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Abstract Puv(- |G @ @) 0 )
We introduce iterative retrieval, a novel frame- \ I
work that empowers retrievers to make iterative D— R

decisions through policy optimization. Find-
ing an optimal portfolio of retrieved items is
a combinatorial optimization problem, gener-
ally considered NP-hard. This approach pro-
vides a learned approximation to such a solu-
tion, meeting specific task requirements under a
given family of large language models (LLMs).
‘We propose a training procedure based on re-
inforcement learning, incorporating feedback
from LLMs. We instantiate an iterative re-
triever for composing in-context learning (ICL)
exemplars and apply it to various semantic pars-
ing tasks that demand synthesized programs
as outputs. By adding only 4M additional pa-
rameters for state encoding, we convert an off-
the-shelf dense retriever into a stateful iterative
retriever, outperforming previous methods in
selecting ICL exemplars on semantic parsing
datasets such as SMCALFLoOw, TREEDST,
and MTOP. Additionally, the trained iterative
retriever generalizes across different inference
LLMs beyond the one used during training.

1 Introduction

A significant emergent capability of large language
models (LLMs) is in-context learning (ICL; Brown
et al., 2020), which facilitates few-shot learning. In
ICL, a set of exemplars' is usually provided to build
the mapping relationship between inputs and out-
puts. These exemplars can either be hand-crafted
and fixed or retrieved from a training set. However,
if retrieving from the dataset, the retrievers used in
such applications are typically off-the-shelf models
(e.g., Contriever (Izacard et al., 2022)) that do not
consider interactions among retrieved items when
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' An exemplar is a tuple of input and output, demonstrating
the mapping relationship between the two.
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Figure 1: Above: ICL under a single retriever call. Be-
low: ICL under our proposed iterative retriever.

multiple targets are required, nor the specific char-
acteristics of the inference LLMs and downstream
task requirements. Research (Gao et al., 2021; Liu
et al., 2022; Lu et al., 2022, i.a.) has shown that
ICL is sensitive to both the exemplars provided
and their order within prompts. Off-the-shelf re-
trievers, which generally rank items based solely
on semantic similarity (Lee et al., 2019; Reimers
and Gurevych, 2019a, i.a.), do not ensure optimal
conditions for either criterion, leading to subopti-
mal performance in downstream LLM generation.
Hence, there is a need for a retriever capable of
constructing a portfolio of items tailored to achieve
optimal generation with LLM:s.

We propose iterative retrieval to address this
problem. Unlike traditional retrievers that perform
a single call to obtain a list of similar items ordered
by their similarities, iterative retrieval involves a se-
quence of retrieval calls, each using different query
vectors. This makes the retriever stateful, maintain-
ing an internal state. The process can be likened to
navigating the encoding space of exemplars, with
each step adjusting direction based on previously
selected exemplars, thus building a trajectory of
exemplar selections.

This approach can be formulated as Markov de-
cision processes (MDPs). At each step, the action
taken by the retriever is a retrieval call that fetches
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(potentially multiple) documents from the dataset
D.% The policy is trained to optimally select ex-
emplars at each step so that the overall trajectory
maximizes the reward, leading to better ICL perfor-
mance. By leveraging the LL.Ms as environments,
we create simulators that allow a policy to roll out
in the environment and receive feedback on the
effectiveness of the composed prompts, measured
by a reward (metric). Thus, exemplar selection and
prompt composition can be framed as policy opti-
mization aimed at maximizing rewards, which can
be addressed through reinforcement learning.

We situate our study in in-context semantic pars-
ing due to its difficulty, popularity, and practical
value.> We instantiate an iterative retriever and in-
vestigate the performance of policy learning under
this setup. Our contributions include:

* We propose a novel iterative retrieval framework
that builds a portfolio of exemplars for ICL, con-
sidering both interactions among retrieved exem-
plars and their relationship with LLMs;

* We instantiate this iterative retriever for the in-
context semantic parsing task and train its policy
via reinforcement learning, demonstrating supe-
rior performance over strong baselines from prior
work, thereby proving its effectiveness;

» Through a series of analyses, we provide insights
into the behaviors of an iterative retriever initial-
ized with an off-the-shelf retriever.

2 Overview of an Iterative Retriever

We consider the problem of in-context learning
(ICL): given a dataset D = {(x;,y;)}; of exem-
plars, a retriever R retrieves a sequence of exem-
plars R(x) based on input query x and generate the
answer y based on the distribution Py (-|x; R(x)).

This retriever R : X — DX retrieves an ordered
list (of length K) of exemplars for the LM. The
goal of the retriever R is to select a sequence of
exemplars ((x;, yi))1<i<k such that the probability
of the expected output y is maximized:

argmax Pom(yle; (Co, yi)h<i<k). (1)
(xi,yi)€D

However, this is a combinatorial optimization
problem that is computationally infeasible to solve

2 The action space is at least as large as D.

3 Code generation is considered one of the most useful but
challenging techniques in the era of LLMs. Some semantic
parsing tasks share structural similarity with code generation
and program synthesis.

exactly. Much of prior work resort to selecting
top-k exemplars based on a scoring function S:

R(x) = argtop, S(x, (x",y")) 2
(x',y")eD

Prior work has differed on the choice of the scor-
ing function S: BM25 (Roy et al., 2023), coverage
(Gupta et al., 2022), etc. However, such method
did not model the interaction between the retrieved
exemplars and the language model. We propose an
iterative version, where we create a retrieval state
s, and for each step i one exemplar (x,y) € D is
retrieved. This is an approximation to the optimiza-
tion problem in Equation 1.

(xi, yi) < Rstep(si) 3)
sivl < T(s7, (X3, ¥1)) 4

After K steps, the retrieved sequence would be
Riter(x) = ((x4, yi))1<i<k - This formulation of an
iterative retriever naturally fits in the definition
of a Markov decision process (MDP). Here, our
decision process comprises of (D*, D, t,r), where

» The state set D* contains exemplar sequences
whose elements are in D;

* The action set is just D: each action selects one
exemplar from D. In theory, more than 1 exem-
plar can be selected at each step, but we proceed
with just 1 exemplar for simplicity;

¢ The transition function 7 : D*XD — D™ appends
an exemplar to the existing sequence;

* The reward function » : D* X D — R funnels
signal from the LLM back to the retriever. It will
be discussed in §4.

By situating our proposed iterative retriever un-
der this RL scenario, we can utilize all sorts of RL
techniques to train this retriever from the environ-
ment, which is the LLM itself. In the next section,
we instantiate a neural iterative retriever and situate
it under a common task, namely semantic parsing,
under this ICL framework.

3 Instantiating an Iterative Retriever

We consider an instance of in-context learning,
namely few-shot semantic parsing. Given a natural
language query x, a model is expected to output a
semantic representation y of x given a sequence of
exemplars (see Figure 3).

We instantiate a neural iterative retriever based
on the formulation we proposed above:
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Figure 2: ICL prompt construction for an example in SMCALFLOW. Above: ICL with BM25 as the retriever. Below:
An instance of our iterative retriever. BM25 retrieves examples that overlaps lexically with the query, whereas the
trained iterative retriever is better at retrieving structurally similar exemplars since it is trained to maximize the

probability of the LM generating the reference parse.

CalFlow
(Vield

:output (Event.start
:0bj (FindNumNextEvent
:constraint (Event.subject_?
:obj (7~= “staff meeting”))
snumber 1L)))

When is my next staff
meeting scheduled for?

TreeDST
(plan
Hey assistant, what is (Find
the price range of :focus (Restaurant.priceRange_?
I3 8 always)

Stazione restaurant? :object (Restaurant.restaurantName_?

(?= “Stazione restaurant”))))

MTOP
[IN:CREATE_REMINDER

[SL:ToDO
[IN:SEND_MESSAGE
[SL:METHOD_MESSAGE message]
[SL:RECIPIENT Mike]]]
[SL:DATE_TIME at 7pm tonight]]

Set up a reminder to
message Mike at 7pm
tonight.

Figure 3: Samples of (x, y) pairs for semantic parsing
under different datasets used in this paper.

* The state of the MDP, i.e. the sequence of exem-
plars, is modeled by a fixed-length vector s € R¥.
The initial state sq is a parameter.

* Ateach step 1 exemplar is retrieved. We define a
policy distribution that picks one exemplar from
the training set D, similar to Lu et al. (2023):

m((xi, yi)lsi) o< exp(Q(s;) - Fenc(xi)/B) ()

where Q : R4 — R4 maps a state vector s; to
a query vector q;, Fepe @ V¥ — R4 is a text
embedder that maps a text sequence into a vector,
and g is a temperature hyperparameter. In our
experiments, Fep is initialized with the weights
of Contriever (Izacard et al., 2022), a general-
purpose text embedder trained for retrieval.

Under this policy, if we take greedy decoding,
the retrieval step would just be

(i, Yi) < Ryep(si) = argmax m((x;, yi)|si)
(x',y’")eD

= argmax Q(s;) - Fenc(x;).
(x',y’)ED

(6)

This is a maximum inner product search (MIPS)
problem, and thus can be solved with a vector
index such as FAISS (Douze et al., 2024).

State transition is modeled by a gated recurrent
unit (GRU; Chung et al., 2014) update:

Si+1 < GRU(Si, Fenc(xi)) @)

where the encoded vector of the retrieved exem-
plar x; is passed to the GRU to update the state.*

Note that the only additional parameters we in-
cluded in this neural iterative retriever is the state
transition model, where we instantiate as a GRU.

This is different from a regular retriever, where
a single retrieval call to the training set R(x) =
argmaxx,y)ep q * Fenc(x) is made. The iterative
retriever navigates the encoding space of exem-
plars, adjusting the query vector q’ at each step
based on previously selected exemplars s, thus
steering the search process to find new candidates.
Figure 2 demonstrates the process of such an it-
erative retriever. This stateful design allows for
optimized retrieval results through iterative inter-
actions, incorporating signals from both external

4 Using a Transformer decoder here results in more unsta-
ble training as we discovered in our experiments. See §6.1.
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sources (LL.Ms) and internal states (previously re-
trieved items tracked via state transitions).

4 Training

Environment Simulator To construct feedback
(or reward) from the underlying LLMs, we treat
LLMs as environments where actions are per-
formed and evaluated. We design an iterative
prompting schedule within this LLM environment
to simulate the process of iterative retrieval and
corresponding ICL prompt execution. At each step
i, the current sequence of chosen exemplars, s;, is
turned into an LLM prompt using a predefined tem-
plate,’ then used for LLM generation. This sched-
ule effectively simulates the real-world scenario of
prompting LLMs, allowing us to observe various
execution dynamics, such as generated hypotheses
and their probabilities.

Reward Design Technically, if the final task met-
ric were available, it can be used directly as the
reward to optimize for. However, such a reward is
often too coarse to reflect differences in partially
correct results. For example, if the metric is exact
match, which is common in semantic parsing tasks,
the reward would simply be the Kronecker delta
o(y*,y), yielding 1 only if the prediction y exactly
matches the reference y*, and O otherwise.

Given that the LLM simulator provides access to
the probabilities of generated sequences,® we em-
ploy a more general reward design that is not task-
specific. Our reward leverages the LM completion
probability of the reference sequence Ppy(y*|x)
(Shin et al., 2021; Shi et al., 2023), which captures
subtle changes in the likelihood of the LM generat-
ing the target sequence with respect to changes in
the input x. In ICL, more exemplars typically result
in better performance before reaching saturation.
Inspired by Zhang et al. (2022), We further refine
the reward to reflect the increase in the likelihood
of the reference y* given the prompt. This is a
proxy value that measure how much this exemplar
contribute to generating the reference parse. This
design encourages the model to select exemplars
that most significantly contribute to the final result

5 Refer to Appendix A.3 for the template used in this work.

6 This is generally accessible in many LLM inference
implementations such as VLLM (Kwon et al., 2023). For
OpenAl-style APIs, this can be accessed using the “echo”
parameter.

given the existing exemplar sequence s;:

r(si,xi) = Pem(y™ | x3 i, (X0, 51))
- Prm(y™ | x;580). (8)

Policy Optimization We employ proximal pol-
icy optimization (PPO; Schulman et al., 2017) to
train an iterative retriever for its stability and ef-
ficiency.” One core idea of PPO is to define a
clipping term that controls the policy optimization
process, so that variance is reduced. Given a trajec-
tory (xy,- - ,xr), we have

£ () = B [ min(ps, clip, (0)) - A0, (9)

7o (xilsi)
Moo (Xilsi)

tween action x;® performed against the current pol-
icy mg and old policy mg,, at state s;, clip. (p) clips
p to be within (1 —¢, 1 +&) and A is the advantage.
Advantage A; at step i describes how much bet-
ter it is to take a specific action x; at state s;, over
randomly selecting an action according to 7 (x;|s;).
To compute it, besides the neural model defined in
§3, we follow common practice in reinforcement
from human feedback (RLHF; Huang et al., 2024)
to add a single linear layer to serve as a state-value
function V(s) = v-s that maps states to values. Gen-
eralized advantage estimate (GAE; Schulman et al.,
2016) is then used for variance-reduced advantage
estimation atop the learned state-value function:

where p; = is a probability ratio be-

Ai =6+ (YOSt + -+ (YT s (10)
0; =ri +yV(sis1) = V(si) (11)

where r; is the reward obtained at step i, y is the
discount factor, A downweighs rewards correspond-
ing to delayed effects. Following Schulman et al.
(2017) on PPO in Actor-Critic style, we minimize
the value function error term by a squared-error
loss, with an additional entropy bonus term —H:

LPPO = B, [ L (6) +¢1A2(8) — c2H ry (51)] (12)
where c1, ¢, are coefficients.

State Transition Initialization We found that
initializing the state transition function as an iden-
tity function (i.e., states do not change at all:

7 We experimented with various other RL algorithms (in-
cluding policy gradient (Sutton et al., 1999) and advantage
actor critic (A2C; Mnih et al., 2016)) and found that PPO is
the most stable one for our scenario.

8 x; describes that the action of an iterative retriever is to
retrieve an exemplar from a candidate set, hence x; € D.
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Figure 4: Stratified sampling employed in our approach.
Our sampling method retains the top k /N, samples and
split the rest into (Ng — 1) strata to perform stratified
sampling. The resulting k samples are renormalized to
construct action distribution.

70(s,x) = s) helps stabilizing training. This can
be achieved in GRU by initializing the bias of the
update gate to b, = —co: this renders the GRU not
forgetting and not updating.

Sampling & Collecting Experience In a single
retrieval step, the retriever selects an exemplar from
a candidate set, with the policy m¢(x;|s;) defining a
probability distribution over candidates x; € D. In
this RL simulation, it is crucial to sample different
actions at each step to enable the model to explore
various trajectories and benefit from those that yield
higher rewards. However, constructing the entire
distribution and sampling from it at each step is
computationally infeasible, especially when the
number of candidates exceeds 100K. Furthermore,
these distributions often exhibit a long-tailed nature,
where many candidates have low scores, suggesting
that a significant portion of candidates may be less
similar and potentially less useful for ICL.

To address these challenges and reduce the com-
putational cost of sampling trajectories while man-
aging the trade-offs between exploration and ex-
ploitation, we propose a stratified sampling (N,
strata) method to construct a modified policy 7 that
contains k candidates.

To start, we construct a buffer with top-B exem-
plars retrieved with Equation 5. Retain the top
k /Ny samples in the policy. Split the rest into
(Ng — 1) strata, and sample k /Ny from each. Com-
bine all these selected exemplars and renormal-
ize these scores with softmax (with temperature
Brenorm)- This method enables the model to focus
on more promising candidates while still allowing
for exploration (see Figure 4 for an illustration).

During training, experience replay (Lin, 1992)
is employed to improve training efficiency. To col-
lect experience, we run inference with the current
policy fixed on several training examples to gen-
erate trajectories. At each step, information such

as policy, reward, and value is recorded. These tra-
jectories are stored in a replay buffer, then shuffled
and split into mini-batches for policy optimization.
This approach allows the same experiences to be
replayed multiple times, reducing the number of
required simulation runs.

5 Experimental Setup

Datasets We validate our pilot iterative retriever
for ICL on a set of semantic parsing datasets,
namely SMCALFLOW (Andreas et al., 2020),
TREEDST (Cheng et al., 2020), and MTOP (En-
glish portion only; Li et al., 2021), following the
BenchClamp benchmark (Roy et al., 2023). Sam-
ples of representations are shown in Figure 3. For
statistics, see Appendix A.1.

Baselines We compare our iterative retriever
(henceforth denoted as ITERR) with a range of off-
the-shelf retrievers, including BM25 (Robertson
and Zaragoza, 2009) and a dense encoder, Con-
triever (Izacard et al., 2022). Additionally, we
benchmark against two strong baselines from prior
work on improving exemplar selection:

* EPR (Rubin et al., 2022) is an efficient exemplar
retrieval method for in-context learning (ICL)
that leverages a scoring LM to label positive
and negative training examples, then using this
dataset for a contrastively learned dense retriever.

» CEIL (Ye et al., 2023) uses determinantal point
processes (DPPs) to model the interaction be-
tween the given input and in-context exemplars.

For the EPR baseline, we replace the base dense
retrieval encoder with Contriever instead of S-
BERT (Reimers and Gurevych, 2019b) for fair
comparison. Following Ye et al. (2023), we use the
trained EPR model as initialization for CEIL. Simi-
larly, the same EPR checkpoint is used to initialize
the text encoder in ITERR. Note that in ITERR, we
freeze the weights of the EPR encoder and only
train the GRU-based state transition function, pol-
icy network, and value network, resulting in 4M
more parameters compared to the original Con-
triever (110M — 114M).

For retrievers without iterative capabilities, we
take only the top-k retrieved items and keeping
their original ranks. For EPR, CEIL, and ITERR,
we selected the best performing model checkpoints
on the validation set. All generation is run with 10
exemplars; i.e. k = 10.
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Generation with LLMs The inference LLM
is essential for executing input prompts to gen-
erate responses. In our experiments, we use
Llama-2-7b (Touvron et al., 2023) to build the
environment simulator and train the policy using
its signals. With the learned policy, we investi-
gate both intra-family and inter-family generaliza-
tion by replacing the inference LLMs. For models
within the same Llama-2 family, we explore vari-
ous model sizes and finetuned versions, including
CodelLlama-70b-Instruct (Roziere et al., 2023),
a model further fine-tuned for code generation. For
inter-family experiments, we choose Mistral-7b
(Jiang et al., 2023). For decoding configurations,
we consistently use beam search with beam size 3
and sampling temperature 0.5.

Hyperparameters Please refer to Appendix A.2.

Evaluation Metrics We follow prior work in
evaluating semantic parsing (Roy et al., 2023),
where exact match at k (EM@k) is used. Exact
match results for top-k decoded hypotheses reflects
beam search decoding used in LLMs, where multi-
ple parsing results are generated simultaneously.
However, EM is a stringent metric, penalizing
even minor mismatches. For instance, a parse with
a substructure reordered differently (a && b) from
the reference (b && a) is still correct but would
score zero under EM. This is problematic in se-
mantic parsing, where target parses are composi-
tional, making it important to assess the correct-
ness of substructures. Since SMCALFLOW and
TREEDST involve deeply nested structures, we
also adopt SMatch (Cai and Knight, 2013), follow-
ing Chen et al. (2023), to evaluate performance
on substructures. SMatch is designed to evaluate
AMRs (Langkilde and Knight, 1998). Generated
code can be transformed to AMRs by treating each
function’s return value as an entity and each argu-
ment to a function as a value, where the parameter
name is the relation. See Appendix B for details.

6 Results & Analyses

We evaluate the performance of different retrievers
by comparing their downstream ICL performance
on semantic parsing (Table 1). ITERR outperforms
all baselines across three datasets on all metrics.
The gain in EM is intuitive since it aligns with
the training objective, which involves the probabil-
ity of generating target parses. The improvement
in SMatch indicates that ITERR optimizes retrieval

Retriever | Exact Match SMatch

| @1 @2 @3 | P R F
SMCALFLOW
BM25 39.8 437 440 | 66.6 642 653
Contriever | 44.0 485 489 | 684 66.8 67.6
EPR 485 520 523 | 733 767 75.0
CEIL 51.1 542 558 | 749 752 75.1
ITERR 541 584 585 | 766 781 773
TREEDST
BM25 50.8 56.1 56.6 | 81.8 81.8 81.8
Contriever | 54.7 604 61.0 | 83.3 825 829
EPR 54.0 58.2 58.8 | 84.7 834 84.0
CEIL 56.2 583 61.6 | 81.3 844 849
ITERR 582 634 638 | 855 858 85.7
MTOP
BM25 574 632 639 - - -
Contriever | 59.3 642 64.7 - - -
EPR 62.3 68.8 69.2 - - -
CEIL 63.6 694 69.8 - - -
ITERR 639 709 71.0 - - -

Table 1: Comparison of our approach, ITERR against
baselines. “EM@k” denotes exact match at top-k; “P”,
“R” and “F” denote precision, recall, and F; score re-
spectively. Experiment results are run with 10 exem-
plars in the prompt, averaged over 3 inference runs, and
significance tests using paired 7-test confirm that the
improvements over Contriever, EPR, and CEIL are sta-
tistically significant (p < 0.05).

results to improve compositionality to some extent,
even with a simple objective.’

Generalization across Inference LLMs ITERR
benefits from interactive training with an underly-
ing LLM. While training incurs costs, these can be
minimized by training only once, ideally using a
smaller LM. Hence in this section we investigate
the generalization capabilities of ITERR trained
with a smaller LM A, but used for generation under
a larger LM B.

In the following experiments, ITERR is trained
with L1ama-2-7b as the environment, but used for
(a) intra-family LMs: variants within the L1ama-2
model family; and (b) inter-family LMs: Mistral
(Jiang et al., 2023) from a different model family.
We follow the setup described in §6, substituting
only the LLM. As shown in Figure 5, ITERR signif-
icantly outperforms (> 1% gain) baselines for 75%
of the settings and is comparable to a prior strong
baseline (within 1% in absolute performance) for
15% of settings, demonstrating its generalization

9 While a more dedicated reward design, such as incorpo-
rating various linearizations of target structures, might further
enhance ITERR’s performance. This work focuses on demon-
strating the framework’s effectiveness rather than dedicatedly
optimizing for a specific task design.
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Figure 5: Performance comparisons on using various LLMs for inference (top row: SMCALFLOW; mid: TREEDST;
bottom: MTOP). Our ITERR used in these experiments are trained with L1ama-2-7b but performs retrieval of ICL

exemplars used on other LLMs.

within and beyond its own model family.

In intra-family generalization, performance met-
rics improve with larger model sizes, and ITERR
consistently outperforms all baselines. This im-
provement is most evident with larger models such
as Llama-2-70b and CodelLlama-70b-Instruct.
For inter-family generalization, ITERR maintains
its advantage across datasets, though this is less
pronounced than within the same model family.
This is expected, as the signal from LLM simulator
is more representative for models sharing the same
pre-training procedure. Notably, with Mistral, Con-
triever performs worse than BM25 on MTOP, but
ITERR still shows improvement. This suggests that
ITERR, comprising a frozen EPR and additional
GRU layers, can learn task-specific abilities not
present in the vanilla EPR.

ICL & Number of Exemplars We investigated
how the performance of ITERR changes with the
number of exemplars ({1,---,10}) used for ICL
on the SMCALFLOW dataset (Figure 6). ITERR
consistently outperforms baseline models across
various metrics and numbers of exemplars, with
one exception for the EM @3 metric when using
6 exemplars. This aligns with our training objec-
tive, where actions that boost performance at each
step receive higher advantages. ITERR achieves

comparable performance with fewer exemplars.
CEIL shows a similar trend in EM, but its
SMatch performance lags significantly, indicating
poorer quality in near-miss predictions compared
to ITERR. Practically, this means our method al-
lows for a trade-off between performance and cost,
enabling effective ICL with fewer exemplars and
reducing the number of tokens processed by LLMs.

6.1 Ablation Study

Variant EM@1 SMatch-F
Contriever 44.0 67.6
ITERR 54.1 77.3

— EPR intialization 45.1 68.8

— GRU; + Transformer decoder 50.1 75.1

— Stratified sampling 52.3 75.7

Table 2: Results on ablation study. — EPR intialization
indicates the model is trained from Contriever instead
of a EPR finetuned checkpoint. + Transformer decoder
replaces GRU with a Transformer decoder. — Stratified
sampling replaces the stratified sampling described in
Figure 4 with sampling directly from the buffer.

We further conduct ablation study on compo-
nents of an iterative retriever, focusing on the
SMCALFLOW dataset and use L1ama-2-7b while
changing the configuration of the iterative retriever.
Results are reported in Table 2.
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Figure 6: Performance comparisons across the various numbers of exemplars used for ICL.

EPR Initialization Although we follow prior
work in using EPR as initialization for Fe,., our
iterative retriever is agnostic to the choice of base
encoders for similarity search. Even without EPR
initialization, our training procedure still improves
performance against Contriever (= 1% gain under
Contriever, but ~ 6% gain under EPR). We see
that ITERR benefits more when using EPR initial-
ization, significantly outperforming the baselines.
We hypothesize that this advantage stems from two
sources: (1) EPR is fine-tuned on the target dataset,
making it more domain-specific; (2) EPR restruc-
tures the action space, subsequently enhancing sam-
ple efficiency in RL training.

State Transition with Transformer Decoder In
§3, we parameterize the state transition function in
the iterative retriever with a GRU. To explore alter-
natives, we conducted an ablation experiment by re-
placing the GRU with a more powerful Transformer
decoder, configured with 3 layers, 1024 hidden
dimensions, with learnable positional encodings.
Despite the increased expressiveness of the Trans-
former decoder, we observed a performance drop.
During training, employing the warmup technique
(Xiong et al., 2020) led to a trivial solution where
the policy learned to predict a nearly fixed trajec-
tory across test examples. Disabling the warmup
stabilized the training but did not improve perfor-
mance. Developing a stabilized approach to train
the Transformer decoder as a state encoder is be-
yond the scope of this work, as our focus is on
demonstrating the overall framework of iterative
retrieval rather than optimizing a specific model for
the state transition function. Notably, even with the
less expressive GRU, our iterative retriever success-
fully learns a policy that retrieves a more optimized
sequence of ICL exemplars.

Effectiveness of Stratified Sampling To collect
diverse experience from policy rollouts, we intro-
duce a stratified sampling method (described in
§4) that balances the trade-off between exploration

and exploitation. We found that sampling from
the raw policy in Equation 5 results in a signifi-
cant performance drop. Additionally, qualitative
examination of several such distributions revealed
a preference for exploitation over exploration, as
similar items at the top of the retrieved list all had
higher probabilities.

7 Additional Related Work

LLMs as Environment in RL.  Lu et al. (2023)
used policy gradient to learn a dense retriever for
ICL exemplar retrieval, but the state does not con-
tain previously selected examples, and thus is not it-
erative and unable to model exemplar order. Zhang
et al. (2022) used Q-learning RL for ICL exemplar
reordering, with a similar reward design like ours.
However, the proposed method does not extend to
exemplar retrieval, since the policy space is too
large to be handled by Q-learning.

Few-shot Semantic Parsing Few-shot semantic
parsing using LLLMs has shown impressive capa-
bilities in understanding new examples with min-
imal training data (Shin et al., 2021; Shin and
Van Durme, 2022). However, these parsers often
struggle with generalization and fail to parse unob-
served local structures due to their limited access
to information encoded through exemplars (Bo-
gin et al., 2022). To this end, recent research has
explored various approaches to improving exem-
plar selection. EPR (Rubin et al., 2022) used a
proxy LM to score outputs from an unsupervised
retriever, enabling better training of a dense re-
triever. Oren et al. (2021), Gupta et al. (2022),
and Levy et al. (2023) emphasize learning to select
exemplars based on particular criteria, such as di-
versity measures and coverage of local structures,
to enhance compositional generalization. While
these approaches have shown performance im-
provements in semantic parsing tasks, these are
highly based on heuristics constructed from re-
searcher’s experience. Our approach could be seen
as an automated version (through RL) of seeking
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information useful for semantic parsing.

Multi-hop Question Answering There has been
related work in iterative retrieval in multi-hop QA.
Qi et al. (2019) iteratively generates text queries
based on paragraphs retrieved, thus can be consid-
ered as a discrete, non-neural version of our MDP.
Asai et al. (2020); Xiong et al. (2021) trained a
dense, neural iterative retriever with oracle paths as
direct supervision. Additionally, IRCoT (Trivedi
et al., 2023) utilizes an iterative retriever to per-
form chain-of-thought (CoT) in LLMs, in which
the agent is the LLM, thus not trained.

8 Conclusion

We proposed iterative retrievers that iteratively
builds a prompt to perform in-context learning.
Such retrievers are framed as Markov decision pro-
cesses and trained via policy optimization from
LLM feedback, where the policy directs which ex-
emplar to append to the existing exemplar sequence.
Experiments on semantic parsing demonstrated per-
formance gain of iterative retrievers over various
datasets and state-of-the-art baselines, showing that
they are able to construct prompts that improves in-
context learning and downstream LLM generation.

Limitations

In our instantiation of the iterative retriever, at each
step a single exemplar is retrieved. One could en-
vision multiple exemplars being retrieved at each
step, thus making the RL trajectory shorter. This
could make RL training easier and inference faster.

Our reward design depends on a particular lin-
earization of the target structure. A more structured
reward function may exhibit better training behav-
ior and lead to better performance.

The encoder for queries in the iterative retriever
is frozen in our current setup. A trainable query
encoder that receives feedback from LLMs may be
desired, but we left that for future work.

While we believe that semantic parsing / code
generation is one of the most useful but challenging
task for LLLMs, as such is a representative task for
ICL research, we have not tested the effectiveness
of iterative retrievers under other LLM tasks.
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A Experiment Details

A.1 Dataset Statistics

Dataset | Train Dev Test

SMCALFLow | 108,753 12,271 (500 used) 13,496
TREEDST 121,652 22,910 (500 used) 22,841
MTOP 15,667 2,235 (500 used) 4,386

Table 3: Dataset statistics.

A.2 Hyperparameters

Name Search Bounds

Encoder { GTR-T5, Contriever, SBert }
Learning rate {5x1075,1x107°,3x1075,5x 1075}
LR scheduler { reduce-on-plateau, cosine-annealing }

State transition

{ GRU, LSTM, Transformer Decoder}

Brenorm {0.5,1.0,5.0, 10.0}
cl {0.1,0.3,0.5,0.7}
c {0,0.005,0.01,0.05,0.1,0.15}
y 0.99

A 0.95

Action buffer size 768

PPO ratio cutoff 1.2

PPO batch size 128

Replay buffer size 2048

Avg. training time 24 hrs

GPU used 4 Nvidia V100 32 GB

# of parameters”

~114M (w/ 110M frozen)

Table 4: Hyperparameters and other reproducibility in-
formation for ITERR. Brenorm 1S the temperature used to
create a renormalized action distribution. ¢ and ¢, are
coefficients used in the PPO loss. y and A are discount
factors used in GAE.

A.3 Prompt Template

The prompt template used across all our experi-
ments is shown in Table 5.

Let’s translate what a human user says
into what a computer might say.

Human: x{
Computer: y;

Human: xp
Computer: yy

Human: x
Computer:

Table 5: Prompt template used in our experiments. This
template will be instantiated as prompts when filled with
retrieved exemplars R(x) = ((x1,¥1), -+, (XN, YN))
and the test example x.
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B SMatch Evaluation

For evaluation of semantic parse or code genera-
tion on partial results, we utilize SMatch (Cai and
Knight, 2013). Generated code can be transformed
to AMRs by treating each function’s return value
as an entity and each argument to a function as a
value, where the parameter name is the relation.
An example is given below.
Consider the following parse in SMCALFLOW,
expressed in Lisp:
(Yield
:output (Event.start
:obj (FindNumNextEvent
:constraint (Event.subject_?
:obj (?~= "staff_meeting”))
:number 1L)))
This will be transformed into the following
AMR:

staff meeting

Figure 7: Example AMR based on the previous parse.

This AMR can be easily converted to the follow-
ing triples.

instance($0, Yield)

output (%0, $1)

instance($1, Event.start)
obj($1, $2)

instance($2, FindNumNextEvent)
constraint($2, $3)
instance($3, Event.subject_?)
obj($3, $4)

instance($4, ?~=)

ARGO ($4, "staff_meeting")
number ($2, 1L)
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