EPO: Hierarchical LLM Agents with Environment Preference
Optimization

Qi Zhao", Haotian Fu®, Chen Sun, George Konidaris

Brown University

Abstract

Long-horizon decision-making tasks present
significant challenges for LLM-based agents
due to the need for extensive planning over
multiple steps. In this paper, we propose a
hierarchical framework that decomposes com-
plex tasks into manageable subgoals, utilizing
separate LLMs for subgoal prediction and low-
level action generation. To address the chal-
lenge of creating training signals for unanno-
tated datasets, we develop a reward model that
leverages multimodal environment feedback to
automatically generate reward signals. We in-
troduce Environment Preference Optimization
(EPO), a novel method that generates prefer-
ence signals from the environment’s feedback
and uses them to train LLM-based agents. Ex-
tensive experiments on ALFRED demonstrate
the state-of-the-art performance of our frame-
work, achieving first place on the ALFRED
public leaderboard and showcasing its poten-
tial to improve long-horizon decision-making
in diverse environments.

1 Introduction

Long-horizon decision-making/planning remains
a formidable challenge for Large Language
Model(LLM)-based agents (Valmeekam et al.,
2023; Liu et al., 2023; Silver et al., 2024). These
tasks require extensive planning over multiple
steps, maintaining coherence and goal orientation,
which is difficult for LLMs that are typically de-
signed for more immediate and localized predic-
tions. Moreover, a key issue of finetuning LLMs for
embodied agents is the need of large scale labeled
data (Reed et al., 2022). The same issue is reflected
in researchers’ effort in building reward models
from vision foundation models as we might need to
obtain “internet-scale” data of task demonstrations
(Fan et al., 2022).

*: Equal contribution. Code and dataset can be found
at https://github.com/kevinz8866/EPO.

To tackle the first challenge, a straightforward
way is to first let the LLM decompose the long-
horizon task into shorter horizon subtasks, and then
use different LL.Ms as the policies at different lev-
els, i.e., use one LLM-based policy to generate
subgoals, and use another LLM generate low-level
actions given the subgoals, both of which require
significantly fewer planning steps. This decompo-
sition facilitates more effective planning and exe-
cution by leveraging the predictive power of LLMs
at both the subgoal and action levels.

However, the problem of how to efficiently train
these LLM-based agents remains. In this paper, we
consider the setting where only part of the dataset
are annotated with ground-truth actions and sub-
goals, and we need to find a way to create train-
ing signals for the unannotated dataset. The com-
mon training signals for decision-making agents
are based on the rewards received during inter-
actions with the environment (Sutton and Barto,
1998). But the manual design of reward functions
is both time-consuming and prone to inaccuracies,
which hinders the scalability and adaptability of
LLM-based agents in dynamic and diverse envi-
ronments. Consequently, there is a growing need
for methods that can automatically generate reward
signals from the environment, thus bypassing the
complexities associated with human-engineered re-
wards. This motivation drives us to explore reward
modeling approaches that can leverage multimodal
feedback from the environment, such as visual and
interaction data, to guide the learning process of
LLM-based agents by leveraging the public pre-
trained foundation models.

On the other hand, recent advancements in pref-
erence optimization techniques, such as Direct
Preference Optimization (DPO) (Rafailov et al.,
2023), have shown that LLMs can be effectively
trained using preference-based signals rather than
explicit reward functions. DPO leverages the in-
herent capabilities of LLMs to model preferences

6401

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 6401-6415
November 12-16, 2024 ©2024 Association for Computational Linguistics

https://github.com/kevinz8866/EPO

between different outputs, facilitating a more intu-
itive and flexible training paradigm. This insight
inspires us to develop a novel method that com-
bines the strengths of preference optimization with
automatic reward modeling to enhance the per-
formance of LLM-based agents in long-horizon
decision-making tasks.

In this paper, we propose a hierarchical LLMs-
based framework for long-horizon decision making
problems. Our agent decomposes complex tasks
into manageable subtasks by training two LLMs to
predict the subgoal decomposition and low-level
actions respectively. To retrieve enough training
signals from the unannotated dataset, we propose
a LL.M-based reward model that is able to inte-
grate the multimodal environment feedback infor-
mation and automatically generate reward signals
for the unannotated dataset. Then, we introduce
Environment Preference Optimization (EPO), a
method that generates preference signals automati-
cally from the environment’s feedback. EPO ranks
the proposed actions and subgoals based on the es-
timated rewards and constructs a preference dataset
that guides the training of LLLM-based agents. This
approach leverages both annotated and unannotated
datasets, significantly expanding the training data
available for improving agent performance.

To validate our framework design, we conduct
extensive experiments on ALFRED (Shridhar et al.,
2020a), a popular household simulation environ-
ment for embodied agents. Our method achieves
the state-of-the-art performance on ALFRED. We
also find that unified environment feedback signifi-
cantly help decision-making agents in both subgoal
decomposition level and environment interaction
level. Moreover, in the setup where there exists a
large dataset of task specifications but only a small
annotated task and demonstrations, our framework
allows agent to benefit from the unannotated new
tasks while significantly outperforming supervised
training, indicating the potential of our framework.

To sum up, we make the following contributions:

1. We propose a hierarchical LLMs-based frame-
work for long-horizon decision-making prob-
lems, where both levels of LLMs can be
jointly trained with preference signals gen-
erated from a LLM-based reward model.

2. We propose Environment Preference Opti-
mization (EPO), a method that first learns
to automatically generate preference signals

for an unannotated dataset from multimodal
environment feedbacks by learning a reward
model, and then use them to train/finetune the
hierarchical LLMs-based agents.

3. We demonstrate the effectiveness of our
framework through extensive experiments and
achieved state-of-the-art performance on AL-
FRED (we reached the first place on the AL-
FRED public leaderboard').

2 Related Work

Foundational Models for Embodied Agents. A
number of recent works have explored foundational
models for embodied agents (Driess et al., 2023;
Stone et al., 2023; Brohan et al., 2023; Zitkovich
et al., 2023). Our work is inspired by many previ-
ous language grounding agents work (Singh et al.,
2023; Ahn et al., 2022; Huang et al., 2022) on
robotics. These studies work on grounding natu-
ral language prompt or robotic actions with sym-
bolically represented visual or interaction infor-
mation. Similarly effort in grounding language
to visual information for embodied agents have
been done in (Song et al., 2023a). Among works
in simulation, Pashevich et al. (2021) present the
end-to-end approach for decision-making agents,
which directly predicts the agent’s next action from
task specification and visual input without subgoal
alignment and map-based navigation. Min et al.
(2021) introduce a hierarchical approach, which
has dominated due to their superior performance.
Fu et al. (2024) leverages LLM to help learning
skills from demonstrations. Our hierarchical LLMs
framework is also inspired by many prior hierar-
chical RL works (Nachum et al., 2018; Levy et al.,
2019; Fu et al., 2023).

Reward Modeling with Foundational Models.
Foundation models with their capability in encod-
ing generic representations of a modality have mo-
tivated researchers to use them to generate reward
signals in order to bypass human reward engineer-
ing. Among these efforts, Sontakke et al. (2023);
Escontrela et al. (2023); Chen et al. (2021); Fan
et al. (2022); Mahmoudieh et al. (2022) use vision
foundation models to estimate the reward by align-
ing visual features with desired actions or state tran-
sitions. However, these approaches often require
large scale data. In contrast, we are interested in

"https://leaderboard.allenai.org/alfred/
submissions/public. EPO has been top of the leaderboard
as of the release date of this paper.

6402

https://leaderboard.allenai.org/alfred/submissions/public
https://leaderboard.allenai.org/alfred/submissions/public

using pretrained LLMs to generate reward signals
(Kwon et al., 2023) from all symbolically repre-
sented environment feedback. Within this scope,
Song et al. (2023b); Yu et al. (2023); Ma et al.
(2023); Huang et al. (2023); Wang et al. (2023)
use language models to generate rewards to help
robot learn skills based on the symbolic states. For
embodied agents, ELLM (Du et al., 2023) propose
a framework to use LLMs to guide agents’ explo-
ration and generate reward based on the task goals
in 2D games and robotic simulators. Compared to
existing works, we fill in the blank by proposing
a generic framework that use LLMs to synthesize
reward from multimodal environment feedback.

Preference-Based Learning for Language
Models. Aligning language models to human pref-
erence (Ouyang et al., 2022) has greatly improved
language models to follow human instructions. Re-
cent development such as Direct Preference Op-
timization (Rafailov et al., 2023), self-rewarding
language models (Yuan et al., 2024) in preference
alignment allows the language model to directly
learn the preference relation and also learn from its
own synthesized data. Inspired by these work, we
extend the definition of “preference” into the align-
ment between environment feedback and agent ac-
tions with respect to the task specification. We
leverage the algorithmic advantage demonstrated
in DPO and the idea of self data synthesis (Lee
et al., 2023) to train LLM-based embodied agents
to ground language to environment feedback.

3 Method

We first describe the problem setup in 3.1 and then
introduce our hierarchical LLMs-based decision-
making agent in 3.2. Then we present our ap-
proaches for generating reward signals from mul-
timodal environment feedback in 3.3. Lastly, we
explain how we train the hierarchical agents with
Environment Preference Optimization in 3.4.

3.1 Problem Setup

In this paper, we consider the decision-making
agents that take in human language instructions G
as well as visual observations o from environment
FE, and generate a sequence of actions a to interact
with the environment, aiming to achieve the goal de-
scribed by G. Low-level action a is parameterized
by an action type [and optionally a target object k;,
in the form of natural language, e.g. Pickup (apple),
Moveforward (None). We consider the setting of

learning from demonstrations and we have access
to the environment E that each task is associated
with, where the reward function is not provided
if we let the agent interact. We assume the agent
is given a partially-annotated dataset— a certain
portion of the dataset are unannotated. Each tra-
jectory from the fully annotated part of the dataset
consists of {G, E, g1, a1, g2, az, - - - }, where g; de-
notes the assigned subgoal for current timestep ¢.
g from the dataset is also described by language.
The unannotated part of the dataset consists of task
goals and environments (no reward function) with-
out the ground-truth low-level actions and subgoals
{G1,E1,G9, Ey,---}. The performance of our
agent is measured with task success rate, which is
the percentage of test tasks completed given a set
of human task instructions.

3.2 Hierarchical LLMs-based Agent

LLMs are known for struggling with long-horizon
planning tasks. A natural way to alleviate this issue
is by decomposing the tasks into shorter-horizon
subtasks. We show our hierarchical LLMs-based
agent framework in Figure 1. We finetune pre-
trained LLMs to output predictions for subgoals
given the general task goal, and finetune another
LLM to output predictions for low-level actions
given the subgoals. Specifically, we parameter-
ize each subgoal with a high-level action type h
and a target object/position kp, both in the form
of language, similar to what we set for the low-
level actions. Note that the subgoal may look same
to some low level actions, e.g. “pickup potato”.
However, the “pickup” low level action can be
executed only when the agent is at a place near
the potato and facing towards it, while the sub-
goal “pickup potato” needs to be executed from
anywhere and may require many low-level actions
for navigation. Given the task instruction G (e.g.
Wash the apple on the counter) and the original
subgoal described by natural language (e.g., Find
the apple), the high-level decomposition module
(parameterized by an LLM) 7, outputs the decom-
posed subgoals {h, k,} = m(G, g), e.g. “Heat
Cup”.

We find this subgoal decomposition design es-
pecially beneficial for training embodied agents
that directly use LLMs as their policies since: 1.
Subgoals with a fixed form instead of the free-form
language from the dataset enable us to better in-
fer the preference signals between two possible
responses (see Section 3.4). 2. It functions as a

6403

4 N

N)

\ 4

Visual Input:

| Symbolic Representation

Subgoal: Previous Action: <_|

“Heat Cup” “Open microwave”

Policy Input: *

“From the environment you observe..
Your Instruction is to pick...”

\/ v
Llama2 0OQ

Low-level policy

Llama2 * Environment
‘ High-level polic Next Action:
o 1;7ask Instruction: " 9 policy Actions: {Pickup} =¥
“Open the microwave, put the At
white cup into ...” iUbtgoali Object:{cup}
“Heat cup”
_ J J J
Agent Input Module 1: subgoal decomposition Module 2: Interaction

Figure 1: An illustration of the hierarchical framework. Our agent first outputs the subgoals from human instructions
and visual inputs using its high-level subgoal decomposition module. Then the interaction module predicts low-level

actions autoregressively to complete the given subgoals.

translation of the original subgoal instructions de-
scribed in natural language. E.g., we find that in
practice, in ALFRED, one of the subgoal instruc-
tions given be the dataset is “Then, pick up the
dog from the desk”. However, there’s no dog in
the room and the “dog” in the instruction actually
refers to the statue that looks like a dog. Thus
our subgoal decomposition outputs two subgoals
“Moveto desk” and “Pickup statue”, which correct
the mistake in the dataset and also make the sub-
goals more concise for the low-level policy (LLM)
to infer the grounding actions.

For the low-level interaction module, the agent
is given the subgoal decomposition output from the
high-level module, and autoregressively outputs
a sequence of low-level actions a, each of them
parameterized by an action type [and an target ob-
ject/position k; to interact with the environment. At
timestep ¢ for a given transformed subgoal {h, kp, }
and sequence of past actions in completing this sub-
goal apat = {ao, - -, a;—1}, the low-level interac-
tion module 7; predicts the next low-level action
a; = m(h, kn, apast) to reach the given subgoal,
all in the form of natural language. The low-level
agent will output a <stop> token if it thinks the sub-
goal is fulfilled - the language-model-based policy
outputs a sequence of actions and we switch to the
next subgoal once these actions are all executed.
One can expect the agent complete the given task if
its subgoal decomposition module can predict the
subgoal sequence correctly and for each subgoal,
the skill module can output the correct low-level
action sequences.

3.3 Reward modeling from Environment
Feedback

One of the key motivations of this paper is to by-
pass the complex human-based reward engineering
and learn to automatically generate feedback sig-
nals for a diverse set of unannotated tasks that can
help train the LLM-based agent. To this end, we
propose an approach to learn a reward model that
is able to generate feedback signals from the multi-
modal observations of the environment. We show
the proposed Reward Modeling and EPO training
framework in Figure 2.

Environment Feedback. We consider two types
of environment feedback that an embodied agent
can typically receive. The first one is visual posi-
tional feedback, i.e., each timestep the agent will
receive a visual observation (image) describing the
current environment, and we apply pretrained vi-
sion models to retrieve visual positional feedback
V' in the form of labels or natural language. For
example, given an observed frame in a house, an
object detection model of our agent will output a
list of objects detected from its label space or a
textual description such as "a computer on top of
a desk". The second type of feedback is interac-
tion feedback. If the agent attempt to interact with
the detected objects using low-level actions like
“pick up” or “close”, it will receive a interaction
feedback [in the form of boolean values or natural
language. For example, our agent could attempt to
“Pick up Cup”, then it will receive a boolean value
indicating if its action succeeded.

Reward Modeling. In order to unify the feed-
back information, we symbolically represent them
all in language if they are in the form of labels.
We denote the language represented feedback in-

6404

(Task Instruction: N\ (Task Instruction: “Put the d Task I:strL;(/:tiont:j ”
“Put the dog on the table and turn on...” “Pick up the cup from the desk, move to...” ut the dog on the table and turn on...
.. Environment Grounding:
Subgoal: Low-level Actions: _ ?27? ‘Available objects: pen, statue, salt,..
“HeatObject {Open} {Microwave}, Unannotated Data == -C-h:);e-n'- """" R -ej-e::t-' """
Cup {PutObject} {Cup}, ... “Pickup Statue” “Pickup Dog”
Anmotated Data Inference/Al Labeling —_— — - k J
High-reward Output: EPO Dataset
4 I “Pickup Statue” | | -
: @ Vision Models \ Llama2 7 Reward value: 1 | EPO I - |
— BB ineractions — Reward Model | Low-reward Output: i |
Training | “Pickup Dog’ | | | |
Reward value: 0 . \
“Available objects: pen, statue, salt,..” —_ == d Llama2 N | Pickup Statue
N\ i Agent Policy . L
Environment Feedbacks | “Piekup-Deog™
|

Figure 2: An illustration of our pipeline to train reward model for grounding environment feedback with human
instructions. We supervisedly train the reward model given the annotated data. Then we use the reward model to
label unannotated data to obtain the preference relations. Then we form the EPO datasets and optimize our agent

policies using the proposed EPO algorithm.

formation as F'. Our reward model I?,, takes in the
feedback information F', task specific input 7" and
predicted subgoal/action P from the LLM, and out-
puts a reward value which describes the alignment
score of the proposed output with respect to the
task input, given newly observed environment feed-
back. Here, feedback information F' can be visual
feedback V, interaction feedback I, or both. Task
specific input 7" can be the input of the high-level
decomposition module {G, g} or that of the low-
level interaction module {h, kp,, apast }. Predicted
output P can be the output of the subgoal decom-
position module {h, kp, } or that of the interaction
module a.

F= (¢))

RP(F7T7 P)

To train this reward model, we construct positive
pairs based on whether the proposed output is cor-
rect with respect to the task input and assign them
with high rewards. Similarly we construct nega-
tive pairs with incorrect proposed output and low
rewards. For instance, if the visual positional feed-
back we get from the environment after symbolic
representation F' is “there exists a cup and an apple
on the counter” and our task instruction 7' is “pick
up the red apple on the left side of the cup”, we
will construct the positive pair using the correct
label, so our proposed answer P is “Pick up object
apple”. When constructing the negative pair, we
have the same F' and 7', but the proposed answer
is randomly chosen from possible outputs, it can
be “Pick up object cup”. In this way, we construct
a synthetic dataset that maps the environment feed-
back, task specifications, and proposed answers to
reward values. Then we train the reward model
using the cross-entropy loss.

3.4 Environment Preference Optimization

With the trained reward model, we can leverage
the unannotated dataset by evaluating our agent’s
proposed subgoals or low-actions according to the
given environment feedback and task specification.
We first pretrain the hierarchical LLM modules on
the annotated dataset. Then on the unannotated
dataset, we use our reward model to evaluate the
LLM modules’ outputs and rank them according
to the estimated reward. After that, we will have
a ranking of the outputs (p1, p2, - .., ppn), Where py
denotes the output that is given the highest reward:
Tp; = maxrp,. Itholds that 7y, > 7, if i < j.
From the response ranking, we
construct a preference dataset D
{(F1, 11, pwi,pnn)s (Fo, T, pw2, Pi2), - - -}, Where
Pw1 1s the proposed output that is more likely
correct, p;; is the less likely one. Given that the
environment feedback and our reward model
labeling might not be perfect, especially under
the circumstance of insufficient labeled data, we
propose Environment Preference Optimization
(EPO) which combines DPO (Rafailov et al., 2023)
training with an token-level alignment loss. We
provide additional token-level constraint while
preserving the learning of preference relations.
The training objective is as below:

LEpo(0) = E(T,py pi)~p [~Pw log(mo (D | T)) + llD](z)

can

, Where

wo(pw | T
Lp = —E(r,py,p)~D [loga(/o’ log %
mo(pu | T))]
Tsup (1 | T)

(3)
— Blog

mp denotes the LLM we are trying to optimize and
it can be either the subgoal decomposition mod-
ule 7, or the low-level interaction module ;. o

6405

denotes the logistic function. [is the hyperparam-
eter for scaling. We use 7y, to denote the LLM
learned from the annotated dataset and denote the
logits of our model output tokens as p. The training
objective of Lp is to maximize the log probability
difference between the chosen response and the
rejected response, which is calculated based on all
tokens. Note that DPO does not force the model to
align with the chosen output, instead it encourages
the model to maximize the reward difference be-
tween chosen outputs and rejected outputs—it does
“soft-alignment”. However, in our case we still
want our model to "hard-align" to the labels with
the highest reward since they are mostly likely to be
the correct label. Furthermore, we want to reduce
the algorithmic instability rises in “soft-alignment”,
which could hamper LLMs to follow certain de-
sired output format. For example in practice, we
want our high-level subgoal decomposition policy
to output both of the subgoal parameters h and
kp,. With the alignment loss (first term in Eqn 2),
we guide the optimization process to reduce the
algorithmic instability rises especially when we
train with a large amount of unlabeled data. In this
way, we let the model learn the preference relation
between answers but also align towards the most
correct outputs with parameters in given format
since it does the reward modeling and the token
level optimization at the same time. Note that in
practice, we apply EPO to both high- and low-level
policies’ training process.

4 Experimental Details

4.1 Environment

We conduct experiments on ALFRED (Shridhar
et al., 2020a), a popular household simulation envi-
ronment based on AI2-THOR (Kolve et al., 2017)
for embodied agents. It consists of 120 indoor sim-
ulations of different room types. The official expert
demonstration dataset consist of 8055 task demon-
stration annotated with 25,743 natural language
instructions in English. The entire dataset is split
into 21023 instructions in training set, 820 in seen
validation set whose environment scenes are shared
with those in the training set, 821 in unseen valida-
tion whose environment scenes are not available in
training set. Only the task instructions in training
and validation set are paired with the subgoal and
low-level action annotations. Subgoals and actions
annotations are in the form of structured natural
language. In this environment, our agent receives

egocentric visual observation in RGB, and render
low-level actions to interact with the environment.
The low-level action space consists of 12 discrete
action types and 82 discrete object types.

4.2 Implementation details

We use pretrained RCNN as the object detec-
tion model and Mask-RCNN as the segmentation
model (He et al., 2017). For representing visual in-
formation, we also want to study how visual detail
information (e.g. image captions) could contribute
as a form of environment feedback. Therefore, we
use BLIP-2 (Li et al., 2023) as our image caption-
ing model and we apply it at the view-points where
we can interact with the objects.

For both levels of our agent modules, and re-
ward models, we use Llama2-7B (Touvron et al.,
2023) as the large language model backbone and
use LoRA (Hu et al., 2022) to efficiently finetune
the language models.

Agent Learning. In order to validate the effec-
tiveness of our framework in learning from unanno-
tated dataset, we split the annotated trained dataset
into a labeled dataset for which we have access
to the annotated labels and a unlabeled dataset for
which we have only access to the task specifica-
tions without labels, to mimic the real world sce-
nario where we have only limited annotated expert
demonstrations but can access to many new task
specifications. On the unlabeled dataset, we use our
reward model trained on the labeled dataset to in-
ference reward for each possible outputs. Then we
form the environment preference dataset based on
the rewards of the outputs. More details about our
experimental setting can be found in the appendix.

5 Results

In this section, we first compare the overall perfor-
mance of our framework with the state-of-the-art
methods on ALFRED public leaderboard and then
modularly study the components of our framework.
We obtain all the results following the standard set-
ting in ALFRED where we first let the agent learn
from the given dataset offline, and then test the the
online rollout performance of the learned policies
(modules) on the given set of new test tasks.

5.1 Comparison with SOTA on ALFRED

To demonstrate the effectiveness of our framework,
we compare the performance of the proposed algo-
rithm to existing works on ALFRED public leader-
board on the hold out test set. Here we use the

6406

Success Rate GC PLWSR PLWGC

Model Unseen Seen Unseen Seen Unseen Seen Unseen Seen
HLSM (Blukis et al., 2022) 0.2027 0.2994 03031 0.4121 0.0555 0.0874 0.0999 0.1458
FILM (Min et al., 2021) 0.2780 0.2883 0.3852 0.3955 0.1132 0.1127 0.1513 0.1559
EPA (Liu et al., 2022) 0.3607 03996 03954 04414 0.0292 0.0256 0.0391 0.0347
Prompter (Inoue and Ohashi, 2022) 0.4572 0.5323 0.5876 0.6343 0.2076 0.2581 0.2622 0.3072
CAPEAM (Kim et al., 2023) 0.5036 0.5258 0.6140 0.6098 0.2159 0.2309 0.2531 0.2710
EPO (ours) 0.6235 0.6479 0.6752 0.7230 0.5199 0.5692 0.6415 0.6620

Table 1: Comparison with SOTA methods on ALFRED test set. GC stands for “goal-conditioned”. PLW stands for
“path length weighted”. We get the data of the baselines from ALFRED’s public leaderboard.

best setup for all our module. That means we
use the subgoal decomposition module and interac-
tion module both trained on environment feedback
with reward modeling and EPO. In Table 1, our
method significantly outperforms previous work
over 12.0% on unseen test tasks while achieving
SOTA performance on both unseen and seen scenar-
10s in all metrics, indicating the effectiveness of our
approach. Moreover, our method achieves signifi-
cant superior performance on path length weighted
(PLW) metrics, which indicates the efficiency of
our method in completing the tasks in fewer steps.
It is worth mentioning that our approach does not
use semantic voxel map (Shridhar et al., 2020b),
which requires the access of environment meta data.
Our approach uses agent exploration (Appendix B)
to obtain object location information which gen-
eralizes better to real world scenarios without the
meta information defined in simulators.

5.2 How well does EPO learn from
unannotated data?

Environment preference optimization enhances
the agent’s performance via training on the
unannotated data. We compare to Supervised
Fine-Tuning (SFT), where we directly prepend the
environment feedback to task information and train
only use the annotated dataset. To study whether
our proposed framework can further improve itself
through learning from unannotated dataset, we con-
sider three data split. First, full/No-Split means we
use the entire annotated ALFRED dataset. Second,
90/10 means we use 90% of the demonstration with
their annotations and 10% of the demonstration
without annotation. Lastly, 10/90 refers to the split
where only 10% of the data we use is annotated and
90% is unannotated. We can see that in all three se-
tups, our method based on environment preference
optimization outperforms supervised fine-tuning.
As we increase the amount of unannotated data, one

can observe that our framework start to show more
significant superior performance than supervised
fine-tuning. This trend of our proposed EPO per-
forming better when there exists more unannotated
data indicates that the data efficiency and potential
of EPO in real application scenarios, as data effi-
ciency is one of the most important problems for
learning from demonstrations in practice.

Learning Data Split Unseen Seen
SFT full 0.5383 0.4939
EPO full 0.5481 0.5024
SFT 90/10 0.5286 0.4841
EPO 90/10 0.5445 0.4988
SFT 10/90 0.4689 0.4305
EPO 10/90 0.5091 0.4668

Table 2: Comparing different learning paradigms on
validation dataset.

5.3 How well do different environment
feedbacks help decision making?

Reward modeling can help improve low-level
interaction module. Previous work on ALFRED
(Min et al., 2021) makes the hypothesis that, AL-
FRED’s low-level action dynamics to accomplish
the interaction subgoals are quite deterministic and
can potentially be handled with a deterministic pro-
gram. We consider the comparison between our
learning-based interaction module (LLM) against
the hard-coded deterministic program. Here we use
the same subgoal decomposition policy which is
supervised fine-tuned with the environment feed-
back and only change the interaction module for
a fair comparison. As shown in Table 3, with re-
ward modeling and EPO training, our LLM-based
interaction module is able to achieve better per-
formance than the hard-coded program. We also
observe that without reward modeling, our inter-
action module fails to achieve comparable result
with respect to the deterministic program due to the
inaccuracy in choosing low-level actions. We find

6407

Task Instruction:
“Pick up the white coffee cup, ...”
Environment Feedback:
“Available object during interaction: pen, mug, bowl...”

Baseline High-level Policy

EPO Trained High-level Policy

EPO Trained Low-level Policy

}

I

1

I

I

1

! .

| Failed
A =

! Vo

|

I

I

|

}

I

1

Action: {PutObject} ({Pen}) {Desk}

Baseline Low-level Policy

1
1

1

1

1

1

1

Failed ; f |
—_) =y Entire Task Failed |
i i .
1

1

1

1

1

1

Action: {PutObiject} ({Pen}) {Desk}

No Action

“

“ A 4
Succes
-

Action: {LookDown}{/} Success after pose adjustment 1

Figure 3: An visual illustration of how EPO improved both high-level subgoal decomposition policy and the
low-level interaction policy. In the left figure, we present the difference between a baseline high-level policy and a
EPO trained counterpart. We observe that the latter one can correctly figure out the subgoal. In the right figure, we
present the difference between a baseline low-level policy and a EPO trained counterpart. We observe that the latter
one can conduct post adjustment to successfully execute the actions.

that since the interaction module in this setup is
only trained to imitate previous action trajectories,
it fails on the test tasks when the setup is different
from the training settings. For example, we would
expect the agent to first “open the drawer" when
the drawer is closed before attempting to “pickup
the pen”. However, in training data, the majority of
“pickup object” actions do not require to open the
receptacle object first.

Action Policy Feedback Reward Unseen Seen

Program - - 0.5383 0.4939
Model No No 0.2907 0.2707
Model Yes No 0.5116 0.4744
Model Yes Yes 0.5542 0.5341

Table 3: Comparison between static program and
learning-based interaction module. Feedback indicates
whether we include feedback information. Reward in-
dicates whether we use SFT or EPO with data gathered
during interaction.

Environment feedback can help subgoal de-
composition. We use supervised finetuning to fine-
tune the subgoal decomposition policy with envi-
ronment feedback and use the static program as
the interaction module as a fair comparison. Both
the learning algorithm and the interaction module
are the same as the baseline module. As shown
in Table 4, with either interaction feedback or vi-
sual feedback or a combination of both, we obtain
performance gain on both seen and unseen tasks.
We also find that a combination of both types of
feedback reaches the best performance and that the

interaction feedback exhibits more benefit for train-
ing than only using visual feedback. One possible
reason is that our image captioning model only
gives a scene description while the interaction feed-
back that is more concrete indicator on whether the
object is a potential candidate for subgoals.

Model interaction visual Unseen Seen
Baseline No No 0.4397 0.4036
Augmented Yes No 0.5383 0.4939
Augmented No Yes 0.4738 0.4317
Augmented Yes Yes 0.5334 0.5036

Table 4: Comparing different feedback types on valida-
tion set. Interaction means whether we include interac-
tion feedback when learning the reward model. Visual
means whether we include visual feedback.

5.4 Qualitative Analysis

In addition to quantitative experiments, we visual-
ize the performance of our policies and investigate
their effectiveness. Figure 3(a) shows a compari-
son between the baseline policy and the EPO-tuned
policy. We see that the baseline policy outputs sub-
goal predictions closely following the language but
outputs the wrong object “cup” that the low-level
interaction module cannot process. However, from
environment feedback we detected “mug” exists.
Our EPO-tuned policy is able to output the correct
parameterization for the subgoal and complete the
task. Figure 3(b) shows a comparison between the
hard-coded deterministic program and our learning-
based low-level interaction module. We find that
the deterministic program fails because although

6408

it outputs the action that is nearly correct but the
agent is not close enough to the object so the action
(Putobject) cannot be executed. On the other hand,
after EPO-tuning our module learn to first output
actions to adjust its pose, which leads to success
interaction with the environment.

6 Conclusion

In this paper, we presented a hierarchical LLM-
based framework for long-horizon decision-making
tasks, addressing the inherent challenges of exten-
sive planning and the need for scalable training sig-
nals. By leveraging a reward model that integrates
multimodal environment feedback, and introducing
Environment Preference Optimization (EPO), we
successfully generated training signals for unanno-
tated datasets. Our framework demonstrated state-
of-the-art performance on the ALFRED bench-
mark. Future work will focus on exploring the inte-
gration of additional types of multimodal feedback
to further enhance the agent’s decision-making ca-
pabilities, as well as extending our framework to
real world robotics tasks.

6409

Limitations

We evaluate the proposed method on ALFRED,
where the low-level action space is discrete and
annotated with language. For some continuous
control tasks, the action space can be much larger
and hard to interpret. Future work will focus on
exploring the integration of additional types of mul-
timodal feedback to further enhance the agent’s
decision-making capabilities, as well as extending
our framework to real world robotics tasks.

Acknowledgement

This work was conducted using computational re-
sources and services at the Center for Computation
and Visualization, Brown University. The project
was in part supported by ONR grant #N00014-22-1-
2592, and the Samsung Global Research Outreach
program. The authors would like to thank Calvin
Luo, Tian Yun, as well as the anonymous reviewers
for valuable feedbacks.

References

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen
Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Chuyuan Fu, Keerthana Gopalakrishnan, Karol Haus-
man, et al. 2022. Do as i can, not as i say: Ground-
ing language in robotic affordances. arXiv preprint
arXiv:2204.01691.

Valts Blukis, Chris Paxton, Dieter Fox, Animesh Garg,
and Yoav Artzi. 2022. A persistent spatial semantic
representation for high-level natural language instruc-
tion execution. In CoRL.

Anthony Brohan, Noah Brown, Justice Carbajal, Yev-
gen Chebotar, Joseph Dabis, Chelsea Finn, Keerthana
Gopalakrishnan, Karol Hausman, Alexander Herzog,
Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan,
Tomas Jackson, Sally Jesmonth, Nikhil J. Joshi, Ryan
Julian, Dmitry Kalashnikov, Yuheng Kuang, Isabel
Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Ut-
sav Malla, Deeksha Manjunath, Igor Mordatch, Ofir
Nachum, Carolina Parada, Jodilyn Peralta, Emily
Perez, Karl Pertsch, Jornell Quiambao, Kanishka
Rao, Michael S. Ryoo, Grecia Salazar, Pannag R.
Sanketi, Kevin Sayed, Jaspiar Singh, Sumedh Son-
takke, Austin Stone, Clayton Tan, Huong T. Tran,
Vincent Vanhoucke, Steve Vega, Quan Vuong, Fei
Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and
Brianna Zitkovich. 2023. RT-1: robotics transformer
for real-world control at scale. In Robotics: Science
and Systems XIX, Daegu, Republic of Korea, July
10-14, 2023.

Annie S Chen, Suraj Nair, and Chelsea Finn. 2021.
Learning generalizable robotic reward functions
from" in-the-wild" human videos.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem
Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu
Nguyen, and Yoshua Bengio. 2019. Babyai: A plat-
form to study the sample efficiency of grounded lan-
guage learning. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019. OpenReview.net.

Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey
Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan
Wahid, Jonathan Tompson, Quan Vuong, Tianhe
Yu, Wenlong Huang, Yevgen Chebotar, Pierre Ser-
manet, Daniel Duckworth, Sergey Levine, Vincent
Vanhoucke, Karol Hausman, Marc Toussaint, Klaus
Greff, Andy Zeng, Igor Mordatch, and Pete Florence.
2023. Palm-e: An embodied multimodal language
model. In International Conference on Machine
Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pages 8469—8488. PMLR.

Yuqing Du, Olivia Watkins, Zihan Wang, Cédric Co-
las, Trevor Darrell, Pieter Abbeel, Abhishek Gupta,
and Jacob Andreas. 2023. Guiding pretraining in
reinforcement learning with large language models.

Alejandro Escontrela, Ademi Adeniji, Wilson Yan, Ajay
Jain, Xue Bin Peng, Ken Goldberg, Youngwoon Lee,
Danijar Hafner, and Pieter Abbeel. 2023. Video pre-
diction models as rewards for reinforcement learning.
arXiv preprint arXiv:2305.14343.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Man-
dlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar.
2022. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. In Thirty-sixth
Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track.

Haotian Fu, Pratyusha Sharma, Elias Stengel-Eskin,
George Konidaris, Nicolas Le Roux, Marc-Alexandre
Coté, and Xingdi Yuan. 2024. Language-guided skill
learning with temporal variational inference. CoRR,
abs/2402.16354.

Haotian Fu, Shangqun Yu, Saket Tiwari, Michael
Littman, and George Konidaris. 2023. Meta-learning
parameterized skills. In International Conference
on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings
of Machine Learning Research, pages 10461-10481.
PMLR.

Kaiming He, Georgia Gkioxari, Piotr Dollér, and Ross
Girshick. 2017. Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision,
pages 2961-2969.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

6410

Wenlong Huang, Chen Wang, Ruohan Zhang, Yunzhu
Li, Jiajun Wu, and Li Fei-Fei. 2023. Voxposer: Com-
posable 3d value maps for robotic manipulation with
language models.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky
Liang, Pete Florence, Andy Zeng, Jonathan Tomp-
son, Igor Mordatch, Yevgen Chebotar, et al. 2022.
Inner monologue: Embodied reasoning through plan-
ning with language models. In Conference on Robot
Learning.

Yuki Inoue and Hiroki Ohashi. 2022. Prompter: Utiliz-
ing large language model prompting for a data effi-
cient embodied instruction following. arXiv preprint
arXiv:2211.03267.

Byeonghwi Kim, Jinyeon Kim, Yuyeong Kim, Cheol-
hong Min, and Jonghyun Choi. 2023. Context-aware
planning and environment-aware memory for instruc-
tion following embodied agents. In Proceedings of
the IEEE/CVF International Conference on Com-
puter Vision, pages 10936—10946.

Eric Kolve, Roozbeh Mottaghi, Daniel Gordon, Yuke
Zhu, Abhinav Gupta, and Ali Farhadi. 2017. Al2-
THOR: an interactive 3d environment for visual Al.
CoRR, abs/1712.05474.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and
Dorsa Sadigh. 2023. Reward design with language
models.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie
Lu, Thomas Mesnard, Colton Bishop, Victor Car-
bune, and Abhinav Rastogi. 2023. Rlaif: Scaling
reinforcement learning from human feedback with ai
feedback. arXiv preprint arXiv:2309.00267.

Andrew Levy, George Dimitri Konidaris, Robert Platt
Jr., and Kate Saenko. 2019. Learning multi-level hi-
erarchies with hindsight. In 7th International Confer-
ence on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. arXiv preprint arXiv:2301.12597.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu,
Shiqi Zhang, Joydeep Biswas, and Peter Stone. 2023.
LLM-+P: empowering large language models with op-
timal planning proficiency. CoRR, abs/2304.11477.

Xiaotian Liu, Hector Palacios, and Christian Muise.
2022. A planning based neural-symbolic approach
for embodied instruction following. [Interactions,
9(8):17.

Yecheng Jason Ma, William Liang, Guanzhi Wang, De-
An Huang, Osbert Bastani, Dinesh Jayaraman, Yuke
Zhu, Linxi Fan, and Anima Anandkumar. 2023. Eu-
reka: Human-level reward design via coding large
language models. arXiv preprint arXiv:2310.12931.

Parsa Mahmoudieh, Deepak Pathak, and Trevor Darrell.
2022. Zero-shot reward specification via grounded
natural language. In CoRL.

So Yeon Min, Devendra Singh Chaplot, Pradeep Raviku-
mar, Yonatan Bisk, and Ruslan Salakhutdinov. 2021.
Film: Following instructions in language with modu-
lar methods. arXiv preprint arXiv:2110.07342.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey
Levine. 2018. Data-efficient hierarchical reinforce-
ment learning. In Advances in Neural Information
Processing Systems 31: Annual Conference on Neu-
ral Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada, pages
3307-3317.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

Alexander Pashevich, Cordelia Schmid, and Chen Sun.
2021. Episodic transformer for vision-and-language
navigation. In ICCV.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano
Ermon, Christopher D Manning, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. NeurlPS.

Scott Reed, Konrad Zolna, Emilio Parisotto, Ser-
gio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky,
Jackie Kay, Jost Tobias Springenberg, et al. 2022. A
generalist agent. arXiv preprint arXiv:2205.06175.

Mohit Shridhar, Jesse Thomason, Daniel Gordon,
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer, and Dieter Fox. 2020a. Alfred: A
benchmark for interpreting grounded instructions for
everyday tasks. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 10740-10749.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Cote,
Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. 2020b. Alfworld: Aligning text and
embodied environments for interactive learning. In
ICLR.

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B.
Tenenbaum, Leslie Pack Kaelbling, and Michael
Katz. 2024. Generalized planning in PDDL do-
mains with pretrained large language models. In
Thirty-Eighth AAAI Conference on Artificial Intelli-
gence, AAAI 2024, Thirty-Sixth Conference on Inno-
vative Applications of Artificial Intelligence, IAAI
2024, Fourteenth Symposium on Educational Ad-
vances in Artificial Intelligence, EAAI 2014, Febru-
ary 20-27, 2024, Vancouver, Canada, pages 20256—
20264. AAAI Press.

6411

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,
Jesse Thomason, and Animesh Garg. 2023. Prog-
prompt: Generating situated robot task plans using
large language models. In ICRA.

Chan Hee Song, Jiaman Wu, Clayton Washington,
Brian M Sadler, Wei-Lun Chao, and Yu Su. 2023a.
Llm-planner: Few-shot grounded planning for em-
bodied agents with large language models. In ICCV.

Jiayang Song, Zhehua Zhou, Jiawei Liu, Chunrong
Fang, Zhan Shu, and Lei Ma. 2023b. Self-refined
large language model as automated reward function
designer for deep reinforcement learning in robotics.
arXiv preprint arXiv:2309.06687.

Sumedh Anand Sontakke, Jesse Zhang, Séb Arnold,
Karl Pertsch, Erdem Biyik, Dorsa Sadigh, Chelsea
Finn, and Laurent Itti. 2023. Roboclip: One demon-
stration is enough to learn robot policies. In NeurIPS.

Austin Stone, Ted Xiao, Yao Lu, Keerthana Gopalakrish-
nan, Kuang-Huei Lee, Quan Vuong, Paul Wohlhart,
Sean Kirmani, Brianna Zitkovich, Fei Xia, Chelsea
Finn, and Karol Hausman. 2023. Open-world object
manipulation using pre-trained vision-language mod-
els. In Conference on Robot Learning, CoRL 2023,
6-9 November 2023, Atlanta, GA, USA, volume 229
of Proceedings of Machine Learning Research, pages
3397-3417. PMLR.

Richard S. Sutton and Andrew G. Barto. 1998. Re-
inforcement learning - an introduction. Adaptive
computation and machine learning. MIT Press.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Karthik Valmeekam, Matthew Marquez, Sarath Sreed-
haran, and Subbarao Kambhampati. 2023. On the
planning abilities of large language models - A criti-
cal investigation. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurlPS
2023, New Orleans, LA, USA, December 10 - 16,
2023.

Yufei Wang, Zhou Xian, Feng Chen, Tsun-Hsuan Wang,
Yian Wang, Zackory Erickson, David Held, and
Chuang Gan. 2023. Robogen: Towards unleashing
infinite data for automated robot learning via genera-
tive simulation. CoRR, abs/2311.01455.

Wenhao Yu, Nimrod Gileadi, Chuyuan Fu, Sean Kir-
mani, Kuang-Huei Lee, Montse Gonzalez Arenas,
Hao-Tien Lewis Chiang, Tom Erez, Leonard Hasen-
clever, Jan Humplik, et al. 2023. Language to re-
wards for robotic skill synthesis. arXiv preprint
arXiv:2306.08647.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Sainbayar Sukhbaatar, Jing Xu, and Jason Weston.
2024. Self-rewarding language models. arXiv
preprint arXiv:2401.10020.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu,
Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart, Ste-
fan Welker, Ayzaan Wahid, Quan Vuong, Vincent
Vanhoucke, Huong T. Tran, Radu Soricut, Anikait
Singh, Jaspiar Singh, Pierre Sermanet, Pannag R.
Sanketi, Grecia Salazar, Michael S. Ryoo, Krista Rey-
mann, Kanishka Rao, Karl Pertsch, Igor Mordatch,
Henryk Michalewski, Yao Lu, Sergey Levine, Lisa
Lee, Tsang-Wei Edward Lee, Isabel Leal, Yuheng
Kuang, Dmitry Kalashnikov, Ryan Julian, Nikhil J.
Joshi, Alex Irpan, Brian Ichter, Jasmine Hsu, Alexan-
der Herzog, Karol Hausman, Keerthana Gopalakr-
ishnan, Chuyuan Fu, Pete Florence, Chelsea Finn,
Kumar Avinava Dubey, Danny Driess, Tianli Ding,
Krzysztof Marcin Choromanski, Xi Chen, Yevgen
Chebotar, Justice Carbajal, Noah Brown, Anthony
Brohan, Montserrat Gonzalez Arenas, and Kehang
Han. 2023. RT-2: vision-language-action models
transfer web knowledge to robotic control. In Confer-
ence on Robot Learning, CoRL 2023, 6-9 November
2023, Atlanta, GA, USA, volume 229 of Proceedings
of Machine Learning Research, pages 2165-2183.
PMLR.

6412

A Symbolic Representation and Prompt
Examples

In dealing with multimodal feedback information,
it is crucial for us to design structure prompt to
interact the LLMs. Luckily, the task specifications
T, subgoal and low-level action annotations are
already in the form of text so we do not need to fur-
ther tune them. The visual and interaction feedback
however, needs to proper symbolically represented.
For example, when our object detector finds visi-
ble objects, our agent will interact with it. If the
attempted interaction is successful, our agent will
receive a boolean value from the system. We would
describe this event as “action successful” for our
low-level policies. In gathering the environment
feedback, we would just simply append the name
of the object to the existing object list. Visual feed-
back, which is the image captioning data, is already
in the form of text. Figure 4 illustrates prompt ex-
amples of our pipeline.

Algorithm 1 Environment Preference Dataset Gen-
eration

1: Inmput: Task specification 7, Environment Feedack speci-
fication f, Possible Outputs P
2: // Initialization
Initialize environment preference ranking as empty list.
Initialize environment preference dataset as empty list.
: for p; < possible outputs P do
r; < Reward Model(f,7,p;)
Append p; : r; to environment preference ranking
end for
Sort environment preference ranking according to 7;
: for p; < environment preference ranking[1:] do
preference data point <— {"prompt’: f, 7, ’chosen’: po,
‘rejected’: p; }
10: Append preference data point to environment prefer-
ence dataset
11: end for

R A A

B Additional Algorithm Details

In Algorithm 1, we provide the detailed steps of our
environment preference data generation process.
We first infer reward values from possible outputs
from the policy using the reward model. Then we
rank all the possible outputs based on reward. Then
we pick the output with the highest reward as the
chosen prompt and the rest as the rejected output,
the prompt is environment feedback f prepend to
task specification 7.

Language Model Training For all our policies,
we use pretrained Llama-7B as the backbone LLM.
It has around 7 billion parameters. All our exper-
iments are conducted on NVIDIA A6000 GPU.

We use LoRA to efficiently fine-tune the language
models with the datasets we design. Specifically,
we use 7 = 8, o = 32, and lora dropout equals
to 32. We use a learning rate of 1e — 5 and adam
optimizer. The target fine-tuning modules are the
g-projection layers and the v-projection layers. Ap-
proximately, 5% of the parameters are trained. We
find our training usually coverges within 1 epoch.
For EPO training, the learning rate is set to le — 6.
In all our training, we use a batch size of 32. To
train the reward model, we use Llama2 with a clas-
sification head instead of casual generation. For
BLIP-2, we only use the image as input to generate
the captions. We did try providing additional text
in the prompt but did not observe any clear benefits
to the results.

ALFRED There are two categories of subgoals,
navigation and interaction. We use the determinis-
tic navigator provided by (Shridhar et al., 2020b),
which needs the view-point location to navigate to.
However, we did not use environment meta infor-
mation to obtain the view-points for the objects.
Our agent exploration process is able to successful
record possible view-points for successful interac-
tion. The only meta information we use is action
success and agent inventory. To determine the ob-
ject to navigate to, we use the target object of the
next subgoal as the navigation target. To interact
with objects in ALFRED, one needs to output a
interaction mask. We do so using the MaskRCNN
model provided by (Pashevich et al., 2021). We
use the checkpoints from Episodic Transformer
(Pashevich et al., 2021).

Environment exploration In order to receive
feedback from the environment, we need an struc-
tured process of exploration. First, we define the
concept of “view-points", which indicates the loca-
tion, direction and camera angle. A view-point is
parameterized with four variables z, y, r, h. x and
vy indicates the grid coordinates of the agent in the
3D-environment. r indicates the direction which
our agent is facing. h indicates the eye level angle
of our agents. We consider the height of our agent
fixed at all time. We explore the environment to let
the agent visit as much view-points as possible. We
allow agents to explore all possible locations and
“view-points” to interact with the visible objects.
Through our exploration, we apply object detector
to obtain the visible objects. We record the object
that our agent successfully interacted with. After
exploration, we will have a “view-point” point map
of all objects the agent has interacted with.

6413

Decomposition module The input of our de-
composition module is the task instructions and
the output is generated text that indicates the sub-
goal prediction. The generated text will be post-
processed into high-level actions and target objects
in the form of texts. One could form this problem
as a classification task without the intermediate text.
But we argue that generating free-form language
generalizes better to environments and tasks when
the possible subgoals of our agent are hard to be
defined in a closed set.

Interaction module. After our agent predicts
the subgoals, it uses an interaction module to out-
put the low-level actions to complete each subgoal
sequentially. There exists two types of subgoals:
navigation and interaction. For a navigation sub-
goal, we use a view-point-based navigation planner
with the object location information we gained dur-
ing agent exploration. For interaction subgoals, as
noticed by previous work (Min et al., 2021), the
action sequences required to complete them can be
quite deterministic and is possible to solved them
with a static program. Nevertheless, we propose
a learning-based method in which our model uses
a large language model as its backbone. It takes
in the subgoal information, the interaction feed-
back from its previous action, and its historical ac-
tions in completing this subgoal, all symbolically-
represented in text and outputs the next low-level
action. Our model generalize better to the scenar-
i0s which action dynamics are less deterministic. It
predicts the next action based on interaction feed-
back and previous actions in an auto-regressive
manner. Later in experiments, we show that this
learning-based module can be further improved
with environment feedback and EPO.

Reward Modeling Recall that our reward model
estimates the likelihood of the output is correct and
form the environment preference dataset through
ranking. In training the reward model for the sub-
goal decomposition module, we use the annotated
dataset to form input consist of environment feed-
back F', task specification 7', and proposed answer
P. Then we label the correct annotation with 1 to
form a positive pair and randomly select an incor-
rect output from each of the parameters to form 2
negative pairs. After we train the reward model, we
make inference on the unannotated dataset where
F and T are available but the proposed answer
is from our SFT pretrained module or other pos-
sible outputs. Then we can form the preference
dataset by comparing the reward between proposed

answers given the same F' and 7. In training the
reward model for interaction module, we gather on-
line data by allowing our agent to attempt various
pose changes and interactions until it could succeed
its intended action. Then we record the actions led
to successful interaction and other unsuccessful ac-
tions to form the positive and negative pairs. Then
the process to form the preference dataset is simi-
lar with that of the subgoal decomposition module.
We did not any Al assistant in writing this paper.

Baselines We compare the overall performance
of our framework with the state-of-the-art methods
on ALFRED public leaderboard. We obtain all the
results following the standard setting in ALFRED
where we first let the agent learn from the given
dataset offline, and then test the online rollout per-
formance of the learned policies (modules) on the
given set of new test tasks. All baselines have ac-
cess to the same amount of information, as this is
the standard setting required by ALFRED to get a
score on the public leaderboard. Thus we believe
the comparison with all the baselines is fair. We
will add more descriptions for each baseline listed
in the updated version of our paper as suggested.
Specifically, HLSM proposes to build a persistent
spatial semantic representation from natural lan-
guage instructions. FILM involves the creation of
a semantic map of the environment and a semantic
search policy to navigate and interact based on the
instructions provided. EPA uses a discrete graph
representation enriched with new perceptions dur-
ing exploration, allowing the agent to generate new
planning problems and recover from action fail-
ures. Prompter introduces a method that replaces
the traditional semantic search module in embodied
instruction following systems with language model
prompting. CAPEAM enhances an agent’s ability
to perform household tasks by integrating semantic
context and maintaining the state of objects within
the environment.

Methods Success rates
Baseline (without environment feedback) 0.7409
EPO (with 10% annotated data) 0.9781
EPO (with fully annotated data) 0.9905

Table 5: Results on BabyAl

Results on BabyAI We also conduct a set of ex-
periments on BabyAl (Chevalier-Boisvert et al.,
2019) minibosslevel, which is an environment
where an agent navigates and interacts in a grid
world to achieve a goal described in language. As

6414

shown in Table 5, we observe that EPO with en-
vironment feedback (object type observed by the
agent) can boost task success rate from 0.7409 to
0.9905 and with 10% of labeled data and EPO, our
policy can reach 0.9781 task success rate, which is
just 0.0124 less than using all labeled training data.

Prompt: “The task is: Put two watches on the tv stand. Your instruction is...”

Completion: “PickupObject Watch”

Prompt: “The subgoal is: HeatObject Potato. You have done actions: [].”

C “Open Mi

F : Object ir : [mug, laptop, CD, pen, pencil ..]

Visual Feedback: Object visible: [Mug: a white cup on the desk with...]

Prompt: Object interactable: [mug, ... The task is: Picku Proposed Answer:
PickupObject AlarmClock

Label: 1

Prompt: Object interactable: [mug, ... sk is up t u to
Chosen:
Rejected: PickupObject laptop

Figure 4: A illustration of prompt to our LLM policies.
From top to bottom: example of baseline subgoal policy,
example of baseline interaction policy, example of inter-
action feedback , example of visual feedback , example
of reward model training Data, example of Environment
Preference Data

6415

