Perceptron. Each attention layer
output is passed to a Multi-Layer Perceptron
(MLP). The MLPs in transformers are generally
made of two linear layers, parameterized by weight
matrices W1 and W2, with a ReLU activation func-
tion in between.

Residual Stream. Attention head and MLP out-
puts are added to the residual stream, from which
components read from and write to. Components in
non-adjacent layers are able to interact via indirect
effects from the additivity of the residual stream
(Elhage et al., 2021).

Transformer Circuit Discovery. In transformer
circuits, evidence has shown that in general, MLPs
associate input information with features (Geva
et al., 2020), while attention heads move informa-
tion (Olsson et al., 2022).

Prior work has employed causal interventions
to locate circuits for specific tasks (Meng et al.,
2023; Vig et al., 2020), such as for the Indirect
Object Identification (IOI) task, in which the goal
is to complete sentences with the correct subject
(Wang et al., 2022). One type of causal interven-
tion is called knockout, which, after a model has
processed a dataset, replaces (or ablates) the acti-
vations of certain components with other values,
such as activations sampled from another distribu-
tion. The sampled activations may come from a
corrupted dataset, which outputs the wrong answer,
but resembles the same dataset without the infor-
mation of interest (for example "1 2 3" becomes "8
1 4" to preserve information about numbers, while
removing sequence information). After running
again, if the ablated nodes do not change model
performance much, they are deemed as not part of
a circuit of interest.

Another type of causal intervention is activation
patching, which takes the corrupted dataset as in-
put, and then restores the activations at a certain
component with the original activations to observe
how much that restored component recovers the
original performance. The Automatic Circuit Dis-
Covery (ACDC) technique employs iterative patch-
ing automatically find circuit graphs for given tasks
(Conmy et al., 2023); however, this technique only

12577

https://github.com/apartresearch/seqcont_circuits
https://github.com/apartresearch/seqcont_circuits


Figure 1: The important components of a shared, entangled sub-circuit for the Numerals, Number Words, and
Months tasks in GPT-2 Small. The functional roles of the components are labeled below them. Resid_post denotes
the residual stream state right before the linear unembedding to logits. Full circuits are shown in Appendix J.

seeks to automate finding the connectivity of circuit
graphs, and not their functionality interpretation.

Interpretability of Sequential Tasks. In con-
current work, successor heads were found by
(Gould et al., 2023) to increment tokens with a nat-
ural ordering. However, (Gould et al., 2023) only
analyze the output of the successor head, rather
than looking at the output of a model, and does not
look for circuits for sequences with more than one
member. As shown in our paper, a successor head
is not enough to evaluate a sequence. Additionally,
we study shared interactions between components.
Thus, we build on (Gould et al., 2023) by show-
ing how successor heads interact with the model
as a whole. (Hanna et al., 2023) found circuits for
"greater-than" sequence tasks (for example com-
pleting the sentence, “The war lasted from the year
1732 to the year 17”, with any valid two-digit end
years > 32). Greater-than tasks allow any year
greater than a value to be valid, which differs from
our sequence completion tasks that only have one
valid answer. The authors noted that "similar tasks
had similar... circuits", but compared across num-
ber tasks, and not across non-number tasks such
as months. In our work, we study tasks that are
more dissimilar. Related to sequence continuation,
(Stolfo et al., 2023) and (Quirke and Barez, 2023)
discover circuits for arithmetic computation.

Shared Circuits for Similar Tasks. Locating
shared circuits is a relatively new research topic.
Previous studies have noted that circuits for the
Induction task (Olsson et al., 2022) are found in
circuits for the IOI task. Recently, (Merullo et al.,
2023) discovered shared circuits for the IOI task
and Colored Objects task (where the aim is to iden-
tify the correct color for an object given a set of
colored objects). The authors utilized an interven-

tion experiment to improve the Colored Objects
circuit by modifying subject inhibition heads of the
IOI circuits to inhibit the wrong color answers. In
our paper, we focus on tasks which are much more
similar and map to a common abstraction. While
the IOI task and Colored Objects task both share
similar sub-tasks such as "inhibiting tokens", the
focus of our paper is on enhancing our understand-
ing of how LLMs represent analogous concepts by
discovering sub-circuits which represent common
abstractions, instead of just shared sub-tasks.

3 Methodology

Circuit Discovery Process. Our approach be-
gins by applying iterative pruning to obtain con-
nectivities for circuits of similar tasks. Then, we
employ methods to deduce component functional-
ities shared by similar tasks. We approach circuit
discovery in two types of stages: 2

1. Connectivity Discovery consists of applying
causal mediation analysis techniques for iden-
tifying important connections for varying
component granualarity levels (eg. residual
stream, attention head, MLP, neuron).

2. Functionality Discovery aims to describe the
tasks handled by circuit components, labeling
them with interpretable semantics.

3.1 Connectivity Discovery Methods
Metrics. We utilize the logit difference to measure
model task capability by taking the difference be-
tween the correct token LC and an incorrect token
logit LI . The incorrect logit may be chosen as a to-
ken that is not the correct token. To compare an ab-
lated model with the unablated model, we employ

2The methods we apply to one stage may also yield infor-
mation about another stage.
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the performance score, a percentage calculated as
the logit difference of the ablated model over the
logit difference of the unablated model. We define
an important component to be a component that,
when ablated, greatly reduces performance.

Iterative Pruning for Nodes. To search for
circuit components, we use a knockout method that
ablates one candidate component, or node, nc at
a time and checks how much performance falls.
This method begins with all the components as a
set C, which are nodes of a candidate circuit. Let
N denote the set of all the nodes in the network.
At each step, ablation is performed by patching
in the mean activations of a corrupted dataset at
N \ C, which are the nodes that are not part of
of the current candidate circuit. Then, the mean
activations of the corrupted dataset are also patched
in at new candidate node nc. If performance falls
below Tn, a user-defined performance threshold,
node nc is kept in the candidate circuit C, as it is
deemed necessary for the task. Else, it is removed.

We start by selecting component nc from the last
layer, continuing until the first layer; we call this
procedure the backward sweep. At each layer dur-
ing the backward sweep, we first ablate the layer’s
MLP, and then consider its attention heads. Next,
we then prune again from the first layer to the last
layer; we call this the forward sweep. At each layer
during the forward sweep, we first ablate each at-
tention heads, and then its MLP. We continue it-
erating by successive backward-forward sweeps,
stopping when no new components are pruned dur-
ing a sweep. The output is C, the unpruned node
set.

This method may be considered as a simpli-
fied and coarser variation of ACDC (Conmy et al.,
2023), which decomposes heads into key, query,
and value (qkv) vector interactions. As head out-
puts deemed unimportant may also be unimportant
when decomposed, our method first filters nodes at
a coarse level, then decomposes heads into separate
(qkv) nodes during edge pruning. 3

Iterative Path Patching for Edges. We describe
this part of the method in Appendix D.

3While the graphs found by ACDC utilize even finer gran-
ularity levels than just head decomposition, the authors of
the paper note that different granularity levels are valid based
on analysis goals (eg. (Hanna et al., 2023) analyze at a level
without head decomposition). We find our chosen granularity
level to be sufficient for analyzing shared circuits.

3.2 Functionality Discovery Methods

Attention Pattern Analysis. We analyze the
QK matrix of attention heads to track information
movement from keys to queries. We take the mean
of datasets samples to calculate the attention scores
of the heatmaps in this paper, and display only one
sample on the axes for demonstration purposes.

Component Output Scores. We analyze head
outputs by examining the values written to the resid-
ual stream via the heads’ output matrices (OV), al-
lowing us to see what information is being passed
by each head along in the circuit. These values are
measured by component output scores; we utilize
a successor score that measures how well a head,
given sequence token I , outputs token I + 1. The
details of this method are described in Appendix E.

Logit Lens. Logit lens is a method for under-
standing the internal representations by unembed-
ding each layer output into vocabulary space and
analyzing the top tokens (Nostalgebraist, 2020).
We use logit lens to uncover the layer at which
the predicted token goes from the ’last sequence
member’ to the ’next sequence member’.

4 Circuit Connectivity in GPT-2 Small

4.1 Experimental Setup

We test on GPT-2 Small, which has 144 heads and
12 MLPs, with a total of 117M parameters.

Task Comparison. We compare increasing se-
quences of: (1) Arabic Numerals (or ’Numerals’),
(2) Number Words, and (3) Months.

Datasets. We run a generated prompts dataset
of length 4 sequences (eg. 1 2 3 4). Our focus
in this paper is not on finding circuits only for
Numeral sequences, but on prompt types that share
a common abstraction. Thus, to better compare
numbers to months, we use sequences ranging from
1 to 12.

For each task on GPT-2 Small, we generate sam-
ples by placing our sequence members among non-
sequence tokens. For instance, one sample may
be ’Kyle was born in February. Bob was born
in March. Grant was born in April. Madison
was born in’. Placing sequence members amongst
non-sequence tokens allows us to evaluate the cir-
cuit representation of the shared sub-task of how
the model selects sequence members from non-
sequence members. We generate a total of 1536
samples per task, with a total of 4608 samples.
More details can be found in Appendix B.
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Corrupted Datasets. We corrupt sequence in-
formation by using randomly chosen tokens of a
similar sequence type (eg. ‘1 2 3’ is replaced with
‘8 1 4’). The non-sequence tokens are kept the
same, while the sequence members are replaced.

Metric. We measure using logit difference
using the last sequence member as the incorrect
token (eg. for "1 2 3", the correct token is "4", the
incorrect token is "3").

4.2 Shared Sub-Circuits for Similar Sequence
Continuation Tasks

In this section we analyze main results, and in-
clude extended results in Appendix §F. We dis-
cover shared sub-circuits across the three sequence
continuation tasks. These circuits were found using
a performance threshold of Tn = Te = 80%. Fig-
ure 1 shows a sub-circuit found across the circuits
for all three tasks, which includes attention heads
4.4, 7.11 and 9.1, which we show to be important
in Table 1. Figure 8 in Appendix J combines all
three circuits into one graph 4.

Several important attention heads are identified
across various circuits. We define an attention head
as important if their ablation from a task’s circuit
causes an average performance drop of at least 20%
for all tasks 5. Table 1 compares the importance
of these attention heads for our tasks. We note
that ablating attention heads 0.1, 4.4, 7.11, and 9.1
cause drop of more than 20% for all three circuits,
while ablating attention head 1.5 causes a drop
of approximately 20% for Numerals and Number
Words circuits.

MLP Connectivity. For all tasks, we find that
several MLP ablations cause a >20% performance
drop. In particular, MLP 9 causes a substantial
drop of more than 90%. These results are found in
Appendix L.

5 Explaining Shared Component
Functionalities in GPT-2 Small

In this section we analyze main results, and include
extended results in Appendix §G.

5.1 Sub-Circuit Hypothesis
We hypothesize the important shared components
for the three tasks work together as a functional

4Due to the (qkv) circuit’s large display size, we show the
circuits with (qkv) decomposition in Appendix K.

520% is chosen due to using Tn = 80%, so that for many
removal order variations, a component with a 20% importance
cannot be removed, unless there are alternative backups.

sub-circuit. We define sub-tasks that all three tasks
share: (1) Identifying Sequence Members and (2)
Predicting the Next Member.

Our hypothesis is that early attention heads, in
particular 1.5 and 4.4, identify similar, adjacent
sequence members, such as numbers or Months,
without yet attending to the distinction of which
numbers should be focused on more than others.
Following this, information is passed further along
the model to other components such as attention
head 7.11, which may discern that the two most
recent elements are more significant. This informa-
tion is then conveyed to attention head 9.1 to put
more emphasis on predicting the next element in
the sequence. Lastly, the next element calculation
is done primarily by MLP 9. Thus, this sub-circuit
would represent an algorithm that carries out the
sub-tasks shared for all three tasks. This section de-
tails evidence that supports this circuit hypothesis.

5.2 Sequence Member Detection Heads
We discover a "similar member" detection attention
head 1.5, and a "sequence member detection" at-
tention head 4.4. Attention pattern analysis reveals
that these heads detect how sequence members (as
queries) attend to sequence members (as keys) of
the same type, such as numerals. To determine if
this detection only occurs if the sequence members
are in sequential order, or if this occurs even if they
are not, we input prompts with Numerals in random
order but with Months in sequential order.

In Figure 2, we observe, for attention head 1.5,
similar types attend to similar types. However,
for attention head 4.4, Months attend to Months,
but Numerals do not attend to Numerals, as the
Numerals are not in sequential order. Therefore, in
general, both attention heads 1.5 and 4.4 appear to
detect similar token types that belong to an ordinal
sequence such Numerals or Months, but attention
head 4.4 acts even more specifically as an adjacent
sequence member detection head. More discussion
about these attention patterns are in Appendix M.

Last Token Sequence Detection Head. In
Figure 3 and in Appendix §G, we describe results
that show how attention head 7.11 acts to transfer
the detected sequence information to the last to-
ken, which aids attention head 9.1 and MLP 9 in
determining the successor member.

5.3 Successor Components
Figure 1 shows that attention head 9.1 receives in-
formation from both attention heads 4.4 and 7.11.
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Table 1: Drop in Task Performance for GPT-2 Small when an important attention head is removed from the circuit
in Figure 8.

Important Head Numerals NumWords Months

0.1 -44.29% -78.74% -52.10%
4.4 -33.19% -34.11% -73.16%

7.11 -41.64% -44.78% -45.37%
9.1 -34.94% -27.74% -43.03%
1.5 -27.83% -18.65% -

Figure 2: GPT-2 Small attention patterns for (a) Attention Head 1.5 and (b) Head 4.4. Lighter colors mean higher
attention values. For each of these detection patterns, the query is shown in green, and the key is shown in blue. The
Months are in sequential order, but the Numerals are not. For attention head 1.5, similar types attend to similar
types. But for head 4.4, Months attend to Months, but Numerals do not attend to Numerals. For all plots, we take the
mean of dataset samples to calculate the attention scores, but display only one sample on the axes for demonstration
purposes.

Figure 3: GPT-2 Small attention pattern for Head 7.11.
At the last token, head 7.11 to more recent sequence
members than earlier sequence members. We also rec-
ognize an offset pattern on the diagonals of this heatmap,
indicating that it also functions as a previous token head.

Figure 4: This GPT-2 Small attention pattern for Atten-
tion Head 9.1 shows that for the last token, the com-
ponent pays strong attention to only the most recent
sequence member.
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Attention head 9.1, shown in Figure 4, pays strong
attention to only the last member of the sequence,
and it appears to attend even stronger to the last
member than attention head 7.11, as shown in Fig-
ure 3. Attention head 9.1 has a successor score of
87.37 for a dataset of numerals from 1 to 97; more
details on these scores is given in Appendix G.2.
These results suggest that attention head 9.1 is a
successor head (Gould et al., 2023). 6

Succession via MLP For most samples of all se-
quence types, logit lens reveals that the model does
not predict the correct answer before MLP 9. How-
ever, after the information is processed through
MLP 9, the model outputs the next sequence mem-
ber. These findings suggests that MLP 9 is largely
responsible for finding the next sequence member,
more so than attention head 9.1, which may just
be boosting information and/or acting as a backup
component. Logit lens results are in Appendix §L.

6 Interpreting Sequence Continutation in
Llama-2-7B

We apply iterative pruning using datasets of se-
quences (without non-sequence words in between)
to Llama-2-7B, which has 1024 attention heads and
32 MLPs, to find important attention heads 5.25,
16.0, and 20.17 7. Specifically, attention head 5.25
is found to be a sequence detection head like GPT-2
Small’s attention head 4.4, and attention head 20.17
is found to be a successor head like GPT-2 Small’s
attention head 9.1. Given that we can find ana-
logues of the sub-circuit’s components described in
§5.1 from one model to another, we show that this
sub-circuit type appears in more than one model 8.
Appendix C details the setup of these experiments.

Important Components. As the full circuits’
component sets are between 80 to 100 nodes and
are too large to include in this paper, we only
discuss important components. Unlike in GPT-2
Small, for Llama-2-7B we find most of the MLPs to
be necessary to be able to perform sequence contin-
uation. Table 2 shows the drop in task performance
for Llama-2-7B when an important attention head
is removed from each respective task’s circuit.

Attention Patterns. As shown in Figure 5,

6Successor heads were found concurrently via independent
discovery by (Gould et al., 2023).

7For Llama-2-7B, we define a component as important is
their ablation from a task’s circuit causes an average perfor-
mance drop of at least 12% for all tasks

8Future studies can examine if this appears in even more
models.

Figure 5: The attention pattern of attention head 5.25
in Llama-2-7b resembles the attention pattern of GPT-
2 Small’s attention head 4.4 in Figure 2(b), indicating
they have similar functionality as sequence member
detection heads.

Llama-2-7B’s attention head 5.25 appears to be a
sequence detection head similar to GPT-2 Small’s
attention head 4.4. Moreover, it is not just a similar
member detection head like GPT-2 Small’s atten-
tion head 1.5; when sequence members are out-of-
order, the component does not detect these mem-
bers. But when the members of any of the 3 tasks
are in-order, it is able to detect them. Likewise,
in Figure 6, Llama-2-7B’s attention head 20.17
appears to be a successor head similar to GPT-2
Small’s attention head 9.1. We discuss attention
head 16.0 in Appendix 6.

OV Scores. Attention head 20.17 has a higher
than average successor head score of 33.3%, com-
pared to the average score of 0.46%. It is one of
only twelve attention heads (out of 1024) which
detects the "next" token of a sequence.

7 Ablating Sequence Continuation
Components on Math-Related Prompts

We examine how ablating sequence continuation
components affects the generated output for Llama-
2-7B on various math-related prompts. This
demonstrates how these circuits are not just spe-
cific to a narrow range of sequence continuation
tasks, but have effects on a wide range of mathe-
matical reasoning tasks. We observe the ablation
effects on the following prompt types: (1) Additive
sequences for intervals >1 such as "2 4 6", and (2)
Arithmetic. In Table 3, we provide a summary of
these results. More results, including those for nat-
ural language math reasoning prompts and Spanish
language sequences, are in Appendix I.
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Table 2: Drop in task performance for Llama-2-7B when an important attention head is removed from each sequence
continuation task’s circuit.

Important Head Numerals NumWords Months

5.25 -29.24% -21.32% -12.87%
16.0 -27.02% -14.18% -13.74%
20.17 -56.78% -40.03% -27.26%

Figure 6: Llama-2-7B attention pattern for Head 20.17,
bearing resemblence to the attention pattern of GPT-2
Small’s Head 9.1 in Figure 4, showing that for the last
token, the component pays strong attention to only the
most recent sequence member.

We measure how well the model correctly per-
forms completions on several prompt types after ab-
lating component sets of our discovered sequence
continuation circuits. Given a set of prompts, we
define the Percentage Destroyed after Ablation
as the percentage of prompts which do not com-
plete correctly after ablation. We compare our com-
ponent set ablations with random component abla-
tions which have no overlap with the intersection
of all three component sets. We use 50 randomly
chosen component sets for every prompt, and take
their mean score. Appendix I discusses details of
this ablation procedure.

On intervaled sequences. As shown in Table 3,
for intervaled sequences of +2, +3, +10, and +100,
we discover that ablating an attention head com-
ponent set for each sequence continuation task de-
stroys the model’s completion ability for 96-100%
of cases. In contrast, using random component
ablations only destroys around 3-28% of cases.

On arithmetic. Ablating sequence continuation

head sets destroy the model’s ability to perform ad-
dition and subtraction. This suggests that sequence
continuation, addition, and subtraction tasks share
circuits. As shown in Table 3, we find that ablating
the sequence continuation component heads de-
stroy the ability to perform double-digit arithmetic
for 92-100% of our experiments, while randomly
selected ablated heads only do so approximately
20-33% of the time.

8 Conclusion

Understanding the inner workings of neural net-
works is essential for fostering alignment and
safety. In this paper, we identify that across similar
sequence continuation tasks, there exist shared sub-
circuits that exhibit similar functionality. Specifi-
cally, we find sequence token detection heads and
components associated with next sequence outputs.
The aim of this work is to advance our understand-
ing of how transformers leverage shared computa-
tional structures across similar tasks. By locating
and comparing these circuits across models, we
hope to gain insight into semantic representations
of abstract concepts, which may provide evidence
for universally converging hierarchical associations
across models (Huh et al., 2024; Park et al., 2024;
Templeton et al., 2024).

9 Limitations

As the research topic of our work is relatively new,
the aim of this paper is to first investigate shared
circuits for simple tasks. This way, later work may
build upon it to look for shared circuits for more
complex tasks that are more important for AI safety.
We discuss limitations of this paper in this section.

Methodology Assumptions. As mechanistic
interpretability is an early research field, there may
be methodological assumptions that these findings
depend on which may be subject to change as the
research field progresses.

Dataset Size. As there are only twelve months,
the number of possible continuing sequences was
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Table 3: Percentage Destroyed after Ablation. Percentage Destroyed denotes the percentage of prompts with
incorrect completion after ablation of the component sets of that column; the higher the score, the more effective
the ablation. Each prompt type uses 50 prompts. Results for more prompt types are given in Table 6.

Prompt Type Numerals NumWords Months Random 100

+1 intervals 96% 100% 98% 3%

+2 intervals 96% 100% 100% 7.7%

+3 intervals 100% 100% 100% 28%

+10 intervals 96% 100% 100% 4%

+100 intervals 100% 100% 100% 8.2%

Double-Digit Addition 98% 100% 100% 32.8%

Double-Digit Subtraction 96% 92% 94% 20%

limited. Additionally, even if months were not
used, GPT-2 also has limited prediction ability for
number word sequences, as detailed in Appendix
B. However, our dataset size for the months con-
tinuation task fully captures all of the months; in
contrast, a small dataset size brings more issues
when it does not capture all of the true distribution.

Task Complexity. We performed preliminary
experiments on intervaled sequences. Future work
can expand on this area, and also study Fibonacci-
like sequences, alternating sequences, and deter-
mine if the model has diverging calculations for
+2 vs x2 sequences. The aim is to generalize from
simple tasks to evidence that general shared tasks
models can be interpreted. Additionally, future
work can test on more varied prompt types, such as
more math reasoning prompts.

Comparison Statistics. We have shown that
there are effects from ablating these sequence con-
tinuation circuit components on the model perfor-
mance for various prompt types. More rigorous
statistical tests can improve these studies.

Future Work. Future work can build upon
this paper by tackling open questions related to
feature-level analysis of sequence continuation
tasks, and by examining components exclusive to
certain tasks to see if they handle mapping between
abstract representations to specific tasks. Another
research problem involves analyzing the effects of
model editing on shared, entangled circuits. Ap-
proaches to this include quantifying the relation-
ship between circuit entanglement and editing im-
pact which may be done via embedding space pro-
jection (Dar et al., 2022), modifying a sub-circuit
used for a sub-task S and observing if the ability

to recognize S in multiple tasks is destroyed, and
utilizing methods such as model steering to edit a
task S to perform a similar task S′ (Turner et al.,
2023; Merullo et al., 2023).
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A Computational Resources and
Packages

The code for the experiments was written in Python,
utilizing the TransformerLens package, and were
run on an A100.

B GPT-2 Experimental Setup Details

Circuits Variations. We observe that there are
multiple circuits, with slight variations between
them, that have similar performances for the same
task. However, we find that important heads are of-
ten found in most circuits, regardless of the method,
metric or dataset choices. Thus, we focus more on
the "big picture" comparison of scores and on the
most important heads, and less on the exact varia-
tions between scores or the less important heads.

Dataset Generation Procedure. To gener-
ate each sample, we place each sequence within
a specific template that is generated from an ab-
stract template. For instance, the abstract template
of ’<name 1> born in <seq mem A>. <name 2>
born in <seq mem B>. <name 3> born in’ can fill
in names with (Kyle, Anthony, Madison) to make
a specific template. Then, the specific template
can be filled in with sequence members (Febru-
ary, March) to create the sample ’Kyle was born in
February. Anthony was born in March. Madison
was born in’. We generate 1024 samples from each
of three abstract templates, where each sequence
(eg. 1 2 3, or 8 9 10) is represented the same num-
ber of times, for a total of 1536 samples per task.
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We use single tokens for all tokens in each sample.
We choose samples such that the model outputs the
correct answer with at least twice as high proba-
bility as the incorrect answer’s probability. Each
specific template must also meet these conditions
for all sequences (eg. must work for 1 2 3, 8 9
10, and two three four); else, it is not used. Each
template is represented in equal proportion.

We use the same templates for all tasks. For
example: given the sample for the months task
"Ham was bought in February. Egg was bought
in March. Bread was bought in April. Steak was
bought in”, we use the same non-sequence tokens
to make a sample for the digits task: "Ham was
bought in 2. Egg was bought in 3. Bread was
bought in 4. Steak was bought in”.

The three templates we used are: <name> born
in, <item> lost in, <item> done in. We choose from
a set of 136 names and 100 items.

Originally, we use the token "was" in our sam-
ples (eg. "Steak was sold in March.") However,
we find that the prediction outcomes are largely
the same whether we included "was" or not. Thus,
although "was" would make the sentences sound
more natural to a human, we choose to omit it. Ad-
ditionally, this allows to reduce the memory usage
while running in Colab.

Random Words vs Meaningful Sentences.
We find that using random words as non-sequence
tokens could also allow the model to sometimes
predict the next sequence member correctly. How-
ever, this did not always occur; thus, we choose to
use semantically meaningful templates instead.

Sequence Member Input Positions. We did
not construct samples such that there are different
intervals between the sequence members, placing
them at different positions in the input (eg. "1 2
house fork 3" or "1 house fork 2 3"), because we
want the model to be able to predict the next se-
quence member with high probability. Thus, we
give it an in-context pattern where after every ran-
dom word, it should predict a sequence member.

Sequence Length. We find that using se-
quences with four members allows the model to
consistently obtain high probability predictions for
the correct answer for all three tasks. For contin-
uing sequences without non-sequence members,
four members is usually enough to obtain a correct
token probability of around 90% or more for the
three tasks, within a certain range (eg. not above
twenty for number words for GPT-2).

Model Sequence Continuation Abilities. For
number words, as GPT-2 Small does not seem to
be able to continue number word sequences higher
than twenty, even when giving it the starting prefix
with and without hyphens (eg. twenty or twenty-
for twenty-one). We add a space in front of each
number word as without the space in front, the
model tokenizer would break some words greater
than ten into more than one token (eg. eleven into
two tokens, and seventeen into three tokens), while
we aim for all our samples in a dataset to have
the same number of tokens. Similarly, for digit
sequences there are cases where it would break the
answer into multiple tokens (eg. in the 500-600
digit range, sometimes the next token predicted
would be "5", and sometimes it would be "524").

Corrupted Dataset Details. We ensure that
our randomly chosen sequence does not contain
any elements in sequence order for the last two ele-
ments of the input, as if the last two elements are
not sequential, sequence continuation cannot suc-
cessfully occur. We also test variations of several
corruptions other than randomly chosen tokens of
a similar sequence type, such as repeats and permu-
tations. Overall, the most important components
remain the same regardless of the ablation dataset
and metric choices.

Other Task Datasets. We also look for sim-
ilarities between other types of tasks, such as de-
creasing sequences, greater-than sequences, and
alphabet sequences. However, while there are a
few shared circuit overlaps between these tasks
and three main tasks of this paper, there are more
dissimilarities. Thus, we mainly focus on the simi-
larities of the three tasks of this paper.

B.1 IOI Circuit.

The IOI circuit in Table 4 uses all MLPs and the
following heads (shown in (L,H) format):

(0, 1), (0, 10), (2, 2), (3, 0), (4, 11), (5, 5), (5, 8),
(5, 9), (6, 9), (7, 3), (7, 9), (8, 6), (8, 10), (9, 0), (9,
6), (9, 7), (9, 9), (10, 0), (10, 1), (10, 2), (10, 6),
(10, 7), (10, 10), (11, 2), (11, 9), (11, 10)

C Llama-2 Experimental Setup Details

Dataset. For Llama-2, we ran iterative node prun-
ing on samples consisting only of sequence mem-
bers, and ran attention patterns on samples consist-
ing of both sequence and non-sequence members.
This is because for Llama-2, the main focus was on
finding similar components between the sequence
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continuation sub-circuits of GPT-2 and Llama-2,
rather than finding more minimal circuits, which
would be beyond the computational resources we
allocated. Additionally, the numbers 10 to 12 are
represented as two tokens (eg. ’10’ is ’1’ and ’0’)
in Llama-2-7b; as we evaluate only on prompts of
the same length and use single token answers, we
only use numbers 1 to 9 in the Numerals dataset.

Iterative Methods. Given that Llama-2 is larger
than GPT-2, we only use on backwards sweep,
which we found to be enough for finding the most
important components. We also try modifying the
iterative component ablation method to first ablate
all the heads of an attention layer to see if this
makes the model performance perform below the
threshold; if it does, we remove all the heads of that
attention layer from the candidate circuit. While
this method variation is faster if many attention lay-
ers are unnecessary, it has the downside in which
removing certain unimportant heads may increase
performance, which may, in summation, offset the
performance degrading abilities of important heads.
This means that there may be some important heads
which may be missed by this method. However,
we found that the most important attention heads
were not missed by this method, and the end results
were often comparable to the original version of
our iterative methods. The results in this paper do
not use this modification.

D Iterative Path Patching for Edges

Path patching is a different type of patching that
allows for a more precise analysis of an interven-
tion’s effect on a particular path (Goldowsky-Dill
et al., 2023). It can be performed by ablating com-
ponent interactions, measuring the effect of one
component on another.

After finding circuit nodes, we utilize path patch-
ing to obtain interactions (edges) between them.
Edges denote nodes with high effects on other
nodes 9. We apply a form of iterative path patch-
ing which works backwards from the last layers by
finding earlier components that affect them. First,
we ablate the nodes pruned from iterative node
pruning. Then, we ablate one candidate edge of
the unablated nodes at a time. Using the same or-
der as the backward sweep, we take a node as a
receiver and find the sender nodes that have an im-
portant effect on it. If patching the effect of sender

9As the residual stream allows for indirect effects, edges
may be between components at non-adjacent layers,

A on receiver B causes the model performance to
fall below threshold Te, the edge is kept; else, it is
removed.

For example, if node pruning found a circuit that
obtains a 85% score above Tn = 80%, we now
measure which circuits with the ablated nodes and
the ablated candidate edge still have performance
above Te = 80% 10. Performing node pruning be-
fore edge pruning filters out many nodes, reducing
the number of edges to check. After edge pruning,
nodes without edges are removed. This method has
similarities to the path patching used by (Hanna
et al., 2023), but with several differences, such as
using our performance metric as a threshold.

E Functionality Method Details

Component Output Scores Details. To continue
from Section §3, we employ the heads’ output pro-
jection (OV) matrices to examine the attention
head outputs written to the residual stream by the
OV circuit. For example, we can check if a head
is copying tokens, a behavior introduced as copy
scores by (Wang et al., 2022). Copy scores measure
how well a head reproduces a token from the in-
put. Similar to (Gould et al., 2023), who analyzed
successor heads in greater detail than our paper,
we modify this method to obtain the component
output score, or OV score, which follows a similar
principle but measures how many prompts have a
keyword token are in the output. To calculate these
scores, we multiply the state of the residual stream
after the first MLP layer at the last token with the
OV matrix of the attention head of interest. This
result is unembedded and layer normalized to get
logits. If the keyword is in the top-5 of these logits,
+1 is added to the score. Finally, we divide the total
score by the total number of keywords across all
prompts to obtain a percentage which we call the
OV score. Specifically, we use the keyword as the
integer I + 1, given integer I as the last token in
a sequence, to obtain an OV score known as the
successor score. In this paper, we use all sequence
members of the prompt as keywords.

F GPT-2 Small Connectivity Details

As seen in both Figure 8 and in Table 8 in Appendix
K, in which only head 5.0 of the Numerals circuit
is not part of the Number Words circuit, the Numer-
als circuit is nearly a subset of the Number Words

10The edge pruning threshold Te may be the same or differ-
ent as the node pruning threshold Tn.
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circuit. This suggests that the Number Words cir-
cuit uses the Numerals circuit as a sub-circuit, but
requires additional components to make accurate
predictions.

In Table 4, we compare every task’s circuit with
other similar tasks, isolating each circuit by resam-
pling ablation on non-circuit components. First,
we observe that in general, the model cannot per-
form well on these tasks for non-sequence-task
circuits. For instance, we show that the model has
negative performance for all tasks when run on
the IOI circuit. The negative values mean that the
(LC)− (LI) < 0 in the ablated circuit, indicating
bad performance.

We observe that for the Numerals task, the model
performs better on the Number Words circuit than
the Numerals circuit, which may be because the
Numerals circuit is nearly a sub-circuit of the Num-
ber Words circuit. It is possible to find a Numer-
als circuit with higher performance by setting the
threshold higher. However, this paper’s pruning
methods attempt to find minimal circuits with only
necessary components above a certain threshold;
they do not seek to find the circuit with the most
optimal performance 11.

For the Number Words task, the model only per-
forms well with the Number Words circuit, as this
task may require more components than the other
two. On the other hand, for the Months task, the
model performs even better than the unblated cir-
cuit for all sequence-task circuits, indicating that
this task may not require as many components as
the other two. Due to components such as inhi-
bition heads (Wang et al., 2022), ablating certain
heads may allow the model to perform better for
specific tasks, though may hurt its ability on other
tasks. Overall, these results show that these tasks
do not use the exact same circuit, but may have par-
tially good performance on other sequence task’s
circuits due to shared sub-circuit(s).

G GPT-2 Small Functionality Details

Duplicate Head Head 0.1 was noted to be a Dupli-
cate Token Head by (Wang et al., 2022), in which it
recognizes repeating patterns. As we did not note
that 0.1 had any effects on sequence members in
particular, given our non-sequence token patterns,
it is likely that 0.1 is recognizing all repeating pat-
terns in general, which is prevalent in our dataset.

11One can obtain circuits with >100% performance by set-
ting the threshold to be 100.

Though it plays an important role for this sub-task,
it does not appear specific to sequence continua-
tion.

G.1 Last Token Sequence Detection Head

In Figure 1, there is an edge from heads 1.5 and
4.4 to 7.11, showing 7.11 obtaining sequence token
information from earlier heads. Then, we observe
in Figure 3 that for head 7.11, query tokens attend
to its previous key tokens, indicating 7.11 acts like
a "Previous Token" head. Noticeably, at the last
query token, the strongest attention appears to be
from the non-sequence tokens to the sequence to-
kens. This head may "ordering" identified sequence
tokens to send to the last token, or it may be de-
tecting the pattern at which token the model should
predict the next member of the identified sequence
(eg. after each non-number token, the next member
of the number sequence often follows.)

G.2 Successor Head Scores

To check that head 9.1 outputs next sequence to-
kens, we study its component output scores. Table
5 shows that given a numeral token I as input (eg.
1), head 9.1 often outputs a token I+1 or higher (eg.
2). For numerals between 1 and 97, its successor
score is 87.37%, while its copy score is 59%. We
also note that the successor scores of most heads
are low, with an average of 3.29%, and that head
9.1 has the highest successor score. Thus, it seems
to function as a "successor head".

This is reinforced by the successor score for num-
ber words, which is 90.63%, while the average for
all attention heads is 2.97%. Although head 9.1
does not appear to output months given any month
token, we observe something peculiar: 9.1 is the
only head that will output the next rank given a
month (eg. given "February", output "third", and
its "next rank given month" score is 31.25%. This
appears to be related to how months can be mapped
onto ranks.

H Llama-2-7B Functionality Details

Other Attention Patterns. Figure 7 shows atten-
tion patterns attention 16.0 It may a slight resemb-
lence to the "last token sequence detection head"
7.11 in GPT-2 Small, but it is not clear from this
plot what the role of this head is.

Interval-K Sequences: Attention Patterns We
apply the iterative ablation methods to intervaled
sequences such as additive +2 (eg. "2 4 6"). We
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Table 4: Performance Scores for Figure 8 Circuits’ Components (cols) run on Similar Tasks (rows)

Numerals Task NumWords Task Months Task

Numerals Circuit 81.01% 48.41% 113.52%

Number Words Circuit 87.35% 81.11% 103.64%

Months Circuit 43.74% 32.36% 80.30%

IOI Circuit -6.70% -15.82% -9.20%

Table 5: The top-3 tokens output tokens after OV Un-
embedding head 9.1 for several input tokens.

Token Top-3 Tokens after Unembed

‘78’ ’ 79’, ‘80’, ‘81’

‘six’ ’ seventh’, ’ eighth’, ’ seven’

‘August’ ‘ighth’, ‘eighth’, ‘ninth’

discover that heads 16.0 and 20.17 are within these
components sets, and that head 6.11 is considered
especially important. Future studies can delve more
into this area.

The attention patterns for the important atten-
tion heads 5.25 and 20.17 on the Interval-K tasks,
where K ≥ 1, are similar to those for Interval-1.
For intervals that are not a multiple of 10 and for
numbers with more than one digit, the last digit
of a member attends to the last digit of a previous
member. For intervals that are a multiple of 10,
these digits attend to the differing number (eg. the
’3’ in 300 attends to the ’2’ in 200).

I Ablation on Math-Related Prompts

Experimental Setup. We run ablation experi-
ments on various math-related prompt types only
with Llama-2-7B as GPT-2 Small is limited in its
ability to correctly complete many math-related
prompt types. Zero ablation is performed for
these experiments, in which the components be-
ing knocked out are replaced with an activation of
0, rather than mean activations from a corrupted
dataset. This is because for certain prompts like for
natural language, it is not always clear what type
of corruption to choose, so zero ablation is easier
to work with.

For sequence continuation prompt types, we use

Figure 7: Llama-2-7B attention pattern for Head 16.0.
Tokens appears to attend to the last period of the first in-
stance of the pattern (<object> lost in Month.) However,
it is not clear from this plot what the role of this head is.

sequences of length-3, showing that though we
used length-4 data samples to find important com-
ponents, that our findings generalize to sequences
of different lengths. For arithmetic prompt types,
we use 50 different arithmetic expressions where
the correct answer is greater or equal to 0.

For random ablation on intervaled sequences and
arithmetic, a sequence continuation component set
for a task is around 80-90 attention heads out 1024
total attention heads. Thus, we choose to ablate 100
attention heads. For the randomly selected com-
ponent sets for all prompt types, we do not select
attention heads that belong to the the intersection
set of attention heads from the 3 circuit found for
the three sequence continuation tasks. In other
words, the Numerals circuit component set has 86
attention heads, and taking the intersection of this
component set with the component sets from the
Number Words and Months circuits yields an in-
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tersection set of 16 attention heads. None of these
16 heads are not selected when obtaining attention
heads for the randomly selected component sets.

Overall, we note that these tasks are not solely
dependent on the sequence continuation compo-
nent sets we find, which means random ablations
may choose components that are crucial for the
task. For instance, the random ablation score for
the arithmetic may likely be lower, as some of its
runs may be ablating heads that are involved in
arithmetic.

Math-Related Word Problems. The following
experiments provide some evidence that the se-
quence continuation circuits are not specific to just
sequence continuation, but can extend to prompts
involving sequence continuation reasoning. More
experiments on larger datasets and more prompts
can determine if statement holds in more cases. In
summary, we evaluate on the following prompt
types, with type (2) and (3) being prompt tem-
plates:

1. "What are the months in a year? Give all of
them as a list. Be concise."

2. "If this month is X, and Y months pass, what
month is it? Answer: "

3. "If today is the Xth of (month M), what date
will it be in Y days? "

(1) "What are the months in a year? " We ob-
serve the effects of ablating sequence continuation
task circuits on the prompt, "What are the months
in a year? Give all of them as a list. Be concise." To
evaluate the model’s answer, we allow the model
to generate an output of 50 tokens. We apply the
iterative pruning algorithm to obtain component
sets for the three tasks. When ablating any of the
3 sequence continuation component sets, which
contain around 80 heads each (eg. the Numerals
circuit has 86 heads), the model loses the ability to
correctly complete the answer. In particular, ablat-
ing the Numerals attention head set will make the
model stop the list at June, ablating the Number
words attention head set will make the model stop
the list at February, and ablating the Months atten-
tion head set will make the model state the output
as "1. January 2. February 2. February 3. March
3. April 3. May 3. August 3. August", listing each
item on a new line. We note that the Numerals and
Number Words head sets do not particularly show
strong evidence for sequence destruction, but the

Months head set clearly shows the model loses the
ability to correctly complete the sequence. In con-
trast, choosing 86 random heads that do not overlap
with the Numerals circuit component set (which
has 86 heads) will allow the model to retain the
correct ordering for 47 out of 50 random samples
of 86 random heads. We evaluate these outputs
using GPT-4.

(2) "If this month is X, and Y months pass, what
month is it? Answer: " We study ablation on
prompts of the format, "If this month is X, and
Y months pass, what month is it? Answer: ". We
evaluate on 43 prompts generated using this tem-
plate that the model obtains the correct answer on
when unablated.

We find that ablating the 3 functionally impor-
tant heads yields a percentage destroyed score of
37.21%, while using 20 randomly sampled com-
ponent sets of three attention heads yields a mean
destruction score of 12.62%. For each run, we
calculate the percentage destroyed score, and take
the mean over every run. We also find that the
three functionally important attention heads 5.25,
16.0 and 20.17 may work together, because if one
of them is not present, the model still retains its
correct completion ability.

To evaluate if the model obtains the correct an-
swer, we notice that for each prompt, the model
may answer in different formats. For instance, for
the prompt "If this month is December, and 12
months pass, what month is it? Answer: ", the
model answers: "12 months have passed, so it is
now December again". However, for the prompt,
"If this month is April, and 9 months pass, what
month is it? Answer: ", the model answers: "If
it is April and 9 months pass, then it will be Jan-
uary". Thus, we determine if the model obtains
the correct answer by extracting all the months it
answers with for each prompt. Then, we manu-
ally inspect both the full answer and the extracted
month to determine if the extracted month is actu-
ally consistent with the model logically stating the
extracted month as the answer, or if the model is
simply "mentioning" that month. We find that for
the prompts we use, the model is actually logically
stating the extracted month as the answer. We al-
low the model to generate 15 tokens in its output.
We found that for most prompts, this is enough for
the model to correctly obtain the right answer, as
shown for a sample in Table 7.

We also found that giving an instruction such as
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"Be concise" or a pattern we expect the model to
complete in, such as "If this month is March, and 2
months pass, what month is it? Answer: May. ", of-
ten makes the model give wrong answers. Instead,
we found that just letting the model generate from
the question itself would yield often the correct
answer.

(3) "If today is the Xth of (month M), what date
will it be in Y days? " The correct answer for
the majority of prompts is given in "Month Day"
format (eg. January 10th). Thus, we the model to
generate 5 tokens in its output.

We use 41 prompts that the model completes
correctly, and discover that we only need to ablate
the 3 functionally important heads for sequence
continuation- 5.25, 16.0, and 20.17- to disrupt these
word prompt correct completion. In contrast, ab-
lating just 3 heads at random often does not de-
stroy the model’s correct completion abilities. In
detail, we find that ablating our three important
heads destroys the correct completions for 24.4%
of prompts, while randomly ablating on 3 heads,
on average over 10 randomly sampled component
sets, destroys 9.2% of prompts. We also notice
that ablating the 3 functionally important heads of-
ten shifts the day by just a few days, rather than
changing the month.

Overall Analysis: We note that the last two
prompt types are still sensitive to ablating any 3
heads of the model, suggesting that the model may
require most of the heads of the model to work
properly for these tasks, or that its predictions for
the right answer are not as strong (having more
weight on the right answer over other tokens). The
latter is likely true given that the model does not
always obtain the correct answer for these prompt
templates; given 100 prompts, we selected 43 and
41 prompts, respectively, for the previous two tem-
plates as these were the ones the model correctly
completed on. The destruction score for the 3 heads
is also closer to the random ablation score. Thus,
these prompt types are relatively weaker evidence
for the effect of the discovered sequence continu-
ation circuits on math-reasoning word problems;
nonetheless, there is some noticeable effect, so
we have reported its results in this Appendix. Us-
ing a better (fine-tuned or larger) model that has
improved reasoning skills can mitigate this issue.
More randomly selected samples may also be used.

In contrast to the math-related reasoning prompts
discussed above, we find that a "simpler" sequence

continuation task such as "1 2 3" requires more
heads- around 40 to 80- for ability destruction to
occur for most prompts. This may suggest that
more complex prompts are more sensitive to re-
quiring most components be healthy, while certain
simpler tasks do not require this and are only de-
stroyed when many components are destroying,
possibly suggesting that these large circuit compo-
nent sets we discovered may contain many backup
sub-circuits within them.

As speculation, it is possible that the model may
be translating to a "common space" to calculate
these answers. For instance, the model may be
translating "months" to an ordinal index (eg. April
to 4), adding these months as numerals (modular
12), then translating the answer back to months.
This speculation is be related to the findings of
(Gould et al., 2023), which found that linear maps
projecting out ordinal (eg. April to 4) and domain
(eg. April to month) feature abstractions could be
obtained from activation space and added together,
such as adding a month feature with a 2 feature to
obtain a representation that is decoded as "Febru-
ary" in the output space. It is also related to the
work of (Wendler et al., 2024), which found ev-
idence that LLMs, given foreign language input,
first pivot it to English to "think/reason", and then
translate the answer back to the original input lan-
guage.

Lastly, these prompts show that Llama-2 can rea-
son with circular sequences, such as knowing that
"Nine months after August" is May. Circular se-
quences have been studied in previous mechanistic
interpretability work (Nanda et al., 2023; Gould
et al., 2023), and recent work has discovered ev-
idence that month and day features may be orga-
nized in non-linear representations (Engels et al.,
2024). Future work can expand upon these studies
by understanding how non-linear features causally
effect other parts of a neural network, and possibly
steer groups of non-linear features to observe their
downstream effects on math-related circuits.

Spanish Words Sequence Continuation. We
looked into Llama-2-7B’s capabilities for sequence
continuation across various languages, but found
it to be limited. For instance, the model is able to
complete "uno dos tres" correctly, but will output
numeral "6" for prompt "dos tres cuatro cinco" in-
stead of "seis". Thus, we only study two prompts
for Spanish number word continuation that Llama-
2-7B successfully completes on: "uno dos tres"
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Table 6: Percentage Destroyed after Ablation. Percentage Destroyed denotes the percentage of prompts with
incorrect completion after ablation of the component sets of that column; the higher the score, the more effective
the ablation. Each prompt type uses 50 prompts.

Prompt Type Numerals NumWords Months Random 100

Single-Digit Addition 62% 46% 92% 15.6%

Single-Digit Subtraction 72% 46% 74% 12.4%

Table 7: Examples of word problem prompt outputs, comparing unablated vs ablated components generation results
for Llama-2-7B. For clarity, we cut off the rest of the generation once the correct answer is given. Correct answers
are in green, and incorrect answers are in red.

Prompt Original Output 5.25, 16.0, 20.17
Ablation Output

Random Ablation
Output

If this month is August, and 9
months pass, what month is it?
Answer:

If it is August and 9
months pass, then it
is May.

If it is August and 9
months pass, then it
is November.

9 months after Au-
gust is May.

If today is August 19th, then in
26 days it will be

September 14th. September 12th. September 14th.

and "seis siete ocho", and two prompts for Span-
ish months continuation: "enero, febrero, marzo".
Lastly, we find the model can also correctly com-
plete Spanish months continuation prompts when
asked in natural language question formats, and
find that ablating the sequence continuation circuits
also affects these inputs.

For these prompts, we discover that English and
Spanish number words and months share similar
important components. Thus, we find similar re-
sults for Spanish as in English and using numer-
als. This ties into previous interpretability work on
translation between English and other languages
(Kojima et al., 2024; Wendler et al., 2024).

Spanish number word continuation. For "uno
dos tres", removing just head 20.17 or 16.0 is
enough to destroy this continuation ability of the
model. In comparison, on average, removing any
one random head that is not either 20.17 or 16.0
will not destroy this ability. However, "seis siete
ocho" requires ablating the sequence continuation
head subsets to destroy the counting ability.

Spanish months continuation. For the Spanish
months "enero, febrero, marzo", removing the in-
tersection of the Llama-2 sequence continuation
subset is enough to disrupt the model’s ability to
work on continuing Spanish month sequences.

J All Three Circuits Diagram for GPT-2
Small

In Figure 8, we show the three circuits described in
§4 found via iterative node and edge ablation. Due
to its large size with many edges, we place it in the
Appendix rather than in the main paper.

K Individual Circuit Results for GPT-2
Small

Figure 9 shows a Numerals circuit, Figure 10 shows
a Number Words circuit, and Figure 11 shows a
Months circuit, each with Attention Head Decom-
position. In Table 8, we show the result of dropping
each head from the circuit shown in each of the Fig-
ures.

In Table 9, we show the result of dropping each
head from the fully unablated circuit shown in each
of the Figures. While Head 0.1 is of little impor-
tance when using the full circuit for the Numerals
task with a -4.60% performance drop when ablated,
it is of very significant importance for the Num-
ber Words task, with a -91.90% performance drop
when ablated. Similar results are found for heads
4.4 and 9.1. This may occur because the model
has learned multiple "backup circuits or paths" for
the Numerals task, which activate when main com-
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Figure 8: A Numerals Sequence Circuit (red), a Number Words Sequence Circuit (blue), a Months Sequence Circuit
(gold). The overlapping sub-circuit parts are coded as follows: Numerals and Number Words only are in purple,
Numerals and Months only are in orange, Number Words and Months only are in green, and All Three Tasks are in
white with black edges. The most important sub-circuit components are in gray with a bold outline. Resid_post
denotes the residual stream state right before the linear unembedding to logits.

ponents are ablated; it may also suggest that these
heads are not important when the full circuit is
present and are only important when certain com-
ponents are ablated, acting as backup. The results
also demonstrates that, for the Months task, the
model places different importance on the heads
than for the other two tasks. Overall, this shows
that for each task, though the model re-uses many
of the same important circuit parts, the importance
of each part for each task varies greatly.

L MLP Analysis Details for GPT-2 Small

In Table 10, we show the performance drop for the
three tasks when ablating each MLP from the full,
unablated circuit. We note that MLP 0 and MLP
9 are highly important. MLP 0 may be important
due to acting as a "further embedding" after the
embedding layer, which embeds the tokens into
latent space. For all numeral sequence-member
only samples ("1 2 3 4" to "8 9 10 11"), we find
with logit lens that the "last sequence member" (eg.
for 1 2 3, this is "3") is always output at some layer
between MLP 6 to MLP 8. However, after MLP
9 to the last MLP, the output is always the next
sequence member. The logit lens results for the
top-3 tokens at each layer for a sample with non-
sequence-members is shown in Table 11, and the
logit lens results for a sample with only sequence-
members is shown in Table 12. This pattern occurs
in 1531 out of 1536, or 99.67%, of the samples
with non-sequence-members. The anomalies have

MLP 8 predicting the correct answer of ’5’ or ’7’.
However, for number words with only sequence-

members, MLP 9’s role is not so clear. In some
cases, MLP 8 will output the last sequence member
and MLP will output the next one. In other cases,
MLP 8 will output the last sequence member as a
numeral, and MLP 9 will output the next sequence
member as a number word. Yet in other cases, MLP
8 will output a number word related token, such as
"thousand" or "teen", and MLP 9 will output the
correct answer. For one sample, "six seven eight
nine", the token ’10’ is outputed by MLP 9, and
only until MLP 11 does the output become ’ten’.
Table 13 displays a number words prompt’s results.

The pattern of MLP 8 outputting a sequence
member before MLP 9 outputs the next sequence
member occurs in 1396 out of 1536, or 90.89%, of
samples with non-sequence-members. The main
culprits where this does not occur are for sequences
that have correct answers of "seven" (in which MLP
8 outputs "seven") or "ten" (in which MLP 9 out-
puts ’10’ and MLP 10 outputs ’ten’). These results
suggest that the role of MLP 9 is more nuanced
than simply acting as a key:value store for next
sequence members. Instead, this task may be dis-
tributed across various components, with MLP 9
being one of the most important parts for this task.

For months, all the samples with only sequence-
members have the last sequence member at MLP
8, and the next sequence member at MLP 9. For
samples with non-sequence-members, this occurs

12594



Table 8: All Head Drops from Circuits of Figure 1.

Important Head Numerals NumWords Months Average

0.1 -44.29% -78.74% -52.10% -58.38%

4.4 -33.19% -34.11% -73.16% -46.82%

7.11 -41.64% -44.78% -45.37% -43.93%

9.1 -34.94% -27.74% -43.03% -35.24%

1.5 -27.83% -18.65% - -23.24%

6.10 -14.00% -24.28% -16.90% -18.39%

10.7 - - -13.1% -13.10%

8.8 -15.23% -13.21% -10.15% -12.86%

8.1 -12.93% -12.61% - -12.77%

8.11 - -10.86% - -10.86%

6.6 -7.56% -9.70% -8.93% -8.73%

8.6 -11.02% -6.22% - -8.62%

7.10 - - -6.25% -6.25%

6.1 -10.28% -4.49% -3.77% -6.18%

4.10 -4.87% -5.73% - -5.30%

5.8 - -5.15% - -5.15%

5.0 -5.02% - - -5.02%

7.6 - -4.96% -5.23% -5.10%

9.5 - -5.84% -3.77% -4.81%

0.5 - - -3.79% -3.79%

8.9 -4.09% -3.36% - -3.72%

9.7 - -3.08% - -3.08%

7.2 - -2.84% - -2.84%

Table 9: Drop in Task Performance when a Head is Removed from the Full, Unablated (Original) Circuit.

Important Head Numerals NumWords Months

0.1 -4.60% -91.90% -29.89%

4.4 -13.10% -52.08% -54.40%

7.11 -47.21% -61.51% -46.63%

9.1 -8.78% -29.93% -44.01%

1.5 -14.30% -38.03% -13.15
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Figure 9: Numerals Circuit with Attention Head (QKV) Decomposition.

in 1495 out of 1536, or 97.33%, cases. The anoma-
lies are samples that have the correct answer of
"September", in which MLP 8 will output Septem-
ber. Table 14 shows that for the sample with only
sequence-members that has the correct answer of
"September", this does not occur, but strangely,
MLP 0 will output "Aug" while MLPs 1 to MLP 5
will output years. It is possible that the sequence
of months is more predictable than the other se-
quences. This is because for numerals and number
words, a sequence of numerals doesn’t always re-
sult in the next one, as there can be cases in natural
language where "1 2 3 4" results in "55" because
it is recording counts in general, or there may be
some non-linear growth. Unlike numbers, months
are more constrained in a smaller range.

M Attention Pattern Extended Results for
GPT-2 Small

When we run attention pattern analysis on se-
quences comprised solely of sequence member to-
kens such as “1 2 3 4”, there are no other ‘non-
sequence member’ words to compare to, so it is
hard to tell what ‘type’ of token each head is at-
tending to. Thus, we measure what types of tokens
the heads attend to by using prompts that contained
these sequences within other types of tokens, such
as "Table lost in March. Lamp lost in April."

Table 10: Drop in Task Performance when a MLP is
Removed from the Full, Unablated (Original) Circuit.

MLP Numerals NumWords Months

0 -62.58% -95.98% -84.80%

1 -9.28% -34.71% -8.30%

2 -2.68% -20.18% -16.40%

3 -2.67% -18.19% -9.33%

4 -14.19% -49.24% -23.88%

5 -12.64% -25.16% 6.42%

6 -15.83% -33.46% -10.22%

7 -11.90% -29.71% -19.42%

8 -25.19% -43.17% -41.33%

9 -71.33% -84.10% -83.97%

10 -32.71% -42.09% -32.53%

11 -21.16% -24.97% -19.50%
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Figure 10: Number Words Circuit with Attention Head (QKV) Decomposition.

Table 11: Logit Lens- "Anne born in 2. Chelsea born in
3. Jeremy born in 4. Craig born in 5. Elizabeth born in"

MLP Top-3 Tokens

0 order, the, particular

1 the, order, a

2 the, order, a

3 the, order, accordance

4 order, the, front

5 18, 3, 2

6 5, 3, 2

7 3, 5, 2

8 5, 6, 4

9 6, 5, 7

10 6, 7, 8

11 6, 7, 1

Table 12: Logit Lens- "8 9 10 11"

MLP Top-3 Tokens

0 th, 11, 11

1 th, 11, 45

2 th, 30, 45

3 30, 45, 34

4 45, 34, th

5 votes, ., 9

6 9, ., 11

7 11, 9, 1

8 11, 12, 111

9 12, 11, 12

10 12, 13, 12

11 12, 13, \n
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Figure 11: Months Circuit with Attention Head (QKV) Decomposition.

Table 13: Logit Lens- "seven eight nine ten"

MLP Top-3 Tokens

0 thousand, ten, years

1 thousand, fold, hundred

2 thousand, percent, minutes

3 thousand, percent, years

4 thousand, percent, million

5 thousand, ths, million

6 thousand, million, years

7 thousand, ths, 9

8 nine, 11, 9

9 eleven, 11, twelve

10 eleven, 11, twelve

11 eleven, twelve, 11

Table 14: Logit Lens- "May June July August"

MLP Top-3 Tokens

0 Aug, August, 2017

1 2017, 2014, Aug

2 2014, 2017, 2015

3 2017, 2014, 2015

4 2014, 2017, 2018

5 2014, 2013, 2018

6 September, December, August

7 December, September, August

8 August, September, October

9 September, August, October

10 September, August, October

11 September, August, October

12598



Sequence Member Detection Heads Details.
We discovered a "similar member" detection head,
1.5, and a "sequence member detection", 4.4, both
shown in Figure 12, where numerals attend to pre-
vious numerals, and in Figure 13, where number
words attend to previous number words. To dis-
cern whether these heads are "similarity detection"
heads in general, or are more specific to detecting
sequence members such as numbers, these figures
show that not all token types attend to their similar
types; for instance, names do not attend to names.
We also do not observe every token attending to a
previous position k tokens back (where k is an inte-
ger), so we do not conclude that these heads also act
as previous token heads. Additionally, Figure 14
shows that when both Numerals and Months are in
sequence order, the heads attend to both Numerals
and Months.

N Broader Impact Statement

This paper analyzes shared computational struc-
tures in a transformer language model for semanti-
cally similar sequence continuation tasks. The goal
is to advance the mechanistic understanding of how
these models represent and process concepts.

While increasing interpretability can lead to pos-
itive outcomes like safer AI systems, there is also
potential for dual use if mechanisms are uncov-
ered that could be exploited. For example, the
knowledge that models share components between
analogous tasks could perhaps be misused to more
effectively generate synthetic harmful text by ex-
ploiting knowledge about one task to another when
performing model editing. To mitigate these risks,
the code, data and findings from this work will be
published under an open source license. However,
malicious actors may not respect licensing limits,
so additional precautions are warranted. The au-
thors recommend coordinated disclosure and fur-
ther research into techniques like model editing
that could leverage these insights to align language
models, making them more robust and less suscep-
tible to misuse.

More broadly, the interpretability community
should continue working to establish norms and
best practices around responsible disclosure of
model internals. Understanding the inner workings
of systems like LLMs is not an end in itself, but
rather a means towards developing language tech-
nology that is trustworthy, ethical, and benefits so-
ciety. Researchers in this space should thoughtfully

consider broader impacts as core to their work.
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Figure 12: Attention Patterns for Numerals of (a) Head 1.5 and (b) Head 4.4. Lighter colors mean higher attention
values. For each of these detection patterns, the query is shown in green, and the key is shown in blue. We observe
that numerals attend to numerals, but they are not considered general "similarity detection heads" as non-number
token types do not attend to their similar or same token types.

Figure 13: Attention Patterns for Number Words of (a) Head 1.5 and (b) Head 4.4. We observe that number words
attend to number words (for head 4.4, these scores are in dark blue). We also observe that the attention scores here
are less than they are for digits, suggesting that head 4.4 is more important for digit detection, which is consistent
with its importance for the digits task over the number words task as shown in Table 1.

12600



Figure 14: Attention Patterns for (a) Head 1.5 and (b) Head 4.4. We observe that digits attend to digits, and that
months attend to months. In general, they appear to be adjacent sequence member detection heads.
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