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Abstract

In linguistics, all languages can be considered
as symbolic systems, with each language re-
lying on symbolic processes to associate spe-
cific symbols with meanings. In the same lan-
guage, there is a fixed correspondence between
linguistic symbol and meaning. In different
languages, universal meanings follow varying
rules of symbolization in one-to-one correspon-
dence with symbols. Most work overlooks the
properties of languages as symbol systems. In
this paper, we shift the focus to the symbolic
properties and introduce MTLS: a pre-training
method to improve the multilingual capability
of models by Making Texts into Linguistic Sym-
bols. Initially, we replace the vocabulary in
pre-trained language models by mapping rela-
tions between linguistic symbols and semantics.
Subsequently, universal semantics within the
symbolic system serve as bridges, linking sym-
bols from different languages to the embedding
space of the model, thereby enabling the model
to process linguistic symbols. To evaluate the
effectiveness of MTLS, we conducted experi-
ments on multilingual tasks using BERT and
RoBERTa, respectively, as the backbone. The
results indicate that despite having just over
12,000 pieces of English data in pre-training,
the improvement that MTLS brings to multilin-
gual capabilities is remarkably significant.

1 Introduction

All languages can be considered as symbolic sys-
tems (De Saussure, 1989). This is a generally ac-
cepted linguistic concept. Indeed, the meanings
of words are prescribed by human convention, and
all languages rely on symbolic processes to asso-
ciate specific symbols with meanings. However, in
natural language processing (NLP), languages are
often treated as complex systems of word forma-
tion methods and syntactic rules, and their inherent
properties as symbols are often overlooked. In
this paper, we focus on the symbolic properties of

Figure 1: A brief overview of MTLS. (a) illustrates
the benefits of employing mapping relations between
linguistic symbols and text. (b) demonstrates the meta-
symbol system can serve as a bridge between linguistic
symbols and the embedding space.

languages and conduct a preliminary investigation.
We propose MTLS: a novel pre-training method to
improve the multilingual capability of models by
Making Texts into Linguistic Symbols1. Remark-
ably, MTLS does not rely on extensive multilingual
corpora, massive computational resources, or com-
plex a priori knowledge. It can significantly im-
prove the multilingual performance of pre-trained
language models (PLMs).

By making texts into linguistic symbols, it is
possible to obtain textual embeddings in any lan-
guage without vocabulary. Pre-trained language
models (Devlin et al., 2019; Brown et al., 2020; He
et al., 2022), including multilingual models (Con-
neau et al., 2020; Chi et al., 2022; Xue et al., 2021),
assign ids to tokens via vocabulary and then ob-
tain textual embeddings. Language models typ-

1The pixel images rendered according to the word compo-
sition and writing system are called linguistic symbols.
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ically support a finite vocabulary of categorical
inputs, e.g. characters, subwords or even words,
and much effort has been devoted to vocabulary
construction (Gerz et al., 2018). As the number
of languages the model can handle increases, the
vocabulary needs to be extended or reconstructed,
which is a burdensome task. Taking into account
the symbolic properties of languages, linguistic
symbols always correspond to concrete abstract se-
mantics and have unique compositions or structures
from a visual perspective. In MTLS, words are first
converted into linguistic symbols and rendered as
pixel images. Then, by replacing the unique encod-
ing in vocabularies with the linguistic symbols of
the words, the problem of multilingual vocabulary
construction and out-of-vocabulary (OOV) can be
avoided, as shown in Figure 1(a).

Universal meanings are represented by differ-
ent linguistic symbols in different symbol systems.
These universal meanings underlying all human
natural languages are referred to as irreducible se-
mantic cores (Wierzbicka, 1999). This semantic
core can be used as a semantic bridge for transfor-
mations between different languages. Based on this
notion, some work (Sherborne and Lapata, 2022;
Goswami et al., 2021; Guo et al., 2024) has been
done to construct multilingual universal representa-
tions by finding universal meanings behind natural
languages. We transfer this idea to the linguistic
symbolic perspective and call this semantic core
the meta-symbol system (MSS). The MSS can be
used as a bridge between linguistic symbols of dif-
ferent languages. Therefore, we propose to apply
the embedding space of the MSS to represent the
linguistic symbols of any language, and then to
construct the mapping from the embedding space
of the MSS to the embedding space of the PLM, as
shown in Figure 1(b). This means that PLMs can
handle linguistic symbols in any language and do
not need to be pre-trained again.

In this paper, we propose SSS embedding in
MTLS for obtaining symbolic embeddings of lin-
guistic symbols and then mapping them to the
embedding space of the PLM. SSS embedding
consists of three components: Symbolic embed-
ding, Selective embedding, and Spatial embedding.
In MTLS, the SSS embedding and the PLM em-
bedding layers are first jointly pre-trained. Then,
the SSS embedding replaces the PLM embed-
ding layers, and the multilingual capability of the
PLM can be improved. We evaluate the perfor-
mance of MTLS on syntactic and semantic pro-

cessing tasks in multiple languages. The results
show that MTLS can significantly improve the
multilingual capabilities of the model, but at the
cost of some performance degradation in Latin
script languages. We release the code and mod-
els at https://github.com/wenlong1019/MTLS.

2 Related Work

Multilingual Representation Learning is stud-
ied for a variety of downstream multilingual tasks.
Some approaches rely on rich multilingual corpora
to learn multilingual representations through exten-
sive pre-training, such as mBERT (Devlin et al.,
2019) and XLM-R (Conneau et al., 2020). Such
extensive pre-training can be extremely computa-
tionally intensive, so some work (Pfeiffer et al.,
2021; Ansell et al., 2021) has relied on adapter-
based methods to fine-tune only the adapter layer
during training. Other approaches utilize multi-
lingual parallel corpora to learn generic represen-
tations of parallel sentences based on contrastive
learning, such as InfoXLM (Chi et al., 2021) and
HICTL (Wei et al., 2020). However, obtaining a
high quality parallel corpus is difficult, so some
work has converted monolingual corpora into paral-
lel corpora through translation (Kvapilíková et al.,
2020; Ouyang et al., 2021), or computed semantic
similarities in multilingual corpora and used them
as supervised labels (Goswami et al., 2021). All
these approaches rely heavily on multilingual cor-
pora, while MTLS uses only monolingual data. A
further theoretical comparison between MTLS and
these methods is given in Appendix A.

Vision-based Embedding differs from main-
stream vocabulary-based embedding in that it gen-
erates embeddings based on the structure and con-
struction of the text from a visual perspective.
Some work (Meng et al., 2019; Li et al., 2021)
has used vision-based embedding to obtain some
potential features of hieroglyphs on writing sys-
tems. There is also some work exploring the poten-
tial of vision-based embedding. Rust et al. (2022)
proposed a fully vision-based PLM and obtained
results competitive with BERT (Devlin et al., 2019).
Wang et al. (2024) used vision-based embedding
and vocabulary-based embedding to construct a
two-tower model to combine the advantages of the
two embedding construction methods. The work in
this paper is also an exploration of the potential of
vision-based embedding.
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Figure 2: An overview of our proposed MTLS. We refer to the combination of symbolic embedding, selective
embedding, and spatial embedding as SSS embedding. Symbolic embedding is used to obtain the embeddings of
linguistic symbols, selective embedding obtains symbolization-specific bias embeddings of linguistic symbols, and
spatial embedding maps embeddings in the space of meta-symbolic systems to the embedding space of PLMs.

3 Methodology

Figure 2 shows an overview of MTLS. MTLS uses
the SSS embedding and the frozen embedding layer
of the PLM for joint pre-training. Then, by simply
replacing the embedding layer in the PLM with
SSS embedding, the multilingual capability of the
PLM can be improved.

3.1 Symbolic Embedding

The general approach to obtaining textual embed-
dings is to find the token id corresponding to the
vocabulary, and then obtain the token embedding
corresponding to the id from the embedding layer.
This approach is similar to querying a dictionary,
where the goal is to ensure embedding consistency
for the same tokens and embedding variability be-
tween different tokens. When words are treated as
linguistic symbols, consistency and differentiation
no longer depend on the vocabulary to be main-
tained. The same words necessarily have the same
glyphs or constructions, and conversely, different
words are different.

Linguistic symbols can be created by render-
ing text into pixel images. The symbolic embed-
dings of the text are achieved by the patch em-
bedding strategy similar to Vision Transformer
(Dosovitskiy et al., 2020), as shown in Figure 2.
Specifically, the original text is tokenized to obtain
a sequence of tokens S = [t1, t2, · · · , tn−1, tn].
Each token is rendered into a number of fixed-size
patches p ∈ Rl×l according to the write length,
and the patch sequence of each token is denoted

by Pi =
[
p1i , p

2
i , · · · , pmi−1

i , pmi
i

]
, where mi is

the number of patches needed for the token i. The
sequential concatenation of all patch sequences
is the linguistic symbol of the text, which is also
the input F = [P1, P2, · · · , Pn−1, Pn]. Then, a
convolution operation is performed on each patch
in the patch sequence to obtain the embedding
v ∈ Rd, where d is the dimension of the embedding.
The convolution kernel size is equal to the patch
size. The embedding of a single token is Wi =[
v1i , v

2
i , · · · , vmi−1

i , vmi
i

]
, and the final symbolic

embedding is E = [W1,W2, · · · ,Wn−1,Wn].
Note that in the token-level task, to ensure that

the length of the symbolic embedding sequence
is equal to the length of the token sequence, the
first patch embedding of each token is taken as the
symbolic embedding of that token, giving E =[
v11, v

1
2, · · · , v1n−1, v

1
n

]
. In the subsequent section,

we notate the symbolic embeddings as Esymb =
[v1, v2, · · · , vn−1, vn], Esymb ∈ Rn×d, where n is
the length of the symbolic embedding sequence.

3.2 Selective Embedding

Universal meanings follow the symbolization rules
to connect linguistic symbols, and different symbol
systems have different symbolization rules. How-
ever, there are languages in the world with very
similar symbolization rules, and different univer-
sal meanings may correspond to similar symbols
under the same symbolization rules. Symbolic em-
bedding only captures the construction and struc-
tural features of symbols, and is unable to perform
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some self-adaptation according to the symboliza-
tion rules. And the search space resulting from
symbolic embedding is clearly insufficient to repre-
sent all languages. Therefore, we design selective
embedding based on Mixture-of-Experts (MoE)
(Eigen et al., 2013; Shazeer et al., 2016). Lin-
guistic symbols activate different experts to obtain
symbolization-specific bias embeddings Ebias.

Most MoE-based methods (Du et al., 2022; Fe-
dus et al., 2022; Xue et al., 2022) replace the
feed-forward component of the Transformer layer
(Vaswani et al., 2017) with the MoE layer. Each
MoE layer consists of a set of independent feed-
forward networks as “experts”. Unlike previous
work, we set the matrix M ∈ Rd×d as the “ex-
perts”. The symbolic embedding Esymb is used as
the input to the selective embedding, and the mat-
mul product of the symbolic embedding Esymb and
the expert matrix M is computed as the result of the
expert. The gating function Gate () then uses the
softmax activation function to model the probabil-
ity distribution over these experts. This distribution
indicates the probability that each expert can accu-
rately process the incoming symbolic embeddings.
The output of the expert i can be expressed as:

Experti (x) = Gate (x, i) ·matmul (x,Mi) ,
(1)

Gate (x, i) = softmax (x ·Wg) [i] , (2)

where x is the input symbolic embedding Esymb

and Wg is the parameters of the gating function.
During training, the gating function is learnable

and is trained to activate the best K experts for each
linguistic symbol. During inference, the learned
gating unit dynamically selects the best K experts.
Therefore, during training, more parameters can be
used to represent the symbolic embedding, which
can enrich the representation of the patch. Dur-
ing inference, only sparse experts are activated, so
there is no need for excessive computation. The
final bias embedding of the linguistic symbol is
the weighted combination of the outputs from the
selected experts. The symbolization-specific bias
embeddings Ebias can be represented as:

Ebias =
∑

TopK (Experti (x) ,K) , (3)

TopK (vi,K) =

{
vi if vi in top K elements.
0 otherwise.

.

(4)

3.3 Spatial Embedding
The symbolic embedding Esymb plus the
symbolization-specific bias embedding Ebias is
denoted as the embedding Emeta in the space
of MSS. To give the PLM the ability to handle
symbolic embeddings, it is necessary to map Emeta

into the embedding space of the PLM. Simple
spatial mapping methods or modules are too coarse
to give the model strong generalization capabilities
to handle as many languages as possible, even
if they have never been seen before. Therefore,
we propose spatial embedding, which employs a
step-by-step approach to learn the distributional
and spatial features of embeddings in the PLM.
Specifically, we have designed distributional
similarity loss Ldist and spatial similarity loss
Lspat in spatial embedding. In addition, we use
the patch at the first position as the representation
of the whole word in symbolic embedding. To
make the embedding of the first patch rich enough,
we use the Transformer structure in the spatial
embedding to obtain a dynamic context embedding
representation.

In step 1, we encode the embedding Emeta in the
space of MSS into a new embedding Eh ∈ Rn×d

through the encoder layer of Transformer. The new
embedding Eh is constrained by the distributional
similarity loss to have the same distribution with
the PLM embedding Et ∈ Rn×d to learn the dis-
tributional features. This step only constrains the
distribution of symbolic embeddings that are free in
the representation space. In particular, we compute
the Kullback-Leibler (KL) divergence between the
symbolic embedding Eh and the embedding Et for
the same text. The distributional similarity loss is
defined as follows:

Ph (m) =
exp (Eh (m))∑
exp (Eh (m))

, (5)

Pt (m) =
exp (Et (m))∑
exp (Et (m))

, (6)

Ldist =
∑n

m=1Ph (m) log
Ph (m)

Pt (m)
. (7)

The similarity of the distributions does not yet
allow PLMs to handle symbolic embeddings accu-
rately. In step 2, Eh is decoded by the decoder layer
of Transformer into a new embedding representa-
tion space to obtain the embedding Eg ∈ Rn×d.
The spatial similarity loss is then used to constrain
the embedding Eg to match the features of the PLM
embedding space. First, the embedding Eg and the
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embedding Et are treated as being under the same
embedding space, and then contrast learning (He
et al., 2020) is used to learn the spatial features.
In contrast learning, two embeddings of the same
linguistic symbol are positive examples of each
other, and the rest of the embeddings are negative
examples. The spatial similarity loss is shown as
follows:

Qg2t (i, j) = exp

(
Eg (i)

T Et (j)

τ

)
, (8)

Qg2g (i, j) = exp

(
Eg (i)

T Eg (j)

τ

)
, (9)

Lspat = − 1

n

∑n
i=1

log
Qg2t (i, i)∑n

j=1;j ̸=i (Q
g2t (i, j) +Qg2g (i, j))

,

(10)
where τ is a temperature parameter.

In pre-training, joint distributional similarity loss
and spatial similarity loss are used as the total loss.
The full pre-training objective of MTLS is

Ltotal = Ldist + Lspat. (11)

4 Experiments

In the experiments of this paper, we use two com-
mon monolingual PLMs, BERT 2 (Devlin et al.,
2019) and RoBERTa 3 (Liu et al., 2019), respec-
tively, as the backbone for pre-training in MTLS. 4

There is no multilingual corpus in the pre-training,
only about 12,000 English data from the Universal
Dependencies v2.10 treebanks (Nivre et al., 2020).
BERT and RoBERTa with improved multilingual
capabilities by MTLS are referred to as MTLS-B
and MTLS-R respectively. Parameter settings for
pre-training are shown in Table 4.

4.1 Tasks and Languages

We validate the effectiveness of our proposed
MTLS by evaluating the syntactic and semantic
processing capabilities of the model in multilin-
gual scenarios. The dataset used for the evaluation
contains 20 languages, covering most of the lan-
guage families in the world. Table 5 summarizes
the languages and their language families.

2https://huggingface.co/google-bert/bert-base-cased.
3https://huggingface.co/FacebookAI/roberta-base.
4BERT and RoBERTa are chosen because they do not use

multilingual corpura in pre-training and do not have a strong
multilingual representation capability.

To validate the syntactic processing capabilities
of the model, we test the performance of MTLS
on the part-of-speech (POS) tagging task in mul-
tilingual languages. We use data from the Uni-
versal Dependencies v2.10 treebanks (Nivre et al.,
2020), including the following languages: Ara-
bic (ARA), Basque (EUS), Chinese (ZHO), Coptic
(COP), English (ENG), Estonian (EST), Greek (ELL),
Hindi (HIN), Japanese (JAN), Korean (KOR), Mal-
tese (MLT), Persian (FAS), Tamil (TAM), Turkish
(TUR), Vietnamese (VIE). In addition, to assess the
ability to understand the semantics of multilingual
texts, we validate the performance of MTLS on
the named entity recognition (NER) task. We use
the PAN-X (Pan et al., 2017), which includes the
following languages: Arabic, Bulgarian (BUL), Chi-
nese, Czech (CES), English, French (FRA), Greek,
Japanese, Korean, Persian, Russian (RUS), Tamil,
Turkish, Urdu (URD), Vietnamese.

4.2 POS Tagging Task

We compare the performance of BERT and
roBERTa with and without MTLS in the multi-
lingual POS tagging task. In order to fully vali-
date the improvement of MTLS on the multilin-
gual capabilities of PLMs, we test the performance
in the fine-tune setting and in the cross-language
zero-shot setting 5, respectively. We also show the
performance of the multilingual models mBERT 6

(Devlin et al., 2019) and XLM-R 7 (Conneau et al.,
2020). We show the results of the POS tagging task
in Table 1.

Both BERT and RoBERTa perform better after
pre-training with MTLS, both in the fine-tune set-
ting and in the cross-language zero-shot setting.
In the fine tuning setting, the accuracy of MTLS-
B and MTLS-R is significantly improved in ZHO,
KOR, and COP. In particular, in COP, MTLS-B and
MTLS-R achieve nearly 66.6% and 52.2% accu-
racy improvements respectively. This demonstrates
that our proposed MTLS can significantly improve
the multilingual syntactic processing ability of the
model. In the cross-language zero-shot setting, the
improvement brought by MTLS is relatively aver-
age. We attribute this to the fact that multilingual
data is not used in the pre-training of MTLS and is
not visible to MTLS-B and MTLS-R during cross-

5We first fine-tune it on the English corpus and then trans-
fer directly to other languages for inference.

6https://huggingface.co/google-bert/bert-base-
multilingual-cased.

7https://huggingface.co/FacebookAI/xlm-roberta-base.
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Model
Fine-Tune Zero-Shot

ARA ZHO COP ENG∗ KOR TAM VIE∗ AVG ARA ZHO COP KOR TAM VIE∗ AVG

mBERT 94.2 58.5 26.9 93.3 96.3 87.0 82.5 77.0 55.1 66.6 5.2 56.0 53.5 57.6 49.0
XLM-R 97.2 96.9 26.6 97.4 97.0 87.7 93.4 85.2 72.3 48.0 5.9 61.0 62.2 60.3 51.6

BERT 93.8 59.4 26.7 97.1 60.3 45.5 83.8 66.6 15.6 14.3 4.0 13.3 14.2 41.9 17.2
MTLS-B 93.9 88.1 93.3 91.4 90.0 67.4 77.5 86.0 12.5 28.9 17.5 23.4 27.9 34.0 24.0

RoBERTa 91.5 74.4 40.8 97.3 55.3 67.9 86.1 73.3 11.7 25.5 9.5 15.6 16.0 39.5 19.6
MTLS-R 92.9 80.1 93.0 90.7 81.9 63.6 76.3 82.6 12.5 26.6 18.5 18.5 26.4 31.8 22.4

Table 1: Results of the POS tagging task in the fine-tune setting and in the zero-shot setting. Accuracy is used as the
evaluation metric. * indicates that the language with Latin scripts. We show partial results in this table and complete
experimental results are shown in Table 6.

language zero-shot, making it difficult to activate
even strong multilingual capabilities in this setup.

The trade-off for such a significant performance
gain is performance degradation for languages
with Latin scripts. Both MTLS-B and MTLS-R
have some performance degradation in ENG

and VIE, either in the fine-tune setting or in the
zero-shot setting. The performance degradation
is due to the fact that the embedding layers of the
original BERT and RoBERTa are replaced by the
SSS embedding. The integrity of the models is
compromised, with a reduced ability to process
languages with Latin scripts. In the pre-training of
MTLS, only 12,000 English data are used, which
is far less than the pre-training data in BERT and
RoBERTa, and thus not enough to recover the
original English processing ability.

It should be emphasised that BERT and
RoBERTa perform very poorly in non-Latin script
languages due to the low coverage of vocabulary in
these languages, which creates a noticeable OOV
problem. MTLS uses symbolic embedding instead
of vocabulary, so there is no OOV problem, which
is an advantage of MTLS. Only a small amount of
English data is used in the pre-training of MTLS,
and subwords that do not appear in the pre-training
dataset are also unseen for MTLS-B and MTLS-R.
Therefore, we believe it is fair to compare BERT
and MTLS-B, RoBERTa and MTLS-R, respec-
tively. In addition, we further explore the effect of
symbolic embedding on the model in Section 5.2.

Compared to mBERT and XLM-R, MTLS-B
and MTLS-R perform worse. However, consider-
ing that mBERT and XLM-R use massive multilin-
gual corpora for pre-training, while there is only a
very small amount of monolingual data in MTLS,
we believe that MTLS still has some advantages.
In particular, MTLS-B and MTLS-R significantly

outperform mBERT and XLM-R in COP. This re-
sult can be attributed to the fact that mBERT and
XLM-R do not use Coptic data in their pre-training.
The multilingual model still suffers from a sudden
drop in performance when confronted with an un-
seen language, even after a lot of resources and
effort have been spent in pre-training. There is a
limit to the multilingual capability of the model
obtained by pre-training on a large multilingual
corpus. MTLS does not use any multilingual cor-
pus and still achieves better performance in unseen
languages. This demonstrates the powerful gener-
alization ability of MTLS.

4.3 NER Task

To evaluate the effect of MTLS on understanding
the semantics of multilingual texts, we compare
the performance of the models on the multilingual
NER task. We use the same experimental setup as
in the POS tagging task and present the results of
the NER task in Table 2.

In the NER task, MTLS-B and MTLS-R still sig-
nificantly outperform BERT and RoBERTa in most
languages in both monolingual fine-tuning and
cross-lingual zero-shot, while performing poorly in
Latin-written languages such as ENG and VIE. This
result is consistent with experimental results in the
POS tagging task. Overall, MTLS significantly
improves the ability of the model to understand
multilingual semantics.

It is worth noting that MTLS-B and MTLS-R
show smaller performance gains on the NER task,
with an average F1 score gain of less than 10 in the
fine tuning setting. According to our research study,
the reason may be the replacement of vocabulary-
based embedding layer with symbolic embedding.
In previous work, Rust et al. (2022) found that
vision-based PLMs outperform vocabulary-based
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Model
Fine-Tune Zero-Shot

ARA BUL ENG∗ KOR RUS URD VIE∗ ZHO AVG ARA BUL KOR RUS URD VIE∗ ZHO AVG

mBERT 85.0 89.2 82.3 85.4 86.0 49.8 91.4 83.1 81.5 38.6 73.3 52.4 57.9 23.2 64.7 38.9 49.8
XLM-R 86.3 87.5 81.0 85.1 85.5 71.0 91.3 79.2 83.4 31.5 69.5 37.5 56.2 21.4 63.8 19.8 42.8

BERT 54.9 66.6 81.5 47.0 60.1 32.8 80.5 55.8 59.9 1.3 6.8 4.8 8.0 1.2 43.2 1.6 9.6
MTLS-B 70.7 73.9 63.0 66.4 68.9 56.3 75.9 64.5 67.4 5.0 33.4 6.1 20.0 3.2 31.3 2.2 14.5

RoBERTa 43.6 58.7 80.0 59.2 52.6 29.7 71.0 71.5 58.3 0.5 3.7 4.3 6.5 0.2 36.7 1.2 7.6
MTLS-R 64.4 70.2 56.1 64.7 65.0 54.7 73.5 63.8 64.0 1.5 29.8 5.2 18.3 3.2 27.7 1.9 12.5

Table 2: Results of the NER task in the fine-tune setting and in the zero-shot setting. F1 score is used as the
evaluation metric. * indicates that the language with Latin scripts. We show partial results in this table and complete
experimental results are shown in Table 7.

Model
POS NER

FT ZS FT ZS

MTLS-B 88.6 26.9 68.1 18.8
— w/o PT 30.3 23.2 4.0 1.6
— w/o SE 75.9 23.1 61.4 16.0
— w/o DSL 80.7 24.2 67.4 18.4
— w/o SSL 42.4 23.9 8.4 0.9

Table 3: Results of the ablation study on MTLS. The
table shows the average of the results for 15 languages
separately, and the complete results are shown in Table
8 and Table 9. In the POS tagging task, accuracy is
the evaluation metric. In the NER task, the F1 score
is the evaluation metric. FT indicates fine-tune and ZS
indicates zero-shot.

models in syntactic tasks and lag behind in seman-
tic tasks. Our experimental results are consistent
with this finding. Therefore, we believe that MTLS
can lead to more significant performance gains in
syntactic tasks.

4.4 Ablation Study

To evaluate the effect of each component, we per-
form the ablation study of MTLS in the POS tag-
ging and NER task. For ease of analysis, we make
the following definitions:

1) PT denotes pre-training on an English dataset;
2) SE denotes selective embedding;
3) DSL denotes distributional similarity loss;
4) SSL denotes spatial similarity loss.
As shown in Table 3, MTLS significantly out-

performs MTLS w/o * (* indicates components) in
both tasks, demonstrating the importance of each
component in MTLS. Although only 12,000 En-
glish data are used in the pre-training, the effect of
the pre-training is extremely significant. In the fine-
tune setting, pre-training results in an average accu-

racy improvement of nearly 58.3% in the POS tag-
ging task, and there is an average F1 score improve-
ment of 64.1 in the NER task. Such results reflect
the importance of pre-training and the effective-
ness of the two pre-training losses. These results
are also predictable, because the non-embedded
part of the PLM is unable to handle direct symbolic
embeddings, and pre-training is needed to constrain
the mapping of symbolic embeddings into the em-
bedding representation space of the PLM.

In the fine-tune setting, not using selective
embedding (w/o SE) results in a 12.7% decrease
in average accuracy in the POS tagging task and
a 6.7 f1 score decrease on average in the NER task.
This is because selective embedding obtains a bias
embedding to the symbolization process for each
linguistic symbol, expanding the representation
space of the MSS. A larger representation space
means that the symbolic embedding can contain
more semantics.

Using distributional similarity loss without spa-
tial similarity loss (w/o SSL) can produce very poor
results. Spatial embedding employs a step-by-step
strategy. Step 1 uses distributional similarity loss,
and step 2 uses spatial similarity loss. The distri-
butional similarity loss only limits the distribution
of the embedding, and the spatial similarity loss
also limits the distribution to some extent, but also
greatly limits the representation space of the em-
bedding. Therefore, not using spatial similarity
loss results in the embedding of the MSS not being
accurately mapped to the embedding space of the
PLM, and the PLM being unable to process the
symbolic embedding. In contrast, using only spa-
tial similarity loss (w/o DSL) may result in reduced
generalization of the model due to overly stringent
constraints, thus affecting performance.
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Figure 3: Parameter comparison between SSS embed-
ding in MTLS and embeddings of PLMs.

5 Further analysis

5.1 Parameter Analysis
We further analyze MTLS on the number of param-
eters. Since the SSS embedding is used to replace
the PLM embedding layer, we only compare the
parameters of the PLM embedding layer with those
of the SSS embedding, as shown in Figure 3. The
embedding parameters of BERT and RoBERTa are
much less than the embedding parameters of mul-
tilingual models. This is because the vocabulary
in multilingual models needs to cover all the sub-
words of the language as much as possible, and the
increase of the subwords means the increase of the
embedding parameters. And the number of parame-
ters in SSS embedding is between the multilingual
and monolingual models, which we think is accept-
able. Multilingual models perform better with a
larger number of parameters, but their dependence
on large multilingual corpora is one of their main
limitations. However, MTLS can significantly im-
prove the multilingual capabilities of monolingual
models without multilingual corpora.

5.2 Effects of Symbolic Embedding
To explore the effect of symbolic embedding on
PLMs, we replace the embedding layers of BERT
and RoBERTa with symbolic embedding, called
BERT-SE and RoBERTa-SE. The performances of
BERT and BERT-SE, RoBERTa and RoBERTa-SE
are compared on multilingual POS tagging tasks,
as shown in Figure 4.

Replacing vocabulary-based embedding with
symbolic embedding alone is not effective in
improving the performance of the PLM in the
multilingual task, demonstrating the importance
of selective embedding and spatial embedding.
We believe the reasons for the lack of significant
results are that the symbolic embedding is

Figure 4: Results of whether or not to use symbolic
embedding in the multilingual POS tagging task in the
fine-tune and zero-shot settings, respectively. -SE indi-
cates the symbolic embedding. Complete experimental
results are shown in Table 10.

completely randomly initialized and has far fewer
parameters than the original embedding. The
parameters of symbolic embedding are only about
2.6% of the embedding in BERT, and about 1.5%
of the embedding in RoBERTa. However, in the
fine-tune setting, BERT-SE outperforms BERT
in ZHO and COP. RoBERTa-SE also outperforms
RoBERTa in COP and KOR. Combined with the
significant improvement in multilingual capability
for PLMs brought by MTLS, we argue that
symbolic embedding is one of the key factors for
the effectiveness of MTLS. Furthermore, we argue
that symbolic embedding has natural advantages
for multilingual tasks.

6 Conclusion

In this paper, we explore the properties of lan-
guages as symbolic systems and propose MTLS:
a pre-training method to improve the multilingual
capability of models by Making Texts into Linguis-
tic Symbols. We also propose SSS Embedding,
which can obtain the symbolic embedding of any
language and map the symbolic embedding to the
embedding space of the PLM. By replacing the
PLM embedding layer with SSS embedding, the
model can be made to process linguistic symbols
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in any language. It should be emphasized that the
pre-training of MTLS requires only a small amount
of monolingual data and does not require multilin-
gual corpora. In addition, MTLS reuses most of the
parameters in the PLM, so pre-training costs few
computational resources. Our experimental results
show that MTLS can significantly improve the mul-
tilingual capability of PLMs, at the cost of some
performance degradation in Latin-script languages.

7 Limitations

In this paper, we focus on the symbolic properties
of languages and propose MTLS. Our results show
that MTLS has good performance, but this is only a
preliminary investigation, and there are some areas
for further in-depth study. Here we highlight the
limitations of our current work and the direction of
our future work.
• It is feasible to use multilingual corpora in

pre-training for MTLS. However, PLMs that use
monolingual corpora for pre-training (e.g. BERT
and RoBERTa) do not contain multilingual sub-
words in their vocabularies. In order to learn the
embedding space of the model, only the corpus of
the corresponding language can be used for pre-
training.
• For multilingual PLMs, it is obvious that

MTLS for monolingual pre-training only does not
lead to any improvement, as we have also veri-
fied in our previous work. MTLS for multilingual
pre-training cannot avoid the dependence on multi-
lingual corpora, which goes against our original in-
tention. Of course, we expect that the multilingual
capability of the model can be improved by MTLS
for multilingual pre-training, but this remains to be
verified.

• The non-embedding parameters of the PLM
are reused in MTLS to reduce the computational
consumption. However, by simply modifying
MTLS for multilingual pre-training, it is possible
to construct a multilingual model based entirely
on linguistic symbols. We will investigate this in
future work.

There are also limitations and possible future
research directions for making texts into linguistic
symbols.
• Rendering text into linguistic symbols leads

to a hundreds-fold increase in the storage capacity
of the data. This puts a strain on computational
memory during training and inference.
• Using symbolic embeddings instead of vocab-

ularies results in models that are unable to generate
discrete words for the generation task.
• This paper provides a preliminary exploration

of symbolic embedding as an alternative to vocab-
ulary, and does not go into great depth on some
details. For example, the choice of fonts and the
clarity of linguistic symbols. More advanced meth-
ods for encoding linguistic symbolic embeddings
may yield better results.
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Daniela Gerz, Ivan Vulić, Edoardo Maria Ponti, Roi
Reichart, and Anna Korhonen. 2018. On the relation
between linguistic typology and (limitations of) mul-
tilingual language modeling. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 316–327.

Koustava Goswami, Sourav Dutta, Haytham Assem,
Theodorus Fransen, and John Philip McCrae. 2021.
Cross-lingual sentence embedding using multi-task
learning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9099–9113.

Ping Guo, Xiangpeng Wei, Yue Hu, Baosong Yang,
Dayiheng Liu, Fei Huang, et al. 2024. Emma-x: An
em-like multilingual pre-training algorithm for cross-
lingual representation learning. Advances in Neural
Information Processing Systems, 36.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for unsu-
pervised visual representation learning. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9729–9738.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2022.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. In The Eleventh International Conference on
Learning Representations.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Ivana Kvapilíková, Mikel Artetxe, Gorka Labaka,
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A Theoretical Comparison

To compare our proposed MTLS with previous
multilingual representation learning approaches,
the PLM is denoted as f (·;E;N), where · denotes
the input, E denotes the parameters of the embed-
ding layer, and N denotes the parameters of the
non-embedding. The pre-training of the model is
defined as:

E,N = arg(E,N)

min (L [f (x;E;N) , g (x)]) ,
(12)

where x ∈ D, L denotes the pre-training loss func-
tion, x denotes the training data, g (x) denotes the
ground truth of x under the pre-training task, and
D denotes the corpus.

In the modeling setup above, we represent the
multilingual model as fm (·;Em;Nm), where Em

and Nm are the parameters in the multilingual
model. Methods (e.g., mBERT and XLM-R) for
constructing multilingual models by multilingual
corpora can be represented as:

Em, Nm = arg(Em,Nm)

min (L [f (x;Em;Nm) , g (x)]) ,
(13)

where x ∈ Dm, Dm is the multilingual corpus.
Most multilingual modeling approaches using par-
allel corpora can also be represented by Equa-
tion 13, but in the parallel corpus approaches
x = xp + xq, xp ∈ Dp, xq ∈ Dq. Dp and Dq

are corpora of different languages. With Equation
12 and 13, it is easy to see that the essence of
the above approach to learning multilingual rep-
resentations is to rely on a multilingual corpus to
fine-tune the parameters of the language model
f (·;E;N) ⇒ fm (·;Em;Nm). Obviously, these
methods require not only a large multilingual cor-
pus, but also the fine-tuning of almost all the pa-
rameters of the model.

In the adapter-based approaches, the monolin-
gual model fs (·;Es;Ns) is used as a backbone,
which does not change the parameters of the lan-
guage model and trains only the adapter layers
that are inserted into the model, thus greatly re-
ducing the training consumption. The adapter-
based language model can be represented as
fs (·;Es;Ns;A), where A denotes the parame-
ters in the adapter layers. The methods for con-
structing multilingual models based on the adapter
layers can be represented as fs (·;Es;Ns) ⇒
fm (·;Es;Ns;A), and the training process can be

represented as:

A = arg(A)

min (L [f (x;Es;Ns;A) , g (x)]) ,
(14)

where x ∈ Dm.
All of the above methods require the support of

multilingual corpura in the training process. In ad-
dition, these methods are limited by the vocabulary.
The multilingual vocabulary must be reconstructed
before training. In contrast, our proposed MTLS
avoids vocabulary construction by the symbolic
embedding.

Pre-training in MTLS can be expressed as:
fs (·;Es;Ns) ⇒ fm (·;Ex;Ns), where Ex de-
notes SSS Embedding. In most PLMs, non-
embeddings occupy a larger proportion of the pa-
rameters, so the parameters Ns of non-embeddings
are not involved in the pre-training of MTLS. An-
other difference between MTLS and previous work
is that all previous work required large multilingual
datasets for support, whereas we use only a small
amount of data in a single language for training.
The pre-training of MTLS can be expressed as:

Ex = arg(Ex)

min (L [f (x;Ex;Ns;A) , g (x)]) ,
(15)

where x ∈ Ds, Ds is a monolingual corpus.
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Parameter Value

Patch size l 16
Embedding dimension d 768
Experts number N 8
Selected experts number K 2
Temperature parameter τ 0.2
Encoder hidden size 768
Encoder feedforward dimension 2048
Encoder num layers 6
Decoder hidden size 768
Decoder feedforward dimension 2048
Decoder num layers 6
Dropout probability 0.1
Hidden activation ReLU
Learning rate 5e-5
Optimizer AdamW (Kingma and Ba, 2014; Loshchilov and Hutter, 2019)
Adam betas (0.9, 0.999)
Adam epsilon 1e-8
Weight decay 0.05
Training steps 30,000
Batch size 128

Table 4: Parameter settings for pre-training in MTLS.

Language ISO 639-3 Language Family Script

Arabic ARA Afro-Asiatic Arabic
Basque EUS Language Isolate Latin

Bulgarian BUL Indo-European Cyrillic
Chinese ZHO Sino-Tibetan Chinese
Coptic COP Afro-Asiatic Coptic
Czech CES Indo-European Latin

English ENG Indo-European Latin
Estonian EST Uralic Latin
French FRA Indo-European Latin
Greek ELL Indo-European Greek
Hindi HIN Indo-European Devanagari

Japanese JAN Japonic Japanese
Korean KOR Koreanic Korean
Maltese MLT Afro-Asiatic Latin
Persian FAS Indo-European Persian
Russian RUS Indo-European Cyrillic
Tamil TAM Dravidian Tamil

Turkish TUR Turkic Latin
Urdu URD Indo-European Perso-Arabic

Vietnamese VIE Austro-Asiatic Latin

Table 5: Overview of languages in our experiments, including language families and scripts.
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Model ARA EUS∗ ZHO COP ENG∗ EST∗ ELL HIN JAN KOR MLT∗ FAS TAM TUR∗ VIE∗ AVG

Fine-Tune

mBERT 94.2 93.7 58.5 26.9 93.3 95.3 95.8 86.0 98.4 96.3 90.9 95.9 87.0 89.5 82.5 85.6
XLM-R 97.2 96.5 96.9 26.6 97.4 97.7 98.2 98.0 98.8 97.0 94.7 96.5 87.7 92.1 93.4 91.2

BERT 93.8 95.1 59.4 26.7 97.1 96.5 95.9 86.6 88.1 60.3 93.4 96.1 45.5 90.7 83.8 80.6
MTLS-B 93.9 89.9 88.1 93.3 91.4 93.1 90.6 94.4 96.0 90.0 85.2 94.7 67.4 83.9 77.5 88.6

RoBERTa 91.5 93.7 74.4 40.8 97.3 95.7 94.3 95.6 86.7 55.3 93.0 94.6 67.9 89.9 86.1 83.8
MTLS-R 92.9 87.8 80.1 93.0 90.7 90.7 89.8 92.7 94.2 81.9 83.2 94.3 63.6 81.5 76.3 86.2

Zero-Shot

mBERT 55.1 64.3 66.6 5.2 - 73.9 70.0 62.3 50.4 56.0 19.2 71.2 53.5 66.7 57.6 55.1
XLM-R 72.3 69.6 48.0 5.9 - 83.6 83.1 69.9 33.9 61.0 25.8 76.4 62.2 74.3 60.3 59.0

BERT 15.6 34.1 14.3 4.0 - 41.9 26.0 14.0 13.1 13.3 24.4 17.6 14.2 42.9 41.9 22.7
MTLS-B 12.5 39.8 28.9 17.5 - 40.9 29.1 19.1 21.9 23.4 30.4 11.5 27.9 39.5 34.0 26.9

RoBERTa 11.7 42.3 25.5 9.5 - 44.4 18.9 2.8 26.7 15.6 30.0 9.4 16.0 40.2 39.5 23.7
MTLS-R 12.5 37.4 26.6 18.5 - 39.5 31.1 16.7 17.5 18.5 34.1 12.2 26.4 37.4 31.8 25.7

Table 6: Complete results of the POS tagging task in the fine tune setting and in the zero shot setting. Accuracy is
used as the evaluation metric. * indicates that the language with Latin scripts.

Model ARA BUL CES∗ ELL ENG∗ FAS FRA∗ JAN KOR RUS TAM TUR∗ URD VIE∗ ZHO AVG

Fine-Tune

mBERT 85.0 89.2 90.0 85.4 82.3 90.2 88.4 59.3 85.4 86.0 77.8 90.6 49.8 91.4 83.1 82.3
XLM-R 86.3 87.5 89.5 88.6 81.0 91.5 86.0 71.2 85.1 85.5 83.5 91.1 71.0 91.3 79.2 84.5

BERT 54.9 66.6 82.6 70.9 81.5 49.1 83.7 58.3 47.0 60.1 46.8 85.1 32.8 80.5 55.8 63.7
MTLS-B 70.7 73.9 75.5 75.0 63.0 70.2 71.1 58.4 66.4 68.9 57.4 74.2 56.3 75.9 64.5 68.1

RoBERTa 43.6 58.7 80.9 56.2 80.0 32.9 83.0 68.6 59.2 52.6 22.9 83.9 29.7 71.0 71.5 59.6
MTLS-R 64.4 70.2 72.0 71.0 56.1 69.6 67.8 57.0 64.7 65.0 54.0 67.1 54.7 73.5 63.8 64.7

Zero-Shot

mBERT 38.6 73.3 75.6 63.3 - 34.2 74.6 23.2 52.4 57.9 41.1 65.9 23.2 64.7 38.9 51.9
XLM-R 31.5 69.5 71.4 64.4 - 32.9 69.2 9.6 37.5 56.2 43.7 64.0 21.4 63.8 19.8 46.8

BERT 1.3 6.8 45.0 7.7 - 0.7 54.5 0.9 4.8 8.0 0.5 36.8 1.2 43.2 1.6 15.2
MTLS-B 5.0 33.4 40.4 26.3 - 2.6 44.9 1.1 6.1 20.0 8.3 37.9 3.2 31.3 2.2 18.8

RoBERTa 0.5 3.7 45.8 5.6 - 0.3 56.0 1.8 4.3 6.5 3.9 38.0 0.2 36.7 1.2 14.6
MTLS-R 1.5 29.8 38.7 24.4 - 1.3 38.7 1.0 5.2 18.3 6.5 33.5 3.2 27.7 1.9 16.6

Table 7: Complete results of the NER task in the fine-tune setting and in the zero-shot setting. F1 score is used as
the evaluation metric. * indicates that the language with Latin scripts.
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Model ARA EUS∗ ZHO COP ENG∗ EST∗ ELL HIN JAN KOR MLT∗ FAS TAM TUR∗ VIE∗ AVG

Fine-Tune

MTLS-B 93.9 89.9 88.1 93.3 91.4 93.1 90.6 94.4 96.0 90.0 85.2 94.7 67.4 83.9 77.5 88.6
— w/o PT 33.8 28.8 27.6 16.5 26.8 26.2 21.7 34.1 36.0 51.6 19.4 42.3 26.5 30.9 32.1 30.3
— w/o SE 85.8 63.6 85.0 92.8 78.8 73.5 68.3 92.7 93.7 77.3 68.6 86.2 42.7 68.1 60.9 75.9
— w/o DSL 87.0 67.6 84.2 92.7 80.1 76.2 71.2 94.5 95.9 90.3 70.6 87.0 63.1 71.6 78.4 80.7
— w/o SSL 33.8 25.2 27.6 15.9 26.5 26.2 21.5 94.4 91.9 57.5 26.0 86.6 26.5 31.0 45.5 42.4

Zero-Shot

MTLS-B 12.5 39.8 28.9 17.5 - 40.9 29.1 19.1 21.9 23.4 30.4 11.5 27.9 39.5 34.0 26.9
— w/o PT 33.7 23.9 28.9 16.8 - 28.4 22.8 14.2 17.3 15.3 22.6 12.1 26.6 31.8 30.0 23.2
— w/o SE 12.1 31.6 29.1 13.5 - 33.6 23.0 19.4 19.1 22.3 24.2 13.8 21.5 34.0 26.0 23.1
— w/o DSL 18.9 32.6 28.2 13.5 - 34.1 22.7 18.4 19.8 22.2 25.4 16.3 19.7 36.8 30.2 24.2
— w/o SSL 22.3 29.9 25.3 18.3 - 33.7 25.0 19.5 14.7 16.7 25.4 14.7 26.6 38.4 24.5 23.9

Table 8: Complete results of the ablation study on the POS tagging task. Accuracy is used as the evaluation metric.
* indicates that the language with Latin scripts.

Model ARA BUL CES∗ ELL ENG∗ FAS FRA∗ JAN KOR RUS TAM TUR∗ URD VIE∗ ZHO AVG

Fine-Tune

MTLS-B 70.7 73.9 75.5 75.0 63.0 70.2 71.1 58.4 66.4 68.9 57.4 74.2 56.3 75.9 64.5 68.1
— w/o PT 0.0 0.0 0.1 14.6 2.5 8.9 0.1 10.3 6.4 0.1 0.0 0.0 3.9 0.1 13.3 4.0
— w/o SE 64.6 70.5 70.3 70.7 54.5 65.6 65.3 50.7 50.4 62.8 52.0 65.9 53.3 72.2 52.3 61.4
— w/o DSL 70.5 72.5 75.2 74.1 60.7 72.7 69.5 57.2 65.2 67.3 58.1 73.4 54.8 74.1 65.0 67.4
— w/o SSL 0.0 0.0 0.1 0.0 4.2 8.4 0.1 57.2 46.0 0.1 0.0 0.0 0.0 0.1 10.1 8.4

Zero-Shot

MTLS-B 5.0 33.4 40.4 26.3 - 2.6 44.9 1.1 6.1 20.0 8.3 37.9 3.2 31.3 2.2 18.8
— w/o PT 4.2 0.9 1.4 0.9 - 0.7 2.3 0.2 2.4 1.9 1.2 1.1 0.1 4.8 0.2 1.6
— w/o SE 2.2 27.9 34.7 24.0 - 1.1 37.5 1.5 6.8 17.4 7.2 33.2 1.3 26.9 2.9 16.0
— w/o DSL 2.7 33.8 40.2 26.3 - 1.9 42.7 1.6 7.1 19.6 9.2 37.7 3.7 28.8 2.5 18.4
— w/o SSL 0.0 1.2 1.6 0.7 - 0.0 3.8 0.0 0.0 2.0 0.6 0.5 0.0 1.7 0.0 0.9

Table 9: Complete results of the ablation study on the NER task. F1 score is used as the evaluation metric. *
indicates that the language with Latin scripts.

Model ARA EUS∗ ZHO COP ENG∗ EST∗ ELL HIN JAN KOR MLT∗ FAS TAM TUR∗ VIE∗ AVG

Fine-Tune

BERT 93.8 95.1 59.4 26.7 97.1 96.5 95.9 86.6 88.1 60.3 93.4 96.1 45.5 90.7 83.8 80.6
BERT-SE 76.1 68.8 65.4 55.6 83.1 75.1 56.9 82.4 83.8 60.3 44.1 83.7 38.9 62.4 46.5 65.5

RoBERTa 91.5 93.7 74.4 40.8 97.3 95.7 94.3 95.6 86.7 55.3 93.0 94.6 67.9 89.9 86.1 83.8
RoBERTa-SE 85.5 70.8 65.8 70.3 83.9 71.5 76.3 83.0 84.8 65.6 19.2 86.0 39.2 62.0 47.9 67.5

Zero-Shot

BERT 15.6 34.1 14.3 4.0 - 41.9 26.0 14.0 13.1 13.3 24.4 17.6 14.2 42.9 41.9 22.7
BERT-SE 11.9 38.3 23.0 27.0 - 40.0 31.7 16.4 14.8 16.4 29.8 12.1 25.3 36.9 30.1 25.3

RoBERTa 11.7 42.3 25.5 9.5 - 44.4 18.9 2.8 26.7 15.6 30.0 9.6 16.0 40.2 39.5 23.7
RoBERTa-SE 15.9 37.9 27.8 17.4 - 40.0 30.2 15.3 20.4 23.2 29.1 14.2 24.3 36.9 27.0 25.7

Table 10: Results of whether or not to use symbolic embedding in the multilingual POS tagging task in the fine-tune
and zero-shot settings, respectively. -SE indicates the symbolic embedding.
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