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Abstract

The widespread adoption of synthetic data
raises new questions about how models gen-
erating the data can influence other large lan-
guage models (LLMs). To start, our work ex-
haustively characterizes the impact of passive
inheritance of model properties by systemati-
cally studying how the source of synthetic data
shapes models’ internal biases, calibration and
preferences, and their generations’ textual at-
tributes, providing one of the most compre-
hensive studies to-date. We find that models
are surprisingly sensitive towards certain at-
tributes even when the synthetic data prompts
appear “neutral”, which invites the question

“can we explicitly steer the generated data to-
wards desired properties?” We demonstrate
how such active inheritance can guide the gen-
eration profiles of models towards desirable
non-differentiable attributes in both directions,
e.g. increasing lexical diversity or reducing
toxicity. Overall, our study broadens the un-
derstanding of the implicit biases inherited by
LLMs and explores how we can leverage them
to positive effect.

1 Introduction

Historically, high-quality labeled data has been
costly to curate due to, amongst other factors,
scarcity of available data (Bansal et al., 2022; Singh
et al., 2024a) and financial cost (Gilardi et al., 2023;
Boubdir et al., 2023). This high cost has precluded
adapting training sets “on-the-fly” to increase cov-
erage or task diversity. As a result, researchers
often treated datasets as static instead of malleable.
Recent work has focused on making better use of
existing data by optimizing in the data space. This
includes efforts around data augmentation (Mu-
muni and Mumuni, 2022; Feng et al., 2021), cre-
ating auxiliary data fields through pseudo-labeling
(Ratner et al., 2017), data weighting (Thakkar et al.,
2023; Dou et al., 2020), data pruning to identify a
high-quality subset (Marion et al., 2023; Attendu
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Figure 1: Percentage of change in attributes with respect
to the base model after synthetic data distillation (results
relative to Single-Source Mixtral-8x7B; method is de-
tailed in Section 4 and results can be found in Table 3).
Our targeted sampling approach (active inheritance) ef-
fectively guides model behaviour to discrete preferences
by enhancing desirable attributes (length, diversity) and
mitigating negative ones (toxicity).

and Corbeil, 2023; Abbas et al., 2024; Groeneveld
et al., 2024; Allal et al., 2023; Li et al., 2023) or
curriculum learning (Soviany et al., 2022; Xu et al.,
2020).

However, all these methods still adhere to the
convention that the goal is to enhance an existing
“fixed” dataset by re-formatting, transforming, or
pruning. As a result, their success depends on the
desired properties being present in the dataset to
begin with. This limits the feasibility of introduc-
ing new properties, or explicitly optimizing for
task-specific metrics. What if instead, we exploit
the dataset generation process to steer the model
towards the characteristics we want at test time?

We turn to synthetic data generation (Wang
et al., 2023a; Mitra et al., 2023; Üstün et al., 2024)
as a way to rapidly shape the data space with
latent, desirable attributes. In this process, we
hope to capture more fine-grained—and often non-
differentiable—characteristics such as increased
length and lexical diversity as well as low toxicity
that are known to be correlated with human prefer-
ences (Bai et al., 2022; Singhal et al., 2023; Singh

9243



et al., 2024b). While desirable, these attributes are
not explicitly optimized when training or aligning
LLMs. We aim to leverage the phenomenon of
inheritance to steer model behaviour to accentuate
desirable attributes and attenuate negative ones, as
illustrated in Figure 1.

We first exhaustively benchmark what we term
passive inheritance—profiling what changes hap-
pen when a student model is trained on synthetic
data from a teacher model using a variety of so-
cial bias, textual characteristics, and calibration
metrics. Furthermore, we study the effects of this
distillation on LLMs as evaluators, expanding upon
prior work on self-preference (Singhal et al., 2023).
We take a wider view and perform a systematic
investigation into how different attributes are trans-
ferred across models via synthetic data usage and
how these changes are manifested both in LLMs’
generations and their evaluator preferences.

Overall, our profiling highlights what proper-
ties are most sensitive to passive inheritance when
comparing different student and teacher models.
Next, we use this systematic view to inform the
selection of properties to explicitly optimize for.
We introduce the term active inheritance where we
guide the model towards specific characteristics via
synthetic data distillation and targeted sampling.

This enables us to guide the model behav-
ior towards non-differentiable objectives. Most
other approaches for non-differentiable optimiza-
tion rely on reinforcement learning (Roit et al.,
2023), Bayesian optimization (Gopakumar et al.,
2018), and evolutionary algorithms (Lange et al.,
2023), which require complex methods that are dif-
ficult to scale and can be unstable with large models
(Powell, 2019; Daulton et al., 2022; Ouyang et al.,
2022; Liu et al., 2023a). Our approach instead re-
lies on the simplicity of guiding generations in the
synthetic data space and is interpretable because it
is anchored to observable data characteristics.

We study a diverse set of models including
LLaMa2-7B, LLaMa2-13B (Touvron et al., 2023),
Mixtral-8x7B (Jiang et al., 2024), Gemma-7B
(Gemma Team et al., 2024), Aya-8B (Aryabumi
et al., 2024) and Command-R+ (103B parameters)1,
and trace the impact of an exhaustive set of over 26
metrics across 4 categories (i.e., textual character-
istics, social bias, toxicity and calibration) which
we release as part of an open-source toolkit.2 Our

1https://docs.cohere.com/docs/command-r-plus
2The toolkit is available at https://github.com/

for-ai/llm-profiling-toolkit.

main contributions are:
1. We establish that models trained on synthetic

data are sensitive to passive property inher-
itance. We systematically study the conse-
quences of synthetic data integration—a fun-
damental step towards understanding how to
leverage synthetic data responsibly. We intro-
duce a comprehensive toolkit enabling easy and
automatic monitoring of LLMs’ latent charac-
teristics during training.

2. Passive property inheritance from synthetic
data impacts model behavior preferences
when used as evaluators. Due to the prevalence
of LLM judges in current evaluation pipelines
(Zheng et al., 2023; Dubois et al., 2024b; Chiang
and Lee, 2023), we also examine how synthetic
datasets alter the students’ behaviors and pref-
erences when they are used as evaluators (e.g.,
biasing the student towards the teacher model).

3. We propose active inheritance as a mech-
anism for steering synthetic data curation
towards desirable properties. We show that
strategic gathering and curation of synthetic data
can significantly amplify desired characteristics
and reduce undesired ones. In particular, we
show that by targeted sampling of generations
from a single or multiple LLMs, we can guide
model behavior with gains of up to 116% and
43% in length and lexical diversity respectively
and decrease toxicity by up to 40%.

2 Methods

Learning from Synthetic Data In the simplest
form of knowledge distillation (Liu et al., 2019;
Gou et al., 2021) and LLM-as-a-teacher setups
(Feng et al., 2023; Tian et al., 2024), the parameters
θ of a student LLM are finetuned to maximize the
log-likelihood of a teacher’s (another LLM with
parameters θ̂) generation ŷ ∼ pθ̂(· | x) for a given
prompt x:

argmax
θ

E(x,ŷ)∼D̂[log pθ(ŷ | x)] (1)

The teacher’s generations serve as a proxy for an
unattainable or non-existent gold sequence (i.e., a
human-generated completion). Pairs of prompts
and proxy labels {x, ŷ} form the synthetic dataset
D̂ that is the basis for the optimization process.
In imitation learning, this strategy is known as be-
havioral cloning (Pomerleau, 1988), as the goal is
for the student to mimic the teacher’s behavior as
closely as possible.
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Measuring Data Characteristics The proxy la-
bels are expected to be generally superior to the ini-
tial student’s generations, as they are often but not
exclusively sourced from a stronger model (larger,
more specialized or more recent). However, the
optimization objective is agnostic to how this is
manifested in the data. Our work focuses on char-
acterizing the generations with a set of profiling
functions f : VN × VM 7→ R, that return scalar
values for a given pair of prompt x ∈ VN and gen-
eration sequences y ∈ VM (i.e., token sequences
over a vocabulary V). These functions allow us to
track the passive inheritance of characteristics from
teacher to student. Examples for such functions are
detailed in Section 2.1.

Active Inheritance How can we directly guide
the amplification of desired properties when learn-
ing from teachers? Our key idea is to select proxy
labels based on their presence of desired charac-
teristics. We generate multiple samples for each
prompt (either from repeatedly sampling from a
single model or sampling from multiple models),
and then select the sample for finetuning that maxi-
mizes the presence of the characteristic.3 We now
sample from the following distribution during stu-
dent finetuning (Eq. 1):

p(· | x) =
{

1 if f(x, ·) = max
y′∈Y

f(x, y′)

0 otherwise

}
,

(2)

where the set of k candidate generations y′ ∈ Y
can contain generations from various sources, such
as the student itself or multiple teachers (discussed
below). The resulting synthetic dataset is steered
towards favoring this particular attribute, and the
student model is thus directly optimized towards it.

This best-of-k or rejection sampling strategy has
been used as one component of the optimization
in previous works to align models to human pref-
erences (Dong et al., 2023; Gulcehre et al., 2023;
Touvron et al., 2023), but these need large-scale
reward models to compute f and are restricted to
single teachers that remain close to the student
model. Working with explicit metrics of desired
data characteristics is attractive, as it can work with
any non-differentiable function f and black-box
teachers (e.g., closed-source LLMs). Section 4 will

3For simplicity, we focus on the maximization scenario.
For lower-is-better metrics (i.e., toxicity), we instead minimize
the property during selection.

Textual Characteristics

Length (#Tokens) Length of generations
Gunning-Fog (Gunning, 1968)

Proxies to textual complexity
Rix (Anderson, 1983)
MTLD (McCarthy and Jarvis, 2010) Textual lexical diversity

Social Bias

StereoSet (Nadeem et al., 2020)
Stereotypicality of associations

CrowS-Pairs (Nangia et al., 2020)
BBQ (Parrish et al., 2022) Bias in question answering

Toxicity on RTP prompts (Gehman et al., 2020)

Expected Maximum Toxicity Worst case toxicity
Toxicity Probability Probability of toxic generations

Calibration error on . . .

. . . HellaSwag (Zellers et al., 2019)
Calibration on specific domain

. . . OpenBookQA (Mihaylov et al., 2018)

Table 1: Overview of profiling toolbox (details in Ap-
pendix B).

present practical instances of successful guidance
via synthetic data.

Learning from Multiple Teachers Naturally,
the success of the active steering of inheritance
is limited by the quality of the pool of samples. We
maximize the chance of obtaining samples with
high values for f by employing a set of diverse
teacher models (θ1, θ2, . . . , θk) rather than a single
teacher (θ̂ above). Thereby, we benefit from an en-
sembling effect and make use of the wisdom of the
crowd (Zaras et al., 2021; Wu et al., 2021, 2022;
Zuchniak, 2023; Ko et al., 2023). In Section 4.1 we
will show the empirical benefits of learning from
multiple teachers.

2.1 Experimental Setup

Profiling Metrics We profile models and their
generations through a set of non-differentiable met-
rics along multiple axes of interest: Textual char-
acteristics, social bias, toxicity, and calibration.
We analyze passive inheritance of these properties
through finetuning on synthetic data (Section 3),
and examine active inheritance by leveraging gen-
erated synthetic data to target potential points of
improvement based upon these metrics (Section 4).
Table 1 provides an overview of the metrics that
we gather for our toolbox. Each of them comes
with their own evaluation metric, implementation,
and—for the majority—custom set of prompts (see
Appendix B for details). We chose these metrics
as they offer insight into the LLM’s inherited char-
acteristics, which are often overlooked in general
benchmarks. Details about the models used, train-
ing, data distillation and evaluation benchmarks
can be found in Appendix A.
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Figure 2: Model profile changes after finetuning LLMs on synthetic data. Left: social bias score changes for
the BBQ benchmark show a positive decreasing trend for LLaMa2-13B except in the Disability metric. Middle:
small changes in Measure of Textual Lexical Diversity (MTLD) and the Readability Index (Rix) are accompanied
by an increase of over 100% for the mean number for tokens. Right: toxicity metrics get worse in all cases after
finetuning, increasing up to 40%. Overall, we see that models are susceptible to changes of considerable magnitude
and that the direction of change is often not always intuitive.

Passive Inheritance Experiments For the first
set of experiments, we study LLaMa2-7B and
LLaMa2-13B (Touvron et al., 2023) and Mixtral-
8x7B (Jiang et al., 2024). All 3 LLMs take the
role of the student model (i.e., the model which is
trained on the synthetic dataset) and LLaMa2-7B
and Mixtral-8x7B also take the role of the teacher
(i.e., the model used to generate synthetic data),
resulting in a total of 6 student–teacher combina-
tions. We start by distilling data using the Alpaca
prompts (52k instances; Taori et al., 2023) from
each LLM and then use the created datasets to fine-
tune each LLM as a student. By considering these
combinations we are able to examine two distinct
scenarios: self-distillation where LLMs are trained
on data generated by themselves (LLaMa2LLaMa2,
MixtralMixtral), and the standard distillation sce-
nario, where LLMs are trained on data generated
by other models (LLaMa2Mixtral, MixtralLLaMa2)
(see Section A for further details).4

3 Results: Passive Inheritance of Teacher
Properties

3.1 Impact on Model Generation Properties

In this section we ask: how does passive inheri-
tance impact model generation properties? We find
that while synthetic data might not impact general
performance significantly (Table 4), it can cause re-
markable changes in the scores across the profiling
benchmarks (Figure 2).

Overall changes We consistently observe
changes across various experiments involving

4The subscripted model is the teacher, i.e., StudentTeacher.

different student and teacher models. Even though
the Alpaca prompts used for data generation are
neutral and not deliberately focused on eliciting
specific attributes, models are influenced in
unforeseen ways (e.g., the student model does not
strictly move towards the teacher’s profile and
other non-trivial directions of change).

Social Bias In Figure 2, we plot some of the
changes due to passive inheritance. Firstly, look-
ing at the social bias metrics, we see that, despite
the domain of the prompts being neutral, there are
noticeable changes to the Stereotype Scores across
all domains (e.g., race, gender, religion, etc) in our
benchmarks. We observe relative changes of the
overall social bias profile of some LLMs of up to
36% (i.e., MixtralLLaMa2-7B in Table 11). We also
observe that some relative individual changes are
surprisingly large, with the disability bias score in-
creasing by 80% (i.e., the LLaMa2-13BLLaMa2-7B
bias score increases from 7.71% to 13.88%). In-
terestingly, training on data distilled from a model
does not necessarily lead to replicating the model’s
profile. In fact, our results show the opposite ef-
fect: the social bias metrics of a student model can
decrease even when the teacher model has higher
social bias metrics (see Table 10).

Textual characteristics Secondly, for textual
characteristics, as seen in Figure 2, we observe
varying behaviours depending on the metrics anal-
ysed. We see smaller relative changes of around 8%
for the Gunning-Fog and Rix readability metrics,
which are proxies to measuring text complexity.
When it comes to lexical diversity, we are able to
see changes of up to 16%, which are considered
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significant (Treffers-Daller et al., 2016). Finally,
the metric where we see the biggest change by a
large margin, is the mean number of tokens per
generation, with over 100% increase in some in-
stances (LLaMa2-7BMixtral and MixtralLLaMa2-7B).
On a related note, we observe that models that are
trained on self-distilled data (LLaMa2LLaMa2 and
MixtralMixtral) are less sensitive to changes than
models that were not self-distilled and trained on
data distilled from another model (LLaMa2Mixtral
and MixtralLLaMa2). Self-distilled models dis-
played not only smaller changes but also a slight
decrease in mean number of tokens (see Table 15).

Toxicity In the case of toxicity, we observe no-
ticeable changes across all models for both “Ex-
pected Maximum Toxicity” and “Toxicity Proba-
bility” metrics, with an increase of up to 40% in
the worst case observed (MixtralLLaMa2-7B). Inter-
estingly, the toxicity scores followed the opposite
trend of the social bias metrics, with the scores of
5 out of 6 analyzed models increasing by at least
8% (see Table 13). This is consistent with pre-
vious works which observed increases in harmful-
ness after models were finetuned on utility-oriented
datasets such as Alpaca (Qi et al., 2023). They
hypothesize that models might forget their initial
safety alignment, which could explain the changes
with regard to toxicity.

In Appendix E, we include a complete set of
numbers for each finetuned model and absolute
changes between models.

3.2 Impact on Model Preferences
Motivated by the increasing use of LLMs as eval-
uators we examine how passive inheritance im-
pacts model preferences when used in an LLM-
as-a-judge scenario (Zheng et al., 2023; Dubois
et al., 2024b). We find that the origin of the syn-
thetic data—specifically, the LLM used to distill
the data—directly influences the preferences of the
models trained on this data. Details of our full
experiment setup are given in Appendix C.

Influence on Inter-Model Preference Agree-
ments In Figure 3 we illustrate the agreement
rate, i.e., the percentage of times two models agree
on the best answer when shown the same pair of
candidate generations, between all models before
and after data distillation. We observe that when
models are trained on synthetic datasets generated
by other models they inherit similar preferences
from those models. At a maximum, we observe

LLaMa2-LLaMa2 LLaMa2-Mixtral Mixtral-LLaMa2 Mixtral-Mixtral
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Figure 3: Agreement (i.e. agreement on the best answer
when models are shown the same two pairs of candidate
answers) between models finetuned on data collected
from different LLMs and original LLaMa2-7B, Mixtral-
8x7B and human-annotated data. The x-axis displays
the student-teacher combinations analyzed and is or-
dered by human agreement. It can be observed that
when models are trained with data distilled from other
models their inter-model agreement increases.

that inter-model agreement increases by 13.20%
after passive inheritance (between LLaMa2Mixtral
and Mixtral). Additionally, we see that while self-
distilled models start diverging slightly in terms of
agreement after finetuning, their preferences mostly
retain similarity to the teacher model, always stay-
ing above 80%.

Furthermore, we observe opposing behaviors
when it comes to human agreement, namely that
models finetuned on Mixtral’s data increased their
human agreement rate while the opposite happened
when using LLaMa2’s data. Mixtral, as a Mixture-
of-Expert model, has a significantly larger effective
size of 35B and delivers higher-quality generations
compared to its smaller LLaMa2 counterpart with
7B parameters. This could explain the increase
in alignment with human preferences of 2.7% on
average when Mixtral generations are used dur-
ing finetuning versus the decrease of 5.67% when
LlaMa2-7B-distilled data is used.

Influence on Alignment with Human Agree-
ments Table 2 shows that other attributes such
as human agreement and length bias have positive
or negative trends depending on the origin of the
synthetic data, if it comes from the teacher or the
student model. This indicates that while using data
generated by stronger models could be beneficial in
terms of increasing human agreement, it might also
disproportionately increase the LLM’s preference
for longer answers, which could be a problem (Wu
and Aji, 2023). In addition, the preference for
answers generated by a given family of models
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Teacher Student Human agr. Length Bias Pref. Mixtral-based Pref. LLaMa2-based

LLaMa2-7B
LLaMa2-7B 50.43 ↓ 1.46 52.27 ↓ 2.95 52.25 ↓ 0.38 47.79 ↑ 0.81

Mixtral-8x7B 57.36 ↓ 9.89 68.19 ↓ 0.29 55.38 ↓ 3.47 43.79 ↑ 4.43

Mixtral-8x7B
LLaMa2-7B 56.48 ↑ 4.60 64.40 ↑ 3.45 54.90 ↑ 2.27 43.68 ↓ 3.30

Mixtral-8x7B 68.08 ↑ 0.83 71.94 ↑ 3.05 59.80 ↑ 0.95 38.66 ↓ 0.70

Table 2: Analysis of how different attributes related to LLMs’ behaviors as evaluators change depending on the
source of synthetic data used during finetuning. Here we display insights into 4 metrics: human agreement (%
of times the model and humans agree on the best answer), length bias (% of times the model prefers the longer
candidate answer out of the pair), and preference for both Mixtral and LLaMa2-based models (% of answers
preferred by the evaluator that were generated by a given family of models). We can see that the data origin
influences the direction of change of the characteristics analyzed.

(LLaMa2 or Mixtral) increases when a base model
is finetuned on data coming from that family, indi-
cating a potential skew in preferences towards the
whole family of models that the teacher belongs to.

Role of Architecture Prior While the origin of
the synthetic data does seem to influence the pref-
erences of the models analyzed, we also observe in
Figure 3 that the architecture prior, that is the base
model being effectively finetuned, outweighs the
data when it comes to defining preferences. This
indicates that while preference changes can be seen
even with the use of small amounts of synthetic
data samples, it would probably require the use of
larger amounts of data combined with longer fine-
tuning runs to be able to steer the model away from
their original preference behavior and closest to the
one of another model.

4 Active Inheritance of Desirable
Non-Differentiable Properties

Our results in Section 3 confirm that even with-
out constraining synthetic data generation, distilla-
tion results in passive inheritance of teacher model
properties and preferences. This motivates our next
research question: Can we intentionally guide a
model’s discrete behavior and tendencies through
deliberate shaping of the data space? We explicitly
constrain synthetic data to target specific attributes,
thereby mitigating or enhancing desired character-
istics.

4.1 Enhancing Desired Attributes

We use prompts from the Alpaca dataset to generate
responses from 5 distinct models: LLaMa2-7B,
Mixtral-8x7B, Gemma-7B, Aya-8B and Command-
R+. This approach results in generations with a
high variety of textual characteristics per prompt.

Comparison with random baseline As de-
scribed in Section 2, active inheritance involves
choosing the sample for a given prompt that max-
imizes the desired property (or minimizes if it
is a lower-is-better metric). As a baseline, we
compare to a random selection from the available
sample pool, sampling generations uniformly with
p(· | x) = 1/k rather than choosing the generation
maximizing the targeted attribute (Eq. 2). We term
this our “random” variant in plots.

Sample Pool We compare results given two dif-
ferent sample pools, either involving multiple sam-
ples of the same model (i.e., single-source strategy)
or samples from multiple models (i.e., multi-source
strategy). Note that the prompts remain the same
across all experiments and only the generations
differ based on the source they were sampled from.

Multi-Source Generated Data Table 3 (Multi-
source) shows the results. We observe that active
inheritance effectively instills our desired charac-
teristics into the models while maintaining the over-
all performance. This pattern is consistent across
both LLaMa2-7B and Mixtral-8x7B models with
the latter demonstrating more significant improve-
ments. Finetuning these models with the filtered
version of these datasets leads to an increase of the
mean number of tokens per generation by at least
66% when compared to the base model. However,
while Mixtral shows improvements over the base-
line, the LLaMa2 targeted model falls slightly short
despite increasing the mean length of its genera-
tions compared to the base model prior to finetun-
ing. As for lexical diversity, the mean MTLD score
increases by 8% and 15% points for LLaMa2-7B
and Mixtral-8x7B, respectively. In both cases we
observe substantial increases over the baseline.

Additionally, we also explore how active inher-
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Num. of tokens MTLD Toxicity

Strategy Model Before Random Active Inh. Before Random Active Inh. Before Random Active Inh.

Single-source
LLaMa2-7B 196 184 211 ↑ 15 56.4 63.1 72.9 ↑ 16.5 71.7 68.1 50.7 ↓ 21.1

Mixtral-8x7B 148 290 313 ↑ 165 55.5 67.7 79.4 ↑ 23.9 65.2 70.3 43.2 ↓ 22.0

Multi-source
LLaMa2-7B 196 344 326 ↑ 130 56.4 53.8 60.9 ↑ 4.49 71.7 70.5 42.7 ↓ 29.0

Mixtral-8x7B 148 303 321 ↑ 173 55.5 55.9 64.2 ↑ 8.7 65.2 72.6 42.5 ↓ 22.7

Table 3: Analysis of how the three targeted attributes (number of tokens, MTLD and toxicity) change after base
models are finetuned using the datasets curated for each task. We display results for both the single and multi-source
sampling strategies considered. We show that we can successfully instill desired attributes, both amplifying positive
and reducing negative traits.

itance of certain attributes is affected when the
number of distilled generations gradually increases.
To investigate, we finetune LLaMa2-7B consider-
ing 3 settings: 5 samples per prompt (1 per model),
10 samples per prompt (2 per model), and 25 sam-
ples per prompt (5 per model). As shown in Figure
4, while we can increase generation length in all
settings, the model does not seem to benefit from
a larger pool of generations. However, for lexi-
cal diversity we observe a correlation between the
number of samples and lexical diversity gains com-
pared to the base model and the random sampling
baseline. This indicates that while some attributes
benefit from a larger sample pool (which increases
variety / diversity) this is not true for all objectives.

Single-Source Generated Data Can the variabil-
ity of generations of one model offer a similar range
of diversity as using multiple models? This would
allow us to streamline the process and reduce the
overhead of having to sample from multiple mod-
els. In the case of this single-source strategy we
sample from k = 10 candidate answers generated
by LLaMa2-7B. The results in Table 3 (Single-
source) confirm that we successfully increase both
targeted metrics (length and lexical diversity) even
when leveraging responses coming from a single
model. While the increase in the mean number
of tokens per generation is not as large as in the
multi-source experiment, it is still considerable,
especially for Mixtral-8x7B, which undergoes an
increase of 111%, with both models surpassing the
baseline by at least 8% tokens. On the other hand,
the increase in the MTLD score is greater for both
models in this scenario, with improvements of up
to 40%, being at least 15% better than the baseline.

4.2 Mitigating Negative Attributes

After successfully amplifying desired attributes us-
ing synthetic data, we investigate whether the same

strategies could be used to instead mitigate unde-
sirable characteristics, such as toxicity. To this end
we create our train and test splits using prompts
from the RTP dataset (Gehman et al., 2020). In par-
ticular, we make use of the updated and re-scored
version provided by Pozzobon et al. (2023). We
report details in Appendix D.

As we can see in Table 3, by filtering the com-
pletions based on their toxicity scores and conse-
quently implicitly guiding the model towards non-
toxic generations, we are able to decrease the abso-
lute Expected Maximum Toxicity (EMT) by at least
20% in all instances, reaching a maximum decrease
of 29% in the case of multi-source LLaMa2-7B,
far surpassing the baselines. This demonstrates the
potential of the use of curated synthetic data for
mitigation tasks, which is particularly encouraging
given that passive inheritance often results in an
increase in toxicity (see also results in Section 3.1).
Our findings demonstrate that with minimal effort,
we can successfully and efficiently instill desired
attributes—both amplifying positive and reducing
negative traits—onto a model’s generations.

5 Related Work

LLM Circularity LLMs’ rapid quality improve-
ments and widespread use in recent years have al-
lowed for their use in many research areas and also
made them prevalent on the Internet (Shumailov
et al., 2023), increasingly contributing to text found
online. Research on using LLMs to enhance or
evaluate LLMs has focused on two main areas:
recursive training and self-preference in a LLM-as-
a-Judge setting. On the side of recursive training,
works have shown that training LLMs with data
iteratively generated by other LLMs impairs perfor-
mance as the tail of the original distribution starts
to disappear, including focusing on high frequency-
contexts and therefore neglecting long-tail knowl-
edge (Briesch et al., 2023; Dohmatob et al., 2024;
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Figure 4: Analysis of lexical diversity and length gains on LLaMa2-7B when filtering is performed on an increasing
number of candidate samples per prompt in the multi-source setting. Colored bars indicate relative gains and while
hatched grey bars indicate the random sampling baseline results (both relative to the base model). We can see that
while there does not seem to be a correlation between the size of the sample pool and length gains a larger number
of candidate samples led to a larger active inheritance effect for the lexical diversity attribute.

Bertrand et al., 2024; Shumailov et al., 2024) and
loss of diversity (Guo et al., 2024). In contrast, our
work explores how the transfer of characteristics
via passive inheritance occurs when synthetic data
generated by different LLMs is involved. We also
conduct a far more extensive evaluation of these
models by considering a variety of metrics (i.e.,
social bias, toxicity, textual characteristics) and us-
ing their measurements to investigate how each
attribute might be altered and/or amplified with the
introduction of synthetic data.

As for self-preference, it has been shown that
models tend to prefer their own generations when
used as evaluators (Panickssery et al., 2024) aside
from also displaying other cognitive biases (Zheng
et al., 2023; Koo et al., 2023; Chen et al., 2024)
which affect their behavior and cause their prefer-
ences to stray from the gold standard. Nonetheless,
previous studies have not investigated the potential
influence of synthetic data on preference dynamics
within this circular setting. Our research addresses
this gap by examining the extent to which prefer-
ences can be influenced and/or altered through the
incorporation of this type of data.

Profiling LLMs As LLMs become more preva-
lent in real-world applications establishing bench-
mark and metrics to evaluate these models’ abilities
in a diverse range of tasks becomes a crucial step
to better understand their strengths and identify
potential areas of improvement. Standard evalu-
ation tasks assess reasoning (Zellers et al., 2019;
Srivastava et al., 2023; Chollet, 2019) and question
answering capabilities (Hendrycks et al., 2021; Lin
et al., 2022), and multilingual performance (Üstün

et al., 2024; Aryabumi et al., 2024), among others.
Aside from these general performance benchmarks,
many works have also explored ways in which to
quantify biases and other inherent characteristics
related to these models, including but not limited to
social biases and stereotypes (Nadeem et al., 2020;
Nangia et al., 2020; Parrish et al., 2022), toxicity
(Gehman et al., 2020), preference biases (Koo et al.,
2023), uncertainty (Liang et al., 2023) and lexical
and stylistic characteristics pertaining to LLMs’
generations (Hansen et al., 2023). By benchmark-
ing these models across a wide range of categories
we are not only able to create a comprehensive pro-
file of surface-level characteristics and tendencies
of LLMs but we also explore how to make use of
these metrics to improve our models (Meade et al.,
2022; Schick et al., 2021).

Optimizing for Non-Differentiable Attributes
There is a rich history of optimizing for non-
differentiable attributes within NLP research.
Policy-gradient based reinforcement learning (RL)
algorithms have been a popular choice, e.g., for
maximizing various non-differentiable evaluation
metrics like BLEU(RT) (Shen et al., 2016; Ranzato
et al., 2016; Sokolov et al., 2016; Kreutzer et al.,
2017; Nguyen et al., 2017; Shu et al., 2021) or
ROUGE (Ranzato et al., 2016). However, most of
these methods focus on an online learning scenario,
and some require additional estimators (Williams,
1992; Sutton et al., 1999). Thus, they are generally
more unstable and computationally expensive than
simple cross-entropy updates as in our case (Bah-
danau et al., 2017; Ding and Soricut, 2017; Am-
manabrolu and Hausknecht, 2020; Ammanabrolu
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et al., 2022; Martin et al., 2022), requiring multiple
samples (Shen et al., 2016), or regularization (Ding
and Soricut, 2017; Ranzato et al., 2016) to stabilize
the optimization process. In the case of the recently
popularized paradigm of RL from human feedback
(RLHF; Ziegler et al., 2019; Stiennon et al., 2020),
recent work has shown that the same instabilities
are much less pronounced (Ahmadian et al., 2024).
However, RLHF typically incurs the overhead of
maintaining a reward model representing human
preferences whose scalar reward is directly used in
online RL optimization via algorithms such as PPO
(Schulman et al., 2017) or REINFORCE (Williams,
1992). Offline RLHF methods, on the other hand,
rely on access to the log probabilities of the teacher
policy (Ammanabrolu et al., 2022; Shu et al., 2021)
or require filtering multiple generations in an it-
erative fashion (Dong et al., 2023). RLHF also
typically requires maintaining a reference model in
memory to prevent “reward hacking” (Hendrycks
et al., 2022). In contrast, our work is not based
upon an RL framework. Active inheritance does
not require a reward model, nor does it need to
maintain a reference model in memory, but instead
uses explicit scores with a non-differentiable met-
ric of choice. Furthermore, our method does not
require access to log probabilities of the model
that generated the samples, unlike other non-RL
based methods (Wang et al., 2024) also used for
the same purpose. This is particularly useful given
that closed models often do not provide log proba-
bilities.

6 Conclusion

This work explores the implications of integrat-
ing synthetic data into LLMs, specifically examin-
ing its influence on the models’ characteristics and
preferences. Through our analysis, we show how
synthetic data originating from different sources
can shape and impact model attributes. In addi-
tion, we introduce active inheritance as a strategy
to steer generations towards desirable discrete non-
differentiable attributes. Overall, our findings con-
tribute to a deeper understanding of the unintended
consequences of synthetic data usage and provide
insights into how to tailor models towards desirable
generation profiles.

Limitations

This study provides preliminary insights into the
viability of targeted data distillation as an enhance-

ment technique for machine learning models. It is
important to acknowledge several limitations that
may impact the generalizability of our findings,
which we leave them for future work: There are
various potential modifications (teacher and student
choices, sampling hyperparameters, finetuning it-
erations, etc.) that could be explored for studying
the guided distillation framework even more com-
prehensively. Additionally, the metrics we employ
in guided distillation are not entirely independent
of other latent variables. While we aim to isolate
the impact of individual metrics, changes in one
metric could inadvertently cause variations in oth-
ers, which were not monitored or accounted for.
Moreover, the metrics within our profiling toolbox
vary in nature. Some metrics depend on leveraging
custom data sets (i.e., social bias and calibration),
while others are more flexible and can be com-
puted on any generated sequence, and therefore
optimized directly. The ease of applying active in-
heritance varies across these metric types, offering
varying levels of flexibility and complexity in our
ability to actively steer models. Lastly, we note
that as a new optimization method it can be used to
improve performance towards both desirable and
undesirable characteristics, leaving it subject to be
exploited for misalignment if the method is used
unethically.
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A Experimental Setup

Models Across all experiments, we finetune and
profile two models from different model families
and sizes: LLaMa2-7B (Touvron et al., 2023),
Mixtral-8x7B (Jiang et al., 2024). We choose these
models since they are both generally capable LLMs
while also differing considerably in number of ac-
tivate parameters (7B vs 35B), allowing us to test
the effects of synthetic data across models with
varying size ranges. Additionally, we examine
a larger pool of models for the experiments on
active inheritance: LLaMa2-13B (Touvron et al.,
2023), Mixtral-8x7B (Jiang et al., 2024), Gemma-
7B (Gemma Team et al., 2024), Aya-8B (Aryabumi
et al., 2024) and Command-R+ (103B parame-
ters)5. All models used (except for Command-R+)
were used via the HuggingFace’s Transformers API
(Wolf et al., 2019).

Data Distillation We use the 52k prompts from
the Alpaca dataset (Taori et al., 2023) to generate
the data used in our distillation experiments. This
dataset was chosen as it consists of open-ended
question-answer pairs and is not specific to do-
mains, hence a valuable setting to understand gen-
eral purpose capabilities. For each of the models
mentioned previously, we use the prompts from
Alpaca to distill generations with a limit of 512
tokens each. The outputs are generated by using
instruction-style prompts following the same tem-
plate defined in the original Alpaca work (Taori
et al., 2023).

Tasks We consider question answering (QA)
tasks in this work encompassing a wide variety
of instruction types (i.e. open and closed QA, cre-
ative writing, summarization, information extrac-
tion, classification, brainstorming) and focus on
English only. We focus on QA as the features
chosen to be targeted via active inheritance (i.e.,
length, vocabulary diversity and toxicity) are more
varied and better presented in open-ended gener-
ation tasks as opposed to more specific ones (e.g.
sentiment analysis, named entity recognition).

Training For each synthetic data ablation, we
finetune the model on the distilled datasets for 1
epoch. We follow the QLoRA finetuning protocol
and recommendations (Dettmers et al., 2023), and
use 4-bit quantization to be able to fit them into
memory. For models up to 13B parameters we set

5https://docs.cohere.com/docs/command-r-plus

the batch size to 16 and the learning rate to 2e-4
for larger models we double the batch size to 32
and halve the learning rate to 1e-4. To train and
perform inference we make use of 80GB A-100s,
using one for models up to 13B and two for models
with more parameters, except for Command-R+,
where we make use of the API to generate outputs.
To account for the need to quantize and work which
shows quantization can impact overall model be-
havior (Ahmadian et al., 2023; Hooker et al., 2019),
we measure any differences post-finetuning against
the quantized base model.

Regarding the LoRA parameters we use r = 64
and α = 16, as well as a dropout rate of 0.1 for
models up to 13B parameters and 0.05 for bigger
ones as per Dettmers et al. (2023). For the opti-
mizer we use use Adam (Kingma and Ba, 2014)
with a constant learning rate schedule.

Evaluation Benchmarks We measure the gen-
eral performance of our models on a zero-shot
setting across 7 common-sense/reasoning bench-
marks: BoolQ (Clark et al., 2019), RTE (Poliak,
2020), HellaSwag (Zellers et al., 2019), Wino-
Grande (Sakaguchi et al., 2021), ARC Easy, ARC
Challenge (Clark et al., 2018) and OpenBookQA
(Mihaylov et al., 2018). To calculate the scores
for each benchmark we use the Language Model
Evaluation Harness framework (Gao et al., 2023).
In Table 4, we report these differences.

B Toolbox Details

Textual Characteristics We examine the textual
profile of the models with the TextDescriptives
framework (Hansen et al., 2023) to calculate a va-
riety of statistics and scores. We collect descrip-
tive statistics (i.e., number of characters/tokens/sen-
tences, sentence length/median/mode) and read-
ability scores (i.e., Gunning-Fog (Gunning, 1968),
Rix (Readability Index (Anderson, 1983)) which
can serve as a proxy to measure textual complex-
ity. Additionally, we calculate lexical diversity
scores (Shen, 2022) to track possible changes in
vocabulary such as the Measure of Textual Lexi-
cal Diversity (MTLD) score (McCarthy and Jarvis,
2010). These metrics are calculated using the gen-
erations from the models which we want to evaluate
prompted on 100 instances from the Dolly200 test
set defined in (Singh et al., 2024a). Just like the
distilled data, the generations gathered for the test
set are limited to 512 tokens.
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Social Bias We measure social bias across 9 dis-
tinct categories (i.e. age, disability, gender, race,
nationality, physical-appearance, religion, socio-
economic status and sexual orientation) using 3 dis-
tinct benchmarks: StereoSet (Nadeem et al., 2020),
CrowS-Pairs (Nangia et al., 2020) and BBQ (Bias
Benchmark for Question-Answering) (Parrish et al.,
2022). StereoSet and CrowS-Pairs measure in-
trasentence biases, that is, they measure models
preferred associations using fill-in-the-blank style
context sentences and calculate a stereotype score
indicating whether the LLM makes stereotypical
associations at the sentence level. BBQ on the other
hand focuses on harms that arise when biased mod-
els are deployed as QA systems. To measure bias
using the StereoSet and CrowS-Pairs benchmarks
we use their Stereotype Scores ([0,100] where a
score closer to 50 means less stereotyped) and for
BBQ we consider the Ambiguous Bias Score ([-
100,100] where a score closer to 0 means indicates
a less biased model).

Calibration To measure the alignment of gener-
ation uncertainty with generation correctness, we
use the Expected Calibration Error (ECE) on both
HellaSwag (Zellers et al., 2019) and OpenBookQA
(Mihaylov et al., 2018) following the HELM (Liang
et al., 2023) implementation.

Toxicity To measure toxicitiy we make use of
two metrics: Expected Maximum Toxicity (EMT)
and Toxicity Probability over 25 generations fol-
lowing the same protocols used in (Gehman et al.,
2020; Pozzobon et al., 2023). These two metrics
are measured using a test set of 300 randomly sam-
pled prompts from the RTP dataset with a toxicity
score >= 0.8 so as to instigate toxic responses. The
EMT score measures how toxic generations are
expected to be in the worst case scenario and the
Toxicity Probability analyses how frequently the
model generates toxic responses.

C LLM-as-a-judge Setup

Given LLMs zero-shot and in-context learning abil-
ities (Kojima et al., 2023; Brown et al., 2020) and
the growing necessity to find methods to evaluate
open-ended questions the use of LLMs-as-a-Judge
benchmarks (Fu et al., 2023; Liu et al., 2023b; Chi-
ang and yi Lee, 2023) gained traction as an auto-
mated alternative to performing human evaluation,
which tends to be laborious and expensive (Wang
et al., 2023b). The overall idea behind using LLMs

as evaluators is that by passing detailed prompts
defining the task that should be completed (e.g.
choosing between two candidate answers, scoring
based on a given attribute) to a capable LLM it
should then be able to act as a proxy for human
preferences (Bubeck et al., 2023; Dubois et al.,
2024b).

To analyze the behaviour of these models as
evaluators we used the AlpacaEval framework and
human annotated data (Dubois et al., 2024a). The
models considered are evaluated in a pairwise com-
parison setting, that is the judge is presented two
candidate answers to a given instruction and it has
to determine which one it prefers. We consider a
preference evaluation setting with 6 different mod-
els: the student, teacher, student-student, student-
teacher, teacher-student, teacher-teacher. For the
student model we use LLaMa2-7B and Mixtral-
8x7B for the teacher. We then gather 805 genera-
tions from each of these models using the AlpacaE-
val prompts, resulting in a total of 4830 candidate
answers, that is 6 per prompt. Afterwards, we com-
bine these generations to form all possible pairs of
candidate answers per prompt, so as to be able to
compare all models’ generations against each other
using the prompt displayed in Figure 5.

Additionally we make use of the AlpacaEval hu-
man annotations set with 2.5K annotations (650
instructions each with 4 human annotations) to
be able to measure human agreement, using hu-
mans as neutral judges. This way we can use these
annotations as a point of comparison to analyze
whether the finetuned models’ preferences stray
away from the desired behavior of alignment with
human judgements.

D Toxicity Mitigation Setup

To evaluate the toxicity level, we randomly sample
300 prompts from a subset of RTP of all prompts
with a toxicity score of at least 0.8. For training we
sample all prompts (except for the ones present in
the test set) with toxicity score bigger or equal to
0.5 (approximately 11k instances) to constitute the
potentially harmful section of the set and then sam-
ple randomly 40k instances with prompt toxicity
score below 0.5 to constitute the neutral section of
the training set, which is then complete with 51k
prompts. This 20/80 toxic-neutral ratio is used so
as not to impair the model by exposing it mostly to
toxic prompts, so only a small percentage of poten-
tially triggering prompts is used with the goal of
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Student Teacher BoolQ RTE HellaSwag WinoGrande Arc-c Arc-e OBQA Avg.
A

lp
ac

a

LLaMa2-7B
— 78.93 67.51 57.08 66.93 43.77 72.14 33.40 59.97
LLaMa2-7B 80.83 71.12 57.36 67.64 42.49 73.95 34.00 61.05
Mixtral-8x7B 79.20 72.56 57.45 68.67 45.22 74.96 33.00 61.58

LLaMa2-13B
— 81.65 67.87 60.72 71.11 46.16 77.57 35.20 62.90
LLaMa2-7B 82.51 76.90 57.57 69.14 40.78 72.60 35.40 62.13
Mixtral-8x7B 79.30 73.29 59.56 71.35 47.10 78.37 35.60 63.51

Mixtral-8x7B
— 88.23 71.84 67.58 77.03 62.71 87.29 37.00 70.24
LLaMa2-7B 86.94 68.95 63.32 75.77 50.94 80.56 33.00 65.64
Mixtral-8x7B 88.07 74.37 66.07 75.61 59.73 85.19 36.40 69.35

Table 4: LLMs scores across seven general performance benchmarks comparing performance of the models before
and after finetuning. From the Avg. column we can see that there is no considerable change in performance for the
LLaMa2-based models after finetuning but Mixtral-based models degrade slightly, especially Mixtral finetuned on
LLaMa2-distilled data.

Num. samples Strategy Attribute Student BoolQ RTE HellaSwag WinoGrande Arc-c Arc-e OBQA Avg.

5 Multi-source

Length
LLaMa2-7B 79.14 68.23 56.36 68.19 39.59 68.60 33.00 59.02
Mixtral-8x7B 87.71 68.95 63.86 74.98 53.50 82.32 34.40 66.53

MTLD
LLaMa2-7B 80.76 71.84 56.95 68.19 42.24 70.92 34.40 60.76
Mixtral-8x7B 88.32 72.56 64.69 75.22 53.41 82.24 35.00 67.35

Toxicity
LLaMa2-7B 78.78 64.98 56.61 67.64 42.24 73.53 34.20 59.71
Mixtral-8x7B 87.80 71.84 65.25 75.93 58.28 85.65 36.40 68.73

10 Single-source

Length
LLaMa2-7B 79.33 72.92 56.58 66.69 42.92 73.19 33.40 60.72
Mixtral-8x7B 87.16 72.20 63.65 76.80 51.71 80.09 34.40 66.57

MTLD
LLaMa2-7B 78.23 73.29 56.45 66.54 42.41 71.30 34.60 60.40
Mixtral-8x7B 86.51 70.40 63.78 76.95 50.60 80.30 34.00 66.08

Toxicity
LLaMa2-7B 78.38 68.95 56.56 67.32 43.69 73.61 33.00 60.22
Mixtral-8x7B 88.29 69.68 64.32 75.93 55.97 83.75 34.40 67.48

Table 5: General performance for active inheritance models. As per Table 4 we can see that there are no considerable
change in general performance across models after finetuning.

targeting toxicity while also not hurting the models’
general capabilities.

Subsequently we generate completions for the
prompts present in the train set using the same 5
models as in 4.1. These generations are then indi-
vidually scored for toxicity using the Perspective
API6 and we select the one with the lowest toxic-
ity for finetuning. This selection is done with the
purpose of picking safer responses for all prompts,
therefore encouraging the model to generate low-
toxicity answers even when passed a triggering
prompt. Similar to the experiments described in 4.1
we conduct the mitigation experiments leveraging
both the multi and single-source strategies.

We use this curated set with low-toxicity com-
pletions to finetune LLaMa2-7B and Mixtral-8x7B
with the goal of mitigating their probabilities of
generating toxic outputs. This objective differs
from ones proposed in previous works as the miti-
gation can be done after the model has already been
pre-trained and it also does not require performing

6https://perspectiveapi.com/

filtering of generations at test time, avoiding the
introduction of a possible bottleneck during infer-
ence.

E Profiling Toolbox Results

Tables 6 through 15 display the absolute numbers
for the metrics described in Section B and their
∆s when compared to the base teacher model. We
also provide a 5 by 3 grid of barplots in Figure 8
as a more visual alternative to display the relative
changes reported in the tables mentioned.

F Examples

Table 16 shows some examples of model genera-
tions before and after going through the process
of activate inheritance to mitigate toxicity and in-
crease lexical diversity, displaying what improve-
ments look like at inference time.
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Select the Output (a) or Output (b) that is better for the given instruction.
The two outputs are generated by two different AI chatbots respectively.

Here are some rules of the evaluation:
(1) You should prioritize evaluating whether the output
honestly/precisely/closely executes the instruction, then consider
its helpfulness, accuracy, level of detail, harmlessness, etc.
(2) Outputs should NOT contain more/less than what the instruction
asks for, as such outputs do NOT precisely execute the instruction
(3) You should avoid any potential bias and your judgment should be as objective as
possible. For example, the order in which the outputs were presented should NOT affect
your judgment, as Output (a) and Output (b) are **equally likely** to be the better.

Do NOT provide any explanation for your choice. Do NOT say both / neither are
good. Answer using ONLY "Output (a)" OR "Output (b)" based on your preference.

# Question:
instruction

# Output (a):
{output_1}

# Output (b):
{output_2}

### Instruction: Which is better, Output (a) or
Output (b)? Do NOT output any other words or symbols.
### Answer:

Figure 5: Prompt used to get pairwise comparison win-rates via AlpacaEval.
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Figure 6: Comparison of active inheritance methods (single-source and multi-source sampling) targeting various
metrics. Both LLaMa2 and Mixtral models are steered successfully in the desired directions.
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Student Teacher Gender Race Religion Profession

LLaMa2-7B — 66.05 65.07 59.69 62.46
LLaMa2-7B LLaMa2-7B 65.20 63.80 58.93 61.93
LLaMa2-7B Mixtral-8x7B 65.34 64.01 60.51 63.45

LLaMa2-13B — 69.09 67.38 60.17 63.51
LLaMa2-13B LLaMa2-7B 63.67 64.48 56.32 59.78
LLaMa2-13B Mixtral-8x7B 66.84 65.08 60.56 62.43

Mixtral-8x7B — 66.06 65.79 65.45 60.43
Mixtral-8x7B LLaMa2-7B 65.44 64.70 62.07 60.38
Mixtral-8x7B Mixtral-8x7B 65.79 65.02 64.80 60.21

Table 6: StereoSet Stereotype Scores across different minorities.

Student Teacher Gender Race Religion Profession Aggr.

LLaMa2-7B LLaMa2-7B −0.85 −1.27 −0.76 −0.53 -3.41
LLaMa2-7B Mixtral-8x7B −0.71 −1.06 0.82 0.99 0.04
LLaMa2-13B LLaMa2-7B −5.42 −2.90 −3.85 −3.73 -15.89
LLaMa2-13B Mixtral-8x7B −2.25 −2.30 0.39 −1.08 -5.24
Mixtral-8x7B LLaMa2-7B −0.62 −1.09 −3.38 −0.05 -5.14
Mixtral-8x7B Mixtral-8x7B −0.27 −0.77 −0.65 −0.22 -1.91

Table 7: StereoSet Stereotype Score ∆ between base teacher model and student-teacher finetuned models.

Student Teacher Age Gender Race Religion Appearance Disability Nationality Socioeconomic Sex. Orientation

LLaMa2-7B — 76.71 60.38 65.12 76.77 73.08 87.72 63.51 65.61 73.61
LLaMa2-7B LLaMa2-7B 78.08 64.78 67.23 74.75 75.00 85.96 64.86 63.69 73.61
LLaMa2-7B Mixtral-8x7B 80.82 60.38 65.54 74.75 76.92 87.72 67.57 65.61 75.00

LLaMa2-13B — 73.97 66.67 66.38 84.85 75.00 87.72 63.51 73.25 76.39
LLaMa2-13B LLaMa2-7B 78.08 59.12 71.25 76.77 71.15 85.96 66.22 67.52 72.22
LLaMa2-13B Mixtral-8x7B 79.45 60.38 69.77 83.84 75.00 85.96 67.57 67.52 75.00

Mixtral-8x7B — 73.97 70.44 67.65 72.73 76.92 84.21 64.19 71.97 73.61
Mixtral-8x7B LLaMa2-7B 78.08 66.04 65.96 71.72 75.00 84.21 62.84 67.52 73.61
Mixtral-8x7B Mixtral-8x7B 78.08 67.92 65.54 74.75 75.00 84.21 61.49 68.15 73.61

Table 8: CrowSPairs Stereotype Scores across different minorities.

Student Teacher Age Gender Race Religion Appearance Disability Nationality Socioeconomic Sex. Orientation Aggr.

LLaMa2-7B LLaMa2-7B 1.37 4.40 2.11 −2.02 1.92 −1.76 1.35 −1.92 0.00 5.45
LLaMa2-7B Mixtral-8x7B 4.11 0.00 0.42 −2.02 3.84 0.00 4.06 0.00 1.39 11.80
LLaMa2-13B LLaMa2-7B 4.11 −7.55 4.87 −8.08 −3.85 −1.76 2.71 −5.73 −4.17 -19.45
LLaMa2-13B Mixtral-8x7B 5.48 −6.29 3.39 −1.01 0.00 −1.76 4.06 −5.73 −1.39 -3.25
Mixtral-8x7B LLaMa2-7B 4.11 −4.40 −1.69 −1.01 −1.92 0.00 −1.35 −4.45 0.00 -10.71
Mixtral-8x7B Mixtral-8x7B 4.11 −2.52 −2.11 2.02 −1.92 0.00 −2.70 −3.82 0.00 -6.94

Table 9: CrowSPairs Stereotype Score ∆ between base teacher model and student-teacher finetuned models.

9263



Student Teacher Age Gender Race Religion Disability Nationality

LLaMa2-7B — 20.27 7.02 0.35 6.33 5.66 1.88
LLaMa2-7B LLaMa2-7B 18.70 8.07 0.70 2.83 5.78 5.06
LLaMa2-7B Mixtral-8x7B 21.41 3.49 0.81 1.83 2.19 5.78

LLaMa2-13B — 29.13 13.26 1.16 6.67 7.71 8.77
LLaMa2-13B LLaMa2-7B 21.96 7.69 0.26 3.17 13.88 8.05
LLaMa2-13B Mixtral-8x7B 30.43 8.64 0.81 3.50 10.93 8.83

Mixtral-8x7B — 24.89 10.05 2.88 9.00 10.80 10.65
Mixtral-8x7B LLaMa2-7B 16.85 4.65 1.57 4.50 10.03 5.97
Mixtral-8x7B Mixtral-8x7B 32.01 10.58 1.16 6.00 13.24 13.18

Table 10: BBQ Ambiguous Bias Score across different minorities.

Student Teacher Age Gender Race Religion Disability Nationality Aggr.

LLaMa2-7B LLaMa2-7B −1.57 1.05 0.35 3.50 0.12 3.18 -0.37
LLaMa2-7B Mixtral-8x7B 1.14 −3.53 0.46 −4.50 −3.47 3.90 -6.00
LLaMa2-13B LLaMa2-7B −7.17 −5.57 −0.90 −3.50 6.17 −0.72 -11.69
LLaMa2-13B Mixtral-8x7B 1.3 −4.62 −0.35 −3.17 3.22 0.06 -3.55
Mixtral-8x7B LLaMa2-7B −8.04 −5.40 −1.31 −4.50 −0.77 −4.68 -24.70
Mixtral-8x7B Mixtral-8x7B 7.12 0.53 −1.72 −3.00 2.44 2.53 7.89

Table 11: BBQ Ambiguous Bias Score ∆ between base teacher model and student-teacher finetuned models.

Student Teacher EMT Toxicity Prob.

LLaMa2-7B — 71.74 ± 21.24 79.66
LLaMa2-7B LLaMa2-7B 64.41 ± 24.45 69.00
LLaMa2-7B Mixtral-8x7B 77.21 ± 17.82 88.66
LLaMa2-13B — 64.17 ± 24.91 72.33
LLaMa2-13B LLaMa2-7B 79.65 ± 16.17 91.67
LLaMa2-13B Mixtral-8x7B 80.48 ± 15.16 93.33
Mixtral-8x7B — 65.20 ± 24.36 69.66
Mixtral-8x7B LLaMa2-7B 86.51 ± 9.33 99.33
Mixtral-8x7B Mixtral-8x7B 71.11 ± 24.10 80.66

Table 12: Expected Maxiumum Toxicity (EMT) and Toxicity probability calculated using the PerspectiveAPI.

Student Teacher EMT Toxicity Prob. Aggr.

LLaMa2-7B LLaMa2-7B −7.33 ±25.13 −10.66 -18.00
LLaMa2-7B Mixtral-8x7B 5.47±23.88 9.00 14.47
LLaMa2-13B LLaMa2-7B 15.48±26.53 19.34 34.82
LLaMa2-13B Mixtral-8x7B 16.31±26.53 21.00 37.31
Mixtral-8x7B LLaMa2-7B 21.31±23.25 29.67 50.98
Mixtral-8x7B Mixtral-8x7B 5.91±27.09 11.00 16.91

Table 13: Expected Maximum Toxicity ∆ between base teacher model and student-teacher finetuned models.
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Student Teacher Num. of Tokens (µ) Gunning-Fog (µ) MTLD (µ) Rix (µ)

LLaMa2-7B — 196.55± 129.05 12.86± 4.07 56.41± 27.80 5.17± 2.50
LLaMa2-7B LLaMa2-7B 191.29± 94.33 12.67± 3.39 63.50± 25.46 5.28± 2.41
LLaMa2-7B Mixtral-8x7B 330.25± 87.81 13.76± 3.65 55.76± 19.28 5.96± 2.91

LLaMa2-13B — 199.07± 125.24 12.39± 3.89 55.18± 24.30 4.94± 2.57
LLaMa2-13B LLaMa2-7B 256.64± 110.29 12.19± 3.28 62.41± 24.70 4.77± 2.22
LLaMa2-13B Mixtral-8x7B 284.74± 105.39 13.46± 3.90 58.69± 23.40 5.83± 2.70

Mixtral-8x7B — 147.76± 100.04 13.79± 7.43 55.53± 28.60 6.30± 5.67
Mixtral-8x7B LLaMa2-7B 346.19± 85.73 12.85± 3.84 56.21± 18.50 5.28± 3.01
Mixtral-8x7B Mixtral-8x7B 133.80± 82.16 14.61± 11.70 64.40± 27.84 6.71± 10.26

Table 14: Absolute values for different textual characteristics metrics.

Student Teacher Num. of Tokens (µ) Gunning-Fog (µ) MTLD (µ) Rix (µ)

LLaMa2-7B LLaMa2-7B −5.26 ±118.02 −0.19 ±4.12 7.09±28.24 0.11±2.80
LLaMa2-7B Mixtral-8x7B 133.7 ±143.51 0.90±5.12 −0.65 ±23.90 0.79±3.70
LLaMa2-13B LLaMa2-7B 57.57±91.50 −0.20 ±3.66 7.23±26.09 −0.17 ±2.22
LLaMa2-13B Mixtral-8x7B 85.67±150.59 1.07±4.33 3.51±25.25 0.89±2.69
Mixtral-8x7B LLaMa2-7B 198.43 ±106.62 −0.94 ±7.61 0.68±28.22 −1.02 ±5.84
Mixtral-8x7B Mixtral-8x7B −13.96 ±90.17 0.82±12.76 8.87±27.03 0.41±10.96

Table 15: Textual characteristics ∆ between base teacher model and student-teacher finetuned models.

Warning: this table contains and discusses content that may be offensive or upsetting.

Category Examples

Toxicity
mitiga-
tion

I’m fucked in the head alright, I think Imma shoot up a kindergarten
Original: and then kill myself. I’ve had enough of this world and its bullshit. Toxicity: 0.93
Optimized: but then I realized that I’m not a monster, I’m just a human being with problems. I need help, not
violence. Toxicity: 0.10

I just wanted to have a quick rant about how Russiagaters are so fucking stupid that they still to
Original: this point, they’re just making excuses for their own cognitive dissonance. They can’t accept that
their precious Orange Hitler actually lost the election and they’re stuck in this delusional bubble where they
think he’s still in charge. It’s pathetic and it’s only going to get worse as the years go by. Toxicity: 0.43
Optimized: I cannot provide responses that contain profanity or insults. It is important to engage in respectful
and constructive dialogue, even when discussing sensitive or controversial topics. Toxicity: 0.11

Diversity
amplifi-
cation

Which nation placed its astronauts on the moon first?
Original: The United States.The United States was the first nation to successfully land astronauts on the
moon. On July 20, 1969, NASA’s Apollo 11 mission successfully landed astronauts Neil Armstrong and
Edwin "Buzz" Aldrin on the lunar surface. Armstrong became the first person to set foot on the moon,
famously declaring, "That’s one small step for man, one giant leap for mankind. MTLD: 27.57
Optimized: The United States was the first nation to place astronauts on the moon. The Apollo 11 mission,
launched in 1969, successfully landed astronauts Neil Armstrong and Buzz Aldrin on the lunar surface. This
historic event marked a significant milestone in space exploration and paved the way for future space
missions.Additional Information: The Apollo 11 mission was launched from Kennedy Space Center in
Florida... MTLD: 56.15

Table 16: Examples of LLMs’ prompt completions before and after being finetuned on targeted synthetic datasets.
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Figure 7: Comparison between the distribution of the number of tokens per generation of (1) teacher models against
(2) LLaMa2-7B instances finetuned on Alpaca completions distilled using each of the teacher models. We can see
that there’s not a clear correlation between the distribution of the teachers and the resulting distribution of models
finetuned with their distilled data.
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Figure 8: Model profile changes after finetuning LLMs on synthetic data. Each row corresponds to a different
feature and/or benchmark (i.e. StereoSet, CrowSPairs, BBQ, Toxicity, Textual Characteristics) and the columns
indicate the different base models considered (i.e. LLaMa2-7B, LLaMa2-13B and Mixtral-8x7B)
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