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Abstract
Ensuring that the benefits of sign language tech-
nologies are distributed equitably among all
community members is crucial. Thus, it is
important to address potential biases and in-
equities that may arise from the design or use of
these resources. Crowd-sourced sign language
datasets, such as the ASL Citizen dataset, are
great resources for improving accessibility and
preserving linguistic diversity, but they must be
used thoughtfully to avoid reinforcing existing
biases.

In this work, we utilize the rich information
about participant demographics and lexical fea-
tures present in the ASL Citizen dataset to study
and document the biases that may result from
models trained on crowd-sourced sign datasets.
Further, we apply several bias mitigation tech-
niques during model training, and find that
these techniques reduce performance dispar-
ities without decreasing accuracy. With the
publication of this work, we release the demo-
graphic information about the participants in
the ASL Citizen dataset to encourage future
bias mitigation work in this space.

1 Introduction

Within the field of natural language processing,
sign languages are under-resourced compared to
spoken languages, compounded by the fact that
most accessible information (e.g. online resources
and social media) is written in a spoken language
(Desai et al., 2024). Datasets like the ASL Citizen
dataset offer significant potential for improving
accessibility and preserving the linguistic richness
of sign languages, yet their use requires careful
consideration to avoid reinforcing existing biases.
In this context, our research aims to explore the
factors that might influence the performance of
models trained on these datasets, particularly when
used for dictionary retrieval tasks.

Because sign languages have comparatively
fewer resources than spoken languages, identify-

Figure 1: Accuracy and gender parity (calculated by
dividing accuracy on female participants by accuracy
on male participants) of the baseline pose-based ISLR
model released with the ASL Citizen dataset (left) and
our best-performing feature-based debiasing technique
(right), in which we resample videos with lower video
quality scores at a higher rate. Our approach improves
both overall model accuracy and the gender parity.

ing biases in existing sign language resources is
critical. But biases can manifest differently in sign
languages than in spoken languages. For instance,
ASL pronouns, unlike English pronouns, are not
assigned a gender, so the common method of study-
ing bias in English text through the lens of gendered
pronoun use does not apply. Temporal elements,
such as signing speed, also come into play, un-
like in written language. Signing speed may be
impacted by a signer’s fluency, age, etc.

In this work, we analyze how signer demograph-
ics and more latent sources of bias may impact
models trained on the ASL Citizen dataset for the
task of Isolated Sign Language Recognition (ISLR).
We first examine the demographic distributions
in the ASL Citizen dataset, and present a linguis-
tic analysis of the dataset based on the ASL-Lex
(Caselli et al., 2017) annotations for each sign. We
then report the prevalence of various linguistic and
video-level features among demographics. We ex-
amine how demographic features, in conjunction
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with lexical and video-level features, may impact
model results. Finally, we experiment with mul-
tiple debiasing techniques to reduce performance
gaps between genders, and find that we are able
to reduce these gaps and improve overall model
accuracy (Figure 1).

In summary, we present an analysis of demo-
graphics, sign-level features, and video-level fea-
tures in the ASL Citizen dataset and address the
following research questions:

1. Which demographic and linguistic factors im-
pact dictionary retrieval results for models
trained on the ASL Citizen dataset?

2. Can we use debiasing strategies to mitigate
disparate impacts while maintaining high per-
formance for dictionary retrieval models?

With this work, we also release the demographic
data for the ASL Citizen dataset1, so future re-
searchers can continue to study and mitigate bias in
sign language processing systems. Further, we re-
lease the code for our experiments and analyses2.

2 Related Work

Most readily-available information (i.e. online re-
sources and social media) is written, which may
limit accessibility for signers. Sign language pro-
cessing tasks, such as dictionary retrieval, are de-
signed to improve the accessibility of existing sys-
tems and resources for Deaf and Hard-of-Hearing
(DHH) people. Desai et al. (2024) created the ASL
Citizen dataset to supplement existing dictionary
retrieval resources with crowd-sourced videos from
signers.

The ASL Citizen dataset was released to 1) ad-
dress the resource gap between sign and spoken
languages, and 2) improve video-based dictionary
retrieval for sign language, where signers demon-
strate a particular sign and the system returns a list
of similar signs, ranked from most to least simi-
lar. Video-based dictionary retrieval systems can
help language learners understand the meaning of
a sign, and allow signers to access dictionary re-
sources using sign languages (Desai et al., 2024).
As a crowd-sourced dataset with videos of individ-
ual signs, the ASL Citizen dataset also serves to
improve documentation of sign languages. This
dataset is the first crowd-sourced dataset of videos

1Demographics available through the ASL Citizen project
page: https://www.microsoft.com/en-us/research/
project/asl-citizen/

2https://github.com/katherine-atwell/
mitigating-biases-sign-understanding

for isolated signs, and members of deaf commu-
nities participated in, and were compensated for,
this effort. When supplemented with the Sem-Lex
benchmark (Kezar et al., 2023a), a crowdsourced
ISLR dataset released shortly after, 174k videos in
total can be used for ISLR. The ASL Citizen dataset
is licensed by Microsoft Research and is bound by
the Microsoft Research Licensing Terms3.

The ASL Citizen dataset is composed of videos
of individual signs for isolated sign language recog-
nition (ISLR). Other ISLR datasets with videos of
individual signs have been released, including WL-
ASL (Li et al., 2020), Purdue RVL-SLL (Wilbur
and Kak, 2006), BOSTON-ASLLVD (Athitsos
et al., 2008), and RWTH BOSTON-50 (Zahedi
et al., 2005). The above datasets, however, are
not crowd-sourced. The closest dataset to the ASL
Citizen dataset is the Sem-Lex Benchmark (Kezar
et al., 2023a), a crowdsourced ISLR dataset with
over 91k videos. Because the Sem-Lex Benchmark
does not release demographic information about
the participants, we are not able to include it in our
bias studies.

The ASL Citizen dataset is made up of crowd-
sourced videos from ASL signers, where each
video corresponds to a particular sign. The cor-
pus is composed of videos for 2731 unique signs,
all of which are contained in the ASL-Lex dataset
Caselli et al. (2017), a lexical database of signs
with annotations including the relative frequency,
iconicity, grammatical class, English translations,
and phonological properties of the sign. Thus, re-
searchers studying this dataset can also take advan-
tage of the ASL-Lex annotations. As part of the
original data collection effort, demographic infor-
mation about each participant was collected, but it
was not released. With the publication of this work,
we release the demographic data in this set, and
provide a detailed analysis of this data.

Our analyses of demographics and bias are moti-
vated by evidence in the literature that a signer’s de-
mographics may impact their signing. For instance,
characteristics of particular spoken languages or
dialects have been shown to influence gestures, and
in turn sign production (Cormier et al., 2010). One
example of an ASL dialect is Black ASL, which
scholarly evidence has shown to be its own dialect
(Toliver-Smith and Gentry, 2017), and for which
documentation of dialectical differences dates back

3Terms of use at https://www.microsoft.com/en-us/
research/project/asl-citizen/dataset-license/.
We are using this dataset in accordance with its intended use.
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to 1965 (Stokoe et al., 1965). Whether an indi-
vidual speaks Black ASL is likely heavily influ-
enced by their race or ethnicity. An example of
geographic differences is Martha’s Vineyard, an
island off the coast of the United States, where an
entire sign language emerged due to the high preva-
lence of DHH individuals in this community. Hear-
ing and DHH people alike used this language to
communicate until the mid-1900s (Kusters, 2010).
There is also a distinct Canadian ASL dialect used
by signers in English-speaking areas of Canada
(Padden, 2010), which is documented in a dictio-
nary (Bailey et al., 2002). Age of language ac-
quisition also impacts ASL production; delayed
first-language acquisition affects syntactic knowl-
edge for ASL signers (Boudreault and Mayberry,
2006) and late acquisition (compared to native ac-
quisition) was found to impact sensitivity to verb
agreement (Emmorey et al., 1995).

Previous work also indicates the impact of cer-
tain visual and linguistic features on sign language
modeling. Training an ISLR model to predict a sign
and its phonological characteristics was found to
improve model performance by almost 9% (Kezar
et al., 2023b). (Sarhan et al., 2023) find improved
performance when using attention to focus on hand
movements in sign videos.

To our knowledge, there are no existing works
that extensively study various sources of model bias
on a crowd-sourced dataset of sign videos with la-
beled participant demographics. With this work,
we aim to address this gap with a systematic analy-
sis of the impact of various participant-level, sign-
level, and video-level features, and experiment with
debiasing techniques to reduce disparities in model
performance.

3 Data

The ASL Citizen dataset is a crowd-sourced dataset
containing 83,399 videos of individual signs in
ASL from 52 different participants. The dataset
contains 2731 unique signs that are included in the
ASL-Lex (Caselli et al., 2017) dataset, a dataset
with detailed lexical annotations for each sign. The
authors of the original work report some demo-
graphic statistics, but the demographics of indi-
vidual (de-identified) participants have not been
released. Here, we provide a detailed report that
includes demographic breakdowns and analyses of
various linguistic and video features in the dataset,
including the breakdown of these features by gen-

der. We release the participant demographics with
this work.

3.1 Demographic Distributions

In total, the ASL Citizen dataset is comprised of 32
(61.5%) women and 20 (38.5%) men. 21 women
are represented in the training set (60%), 5 in the
validation set (83%), and 6 in the test set (55%).
The vast majority of participants report an ASL
level of 6 or 7, as we show in Figure 5 in Appendix
A. The participants also list their U.S. states. Using
this information, we divide them into four regions
based on the U.S. Census definitions 4: Northeast,
Midwest, South, and West. More participants in
the dataset are from the Northeast than any other re-
gion, as shown in Figure 5 in Appendix A. We also
find that the age range of participants is skewed;
participants in their 20s and 30s make up 32 of the
52 participants (see Figure 6 in Appendix A).

Participants did not note their ethnicity or race
for this dataset. As such, to uncover potential biases
related to the participants’ perceived skin tone in
their videos, we run the skin-tone-classifier
Python package from Rejón Pina and Ma on the
frame with the first detected face in each video. We
find that when we do not specify that the videos
were in color, the classifier most often detects them
as black and white. When we specify that the
videos are in color, the most common skin tone
detected (out of the default color palette used in
Rejón Pina and Ma) is #81654f. Because the clas-
sifier most commonly detects as black and white,
we also try specifying the video frames as being
black and white. In this setting, the most common
skin tone detected is #b0b0b0, and the distribution
differs from when the images are specified color
images. We plot these results in Figure 7.

3.2 Sign and Video Features

Because the ASL Citizen dataset is composed of
signs from ASL-Lex (Caselli et al., 2017), we can
utilize ASL-Lex’s lexical annotations for each sign.
No works have studied these features in-depth on
the ASL Citizen sign videos. We also analyze the
video lengths, similarities and differences from the
seed signer, and other video features.

Video Length We study the distribution of video
lengths in order to better understand how video
length may vary in this dataset. We find that the

4https://www2.census.gov/geo/pdfs/maps-data/
maps/reference/us_regdiv.pdf
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distribution of video lengths (s) is skewed left, with
a longer tail on the right, as shown in Figure 8.

We also study whether video lengths vary, on
average, for participants of different ages and gen-
ders. To account for differences between the signs
depicted by participants (since participants did not
all record the same signs), for each video, we cal-
culate the number of standard deviations (SDs) the
video length is away from the mean for all videos
of that sign - in other words, we calculate the z-
score at the sign level. We show this calculation
in the equation below, where vi(s) represents the
length of video i depicting sign s.

z =
vi(s)− µs

σs
(1)

We find that, while men on average record videos
over .3 SDs longer than the mean, women on av-
erage record videos over .2 SDs shorter than the
mean. Thus, compared to other videos with the
same sign, women record shorter videos than men
on average. We show these results in Figure 9.
Older participants, particularly those in their 70s,
record longer videos on average (again, relative to
other videos of the same sign) than younger par-
ticipants. During manual inspection, we find older
participants are more likely to have longer pauses
before or after signing than younger participants,
which may explain this gap. We also show these
results in Figure 9.

Sign Frequency The ASL Citizen dataset is com-
prised of 2731 signs from the ASL-Lex dataset
Caselli et al. (2017), a dataset with expert annota-
tions about properties of each sign including fre-
quency of use, iconicity, and varying phonological
properties. To collect sign frequency labels, deaf
signers who use ASL were asked to rate signs from
1 to 7 in terms of how often they appear in everyday
conversations, where 1 was “very infrequently" and
7 was “very frequently". We plot and compare the
sign frequency distributions for the ASL Citizen
dataset and the ASL-Lex dataset in Figure 10, and
find that they are very similar.

We also find that there is little variation in aver-
age sign frequency for different genders. For male
participants, the average sign frequency is 4.1592,
while the average sign frequency for female partic-
ipants is 4.1395, indicating that female participants
chose slightly less frequently-occurring signs than
men overall.

Sign Iconicity The ASL-Lex dataset also con-
tains crowd-sourced annotations for sign iconicity,

where non-signing hearing annotators watch videos
of a sign and evaluated how much they look like
the sign’s meaning from 1 (not iconic) to 7 (very
iconic). We calculate an average iconicity of 3.378
in the ASL-Lex dataset, and 3.379 in the ASL Citi-
zen dataset. We plot these distributions in Figure
11, and again find that they are very similar.

We find average iconicity is 3.378 for women
and 3.381 for men. This indicates that, as with fre-
quency, there is only a slight difference, on average,
between the iconicity of signs chosen by male and
female participants.

4 Methods

Here, we describe the baselines for our ISLR ex-
periments, along with the experimental settings we
use.

4.1 Baselines

For our experiments, we use the baseline I3D
and ST-GCN models which were trained on the
ASL Citizen dataset and released along with the
dataset.5. We describe the details of these models
below.

I3D The I3D model is a 3D convolutional net-
work trained on the video frames themselves (Car-
reira and Zisserman, 2017). As with the original
ASL Citizen baselines, we train our I3D model on
preprocessed video frames from the sign videos in
the ASL Citizen training set. These videos are each
standardized to 64 frames by skipping or padding
frames depending on video length. Videos are then
randomly flipped horizontally to imitate right- and
left-handed signers.

4.2 ST-GCN

The ST-GCN model is a temporal graph convolu-
tional network trained on pose information (Yan
et al., 2018). As with the original ASL Citizen base-
line, we obtain pose representations for each frame
using Mediapipe holistic (Lugaresi et al., 2019),
with a set of 27 keypoints established by Open-
Hands (Selvaraj et al., 2022). These keypoints are
center scaled and normalized using the distance
between the shoulder keypoints. The frames are
capped at a maximum of 128, and random shear-
ing and rotation transformations are applied during
training for data augmentation.

5https://github.com/microsoft/
ASL-citizen-code
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Figure 2: I3D (top) and ST-GCN (bottom) top 1 accu-
racy scores by detected skin tone. We find that, despite
being less represented in the dataset, videos with lighter
detected skin tones have higher accuracy scores on aver-
age for both models. The ST-GCN model, in particular,
exhibits this behavior.

4.3 Experimental Settings
All baselines are run on a Mac Studio with an Apple
M2 Max chip and 64GB RAM.

I3D We use the same experimental settings as the
I3D ASL Citizen baseline: 75 epochs maximum,
learning rate of 1e-3, weight decay of 1e-8, an
Adam optimizer and ReduceLRonPlateau sched-
uler with patience 5. As described in the ASL
Citizen paper, we calculate the loss by averaging
cross-entropy loss and per-frame loss.

ST-GCN As with the original ASL-Citizen base-
line, we train our ST-GCN model for a maximum
of 75 epochs using a learning rate of 1e-3, an Adam
optimizer, and a Cosine Annealing scheduler.

5 Which factors impact dictionary
retrieval results in the ASL Citizen
dataset?

5.1 Participant-level differences
Baseline models perform over 10 percentage
points better for male vs. female participants
We run the baseline I3D and ST-GCN models
trained on the ASL Citizen dataset (Desai et al.,
2024), and, for both models, find an accuracy
disparity between male and female participants.
For the I3D model, the overall Top-1 accuracy is
0.6306, while for females it is 0.5914 and for males
it is 0.6776; in other words, a gap of over 10 points

in favor of male participants is observed. An even
bigger gap is observed for the ST-GCN model; the
overall Top-1 accuracy is 0.5944, while the Top-1
accuracy is 0.6838 for males and 0.52 for females.

Average model accuracy varies greatly between
participants One possible contributor to the
above performance disparities for male and female
participants is variation in participant-level model
accuracy. There are 11 participants whose videos
are in the test set for the ASL Citizen dataset. Of
these 11 participants, 6 are female and 5 are male.
When calculating accuracy scores for each partici-
pant, we find high variation for both models, with
over 15-point differences between the highest and
lowest accuracy scores (see Table 5. This variation
may contribute to the gender performance gap, as
there are only a few participants of each gender in
the test set.

While performing manual inspection, we find
several characteristics of user videos that appear to
vary between participants. Different participants
have different background or lighting quality, and
some participants mouth the word being signed
while other participants do not. We also find in-
stances of repetition, where the sign is repeated in
the video, from P15, a female participant. There are
also some instances of fingerspelling, where partic-
ipants fingerspell the sign before signing it. These
and other individual differences may contribute to
the observed performance disparities.

The models perform better on lighter skin tones
than darker skin tones on average Despite
darker skin tones making up most of the detected
skin tones for videos in this dataset (see Figure 7),
we find that models average higher performance
when the detected skin tone is lighter. We illus-
trate this phenomenon for both models in Figure
2. As this figure shows, I3D follows similar trends
to ST-GCN in terms of comparative performance
for different skin colors, performing the best for
lighter skin tones #BEA07E and #E5C8A6. That
being said, ST-GCN performs comparatively more
poorly on the three darkest skin tones (#373028,
#422811, and #513B2E) and the lightest skin tone
(#E7C1B8) than I3D, when compared to the higher-
performing skin tones. This indicates that, though
both models show similar patterns regarding the
skin tones with higher/lower performances, the
RGB-based I3D model appears to perform bet-
ter overall on darker skintones than the ST-GCN
model. Although we find variations in accuracy be-
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Std. devs from mean I3D Top-1 ST-GCN Top-1

n < −2 0.38462 0.3846
−2 ≤ n < −1 0.5551 0.4862
−1 ≤ n < 0 0.648 0.5888
0 ≤ n < 1 0.6704 0.6449
1 ≤ n < 2 0.5727 0.5878

n > 2 0.3846 0.4668

Table 1: Top-1 accuracy scores for videos within a cer-
tain number of SDs away from the mean for videos of
the same sign. For both models, videos with lengths
closer to the mean yield better model performance.

tween participants in the previous section, the skin
tones are categorized at the video level. Thus, it is
possible to see variation in predicted skin tone for
different videos recorded by the same individual.
The lighting quality of individual videos may be a
confounder for these results.

Trained models exhibit the highest average per-
formance on participants in their 20s and 60s
The ASL Citizen test set is made up of 11 individ-
uals in their 20s, 30s, 50s, and 60s. We find that,
as with gender, model accuracy varies for differ-
ent age ranges; the highest accuracy scores were
achieved for participants in their 20s and 60s. This
could be influenced by the proportion of partici-
pants in their 20s in the training set.

5.2 Video-level differences
Performance decreases as the video length di-
verges from the average For each sign video in
the ASL Citizen dataset, we calculate the z-score
of its video length compared to other videos of the
same sign. We then place these values into buckets:
less than -2, -2 to -1, -1 to 0, 0 to 1, 1 to 2, and
more than 2 SDs from the mean. We find that, on
average, the videos farther away from the mean
see decreased model performance compared to the
videos closest to the mean. The results in full are
in Table 1.

Performance decreases when video quality de-
grades In addition to video length, we study
the impact of video quality on model accuracy.
Given that we are studying the quality of indi-
vidual video frames without a reference image,
we use the BRISQUE score (Mittal et al., 2012)
to measure image quality of individual frames.
Higher BRISQUE scores indicate lower quality,
while lower BRISQUE scores indicate higher qual-
ity. We find that higher BRISQUE scores corre-
late negatively with Top-1 model performance for

Figure 3: Association between BRISQUE image quality
scores and accuracy. Higher BRISQUE scores indicate
lower image quality, and vice versa. Thus, higher im-
age quality appears to be associated with better model
performance.

the I3D model, with a Spearman correlation of
ρ = −0.0367 and a p-value of p = 1.53x10−8.
We show a scatterplot of these results in Figure 3,
along with a linear regression line.

Dissimilarity between participant and seed
signer signs negatively impacts model accuracy
for the ST-GCN pose model The Frechét dis-
tance is often used as an evaluation metric for sign
language generation, to study the similarity be-
tween generated signs and references (Hwang et al.,
2024; Dong et al., 2024) (see § D for more details).
In the ASL Citizen dataset, one of the participants
is a paid ASL model who records videos for every
sign, referred to as the “seed signer".

We study whether dissimilarity between the par-
ticipant and seed signer may have a negative im-
pact on model accuracy. To do so, we use the pose
models used as input to the ST-GCN model. Ev-
ery .25 seconds, we measure the distance between
the model pose and the participant’s pose at that
frame, studying the distance between left hands
and right hands separately. We find no significant
relationship between right hand or left hand dis-
tance from the seed signer for the I3D model, and
for the ST-GCN model we find a significant nega-
tive Spearman correlation between distance from
the seed signer and accuracy for the right hand
(ρ = −.0289, p = 0.001). We plot these results,
along with lines of best fit, in Figure 12.

When the average signing “speed" is closer to
the sign-level average, performance is better In
addition to video length, we are interested in study-
ing the average distance between poses over con-
sistent time intervals. We want to study how much
movement on average occurs within these incre-
ments, i.e. the “speed" of sign production. We
study this by calculating the pairwise Frechet dis-
tance between poses at each 0.25 second interval,
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I3D ST-GCN I3D ST-GCN
SD from mean (LH) (LH) (RH) (RH)

n < −2 .4627 .2139 .5 .2375
−2 ≤ n < −1 .6041 .5804 .6121 .5174
−1 ≤ n < 0 .6503 .6426 .6438 .6351
0 ≤ n < 1 .6244 .5813 .6423 .6145
1 ≤ n < 2 .6164 .5261 .616 .5744

n > 2 .5711 0.4739 .5619 .5107

Table 2: Number of SDs away from the mean of the sign
(in buckets) for the “speed" of signing, i.e. the average
Frechet distance between poses every 0.25 seconds, for
right hand and left hand. We find that, for both right
hand and left hand, the performance degrades as the
average “speed" of the sign production in a sign video
deviates from the average for that particular sign.

with distance calculated between a pose and the
pose .25s after, starting from the first frame. We
again take this distance for the participants’ right
hand and left hand. We find that, on average, the
farther away a participant’s average signing speed
is from that sign’s mean, the worse performance is,
with especially high performance degradations 2
SDs or more from the mean. We show these results
in Table 2.

5.3 Sign-level lexical features

Here, we present results for four sign-level fea-
tures annotated in the ASL-Lex dataset: sign fre-
quency, iconicity, phonological complexity, and
neighborhood density. We find that several of these
features are significantly correlated with model per-
formance, which we discuss below.

Sign frequency, phonological complexity, and
neighborhood density are negatively correlated
with model accuracy As mentioned in § 3.2,
sign frequency annotations in the ASL-Lex dataset
were collected from ASL signers. The ASL-Lex
2.0 dataset (Sehyr et al., 2021) also contains a new
phonological complexity metric. Using 7 different
categories of complexity, scores were calculated
by assigning a 0 or 1 to each category (depending
on whether that category was present) and adding
them together, for a maximum possible scores of 7
(most complex) and a minimum possible score of 0.
The highest complexity score in the dataset was a
6. Neighborhood density was calculated based on
the number of signs that shared all, or all but one,
phonological features with the sign.

Intuitively, we expect negative associations with
phonological complexity and accuracy as well
as neighborhood density and accuracy, and in-

deed find significant negative correlations (ρ =
−0.0618, p = 0.005 for phonological complex-
ity and rho = −0.0584, p = 0.01 for neighbor-
hood density). However, we also find a significant
negative association between sign frequency and
model accuracy (ρ = −0.057, p = 0.011). Ex-
isting work indicates that higher-frequency words
are produced more quickly than low-frequency
words (Jescheniak and Levelt, 1994; Emmorey
et al., 2013; Gimeno-Martínez and Baus, 2022);
thus, it is possible that this association could be
related to video length.

There is no significant correlation between
iconicity and model accuracy As mentioned in
§ 3.2, sign iconicity ratings were also collected for
the ASL-Lex dataset. We find a very slight posi-
tive correlation between sign iconicity and model
accuracy (ρ = 0.044), which is not significant
(p = 0.8424). Thus, we conclude that visual simi-
larity to the English word appears not to affect the
model’s ability to recognize a sign.

5.4 Which features are the best predictors of
model accuracy?

After looking at the impacts of lexical, demo-
graphic, and video features on model accuracy,
we are interested in studying which features are
(by themselves) the best predictors of model accu-
racy. As such, we study the mutual information
between each feature and the Top-1 accuracy for
the I3D and ST-GCN models. We study 19 fea-
tures in total, where some relate to participant de-
mographics (e.g. age and gender), others relate
to the sign lexical features (e.g. sign iconicity),
and the rest are characteristics of individual videos
(e.g. BRISQUE score and Frechet distances). We
find that the 5 most impactful features are charac-
teristics of individual videos (BRISQUE, Frechet
from seed signer, and absolute z-score of “sign-
ing speed"), with BRISQUE video quality scores
showing the highest mutual information with Top-1
accuracy. Out of the lexical features, sign iconicity
has the highest mutual information, and out of the
demographic features, the participant’s ASL level
has the highest mutual information with the model
performance. The results are in Table 6.
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Figure 4: The relationships between sign frequency (left), sign iconicity (center left), phonological complexity
(center right), and neighborhood density (right) and top 1 accuracy for the ST-GCN model. We find that sign
frequency, phonological complexity, and neighborhood density are all significantly negatively correlated with model
accuracy (p < 0.05) when calculating the Spearman’s rank correlation. However, despite a slight positive correlation
between iconicity and accuracy, the p-value is not significant.

Overall Female participants Male participants Parity
Model Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 (Top-1)

ST-GCN .5238 .7665 .8295 .4406 .6886 .7665 .6236 .8601 .9374 .7065
ST-GCN (VL) .5488 .7923 .8515 .4666 .7200 .7941 .6476 .8791 .9205 .7205
ST-GCN (VL, fem.) .5395 .7926 .8538 .4621 .7202 .7974 .63 .8795 .9216 .7334
ST-GCN (brisque, HP) .4723 .7344 .8046 .3949 .6551 .7354 0.5653 .8296 .8877 .6986
ST-GCN (brisque, LP) .5580 .7960 .8545 .4801 .7279 .8011 .6516 .8779 .9187 .7368

Table 3: Performance of ST-GCN baseline against models that use the resampling strategies discussed in 6.3. We
find that all resampling strategies improve accuracy and gender parity over the baseline (for every metric but Top-10
Male), and resampling lower quality videos at a higher rate improves gender parity the most, followed closely by
resampling based on video length from only female participants.

6 Can we mitigate disparate impacts
while maintaining high model
performance for dictionary retrieval?

6.1 Training on single-gender subsets

We first address the gender performance gap by
training on participants of each gender in isolation.
When doing this, we find a slight difference be-
tween the performance gaps for models trained on
male-only and female-only subsets. For the model
trained on the male-only subset, the Top-1 accuracy
for male subjects is .292, and the Top-1 accuracy is
.168. For the model trained on the female-only sub-
set, the Top-1 accuracy for male subjects is .291,
and the Top-1 accuracy for female subjects is .206.
Thus, the model trained only on female subjects has
a smaller gap, and higher accuracy parity, between
male and female subjects than the model trained
on only male subjects. However, both models have
low performance overall, so the Top-1 accuracy
parity for subjects of different genders (calculated
by dividing the female accuracy by the male accu-
racy) is .7571 for the model trained on all subjects
compared to .7079 for the model trained on only
female subjects. The model trained on only male
subjects has the lowest accuracy parity, at .5746.
We show these results in Table 7 in Appendix I.

6.2 Training label shift

In addition to training on single-gender subsets, we
experiment with a label-shift approach to debias-
ing. Because ISLR is a multiclass problem, we
experiment with the reduction-to-binary approach
for debiasing multi-class classification tasks pro-
posed by Alabdulmohsin et al. (2022). We run the
label-shift algorithm and train the ST-GCN model
on the debiased labels for 25 epochs, and compare
the performance of the debiased model to the ST-
GCN model without debiasing, which we also train
for 25 epochs. We find that the model trained on
regular labels actually has a higher ratio for female
to male accuracy than the debiased model: .7476
for the baseline model, and .7052 for the debiased
model. We show these results in full in Table 8.

6.3 Weighted resampling

Although there is a large gender performance gap
observed (§5.1), based on the results from Table 6,
other features are much more heavily tied to model
accuracy. Thus, it is likely that these features (in
particular, features at the video level) may influ-
ence results. But what happens if the impact of
videos with potentially-noisy features is reduced
during training? We experiment with weighted re-
sampling, where samples with certain features are
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more likely to be resampled. We explain how we
calculate the resampling probability, and present re-
sults, for each variable we study in the paragraphs
below.

Video length We first experiment with calcu-
lating the resampling probability based on video
length. Given that videos closer to the mean pro-
duced higher accuracy scores, we wanted to resam-
ple these videos at a higher rate to reduce training
noise. We calculate the probability of resampling
as follows, where vi(s) refers to the length of video
i for sign s, µs refers to the mean video length of
videos depicting sign s, and σs refers to the SD for
video lengths of videos depicting sign s:

P (resample) =
1

2
vi(s)−µs

σs

(2)

We show the results for this approach in Table
3, represented by the ST-GCN (VL) model. We
find that this approach improves upon the baseline
ST-GCN model by at least 2 percentage points for
all accuracy metrics, and improves gender parity
for Top-1 accuracy by 1.4%.

Video length for female participants We then
experiment with the exact same resampling process
described above, based on number of SDs from the
mean for video length, but only resample videos
from female participants. Because training on an
all-female subset yielded a higher test accuracy for
female subjects than an all-male subset (Table 7),
we want to investigate whether restricting our re-
sampled data to female participants improves the
gender performance gap. We show these results
in Table 3, under the baseline ST-GCN (VL, fem.).
We find that this approach exceeds calculating the
resampling probability using video length for par-
ticipants of all genders for Top-5 and Top-10 accu-
racy. We also find that this baseline achieves the
second-highest gender parity of all of the baselines,
at 2.69% higher than the baseline. Thus, we find ev-
idence that resampling based on video length SDs,
but only videos from female participants (the group
with the lower model accuracy scores), greatly im-
proves gender parity over the baseline model.

BRISQUE score Because the BRISQUE score
shows the highest mutual information with Top-1
accuracy, we experiment with resampling based on
the video quality. We experiment with two different
resampling strategies: resampling higher-quality
videos at a higher rate (resampling high quality)

and resampling lower-quality videos at a higher
rate (resampling low quality). We discuss these
strategies below.
Resample high quality: We first experiment
with resampling more high-quality videos (lower
BRISQUE scores) at a higher rate by setting the re-
sampling probability as a function of the BRISQUE
score, with higher BRISQUE scores reducing the
resampling probability. We calculate the probabil-
ity of resampling as follows, where Bi(s) refers to
the BRISQUE score of video i:

P (resample) =
1

2
Bi
100

(3)

Resample low quality: We then experiment
with resampling more low-quality videos (higher
BRISQUE scores) at a higher rate by setting the
resampling probability as a function that increases
relative to the BRISQUE score. We calculate the
probability of resampling as follows, where Bi(s)
refers to the BRISQUE score of video i:

P (resample) =
1

2
100
Bi

(4)

Our results in Table 3 show that the latter ap-
proach, resample low quality, achieves the highest
overall accuracy and gender parity score.

7 Conclusion

In this work, we address a gap in sign language
processing research by exploring biases in sign lan-
guage resources, and experimenting with strategies
to mitigate these biases. We focus on the ASL Citi-
zen dataset in particular, and release demographic
information for this dataset to aid future work. We
find performance gaps related to skin tone, partic-
ipant age, and gender. Still, we find that video
level features, such as the video quality, signing
“speed", and video length, appear to be the best
predictors of model accuracy. We find that selec-
tively resampling data with video lengths closer to
the mean improves overall performance. We also
find that doing this resampling strategy for only
the group with lower model performance (female,
when comparing genders) improves the gender par-
ity for model performance. We find that resampling
lower-quality videos at a higher rate achieves the
highest Top-1 accuracy and gender parity.

Limitations

While in this work we find and document perfor-
mance gaps between participants of different de-
mographics such as age and gender, because of
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the differences between individual participants that
we detail above (see Table 5), and the number of
participants in the test set (11), it is unclear how
much of these differences are due to age or to other
underlying factors.

Another limitation is that we focus on a single
dataset. This is due in part to the fact that this is the
only large-scale crowdsourced dataset for isolated
sign language recognition with demographic labels.
However, as more crowdsourced sign language re-
sources become available, it is critical that these
analyses are repeated on these datasets to assess
the generalizability of our results.

Ethical Implications

In our analysis of participant demographics, and ac-
companying features, for the ASL Citizen dataset,
we present some characteristics of the dataset that
vary between demographics. For instance, we dis-
cuss our findings that male participants and older
participants typically record longer videos. It is
important to emphasize that these findings should
not be generalized to all ASL signers, and that they
should instead be used to study the characteristics
of this dataset in particular.

Further, this work is not exhaustive; there are
many sources of bias unexplored by this work, in-
cluding differences in participant culture or ethnic-
ity. There may be many more sources or dimen-
sions of bias not covered in this paper that should
be explored by future work.

We also note that participants who chose to de-
note their demographic information (which was op-
tional) consented for this information to be anony-
mously released as part of the dataset. No iden-
tifiable information about the participants will be
released with the publication of this paper; rather,
anonymous participant IDs will be accompanied
with their demographics.
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Figure 5: Distribution of ASL levels (left) and regions
(right) of participants for the ASL Citizen dataset.

Figure 6: Age ranges of participants in the ASL Citizen
dataset. Participants are skewed mostly towards their
20s and 30s, with a lesser skew towards participants in
their 60s.

A Participant Demographics

Here, we plot the demographic information dis-
cussed in 3.1. Note that providing demographic
information was optional, so these numbers will
not always add up to the total number of partici-
pants (52).

In Figure 5, we plot the distribution of ASL lev-
els and regions associated with the participants in
the ASL Citizen dataset. We find that most par-
ticipants are at an ASL level of 6 of 7, with only
one participant each at level 3 or 4. A plurality
of participants are from the Northeast, almost half.
The West contains the fewest participants.

In Figure 6, we plot the distribution of partici-
pants’ ages. We find that participants are mostly
skewed towards younger adults (20s and 30s) but
that there is also a slight skew towards contestants
in their 60s. Contestants in their 20s, 30s, 40s, 50s,
60s, and 70s are represented in the dataset, but con-
testants in their 40s and 70s are not represented in
the test set.

In Figure 7, we plot the distribution of skin tones
in the dataset when frames are set as color images
and black-and-white images. We include black-
and-white images because we found that, when
an image type was not set, the model detected the

Figure 7: Frequency of detected skin tones of partici-
pants in videos when the video frames were set manually
to color images (left) and black and white images (right)

images as black-and-white images in the majority
of cases. One notable finding is that the skin color
model detected lighter skin tones more frequently
when the images were set to black-and-white than
when they were set to color images. This indicates
possible unreliability of the skin color detection; it
is possible, for instance, that when the images are
set to color, the system classifies the skin colors as
darker than they actually are.

B Video Length Distributions

In Figure 8, we find that video lengths have
a skewed distribution, where the average video
length is higher than the median. In other words,
video lengths lower than the mean are more com-
mon and vice versa, and there is a long tail to the
right. After watching participants’ videos, we sus-
pect that this difference in video length is a result
of some participants having a tendency to pause for
multiple seconds at the beginning of end of their
recording. This happens especially often with the
first couple of videos that people record.

We also find that female participants have, on
average, shorter videos related to their signs than
male participants. For each sign video, we calcu-
lated the mean and standard deviation for all videos
with that sign. We then calculated how many stan-
dard deviations those movies were away from the
mean.
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Figure 8: Distribution of video lengths for all sign
videos in the ASL Citizen dataset. The distribution
is skewed towards the right, with a long tail on the right.

Figure 9: Average number of standard deviations away
from the mean at the sign level for male and female
participants (top) and participants in their 20s, 30s, 40s,
50s, 60s, and 70s (bottom). Relative to other videos of
the same sign, women tend to record shorter videos, and
older participants tend to record longer videos.

Figure 10: Distributions of labeled sign frequencies for
each of the 2731 signs from the ASL-Lex dataset (top)
and all of the sign videos in the ASL Citizen dataset
(bottom). The distributions are very similar, indicating
that users chosen signs of certain frequencies at a similar
rate to how they are distributed in the ASL-Lex dataset.

C Lexical Feature Distribution

In addition to getting demographic and video fea-
tures, we used the ASL-Lex (Caselli et al., 2017)
annotations to analyze lexical features in the ASL
Citizen dataset. We found that, for sign frequency
and iconicity, the distributions are very similar to
those in the ASL-Lex dataset. The distributions of
both datasets are plotted side-by-side for frequency
and iconicity, respectively, in Figures 10 and 11.

D Frechét Distance

The Frechét distance, used as a similarity metric
between curves, and is commonly described in the
following manner:

A man is walking a dog on a leash: the
man can move on one curve, the dog
on the other; both may vary their speed,
but backtracking is not allowed. What
is the length of the shortest leash that is
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Figure 11: Distribution of sign iconicities in the ASL-
Lex dataset (left) and the sign videos recorded in the
ASL Citizen dataset (right). Like the sign frequencies,
the iconicities in the ASL Citizen videos are distributed
similarly to their distribution in the ASL-Lex dataset.

Age range # in test I3D Top-1 ST-GCN Top-1

20s 2 .6697 .6076
30s 3 .5689 .5336
40s 0 – –
50s 2 .549 .5658
60s 3 .7016 .6421
70s 0 – –

Table 4: Average accuracy scores for participants of
each age range in the test set. There were no participants
in their 40s or 70s in the test set, and one participant did
not specify their age. We find the highest performance
in both models occurs for participants in their 20s and
60s.

Participant ID I3D Top-1 ST-GCN Top-1

P6 0.5456 0.4387
P9 0.6586 0.5663
P15 0.4653 0.5757
P17 0.6183 0.4997
P18 0.7065 0.5727
P22 0.5562 0.4671
P35 0.7204 0.7153
P42 0.6041 0.6949
P47 0.7471 0.7886
P48 0.6882 0.6652
P49 0.6327 0.556

Table 5: Model top-1 accuracy scores on the set of
videos recorded by each participant in the test set. For
both models, there is high variation between partici-
pants, with scores ranging from 0.4653 to 0.7204 (I3D)
and 0.4387 to 0.7886 (ST-GCN).

sufficient for traversing both curves?
- (Eiter et al., 1994)

E Accuracies for different age ranges

In Table 4, we show the Top-1 accuracy scores
for the I3D and ST-GCN model for participants of
different ages. We find the highest scores occur
for participants in their 20s and 30s, with the third
highest scores occuring for participants in their
60s. Participants in their 40s and 70s were not
represented in the test set.

F Model accuracies for each participant
in the test set

In Table 5, we report the accuracy scores for the
baseline ST-GCN model on the participants in the
test set of the ASL Citizen dataset. We find differ-
ences of over 20 points between participant aver-
ages for both models. P6, P9, P15, P17, P18, and
P22 disclosed that they are female, while the other
participants disclosed that they are male.
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Figure 12: The Frechet distance from the seed (model)
signer vs. top-1 accuracy for the I3D model (top) and
ST-GCN model (bottom), with the distance between left
hands on the left and the distance between right hands
on the right.

‘

G Frechet distance from seed signer

In Figure 12, we plot the Top-1 accuracies for
the I3D and ST-GCN model as a function of the
Frechet distance from the seed signer for each sign
video (where the seed signer is a recruited ASL
model for the ASL Citizen dataset). We find a
significant negative correlation between Frechet
distance from the seed signer and Top-1 accuracy
for the ST-GCN pose model, but no significant cor-
relations for the I3D model.

H Mutual Information Results

In Table 6, we present the mutual information re-
sults in full for each studied variable. We study
19 variables total, spanning demographics, sign
lexical features, and video-level features, and cal-
culate the mutual information between each feature
and the Top-1 accuracy. We find the highest lev-
els of mutual information to occur for video-level
features, suggesting features of individual videos
are more impactful for model accuracy than demo-
graphic characteristics of the participants. Out of
the demographic characteristics, the ASL level of
the participant appears to be the most influential
with respect to accuracy.

I Results for models trained on
single-gender subsets

Here, we report the model results for the ST-GCN
model trained on single-gender subsets, comparing
models trained on all-male and all-female subsets
to the model trained on all of the training data. In

Feature Mut. Info Mut. Info
(ST-GCN) (I3D)

BRISQUE 0.6920 0.6617
Avg. Frechet from seed (RH) 0.6444 0.6217
Abs. Avg. Frechet SD (RH) 0.6390 0.6090
Abs. avg. Frechet SD (LH) 0.6285 0.5641
Avg. Frechet from seed (RH) 0.5889 0.5403
Sign Iconicity 0.0757 0.0508
Sign Frequency 0.0619 0.0440
Abs. avg. Video Length SD 0.0293 0.0399
ASL Level 0.0048 0.0020
Region 0.0034 0.0002
Neighborhood Density 0.0032 0.0026
Number Of Morphemes 0.0026 0.0012
Phonological Complexity 0.0013 0.0006
Lexical Class 0.0007 0.0008
Iconicity Type 0.0002 0.0002
Gender 0 0.0034
Age 0 0.01107
Bounding Box Area (RH) 0 0
Bounding Box Area (LH) 0 0

Table 6: Mutual information for each of the features
above and the Top-1 accuracy for the ST-GCN and I3D
models, respectively. For both models, the BRISQUE
score, average Frechet distance from the model (right
hand and left hand) and the absolute value of the number
of SDs of the average Frechet distance between frames
are the top three features, with the other features far be-
hind. This seemingly indicates that video-level features
are the biggest indicator of model accuracy.

Table 7, we report the Top-1, Top-5, and Top-10
accuracy scores for each model.

J Results for model trained on debiased
labels

We report the results for a model trained for 25
epochs on training labels that were debiased using
the reduction-to-binary techniques proposed by Al-
abdulmohsin et al. (2022). We find that the model
trained on regular labels actually had a higher accu-
racy parity score (ratio of female accuracy to male
accuracy) than the model trained on debiased la-
bels. We show the Top-1, Top-5, and Top-10 results
for each model in Table 8.
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Trained on female subjects Trained on male subjects Trained on all subjects
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

All .244 .479 .581 .224 .434 .527 .594 .828 .881
Male .291 .548 .653 .292 .538 .639 .684 .902 .939
Female .206 .421 .521 .168 .347 .433 .520 .767 .833

Table 7: Performances for ST-GCN model trained on only male subjects, only female subjects, and all subjects,
respectively. We find that the model trained on only female subjects has the lowest performance gap between male
and female subjects in the test set, but the ratio of female accuracy to male accuracy is highest for the model trained
on all subjects.

ST-GCN ST-GCN (debiased)
Top-1 Top-5 Top-10 Top-1 Top-5 Top-10

All .5323 .7997 .8622 .4821 .7576 .8265
Male .6173 .8781 .9254 .5746 .8493 .9014
Female .4615 .7343 .8096 .4052 .6811 .7641

Table 8: Performances for ST-GCN model trained on regular training labels (left) and debiased training labels
(right). We find that the accuracy parity, calculated as the ratio of female to male accuracy, is higher for the model
trained on regular training labels than the debiased model.
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