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Abstract

Tokenization is a foundational step in natural
language processing (NLP) tasks, bridging raw
text and language models. Existing tokeniza-
tion approaches like Byte-Pair Encoding (BPE)
originate from the field of data compression,
and it has been suggested that the effectiveness
of BPE stems from its ability to condense text
into a relatively small number of tokens. We
test the hypothesis that fewer tokens lead to
better downstream performance by introducing
PathPiece, a new tokenizer that segments a doc-
ument’s text into the minimum number of to-
kens for a given vocabulary. Through extensive
experimentation we find this hypothesis not to
be the case, casting doubt on the understanding
of the reasons for effective tokenization. To ex-
amine which other factors play a role, we eval-
uate design decisions across all three phases
of tokenization: pre-tokenization, vocabulary
construction, and segmentation, offering new
insights into the design of effective tokenizers.
Specifically, we illustrate the importance of pre-
tokenization and the benefits of using BPE to
initialize vocabulary construction. We train
64 language models with varying tokenization,
ranging in size from 350M to 2.4B parameters,
all of which are made publicly available.

1 Introduction

Tokenization is an essential step in NLP that trans-
lates human-readable text into a sequence of dis-
tinct tokens that can be subsequently used by statis-
tical models (Grefenstette, 1999). Recently, a grow-
ing number of studies have researched the effects
of tokenization, both in an intrinsic manner and as
it affects downstream model performance (Singh
et al., 2019; Bostrom and Durrett, 2020; Hofmann
et al., 2021, 2022; Limisiewicz et al., 2023; Zouhar
et al., 2023b). To rigorously inspect the impact
of tokenization, we consider tokenization as three
distinct, sequential stages:

1. Pre-tokenization: an optional set of initial

rules that restricts or enforces the creation
of certain tokens (e.g., splitting a corpus on
whitespace, thus preventing any tokens from
containing whitespace).

2. Vocabulary Construction: the core algo-
rithm that, given a text corpus C and desired
vocabulary size m, constructs a vocabulary
of tokens tk ∈ V , such that |V| = m, while
adhering to the pre-tokenization rules.

3. Segmentation: given a vocabulary V and
a document d, segmentation determines
how to split d into a series of Kd tokens
t1, . . . , tk, . . . , tKd

, with all tk ∈ V , such that
the concatenation of the tokens strictly equals
d. Given a corpus of documents C, we will de-
fine the corpus token count (CTC) as the total
number of tokens used in each segmentation,
CTC(C) = ∑

d∈C Kd.

As an example, segmentation might decide
to split the text intractable into “int
ract able”, “in trac table”, “in
tractable”, or “int r act able”.

We will refer to this step as segmentation, al-
though in other works it is also called “infer-
ence” or even “tokenization”.

The widely used Byte-Pair Encoding (BPE) tok-
enizer (Sennrich et al., 2016) originated in the field
of data compression (Gage, 1994). Gallé (2019)
argues that it is effective because it compresses
text to a short sequence of tokens. Goldman et al.
(2024) varied the number of documents in the tok-
enizer training data for BPE, and found a correla-
tion between CTC and downstream performance.
To investigate the hypothesis that having fewer to-
kens necessarily leads to better downstream perfor-
mance, we design a novel tokenizer, PATHPIECE,
that, for a given document d and vocabulary V ,
finds a segmentation with the minimum possible
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Kd. The PATHPIECE vocabulary construction rou-
tine is a top-down procedure that heuristically min-
imizes CTC on a training corpus. PATHPIECE is
ideal for studying the effect of CTC on downstream
performance, as we can vary decisions at each tok-
enization stage.

We extend these experiments to the most com-
monly used tokenizers, focusing on how down-
stream task performance is impacted by the ma-
jor stages of tokenization and vocabulary sizes.
Toward this aim, we conducted experiments by
training 64 language models (LMs): 54 LMs with
350M parameters; 6 LMs with 1.3B parameters;
and 4 LMs with 2.4B parameters. We provide
open-source, public access to PATHPIECE1, and
our trained vocabularies and LMs2.

2 Preliminaries

Ali et al. (2024) and Goldman et al. (2024) ex-
amined the effect of tokenization on downstream
performance of LLM tasks, reaching opposite con-
clusions on the importance of CTC. Zouhar et al.
(2023a) also find that low token count alone does
not necessarily improve performance. Mielke et al.
(2021) give a survey of subword tokenization.

2.1 Pre-tokenization Methods
Pre-tokenization is a process of breaking text into
chunks, which are then tokenized independently. A
token is not allowed to cross these pre-tokenization
boundaries. BPE, WordPiece, and Unigram all re-
quire new chunks to begin whenever a space is
encountered. If a space appears in a chunk, it
must be the first character; hence, we will call
this “FirstSpace”. Thus “ New” is allowed but
“New York” is not. Gow-Smith et al. (2022) ex-
amine treating spaces as individual tokens, which
we will call “Space” pre-tokenization, while Jacobs
and Pinter (2022) suggest marking spaces at the
end of tokens, and Gow-Smith et al. (2024) pro-
pose dispensing them altogether in some settings.
Llama (Touvron et al., 2023) popularized the idea
of having each digit always be an individual token,
which we call “Digit” pre-tokenization.

2.2 Vocabulary Construction
We focus on byte-level, lossless subword tok-
enization. Subword tokenization algorithms split

1https://github.com/
kensho-technologies/pathpiece

2https://github.com/
kensho-technologies/timtc_vocabs_models

text into word and subword units based on their
frequency and co-occurrence patterns from their
“training” data, effectively capturing morphologi-
cal and semantic nuances in the tokenization pro-
cess (Mikolov et al., 2011).

We analyze BPE, WordPiece, and Unigram as
baseline subword tokenizers, using the implemen-
tations from HuggingFace3 with ByteLevel pre-
tokenization enabled. We additionally study SaGe,
a context-sensitive subword tokenizer, using ver-
sion 2.0.4

Byte-Pair Encoding Sennrich et al. (2016) in-
troduced Byte-Pair Encoding (BPE), a bottom-up
method where the vocabulary construction starts
with single bytes as tokens. It then merges the most
commonly occurring pair of adjacent tokens in a
training corpus into a single new token in the vocab-
ulary. This process repeats until the desired vocab-
ulary size is reached. Issues with BPE and analyses
of its properties are discussed in Bostrom and Dur-
rett (2020); Klein and Tsarfaty (2020); Gutierrez-
Vasques et al. (2021); Yehezkel and Pinter (2023);
Saleva and Lignos (2023); Liang et al. (2023); Lian
et al. (2024); Chizhov et al. (2024); Bauwens and
Delobelle (2024). Zouhar et al. (2023b) build an
“exact” algorithm which optimizes compression for
BPE-constructed vocabularies.

WordPiece WordPiece is similar to BPE, ex-
cept that it uses Pointwise Mutual Information
(PMI) (Bouma, 2009) as the criteria to identify
candidates to merge, rather than a count (Wu et al.,
2016; Schuster and Nakajima, 2012). PMI prior-
itizes merging pairs that occur together more fre-
quently than expected, relative to the individual
token frequencies.

Unigram Language Model Unigram works in
a top-down manner, starting from a large initial
vocabulary and progressively pruning groups of to-
kens that induce the minimum likelihood decrease
of the corpus (Kudo, 2018). This selects tokens to
maximize the likelihood of the corpus, according
to a simple unigram language model.

SaGe Yehezkel and Pinter (2023) proposed SaGe,
a subword tokenization algorithm incorporating
contextual information into an ablation loss via a
skipgram objective. SaGe also operates top-down,
pruning from an initial vocabulary to a desired size.

3https://github.com/huggingface/
tokenizers

4https://github.com/MeLeLBGU/SaGe
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2.3 Segmentation Methods
Given a tokenizer and a vocabulary of tokens, seg-
mentation converts text into a series of tokens. We
included all 256 single-byte tokens in the vocabu-
lary of all our experiments, ensuring any text can
be segmented without out-of-vocabulary issues.

Certain segmentation methods are tightly cou-
pled to the vocabulary construction step, such as
merge rules for BPE or the maximum likelihood ap-
proach for Unigram. Others, such as the WordPiece
approach of greedily taking the longest prefix token
in the vocabulary at each point, can be applied to
any vocabulary; indeed, there is no guarantee that
a vocabulary will perform best downstream with
the segmentation method used to train it (Uzan
et al., 2024). Additional segmentation schemes
include Dynamic Programming BPE (He et al.,
2020), BPE-Dropout (Provilkov et al., 2020), and
FLOTA (Hofmann et al., 2022).

3 PATHPIECE

Several efforts over the last few years (Gallé, 2019;
Zouhar et al., 2023a, inter alia) have suggested that
the empirical advantage of BPE as a tokenizer in
many NLP applications, despite its unawareness
of language structure, can be traced to its superior
compression abilities, providing models with over-
all shorter sequences during learning and inference.
Inspired by this claim we introduce PATHPIECE,
a lossless subword tokenizer that, given a vocabu-
lary V and document d, produces a segmentation
minimizing the total number of tokens needed to
split d. We additionally provide a vocabulary con-
struction procedure that, using this segmentation,
attempts to find a V minimizing the corpus token
count (CTC).5 PATHPIECE provides an ideal test-
ing laboratory for the compression hypothesis by
virtue of its maximally efficient segmentation.

3.1 Segmentation
PATHPIECE requires that all single-byte tokens are
included in vocabulary V to run correctly. PATH-
PIECE works by finding a shortest path through
a directed acyclic graph (DAG), where each byte
i of training data forms a node in the graph, and
two nodes j and i contain a directed edge if the
byte segment [j, i] is a token in V . We describe
PATHPIECE segmentation in Algorithm 1, where
L is a limit on the maximum width of a token in
bytes, which we set to 16. It has a complexity of

5An extended description is given in Appendix A.

O(nL), which follows directly from the two nested
for-loops. For each byte i in d, it computes the
shortest path length pl[i] in tokens up to and includ-
ing byte i, and the width wid[i] of a token with that
shortest path length. In choosing wid[i], ties be-
tween multiple tokens with the same shortest path
length pl[i] can be broken randomly, or the one
with the longest wid[i] can be chosen, as shown
here.6 Then, a backward pass constructs the short-
est possible segmentation from the wid[i] values
computed in the forward pass.

Algorithm 1 PATHPIECE segmentation.
1: procedure PATHPIECE(d,V, L)
2: n← len(d) ▷ document length
3: pl[1 : n]←∞ ▷ shortest path length
4: wid[1 : n]← 0 ▷ shortest path tok width
5: for e← 1, n do ▷ token end
6: for w ← 1, L do ▷ token width
7: s← e− w + 1 ▷ token start
8: if s ≥ 1 then ▷ s in range
9: if d[s : e] ∈ V then

10: if s = 1 then ▷ 1 tok path
11: pl[e]← 1
12: wid[e]← w
13: else
14: nl← pl[s− 1] + 1
15: if nl ≤ pl[e] then
16: pl[e]← nl
17: wid[e]← w

18: T ← [ ] ▷ output token list
19: e← n ▷ start at end of d
20: while e ≥ 1 do
21: s← e− wid[e] + 1 ▷ token start
22: T. append(d[s : e]) ▷ append token
23: e← e− wid[e] ▷ back up a token
24: return reversed(T ) ▷ reverse order

3.2 Vocabulary Construction

PATHPIECE’s vocabulary is built in a top-down
manner, attempting to minimize the corpus token
count (CTC), by starting from a large initial vocab-
ulary V0 and iteratively omitting batches of tokens.
The V0 may be initialized from the most frequently
occurring byte n-grams in the corpus, or from a
large vocabulary trained by BPE or Unigram. We
enforce that all single-byte tokens remain in the vo-
cabulary and that all tokens are L bytes or shorter.

For a PATHPIECE segmentation t1, . . . , tKd
of a

document d in the training corpus C, we would like
to know the increase in the overall length of the
segmentation Kd after omitting each token t from
our vocabulary and then recomputing the segmen-

6Random tie-breaking, which can be viewed as a form of
subword regularization, is presented in Appendix A. Some
motivation for selecting the longest token is due to the success
of FLOTA (Hofmann et al., 2022).
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tation. Tokens with a low overall increase are good
candidates to remove from the vocabulary.

To avoid the very expensive O(nL|V|) computa-
tion of each segmentation from scratch, we make a
simplifying assumption that allows us to compute
these increases more efficiently: we omit a specific
token tk, for k ∈ [1, . . . ,Kd] in the segmentation
of a particular document d, and compute the min-
imum increase MIkd ≥ 0 in the total tokens Kd

from not having that token tk in the segmentation
of d. We then aggregate these token count increases
MIkd for each token t ∈ V . We can compute the
MIkd without actually re-segmenting any docu-
ments, by reusing the shortest path information
computed by Algorithm 1 during segmentation.

Any segmentation not containing tk must either
contain a token boundary somewhere inside of tk
breaking it in two, or it must contain a token that
entirely contains tk as a superset. We enumerate
all occurrences for these two cases, and we find the
minimum increase MIkd among them. Let tk start
at index s and end at index e, inclusive. Path length
pl[j] represents the number of tokens required for
the shortest path up to and including byte j. We
also run Algorithm 1 backwards on d, computing
a similar vector of backwards path lengths bpl[j],
representing the number of tokens on a path from
the end of the data up to and including byte j. The
minimum length of a segmentation with a token
boundary after byte j is thus:

Kb
j = pl[j] + bpl[j + 1]. (1)

We have added an extra constraint on the shortest
path, that there is a break at j, so clearly Kb

j ≥ Kd.
The minimum increase for the case of having a
token boundary within tk is thus:

MIbkd = min
j=s,...,e−1

Kb
j −Kd. (2)

The minimum increase from omitting tk could
also be from a segmentation containing a strict
superset of tk. Let this superset token be t′k, with
start s′ and end e′ inclusive. To be a strict superset
entirely containing tk, then either s′ < s and e′ ≥
e, or s′ ≤ s and e′ > e, subject to the constraint
that the width w′ = e′ − s′ + 1 ≤ L. In this case,
the minimum length when using the superset token
t′k would be:

Ks
t′k

= pl[s′ − 1] + bpl[e′ + 1] + 1, (3)

which is the path length to get to the byte before
t′k, plus the path length from the end of the data

backwards to the byte after t′k, plus 1 for the token
t′k itself.

We retain a list of the widths of the tokens end-
ing at each byte.7 The set of superset tokens S
can be found by examining the potential e′, and
then seeing if the tokens ending at e′ form a strict
superset. Similar to the previous case, we can com-
pute the minimum increase from replacing tk with
a superset token by taking the minimum increase
over the superset tokens S:

MIskd = min
t′k∈S

Ks
t′k
−Kd. (4)

We then aggregate over the documents to get the
overall increase for each t ∈ V:

MIt =
∑

d∈C

Kd∑

k=1|tk=t

min(MIbkd,MIskd). (5)

One iteration of this vocabulary construction pro-
cedure will have complexity O(nL2).7

3.3 Connecting PATHPIECE and Unigram
We note a connection between PATHPIECE and
Unigram. In Unigram, the probability of a segmen-
tation t1, . . . , tKd

is the product of the unigram
token probabilities p(tk):

P (t1, . . . , tKd
) =

Kd∏

k=1

p(tk). (6)

Taking the negative log of this product converts
the objective from maximizing the likelihood to
minimizing the sum of − log(p(tk)) terms. While
Unigram is solved by the Viterbi (1967) algorithm,
it can also be solved by a weighted version of PATH-
PIECE with weights of − log(p(tk)). Conversely,
a solution minimizing the number of tokens can be
found in Unigram by taking all p(tk) := 1/|V|.

4 Experiments

We used the Pile corpus (Gao et al., 2020; Bider-
man et al., 2022) for language model pre-training,
which contains 825GB of English text data from 22
high-quality datasets. We constructed the tokenizer
vocabularies over the MiniPile dataset (Kaddour,
2023), a 6GB subset of the Pile. We use the Mo-
saicML Pretrained Transformers (MPT) decoder-
only language model architecture.8 Appendix B
gives the full set of model parameters, and Ap-
pendix D discusses model convergence.

7See the expanded explanation in Appendix A for details.
8https://github.com/mosaicml/

llm-foundry
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4.1 Downstream Evaluation Tasks

To evaluate and analyze the performance of
our tokenization process, we select 10 bench-
marks from lm-evaluation-harness (Gao
et al., 2023).9 These are all multiple-choice
tasks with 2, 4, or 5 options, and were run
with 5-shot prompting. We use arc_easy (Clark
et al., 2018), copa (Brassard et al., 2022),
hendrycksTests-marketing (Hendrycks et al., 2021),
hendrycksTests-sociology (Hendrycks et al., 2021),
mathqa (Amini et al., 2019), piqa (Bisk et al.,
2019), qa4mre_2013 (Peñas et al., 2013), race (Lai
et al., 2017), sciq (Welbl et al., 2017), and
wsc273 (Levesque et al., 2012). Appendix C gives
a full description of these tasks.

4.2 Tokenization Stage Variants

We conduct the 18 experimental variants listed in
Table 1, each repeated at the vocabulary sizes of
32,768, 40,960, and 49,152.10 For baseline vo-
cabulary creation methods, we used BPE, Uni-
gram, WordPiece, and SaGe. We also consider
two variants of PATHPIECE where ties in the short-
est path are broken either by the longest token
(PATHPIECEL), or randomly (PATHPIECER). For
the vocabulary initialization required by PATH-
PIECE and SaGe, we experimented with the most
common n-grams, as well as with a large initial
vocabulary trained with BPE or Unigram. We
also varied the pre-tokenization schemes for PATH-
PIECE and SaGe, using either no pre-tokenization
or combinations of “FirstSpace”, “Space”, and
“Digit” described in §2.1. Tokenizers usually use
the same segmentation approach used in vocabulary
construction. PATHPIECEL’s shortest path segmen-
tation can be used with any vocabulary, so we apply
it to vocabularies trained by BPE and Unigram. We
also apply a Greedy left-to-right longest-token seg-
mentation approach to these vocabularies.

9https://github.com/EleutherAI/
lm-evaluation-harness

10These sizes were selected because vocabularies in the 30k
to 50k range are the most common amongst language models
within the HuggingFace Transformers library, https://
huggingface.co/docs/transformers/. Ali et al.
(2024) recently examined the effect of vocabulary sizes and
found 33k and 50k sizes performed better on English language
tasks than larger sizes.

5 Results

Table 1 reports the downstream performance across
all our experimental settings.11 A random baseline
for these 10 tasks yields 32%. The OVERALL AVG

column indicates the average results over the three
vocabulary sizes. The RANK column refers to the
rank of each variant with respect to the OVERALL

AVG column (Rank 1 is best), which we will some-
times use as a succinct way to refer to a variant.

5.1 Vocabulary Size

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Rank

0.40

0.42

0.44

0.46

0.48

0.50

0.52

Av
er

ag
e 

Ac
cu

ra
cy

Overall Avg 32,768 Avg 40,960 Avg 49,152 Avg

Figure 1: Effect of vocabulary size on downstream per-
formance. For each tokenizer variant, we show the
overall average, along with the three averages by vocab-
ulary size, labeled according to the ranks in Table 1.

Figure 1 gives the overall average, along with the
individual averages, for each of the three vocabu-
lary sizes for each variant, labeled according to the
rank from Table 1. We observe that there is a high
correlation between downstream performance at
different vocabulary sizes. The pairwise R2 values
for the accuracy of the 32,768 and 40,960 runs was
0.750; between 40,960 and 49,152 it was 0.801;
and between 32,768 and 49,152 it was 0.834. This
corroborates the effect shown graphically in Fig-
ure 1 that vocabulary size is not a crucial decision
over this range of sizes. Given this high degree of
correlation, we focus our analysis on the overall
average accuracy. This averaging removes some of
the variance amongst individual language model
runs. Thus, unless specified otherwise, our analy-
ses present performance averaged over vocabulary
sizes.

11The same table sorted by rank is in Table 10 of Ap-
pendix G. The comprehensive results for the ten downstream
tasks, for each of the 350M parameter models, are given in
Appendix G.
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Rank Vocab Constr Init Voc Pre-tok Segment Overall 32,768 40,960 49,152

1

PathPieceL

BPE FirstSpace

PathPieceL

49.4 49.3 49.4 49.4
9 Unigram FirstSpace 48.0 47.0 48.5 48.4

15 n-gram FirstSpDigit 44.8 44.6 44.9 45.0
16 n-gram FirstSpace 44.7 44.8 45.5 43.9

2
Unigram FirstSpace

Likelihood 49.0 49.2 49.1 48.8
7 Greedy 48.3 47.9 48.5 48.6

17 PathPieceL 43.6 43.6 43.1 44.0

3
BPE FirstSpace

Merge 49.0 49.0 50.0 48.1
4 Greedy 49.0 48.3 49.1 49.5

13 PathPieceL 46.5 45.6 46.7 47.2

5 WordPiece FirstSpace Greedy 48.8 48.5 49.1 48.8

6

SaGe

BPE FirstSpace

Greedy

48.6 48.0 49.2 48.8
8 n-gram FirstSpace 48.0 47.5 48.5 48.0

10 Unigram FirstSpace 47.7 48.4 46.9 47.8
11 n-gram FirstSpDigit 47.5 48.4 46.9 47.2

12
PathPieceR n-gram

SpaceDigit
PathPieceR

46.7 47.5 45.4 47.3
14 FirstSpDigit 45.5 45.3 45.8 45.5
18 None 43.2 43.5 44.0 42.2

Random 32.0 32.0 32.0 32.0

Table 1: Summary of 350M parameter model downstream accuracy (%) across 10 tasks. The “Overall” column
averages across the three vocabulary sizes. The “Rank” column refers to the Overall column, best to worst.

5.2 Overall performance

To determine which of the differences in the overall
average accuracy in Table 1 are statistically signifi-
cant, we conduct a one-sided Wilcoxon signed-rank
test (Wilcoxon, 1945) on the paired differences of
the 30 accuracy scores (three vocabulary sizes over
ten tasks), for each pair of variants. All p-values
reported in this paper use this test.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Tokenizer Rank

1
2

3
4

5
6

7
8
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10
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Figure 2: Pairwise p-values for 350M model results.
Boxes outlined in black represent p > 0.05. The top 6
tokenizers are all competitive, and there is no statisti-
cally significantly best approach.

Figure 2 displays all pairwise p-values in a color
map. Each column designates a tokenization vari-
ant by its rank in Table 1, compared to all the ranks
below it. A box is outlined in black if p > 0.05,
where we cannot reject the null. While PATHPIE-
CEL-BPE had the highest overall average on these
tasks, the top five tokenizers, PATHPIECEL-BPE,
Unigram, BPE, BPE-Greedy, and WordPiece do
not have any other row in Figure 2 significantly dif-
ferent from them. Additionally, SaGe-BPE (rank
6) is only barely worse than PATHPIECEL-BPE
(p = 0.047), and should probably be included in the
list of competitive tokenizers. Thus, our first key
result is that there is no tokenizer algorithm better
than all others to a statistically significant degree.

All the results reported thus far are for language
models with identical architectures and 350M pa-
rameters. To examine the dependency on model
size, we trained larger models of 1.3B parameters
for six of our experiments, and 2.4B parameters for
four of them. In the interest of computational time,
these larger models were only trained with a single
vocabulary size of 40,960. In Figure 6 in subsec-
tion 6.4, we report models’ average performance
across 10 tasks. See Figure 7 in Appendix D for an
example checkpoint graph at each model size. The
main result from these models is that the relative
performance of the tokenizers does vary by model
size, and that there is a group of high performing to-
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Corpus Token Count (CTC), in Billions
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Figure 3: Effect of corpus token count (CTC) vs average
accuracy of individual vocabulary sizes.

kenizers that yield comparable results. This aligns
with our finding that the top six tokenizers are not
statistically better than one another at the 350M
model size.

5.3 Corpus Token Count vs Accuracy

Figure 3 shows the corpus token count (CTC) ver-
sus the accuracy of each vocabulary size, given in
Table 11. We do not find a straightforward rela-
tionship between the two. Ali et al. (2024) recently
examined the relationship between CTC and down-
stream performance for three different tokenizers,
and also found it was not correlated on English
language tasks.

The two models with the highest CTC are PATH-
PIECE with Space pre-tokenization (12), which is
to be expected given each space is its own token,
and SaGe with an initial Unigram vocabulary (10).
The Huggingface Unigram models in Figure 3 had
significantly higher CTC than the corresponding
BPE models, unlike Bostrom and Durrett (2020)
and Gow-Smith et al. (2022), which report a dif-
ference of only a few percent with SentencePiece
Unigram. Ali et al. (2024) point out that due to
differences in pre-processing, the Huggingface Un-
igram tokenizer behaves quite differently than the
SentencePiece Unigram tokenizer, which may ex-
plain this discrepancy.

In terms of accuracy, PATHPIECE with no pre-
tokenization (18) and Unigram with PATHPIECE

segmentation (17) both did quite poorly. Notably,

Comparison Pearson Correlation

CTC and Ave Acc 0.241

Rényi Eff and Ave Acc (α=1.5) −0.221
Rényi Eff and Ave Acc (α=2.0) −0.169
Rényi Eff and Ave Acc (α=2.5) −0.151
Rényi Eff and Ave Acc (α=3.0) −0.144
Rényi Eff and Ave Acc (α=3.5) −0.141

CTC and Rényi Eff (α=2.5) −0.891

Table 2: Pearson Correlation of CTC and Average Accu-
racy, or Rényi efficiency for various orders α with Aver-
age Accuracy, or CTC and Rényi efficiency at α = 2.5.

the range of CTC is quite narrow within each vo-
cabulary construction method, even while changes
in pre-tokenization and segmentation lead to sig-
nificant accuracy differences. While there are con-
founding factors present in this chart (e.g., pre-
tokenization, vocabulary initialization, and that
more tokens allow for additional computations by
the downstream model) it is difficult to discern any
trend that lower CTC leads to improved perfor-
mance. If anything, there seems to be an inverted
U-shaped curve with respect to the CTC and down-
stream performance. The Pearson correlation co-
efficient between CTC and average accuracy was
found to be 0.241. Given that a lower CTC value
signifies greater compression, this result suggests a
weak negative relationship between the amount of
compression and average accuracy.

Zouhar et al. (2023a) introduced an information-
theoretic measure based on Rényi efficiency that
correlates with downstream performance for their
application.12 It has an order parameter α, with a
recommended value of 2.5. We present the Rényi
efficiencies and CTC for all models in Table 11 in
Appendix G, and summarize their Pearson corre-
lation with average accuracy in Table 2. For the
data of Figure 3, all the correlations for various α
also have a weak negative association. They are
slightly less negative than the association for CTC,
although it is not nearly as large as the benefit they
saw over sequence length in their application. We
note the strong relationship between compression
and Rényi efficiency, as the Pearson correlation of
CTC and Rényi efficiency with α=2.5 is −0.891.

By varying aspects of BPE, Gallé (2019) and
Goldman et al. (2024) suggests we should expect
downstream performance to decrease with CTC,
while in contrast Ali et al. (2024) did not find a

12Except, so far, for a family of adversarially-created tok-
enizers (Cognetta et al., 2024).

684



strong relation when varying the tokenizer. Our
extensive results varying a number of stages of
tokenization suggest it is not inherently beneficial
to use fewer tokens. Rather, the particular way that
the CTC is varied can lead to different conclusions.

6 Analysis

We now analyze the results across the various ex-
periments in a more controlled manner. Our exper-
iments allow us to examine changes in each stage
of tokenization, holding the rest constant, revealing
design decisions making a significant difference.13

6.1 Pre-tokenization

For PATHPIECER with an n-gram initial vocabu-
lary, we can isolate pre-tokenization. PATHPIECE

is efficient enough to process entire documents with
no pre-tokenization, giving it full freedom to mini-
mize the corpus token count (CTC).

Adding pre-tokenization constrains PATH-
PIECE’s ability to minimize tokens, giving a nat-
ural way to vary the number of tokens. Figure 4
shows that PATHPIECE minimizes the number of
tokens used over a corpus when trained with no
pre-tokenization (18). The other variants restrict
spaces to either be the first character of a token (14),
or their own token (12).14 Consider the example
PATHPIECE tokenization in Table 3 for the three
pre-tokenization methods. The NONE mode uses
the word-boundary-spanning tokens “ation is”,
“ to b”, and “e $”. The lack of morphological
alignment demonstrated in this example is likely
more important to downstream model performance
than a simple token count.

In Figure 4 we observe a statistically signifi-
cant increase in overall accuracy for our down-
stream tasks, as a function of CTC. Gow-Smith
et al. (2022) found that Space pre-tokenization lead
to worse performance, while removing the spaces
entirely helps15. Thus, this particular result may be
specific to PATHPIECER.

6.2 Vocabulary Construction

One way to examine the effects of vocabulary con-
struction is to compare the resulting vocabularies
of top-down methods trained using an initial vo-
cabulary to the method itself. Figure 5 presents an

13Appendix E contains additional analysis
14These two runs also used Digit pre-tokenization where

each digit is its own token.
15Although omitting the spaces entirely does not lead to a

reversible tokenization as we have been considering.
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Figure 4: The impact of pre-tokenization on Corpus
Token Count (CTC) and Overall Accuracy. Ranks in
parentheses refer to performance in Table 1.

6273
484712158

15726

1279
2705

21250

BPE PathPiece-initBPE

SaGe-initBPE

Figure 5: Venn diagram comparing 40,960 token vocab-
ularies of BPE, PathPieceL and SaGe – the latter two
were both initialized from a BPE vocabulary of 262,144.

area-proportional Venn diagram of the overlap in
40,960-sized vocabularies between BPE (6) and
variants of PATHPIECEL (1) and SaGe (6) that
were trained using an initial BPE vocabulary of
size 218 = 262, 144.16 While BPE and PATHPIE-
CEL overlap considerably, SaGe produces a more
distinct set of tokens.

6.3 Initial Vocabulary
PATHPIECE, SaGe, and Unigram all require an
initial vocabulary.17 For PATHPIECE and SaGe,
we experimented with initial vocabularies of size
262,144 constructed from either the most frequent
n-grams, or trained using either BPE or Unigram.
For PATHPIECEL, using a BPE initial vocabulary
(1) is statistically better than both Unigram (9) and
n-grams (16), with p ≤ 0.01. Using an n-gram

16See Figure 12 in Appendix E.3 for analogous results for
Unigram, which behaves similarly.

17The HuggingFace Unigram implementation starts with
the one million top n-grams, but sorted according to the count
times the length of the token, introducing a bias toward longer
tokens.

685



Rank Pre-tokenization Example

12 SpaceDigit The valuation is estimated to be $ 2 1 3 M
14 FirstSpDigit The valuation is estimated to be $ 2 1 3 M
18 None The valu ation is estimated to b e $ 2 1 3 M

Table 3: Example PATHPIECE tokenizations of “The valuation is estimated to be $213M”; vocabulary size of 32,768.

initial vocabulary leads to the lowest performance,
with statistical significance. Comparing ranks 6, 8,
and 10 reveals the same pattern for SaGe, although
the difference between 8 and 10 is not significant.

6.4 Effect of Model Size

To examine the dependency on model size, we
build larger models of 1.3B parameters for 6 of our
experiments, and 2.4B parameters for 4 of them.
These models were trained over the same 200 bil-
lion tokens. In the interest of computational time,
these larger models were only run at a single vo-
cabulary size of 40,960. The average results over
the 10 task accuracies for these models is given
in Figure 6. See Table 14 in Appendix G for the
numerical values.
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Figure 6: 40,960 vocab average accuracy at various
models sizes

It is noteworthy from the prevalence of crossing
lines in Figure 6 that the relative performance of the
tokenizers do vary by model size, and that there is
a group of tokenizers that are trading places being
at the top for various model sizes. This aligns
with our observation that the top 6 tokenizers were
within the noise, and not significantly better than
each other in the 350M models.

7 Conclusion

We investigate the hypothesis that reducing the cor-
pus token count (CTC) would improve downstream

performance, as suggested by Gallé (2019) and
Goldman et al. (2024) when they varied aspects of
BPE. When comparing CTC and downstream accu-
racy across all our experimental settings in Figure 3,
we do not find a clear relationship between the two.
We expand on the findings of Ali et al. (2024) who
did not find a strong relation when comparing 3
tokenizers, as we run 18 experiments varying the
tokenizer, initial vocabulary, pre-tokenizer, and in-
ference method. Our results suggest compression
is not a straightforward explanation of what makes
a tokenizer effective.

Finally, this work makes several practical con-
tributions: (1) vocabulary size has little impact on
downstream performance over the range of sizes
we examined (§5.1); (2) five different tokenizers
all perform comparably, with none outperforming
at statistical significance (§5.2); (3) BPE initial
vocabularies work best for top-down vocabulary
construction (§6.3). To further encourage research
in this direction, we make all of our trained vo-
cabularies publicly available, along with the model
weights from our 64 language models.

Limitations

The objective of this work is to offer a comprehen-
sive analysis of the tokenization process. However,
our findings were constrained to particular tasks
and models. Given the degrees of freedom, such
as choice of downstream tasks, model, vocabulary
size, etc., there is a potential risk of inadvertently
considering our results as universally applicable to
all NLP tasks; results may not generalize to other
domains of tasks.

Additionally, our experiments were exclusively
with English language text, and it is not clear how
these results will extend to other languages. In par-
ticular, our finding that pre-tokenization is crucial
for effective downstream accuracy is not applicable
to languages without space-delimited words.

We conducted experiments for three district vo-
cabulary sizes, and we reported averaged results
across these experiments. With additional compute
resources and time, it could be beneficial to con-
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duct further experiments to gain a better estimate
of any potential noise. For example, in Figure 7
of Appendix D, the 100k checkpoint at the 1.3B
model size is worse than expected, indicating that
noise could be an issue.

Finally, the selection of downstream tasks can
have a strong impact on results. To allow for mean-
ingful results, we attempted to select tasks that
were neither too difficult nor too easy for the 350M
parameter models, but other choices could lead to
different outcomes. There does not seem to be a
good, objective criteria for selecting a finite set of
task to well-represent global performance.

Ethics Statement

We have used the commonly used public dataset
The Pile, which has not undergone a formal ethics
review (Biderman et al., 2022). Our models may
include biases from the training data.

Our experimentation has used considerable en-
ergy. Each 350M parameter run took approxi-
mately 48 hours on (4) p4de nodes, each containing
8 NVIDIA A100 GPUs. We trained 62 models, in-
cluding the 8 RandTrain runs in Appendix F. The
(6) 1.3B parameters models took approximately 69
hours to train on (4) p4de nodes, while the (4) 2.4B
models took approximately 117 hours to train on
(8) p4de nodes. In total, training required 17,304
hours of p4de usage (138,432 GPU hours).
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A Expanded description of PATHPIECE

This section provides a self-contained explanation
of PATHPIECE, expanding on the one in §3, with
additional details on the vocabulary construction
and complexity.

In order to design an optimal vocabulary V , it is
first necessary to know how the vocabulary will be
used to tokenize. There can be no best vocabulary
in the abstract. Thus, we first present a new lossless
subword tokenizer PATHPIECE. This tokenization
over our training corpus will provide the context to
design a coherent vocabulary.

A.1 Tokenization for a given vocabulary

We work at the byte level, and require that all 256
single byte tokens are included in any given vocab-
ulary V . This avoids any out-of-vocabulary tokens
by falling back to single bytes in the worst case.

Tokenization can be viewed as a compression
problem, where we would like to tokenize text in a
few tokens as possible. This has direct benefits, as
it allows more text to fit in a given context window.
A Minimum Description Length (MDL) argument
can also be made that the tokenization using the
fewest tokens best describes the data, although we
saw in Subsection 6.1 this may not always hold in
practice.

Tokenizers such as BPE and WordPiece make
greedy decisions, such as choosing which pair of
current tokens to merge to create a new one, which
results in tokenizations that may use more tokens
than necessary. In contrast, PATHPIECE will find
an optimal tokenization by finding a shortest path
through a Directed Acyclic Graph (DAG). Infor-
mally, each byte i of training data forms a node
in the graph, and there is an edge if the w byte
sequence ending at i is a token in V .

An implementation of PATHPIECE is given in
Algorithm 2, where input d is a text document of

n bytes, V is a given vocabulary, and L is a limit
on the maximum width of a token in bytes. It
has complexity O(nL), following directly from the
two nested for-loops. It iterates over the bytes
i in d, computing 4 values for each. It computes
the shortest path length pl[i] in tokens up to and
including byte i, the width wid[i] of a token with
that shortest path length, and the solution count
sc[i] of optimal solutions found thus far with that
shortest length. We also remember the valid tokens
of width 2 or more ending at each location i in vt[i],
which will be used in the next section.

There will be multiple tokenizations with the
same optimal length, so some sort of tiebreaker is
needed. The longest token or a randomly selected
token are obvious choices. We have presented the
random tiebreaker method here, where a random
solution is selected in a single pass in lines 29-32
of the listing using an idea from reservoir sampling
(Vitter, 1985).

A backward pass through d constructs the opti-
mal tokenization from the wid[e] values from the
forward pass.

A.2 Optimal Vocabulary Construction

A.2.1 Vocabulary Initialization

We will build an optimal vocabulary by starting
from a large initial one, and sequentially omitting
batches of tokens. We start with the most frequently
occurring byte n-grams in a training corpus, of
width 1 to L, or a large vocabulary trained by BPE
or Unigram. We then add any single byte tokens
that were not already included, making room by
dropping the tokens with the lowest counts. In our
experiments we used an initial vocabulary size of
|V| = 218 = 262, 144.

A.2.2 Increase from omitting a token

Given a PATHPIECE tokenization t1, . . . , tKd
,

∀d ∈ C for training corpus C, we would like to
know the increase in the overall length of a tok-
enization K =

∑
dKd from omitting a given token

t from our vocabulary, V \{t} and recomputing the
tokenization. Tokens with a low increase are good
candidates to remove from the vocabulary (Kudo,
2018). However, doing this from scratch for each t
would be a very expensive O(nL|V|) operation.

We make a simplifying assumption that allows
us to compute these increases more efficiently. We
omit a specific token tk in the tokenization of docu-
ment d, and compute the minimum increase MIkd
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Algorithm 2 PATHPIECE segmentation.
1: procedure PATHPIECE(d,V, L)
2: n← len(d) ▷ document length
3: for i← 1, n do
4: wid[i]← 0 ▷ shortest path token
5: pl[i]←∞ ▷ shortest path len
6: sc[i]← 0 ▷ solution count
7: vt[i]← [ ] ▷ valid token list
8: for e← 1, n do ▷ token end
9: for w ← 1, L do ▷ token width

10: s← e− w + 1 ▷ token start
11: if s ≥ 1 then ▷ s in range
12: t← d[s : e] ▷ token
13: if t ∈ V then
14: if s = 1 then ▷ 1 tok path
15: wid[e]← w
16: pl[e]← 1
17: sc[e]← 1
18: else
19: if w ≥ 2 then
20: vt[e]. append(w)

21: nl← pl[s− 1] + 1
22: if nl < pl[e] then
23: pl[e]← nl
24: wid[e]← w
25: sc[e]← 1
26: else if nl = pl[e] then
27: sc[e]← sc[e] + 1
28: r ← rand()
29: if r ≤ 1/sc[e] then
30: wid[e]← w

31: T ← [ ] ▷ output token list
32: e← n ▷ start at end of d
33: while e ≥ 1 do
34: w ← wid[e] ▷ width of short path tok
35: s← e− w + 1 ▷ token start
36: t← d[s : e] ▷ token
37: T. append(t)
38: e← e− w ▷ back up a token
39: return reversed(T ) ▷ reverse order

in Kd from not having that token tk in the tokeniza-
tion of d. We then aggregate over the documents
to get the overall increase for t:

MIt =
∑

d∈C

Kd∑

k=1|tk=t

MIkd. (7)

This is similar to computing the increase from V \
{t}, but ignores interaction effects from having
several occurrences of the same token t close to
each other in a given document.

With PATHPIECE, it turns out we can compute
the minimum increase in tokenization length with-
out actually recomputing the tokenization. Any
tokenization not containing tk must either contain
a token boundary somewhere inside of tk breaking
it in two, or it must contain a token that entirely
contains tk as a superset. Our approach will be to
enumerate all the occurrences for these two cases,
and to find the minimum increase MIkd overall.

Before considering these two cases, there is a
shortcut that often tells us that there would be no
increase due to omitting tk ending at index e. We
computed the solution count vector sc[e] when run-
ning Algorithm 2. If sc[e] > 1 for a token ending
at e, then the backward pass could simply select
one of the alternate optimal tokens, and find an
overall tokenization of the same length.

Let tk start at index s and end at index e, inclu-
sive. Remember that path length pl[i] represents
the number of tokens required for shortest path
up to and including byte i. We can also run Algo-
rithm 2 backwards on d, computing a similar vector
of backwards path lengths bpl[i], representing the
number of tokens on a path from the end of the data
up to and including byte i. The overall minimum
length of a tokenization with a token boundary after
byte j is thus:

Kb
j = pl[j] + bpl[j + 1]. (8)

We have added an extra constraint on the shortest
path, that there is a break at j, so clearly Kbr

j ≥
pl[n]. The minimum increase for the case of having
a token boundary within tk is thus:

MIbkd = min
j=s,...,e−1

Kb
j − pl[n]. (9)

Each token tk will have no more than L− 1 poten-
tial internal breaks, so the complexity of computing
MIbkd is O(L).

The minimum increase from omitting tk could
also be on a tokenization containing a strict super-
set of tk. Let this superset token be t′k, with start s′

and end e′ inclusive. To be a strict superset jumping
over tk, we must have s′ < s and e′ ≥ e, or s′ ≤ s
and e′ > e, subject to the constraint that the width
w′ = e′ − s′ + 1 ≤ L. In this case, the minimum
length of using the superset token t′k would be:

Ks
t′k

= pl[s′ − 1] + bpl[e′ + 1] + 1, (10)

which is the path length to get to the byte before t′k,
plus the path length go backwards to the byte after
t′k, plus 1 for the token t′k itself.

We remembered a list of the widths of the tokens
ending at each byte, vt[e] in Algorithm 2. The set
of superset tokens S can be found by examining the
O(L) potential e′, and then seeing if the w′ ∈ vt[e′]
give tokens forming a strict superset. There are
O(L) potential tokens ending at e′ in vt[e′], so the
overall complexity of finding the superset tokens is
O(L2)
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Similar to the previous case, we can compute
the minimum increase from replacing tk with a
superset token by taking the minimum increase
over the superset tokens:

MIskd = min
t′k∈S

Ks
t′k
− pl[n]. (11)

Finally, the overall minimum increase MIkd
from omitting tk is simply

MIkd = min(MIbkd,MIskd). (12)

When aggregating over all tk according to eq
(7), one iteration of the vocabulary construction
procedure will have complexity O(nL2).

B Language Model Parameters

The 350M parameter models were trained using the
MPT architecture18 with the following parameters:

# Model
model:

name: mpt_causal_lm
init_deice: meta
d_model: 1024
n_heads: 16
n_layers: 24
expansion_ratio: 4
max_seq_len: 2048
attn_config:
alibi: true
attn_impl: triton
clip_qkv: 6

# Optimization
device_eval_batch_size: 5
device_train_microbatch_size: 32
global_train_batch_size: 1024 # ~2M tokens
max_duration: 100000ba # ~200B tokens

optimizer:
name: decoupled_adamw
lr: 3.0e-4
betas:
- 0.9
- 0.95
eps: 1.0e-08
weight_decay: 0.0001

scheduler:
name: cosine_with_warmup
t_warmup: 0.05dur
alpha_f: 0.1

# System
precision: amp_bf16

# Algos and Callbacks
algorithms:

gradient_clipping:
clipping_threshold: 1
clipping_type: norm

18https://github.com/mosaicml/llm-foundry

The 1.3B parameter models simply changes:

d_model: 1024

The 2.4B parameter models updates:

d_model: 2560
n_heads: 20
n_layers: 32

C Description of Downstream Tasks

To evaluate the performance of our various tok-
enization experiments, we select ten competitive
benchmarks from lm-evaluation-harness
(Gao et al., 2023)19, that we broadly categorize
into three types of Question Answering (QA) tasks:
Knowledge-based, Common-sense Reasoning and
Context-based.

Knowledge Based Tasks Knowledge based
tasks in this study expect LLMs to answer ques-
tions based on domain-specific internal retrieval.
Our Knowledge-based baselines in this work in-
clude:

SciQ: The SciQ task, proposed by Welbl et al.
(2017) contains a total of 13,679 science exam ques-
tions. The questions are in multiple-choice format
with 4 answer options each. An additional text is
provided as supporting evidence for a majority of
the answers.

ARC (AI2 Reasoning Challenge): Clark et al.
(2018) compiles grade-school level, multiple-
choice science question dataset consists of 7,787
science exam questions that are split into “easy”
and “hard” sets. For this study, we employ the
easy set of 5,197 questions, each having 4 answer
choices.

MathQA: Amini et al. (2019) introduce a dataset
of math word problems that require LLMs to use
their internal understanding of mathematical equa-
tions and arithmetic comprehension. Similar to
SciQ, this dataset consists of 37k multiple-choice
questions with the equations for each used anno-
tated.

HendrycksTest: Hendrycks et al. (2021) provide
a comprehensive suite of of multiple-choice tests
for assessing text models in multi-task contexts. It
comprises of 57 tasks such as elementary mathe-
matics, US history, law of which we use the sociol-
ogy and marketing tests.

Commonsense Reasoning Tasks These tasks
assess the model’s capability to infer and reason

19https://github.com/EleutherAI/lm-evaluation-harness
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about everyday scenarios based on implicit knowl-
edge.

COPA (Choice of Plausible Alternatives): COPA
proposed by Brassard et al. (2022) is a benchmark
for assessing progress in open-domain common-
sense causal reasoning. It consists of 1000 ques-
tions where each question is composed of a premise
and two alternatives. The task is to select the al-
ternative that more plausibly has a causal relation
with the premise.

PiQA (Physical Interaction Question Answer-
ing): Bisk et al. (2019) introduce a task that assess
the understanding of physical commonsense by lan-
guage models. Comprised of everyday situation
with a preference for atypical solutions, this dataset
is formulated as multiple choice question with two
possible solutions choices for each question.

Winograd Schema Challenge: Levesque et al.
(2012) define a task with a pair of sentences that
differ only in one or two words and that contain a
referential ambiguity that is resolved in opposite
directions in the two sentences. This dataset of
273 tasks test language model understanding of the
content of the text and disambiguation ability.

Context Based Tasks These tasks are reliant
on understanding context and drawing conclusions
from it.

RACE (Reading Comprehension from Examina-
tions): RACE proposed by Lai et al. (2017) is a
collection of English questions set aside to Chi-
nese school students. Each item is divided into two
parts, a passage that the student must read and a
set of 4 potential answers, requiring extraction and
reasoning capabilities.

QA4MRE (Question Answering for Machine
Reading Evaluation): QA4MRE by Peñas et al.
(2013) is a benchmark designed to resolve reading
comprehension challenges. This task focuses on
reading of single documents and identifying the
answers to a set of questions. Questions are in the
form of multiple choice with one correct option.

Our goal was to select tasks where a 350M pa-
rameter model could do significantly better than
random chance, avoiding evaluation right at the
noisier random threshold. We started with the tasks
that had a non-zero random score (indicating mul-
tiple choice), and then chose tasks where BPE at
a vocabulary size 40,960 could do well above ran-
dom. In the end, the average accuracy across mod-
els was more than 15% above random on all tasks.

Note that in results tables we have shortened
the name hendrycksTest-marketing to market-

ing, hendrycksTest-sociology to sociology, and
qa4mre_2013 to qa4mre.

D Effect of model convergence

Each model was trained on around 200 billion to-
kens. Figure 7 gives a plot of the average accuracy
for PathPieceL with a BPE initial vocabulary and a
vocabulary size of 40,960 at various checkpoints in
the language model training process. It also shows
checkpoints for the larger 1.3B and 2.4B models
discussed in the Limitations section. With the ex-
ception of the 100k checkpoint at 1.3B, the model
appears to be continually improving. It is unclear
why the 100k checkpoint did so poorly.
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Figure 7: Checkpoint accuracy values for PathPieceL
with an initial vocabulary from BPE and a vocabulary
size of 40,960, evaluated at 5 checkpoints.

E Additional Analysis

Here we additional details for results from §6 that
are just summarized in the text in the interest of
space.

E.1 Segmentation
Tokenizers often use the segmentation strategy that
is used in vocabulary construction. However, any
vocabulary can also be used with PATHPIECE and
with the greedy left-to-right segmentation methods.

We find that BPE works quite well with greedy
segmentation (overall rank 4, insignificantly differ-
ent from the top rank), but not with the shortest-
path segmentation of PATHPIECEL (13).

Unigram, on the other hand, seems to be more
tightly tied to its default maximum likelihood seg-
mentation (2), which was significantly better than
both Greedy (7) and PATHPIECEL (17).

E.2 Digit Pre-tokenization
We have two examples isolating Digit pre-token-
ization, when a digit must always be its own token.
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Figure 8: Segmentation of BPE.
Pairwise p-values between the pairs of runs are
p(3,4)=0.52, p(3,13)=4.4e-5, p(4,13)=8.8e-6.
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Figure 9: Segmentation of Unigram.
Pairwise p-values between the pairs of runs are
p(2,7)=0.041, p(2,17)=2.9e-06, p(7,17)=2.9e-06

Figure 10 shows Digit hurts for Sage with an n-
gram initial vocabulary, while Figure 11 shows no
significant differences for PathPieceL, also with an
n-gram initial vocabulary.
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Figure 10: Pre-tokenization of Sage, n-gram initial,
p=0.025.

With the exception of mathqa, none of our down-
stream tasks were particularly mathematical in na-
ture. It is likely this makes it hard to make a defini-
tive judgement on Digit with our experiments.

E.3 Vocabulary Construction

Figure 12 gives a Venn diagram of the overlap in
vocabularies between Unigram, PathPieceL, and
SaGe, when both PathPieceL and SaGe were con-
structed from a large initial vocabulary of size
262,144 from Unigram. As with Figure 5, we see
that PathPiece is more similar to Unigram, while
SaGe chose more distinct tokens.
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Figure 11: Pre-tokenization of PathPieceL n-gram,
p=0.54.
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Figure 12: Venn diagrams comparing 40,960 token
vocabularies of Unigram, PathPieceL and SaGe, where
the latter two were both trained from a initial Unigram

vocabulary of size 262,144

E.4 PathPiece tie breaking
The difference in tie breaking between choosing
the longest token with PathPieceL versus choos-
ing randomly with PathPieceR turns out not to be
significant, as seen in in Figure 13.
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Figure 13: Tiebreaking PathPieceL vs PathPieceR
with n-gram, p=0.067.

F RandTrain

None of our experiments completely isolate the ef-
fect of the vocabulary construction step. We created
a new baseline random vocabulary construction ap-
proach, RandTrain, in an attempt to do so. It is
meant to work with a top-down method like SaGe
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or PathPieceL, and uses the same initial vocabu-
lary, pre-tokenization, and segmentation as either
of those, with a simple vocabulary construction
algorithm.

We compute a count for each token in the vo-
cabulary. For the top n-gram initial vocabulary it
is simply the n-gram count from the training cor-
pus. For a BPE initial vocabulary we tokenized
the training corpus with BPE and the large initial
vocabulary, and then use the occurrence counts of
each token. We normalize these counts into target
selection probabilities pk for token tk.

The RandTrain vocabulary construction process
is simply to randomly sample our desired vocabu-
lary size m of tokens from the initial vocabulary,
proportionally to pk, without replacement. Sam-
pling without replacement is necessary to avoid
have duplicate words in the vocabulary. Interest-
ingly, this is not possible if there are any pk >
1/m, which are termed infeasible or overweight
items (Efraimidis, 2010). The intuition behind this
is when selecting m items without replacement, it
is not possible to select a given item more than once.
So even if an item is always selected in a sample,
the selection probability will be pk = 1/m.

We sampled without replacement using the A-
ES Algorithm described in Efraimidis (2010). A
significant number the most common tokens in the
vocabulary were infeasible and hence were unable
to reach their target pk. A token with a higher pk
is more likely to be sampled than a token with a
lower one, but they may significantly differ from
their target pk.

We build 6 RandTrain models with 3 different
types of pre-tokenization, and with Greedy seg-
mentation to compare to SaGe, and PathPieceL
segmentation to compare to PathPieceL. We only
used a single vocabulary size of 40,960, so p-values
are only computed on the 10 task accuracies, rather
than the 30 used elsewhere. Task level accuracies
are given in Table 6 and Table 7 in Appendix G.

Before comparing RandTrain to SaGe and Path-
PieceL, we will compare our RandTrain runs to
each other, with different segmentation approaches.
In Figure 14 and Figure 16 we have pairs of Rand-
Train runs that only vary by the segmentation
method.

In line with Subsection E.1, Greedy performs
significantly better than PathPieceL segmentation
in all 3 cases. However, for the two cases with
an n-gram initial vocabulary the PathPieceL seg-
mentation did extremely poorly. The RandTrain
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Figure 14: Comparison of Greedy and PathPieceL
segmentation, with RandTrain vocabulary construction,

BPE initial vocab, and FirstSpace pre-tokenization,
p=0.0273
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Figure 15: Comparison of Greedy and PathPieceL
segmentation, with RandTrain vocabulary construction,
n-gram initial vocab, and FirstSpace pre-tokenization,

p=0.00195

vocabulary construction, n-gram initial vocabulary,
and PathPieceL segmentation interact somehow to
give accuracies well below any others.

This makes the comparison of RandTrain to Path-
PieceL less informative. We can see in Figure 17
that PathPieceL is significantly better than Rand-
Train with a BPE initial vocabulary.

However, the other two comparisons in Figure 18
are Figure 19 are not that meaningful. They are
significantly better, but that is more about the weak
baseline of RandTrain with PathPieceL segmenta-
tion than anything positive about PathPieceL.

The remaining comparison between SaGe and
RandTrain is more interesting. In Figure 20 and
Figure 21 SaGe was not significantly better than
RandTrain, with a p-value of 0.0645.

The cases is even worse for the two n-gram ini-
tial vocabulary cases. In Figure 21 the p-value was
a 0.688, and in Figure 22 RandTrain was actually
better, although not significantly.

We saw in Table 1 that both PathPieceL-BPE and
SaGe-BPE are effective tokenizers. In attempting
to isolate the benefit from the vocabulary construc-
tion step, we see that PathPieceL-BPE outperforms
our simple baseline. However, SaGe was unable
to outperform the baseline, perhaps implying that
RandTrain may actually be a simple but fairly ef-
fective vocabulary construction method.
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Figure 16: Comparison of Greedy and PathPieceL
segmentation, with RandTrain vocabulary construction,

n-gram initial vocab, and FirstSpaceDigit
pre-tokenization, p=0.00293
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Figure 17: Comparison of PathPieceL and RandTrain,
with BPE initial vocab, and FirstSpace pre-tokenization,

p=0.0137

G Detailed Experimental Results

This section gives the detailed accuracy results for
the 10 downstream evaluation tasks on each model
that was trained. The tables are divided by the
vocabulary size used, with Table 4 and Table 5 for
32,768; Table 6 and Table 7 for 40,960; and Table 8
and Table 9 for 49,152. The highest value or values
(in the case of ties) are shown in bold. Table 10
show the same results as Table 1, but are sorted
from best to worst by rank. The corpus token count
(CTC), Rényi efficiencies, and average accuracies
for the 54 runs in Figure 3 are given in Table 11.

The detailed accuracy results for our 1.3B param-
eter models, which were all performed at a single
vocabulary size of 40,960, are given in Table 12
and Table 13. Average accuracy results for larger
models of 1.3B and 2.4B parameters are given in
Table 14. See §7 for more discussion of this table.
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Figure 18: Comparison of PathPieceL and RandTrain,
with n-gram initial vocab, and FirstSpace

pre-tokenization, p=9.77e-4
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Figure 19: Comparison of PathPieceL and RandTrain,
with n-gram initial vocab, and FirstSpaceDigits

pre-tokenization, p=0.00977
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Figure 20: Comparison of SaGe and RandTrain, with
BPE initial vocab, and FirstSpace pre-tokenization,

p=0.0645
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Figure 21: Comparison of SaGe and RandTrain, with
n-gram initial vocab, and FirstSpace pre-tokenization,

p=0.688
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Figure 22: Comparison of RandTrain and SaGe, with
n-gram initial vocab, and FirstSpaceDigit

pre-tokenization, p=0.15
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Vocab Constr Init Voc Pre-tok Segment Avg arc_easy copa mktg mathqa piqa

BPE
FirstSpace Merge 48.8 51.2 69.0 32.9 23.9 66.3
FirstSpace Greedy 48.3 51.9 66.0 32.9 23.7 65.6
FirstSpace PathPieceL 45.6 45.6 61.0 29.9 23.0 60.5

Unigram
FirstSpace Likelihood 49.2 50.7 73.0 30.8 23.1 66.3
FirstSpace Greedy 47.9 50.3 68.0 31.2 23.1 65.2
FirstSpace PathPieceL 43.6 41.2 57.0 31.6 22.0 60.6

WordPiece FirstSpace Greedy 48.5 52.5 64.0 32.5 23.9 65.6

SaGe

BPE FirstSpace Greedy 47.9 49.7 67.0 26.5 23.2 65.9
n-gram FirstSpDigit Greedy 48.4 50.3 71.0 29.5 22.0 65.1
n-gram FirstSpace Greedy 47.5 48.8 64.0 29.5 23.0 66.6
Unigram FirstSpace Greedy 48.4 52.0 74.0 27.8 22.7 65.7

PathPieceL

BPE FirstSpace PathPieceL 49.3 50.8 68.0 34.2 23.0 66.4
n-gram FirstSpace PathPieceL 44.8 42.3 61.0 27.4 23.0 61.2
n-gram FirstSpDigit PathPieceL 44.6 42.3 62.0 31.2 22.8 61.2
Unigram FirstSpace PathPieceL 46.9 50.4 64.0 24.8 23.5 66.2

PathPieceR
n-gram FirstSpDigit PathPieceR 45.3 46.9 67.0 26.9 22.4 59.9
n-gram None PathPieceR 43.5 42.5 65.0 26.1 22.8 61.7
n-gram SpaceDigit PathPieceR 47.5 48.6 68.0 32.9 23.3 65.0

Random 32.0 25.0 50.0 25.0 20.0 50.00

Table 4: 350M parameter model, 32,768 token vocabulary, accuracy (%) on average and initial 5 tasks

Vocab Constr Init Voc Pre-tok Segment qa4mre race sciq sociology wsc273

BPE
FirstSpace Merge 29.6 29.2 87.3 30.9 67.8
FirstSpace Greedy 27.5 30.7 88.0 30.9 66.3
FirstSpace PathPieceL 28.2 29.0 83.8 28.4 66.3

Unigram
FirstSpace Likelihood 31.0 30.2 86.4 31.8 68.5
FirstSpace Greedy 28.9 30.6 86.9 31.8 62.6
FirstSpace PathPieceL 29.9 27.5 74.6 26.4 65.6

WordPiece FirstSpace Greedy 32.0 30.7 88.5 27.9 67.4

SaGe

BPE FirstSpace Greedy 31.7 30.2 89.0 28.4 67.8
n-gram FirstSpDigit Greedy 31.0 30.3 86.6 32.3 66.0
n-gram FirstSpace Greedy 30.0 31.0 87.8 25.9 68.5
Unigram FirstSpace Greedy 29.6 28.9 88.2 32.3 63.0

PathPieceL

BPE FirstSpace PathPieceL 28.5 31.1 88.8 35.3 67.0
n-gram FirstSpace PathPieceL 30.3 27.3 80.0 32.8 62.6
n-gram FirstSpDigit PathPieceL 27.8 25.5 79.2 31.3 62.6
Unigram FirstSpace PathPieceL 29.6 30.6 87.6 24.4 68.1

PathPieceR
n-gram FirstSpDigit PathPieceR 28.5 29.4 78.6 28.9 64.5
n-gram None PathPieceR 27.1 27.0 77.7 28.9 56.0
n-gram SpaceDigit PathPieceR 25.0 29.4 85.7 32.3 64.8

Random 25.0 25.0 25.0 25.0 50.0

Table 5: 350M parameter model, 32,768 token vocabulary, accuracy (%) on remaining 5 tasks
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Vocab Constr Init Voc Pre-tok Segment Avg arc_easy copa mktg mathqa piqa

BPE
FirstSpace Merge 50.0 52.7 70.0 31.6 24.3 66.9
FirstSpace Greedy 49.1 52.3 66.0 27.4 22.9 66.9
FirstSpace PathPieceL 46.7 48.0 58.0 27.4 23.4 62.1

Unigram
FirstSpace Likelihood 49.1 51.4 71.0 32.1 23.4 66.1

Unigram FirstSpace Greedy 48.5 49.9 64.0 30.3 23.3 65.7
Unigram FirstSpace PathPieceL 43.1 40.5 56.0 28.6 23.0 60.3

WordPiece FirstSpace Greedy 49.1 52.3 70.0 28.6 23.7 66.5

SaGe
BPE FirstSpace Greedy 49.2 50.8 70.0 29.9 23.2 66.4
n-gram FirstSpDigit Greedy 46.9 48.4 67.0 30.3 22.6 64.0
n-gram FirstSpace Greedy 48.5 49.8 68.0 32.9 22.8 65.4
Unigram FirstSpace Greedy 46.9 51.7 65.0 28.6 23.9 65.2

PathPieceL

BPE FirstSpace PathPieceL 49.4 52.1 71.0 29.9 23.9 66.9
n-gram FirstSpace PathPieceL 45.5 42.6 63.0 30.3 22.7 60.9
n-gram FirstSpDigit PathPieceL 44.9 44.0 60.0 29.9 22.6 60.8
Unigram FirstSpace PathPieceL 48.5 51.7 71.0 31.2 24.2 66.2

PathPieceR
n-gram FirstSpDigit PathPieceR 45.8 47.5 63.0 28.2 22.4 60.7
n-gram None PathPieceR 44.0 41.2 66.0 26.5 21.6 62.4
n-gram SpaceDigit PathPieceR 45.4 46.3 64.0 32.1 22.7 60.0

RandTrain

BPE FirstSpace Greedy 48.6 50.5 70.0 29.5 23.4 65.8
n-gram FirstSpDigit Greedy 47.9 50.0 63.0 29.5 23.3 65.3
n-gram FirstSpace Greedy 48.3 50.3 70.0 28.2 24.3 65.8
n-gram None Greedy 42.2 41.3 55.0 27.4 21.7 63.2
BPE FirstSpace PathPieceL 46.5 45.8 65.0 30.8 23.3 62.8
n-gram FirstSpDigit PathPieceL 38.8 31.2 48.0 27.8 22.6 54.7
n-gram FirstSpace PathPieceL 40.0 30.7 55.0 26.5 20.8 55.4
n-gram None PathPieceL 36.8 27.7 56.0 28.6 22.8 54.5

random 32.0 25.0 50.0 25.0 20.0 50.0

Table 6: 350M parameter model, 40,960 token vocabulary, accuracy (%) on average and initial 5 tasks
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Vocab Constr Init Voc Pre-tok Segment qa4mre race sciq sociology wsc273

BPE
FirstSpace Merge 32.4 30.1 87.7 35.3 69.2
FirstSpace Greedy 31.7 30.9 88.3 35.8 68.9
FirstSpace PathPieceL 30.3 30.2 83.8 35.3 68.1

Unigram
FirstSpace Likelihood 29.6 30.8 86.4 32.8 67.8
FirstSpace Greedy 32.4 29.6 86.7 32.8 70.3
FirstSpace PathPieceL 30.3 27.4 75.0 27.4 62.3

WordPiece FirstSpace Greedy 31.0 30.3 87.7 32.8 68.1

SaGe

BPE FirstSpace Greedy 28.9 30.2 89.5 34.8 67.8
n-gram FirstSpDigit Greedy 30.6 28.1 85.8 32.3 59.7
n-gram FirstSpace Greedy 29.2 30.0 88.4 33.3 65.2
Unigram FirstSpace Greedy 26.8 29.1 86.9 31.3 60.1

PathPieceL

BPE FirstSpace PathPieceL 31.0 29.6 87.3 34.3 67.8
n-gram FirstSpace PathPieceL 29.9 27.9 81.0 34.8 61.9
n-gram FirstSpDigit PathPieceL 27.5 28.2 80.7 30.9 64.1
Unigram FirstSpace PathPieceL 31.3 29.7 86.3 29.9 63.7

PathPieceR
n-gram FirstSpDigit PathPieceR 29.9 30.8 82.1 27.4 66.3
n-gram None PathPieceR 23.6 28.3 73.8 35.8 60.4
n-gram SpaceDigit PathPieceR 27.5 28.7 78.2 31.3 63.0

RandTrain

BPE FirstSpace Greedy 32.0 29.6 86.9 30.9 67.4
n-gram FirstSpDigit Greedy 30.6 30.0 87.5 31.3 68.1
n-gram FirstSpace Greedy 29.9 29.7 85.3 32.8 67.0
n-gram None Greedy 28.2 27.8 75.9 26.4 55.0
BPE FirstSpace PathPieceL 32.8 28.5 80.3 30.9 64.5
n-gram FirstSpDigit PathPieceL 31.3 24.2 62.1 30.4 55.3
n-gram FirstSpace PathPieceL 28.9 23.6 66.8 33.8 59.0
n-gram None PathPieceL 21.5 24.9 51.8 28.9 51.7

random 25.0 25.0 25.0 25.0 50.0

Table 7: 350M parameter model, 40,960 token vocabulary, accuracy (%) on remaining 5 tasks

Vocab Constr Init Voc Pre-tok Segment Avg arc_easy copa mktg mathqa piqa

BPE
FirstSpace Merge 48.1 52.3 65.0 31.6 23.7 65.7
FirstSpace Greedy 49.5 53.9 72.0 31.6 24.2 68.4
FirstSpace PathPieceL 47.2 48.6 69.0 26.9 22.8 63.1

Unigram
FirstSpace Likelihood 48.8 52.3 69.0 35.0 23.9 66.1
FirstSpace Greedy 48.6 51.6 68.0 32.1 24.4 65.7
FirstSpace PathPieceL 44.0 39.4 57.0 30.3 23.3 61.2

WordPiece FirstSpace Greedy 48.8 52.6 68.0 28.2 23.5 66.2

SaGe

BPE FirstSpace Greedy 48.8 51.9 71.0 29.9 22.6 65.5
n-gram FirstSpDigit Greedy 47.2 46.6 67.0 31.2 22.7 63.4
n-gram FirstSpace Greedy 48.0 49.7 66.0 31.6 21.6 65.7
Unigram FirstSpace Greedy 47.8 49.7 68.0 29.9 23.5 64.6

PathPieceL

BPE FirstSpace PathPieceL 49.4 51.9 69.0 29.9 24.5 66.6
n-gram FirstSpace PathPieceL 43.9 42.4 56.0 28.6 23.8 60.3
n-gram FirstSpDigit PathPieceL 45.0 44.5 59.0 28.2 22.3 59.5
Unigram FirstSpace PathPieceL 48.4 51.4 67.0 29.5 24.7 65.2

PathPieceR
n-gram FirstSpDigit PathPieceR 45.5 46.0 62.0 25.6 22.1 61.6
n-gram None PathPieceR 42.2 42.6 64.0 22.2 22.4 60.9
n-gram SpaceDigit PathPieceR 47.3 48.7 68.0 34.2 21.9 65.1

random 32.0 25.0 50.0 25.0 20.0 50.0

Table 8: 350M parameter model, 49,152 token vocabulary, accuracy (%) on average and initial 5 tasks
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Vocab Constr Init Voc Pre-tok Segment qa4mre race sciq sociology wsc273

BPE
FirstSpace Merge 28.9 31.0 87.3 28.9 67.0
FirstSpace Greedy 29.6 31.2 88.4 29.4 66.3
FirstSpace PathPieceL 31.0 30.7 85.4 31.8 63.0

Unigram
FirstSpace Likelihood 27.5 30.3 89.1 28.9 65.9
FirstSpace Greedy 32.4 29.5 86.7 32.3 63.7
FirstSpace PathPieceL 33.1 26.0 74.5 27.9 67.0

WordPiece FirstSpace Greedy 29.2 31.1 88.0 34.3 66.7

SaGe

BPE FirstSpace Greedy 29.6 31.2 87.5 32.3 65.9
n-gram FirstSpDigit Greedy 29.2 28.8 86.4 34.3 61.9
n-gram FirstSpace Greedy 28.8 30.2 87.5 33.8 64.5
Unigram FirstSpace Greedy 28.9 31.4 87.0 29.9 65.6

PathPieceL

BPE FirstSpace PathPieceL 31.0 31.4 87.5 31.3 70.7
n-gram FirstSpace PathPieceL 27.5 26.7 80.8 32.3 60.8
n-gram FirstSpDigit PathPieceL 28.9 30.0 80.6 35.8 61.2
Unigram FirstSpace PathPieceL 29.2 30.5 88.5 32.8 65.6

PathPieceR
n-gram FirstSpDigit PathPieceR 29.6 29.5 82.8 30.9 64.5
n-gram None PathPieceR 25.7 27.5 72.5 27.4 57.1
n-gram SpaceDigit PathPieceR 27.5 28.7 84.0 28.9 66.3

Random 25.0 25.0 25.0 25.0 50.0

Table 9: 350M parameter model, 49,152 token vocabulary, accuracy (%) on remaining 5 tasks

Rank Vocab Constr Init Voc Pre-tok Segment Overall avg 32,768 avg 40,960 avg 49,152 avg

1 PathPieceL BPE FirstSpace PathPieceL 49.4 49.3 49.4 49.4
2 Unigram FirstSpace Likelihood 49.0 49.2 49.1 48.8
3 BPE FirstSpace Merge 49.0 48.8 50.0 48.1
4 BPE FirstSpace Greedy 49.0 48.3 49.1 49.5
5 WordPiece FirstSpace Greedy 48.8 48.5 49.1 48.8
6 SaGe BPE FirstSpace Greedy 48.6 47.9 49.2 48.8
7 Unigram FirstSpace Greedy 48.3 47.9 48.5 48.6
8 SaGe n-gram FirstSpace Greedy 48.0 47.5 48.5 48.0
9 PathPieceL Unigram FirstSpace PathPieceL 48.0 46.9 48.5 48.4

10 SaGe Unigram FirstSpace Greedy 47.7 48.4 46.9 47.8
11 SaGe n-gram FirstSpDigit Greedy 47.5 48.4 46.9 47.2
12 PathPieceR n-gram SpaceDigit PathPieceR 46.7 47.5 45.4 47.3
13 BPE FirstSpace PathPieceL 46.5 45.6 46.7 47.2
14 PathPieceR n-gram FirstSpDigit PathPieceR 45.5 45.3 45.8 45.5
15 PathPieceL n-gram FirstSpDigit PathPieceL 44.8 44.6 44.9 45.0
16 PathPieceL n-gram FirstSpace PathPieceL 44.7 44.8 45.5 43.9
17 Unigram FirstSpace PathPieceL 43.6 43.6 43.1 44.0
18 PathPieceR n-gram None PathPieceR 43.2 43.5 44.0 42.2

Random 32.0 32.0 32.0 32.0

Table 10: Summary of 350M parameter model downstream accuracy (%), sorted by rank
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Rank Vocab Size Avg Acc CTC Eff α=1.5 Eff α=2 Eff α=2.5 Eff α=3 Eff α=3.5

1 32,768 49.3 1.48 0.604 0.516 0.469 0.441 0.422
1 40,960 49.4 1.46 0.589 0.503 0.457 0.429 0.411
1 49,152 49.4 1.44 0.578 0.492 0.448 0.420 0.402
2 32,768 49.2 1.79 0.461 0.371 0.324 0.295 0.277
2 40,960 49.1 1.77 0.451 0.362 0.316 0.289 0.271
2 49,152 48.8 1.76 0.444 0.356 0.311 0.284 0.266
3 32,768 48.8 1.52 0.594 0.505 0.459 0.431 0.414
3 40,960 50.0 1.49 0.579 0.491 0.446 0.420 0.403
3 49,152 48.1 1.47 0.567 0.481 0.437 0.411 0.394
4 32,768 48.3 1.50 0.605 0.517 0.471 0.442 0.423
4 40,960 49.1 1.48 0.590 0.504 0.458 0.430 0.412
4 49,152 49.5 1.46 0.579 0.494 0.449 0.421 0.403
5 32,768 48.5 1.54 0.598 0.507 0.461 0.433 0.415
5 40,960 49.1 1.51 0.583 0.494 0.448 0.421 0.404
5 49,152 48.8 1.49 0.571 0.483 0.439 0.412 0.396
6 32,768 47.9 1.78 0.545 0.466 0.422 0.396 0.378
6 40,960 49.2 1.76 0.533 0.455 0.413 0.387 0.369
6 49,152 48.7 1.75 0.523 0.447 0.405 0.379 0.362
7 32,768 47.9 1.81 0.510 0.431 0.387 0.359 0.340
7 40,960 48.5 1.79 0.500 0.423 0.381 0.354 0.335
7 49,152 48.6 1.77 0.493 0.416 0.375 0.348 0.330
8 32,768 47.5 1.63 0.629 0.536 0.482 0.447 0.424
8 40,960 48.5 1.62 0.615 0.524 0.470 0.437 0.415
8 49,152 48.0 1.62 0.605 0.515 0.462 0.429 0.407
9 32,768 46.9 1.74 0.508 0.419 0.372 0.343 0.323
9 40,960 48.5 1.72 0.491 0.403 0.356 0.328 0.309
9 49,152 48.4 1.72 0.477 0.389 0.343 0.315 0.296

10 32,768 48.4 2.02 0.485 0.409 0.366 0.339 0.320
10 40,960 46.9 2.01 0.474 0.401 0.358 0.331 0.313
10 49,152 47.8 2.01 0.466 0.393 0.352 0.325 0.307
11 32,768 48.4 1.77 0.587 0.512 0.470 0.443 0.425
11 40,960 46.9 1.76 0.575 0.501 0.460 0.433 0.415
11 49,152 47.2 1.76 0.565 0.492 0.452 0.426 0.408
12 32,768 47.5 2.33 0.236 0.164 0.138 0.124 0.116
12 40,960 45.4 2.30 0.228 0.159 0.133 0.120 0.112
12 49,152 47.3 2.29 0.223 0.155 0.130 0.117 0.109
13 32,768 45.6 1.50 0.606 0.518 0.470 0.442 0.423
13 40,960 46.7 1.47 0.591 0.504 0.458 0.430 0.412
13 49,152 47.2 1.45 0.579 0.494 0.449 0.421 0.403
14 32,768 45.3 1.46 0.616 0.532 0.490 0.465 0.448
14 40,960 45.8 1.43 0.602 0.519 0.478 0.453 0.437
14 49,152 45.5 1.42 0.591 0.508 0.468 0.444 0.428
15 32,768 44.6 1.47 0.620 0.533 0.490 0.464 0.447
15 40,960 44.9 1.44 0.605 0.520 0.478 0.453 0.436
15 49,152 45.0 1.42 0.594 0.509 0.468 0.443 0.427
16 32,768 44.8 1.36 0.677 0.571 0.514 0.480 0.457
16 40,960 45.5 1.33 0.662 0.556 0.500 0.466 0.444
16 49,152 43.9 1.31 0.650 0.544 0.489 0.456 0.435
17 32,768 43.6 1.77 0.471 0.380 0.333 0.304 0.285
17 40,960 43.1 1.75 0.462 0.372 0.326 0.298 0.280
17 49,152 44.0 1.74 0.455 0.366 0.320 0.293 0.275
18 32,768 43.5 1.29 0.747 0.617 0.549 0.511 0.486
18 40,960 44.0 1.26 0.736 0.603 0.535 0.497 0.474
18 49,152 42.2 1.25 0.728 0.591 0.524 0.487 0.464

Table 11: Average Accuracy (%) vs. Corpus Token Count (CTC, in billions) by vocabulary size, for Figure 3. Also
includes the corresponding Rényi efficiency (Zouhar et al., 2023a) for various orders α.
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Vocab Constr Init Voc Pre-tok Segment Avg arc_easy copa mktg mathqa piqa

BPE FirstSpace Merge 53.1 62.0 77.0 32.1 25.0 71.1

Unigram FirstSpace Likelihood 52.4 60.6 71.0 30.3 25.2 71.0

SaGe BPE FirstSpace Greedy 52.2 62.0 72.0 27.4 24.5 71.6
n-gram FirstSpDigit Greedy 50.7 60.3 71.0 28.6 22.8 69.4

PathPieceL
BPE FirstSpace PathPieceL 49.2 57.4 66.0 27.8 24.3 65.9
n-gram FirstSpDigit PathPieceL 47.6 49.7 67.0 24.8 23.4 63.2
n-gram SpaceDigit PathPieceL 46.3 51.1 59.0 28.6 23.3 63.8

Random 32.0 25.0 50.0 25.0 20.0 50.0

Table 12: 1.3B parameter model, 40,960 token vocabulary, accuracy (%) on average and initial 5 tasks

Vocab Constr Init Voc Pre-tok Segment qa4mre race sciq sociology wsc273

BPE FirstSpace Merge 32.4 34.9 93.0 26.4 76.9

Unigram FirstSpace Likelihood 37.7 33.0 91.8 28.9 74.4

SaGe BPE FirstSpace Greedy 34.9 34.8 92.5 25.9 76.2
n-gram FirstSpDigit Greedy 29.9 32.9 91.5 29.4 71.1

PathPieceL
BPE FirstSpace PathPieceL 31.0 33.3 89.4 26.4 70.7
n-gram FirstSpDigit PathPieceL 31.0 31.6 86.1 29.4 70.0
n-gram SpaceDigit PathPieceL 28.9 31.3 87.1 22.4 67.0

Random 25.0 25.0 25.0 25.0 50.0

Table 13: 1.3B parameter model, 40,960 token vocabulary, accuracy (%) on remaining 5 tasks

Voc Con Init V Pre-tok Seg 350M avg 350M rnk 1.3B avg 1.3B rnk 2.4B avg 2.4B rnk

BPE FirSp Merge 50.0 1 53.1 1 54.2 3

PathPL BPE FirSp PathPL 49.4 3 49.2 5 52.7 4
PathPL n-gram FirSpD PathPL 44.9 6 47.6 6

SaGe BPE FirSp Greedy 49.2 2 52.2 3 55.0 1
SaGe n-gram FirSpD Greedy 46.9 5 50.7 4

Unigram FirSp Likeli 49.1 4 52.4 2 54.7 2

Table 14: Downstream accuracy (%) of 10 tasks with vocab size 40,960, for various model sizes
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