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Abstract

Large language models (LLMs) have brought
a great breakthrough to the natural language
processing (NLP) community, while leading
the challenge of handling concurrent customer
queries due to their high throughput demands.
Data multiplexing addresses this by merging
multiple inputs into a single composite in-
put, allowing more efficient inference through
a shared forward pass. However, as distin-
guishing individuals from a composite input
is challenging, conventional methods typically
require training the entire backbone, yet still
suffer from performance degradation. In this
paper, we introduce RevMUX, a parameter-
efficient data multiplexing framework that in-
corporates a reversible design in the multi-
plexer, which can be reused by the demulti-
plexer to perform reverse operations and re-
store individual samples for classification. Ex-
tensive experiments on four datasets and three
types of LLM backbones demonstrate the ef-
fectiveness of RevMUX for enhancing LLM
inference efficiency while retaining a satisfac-
tory classification performance.

1 Introduction

In recent years, Large Language Models (LLMs),
such as GPT-3 (175B) (Brown et al., 2020), PaLM
(540B) (Chowdhery et al., 2023), and GPT-4
(1.7T) (OpenAI, 2023) have emerged as a corner-
stone in Natural Language Processing (NLP). The
field has witnessed a dramatic increase in model
sizes, which, although improving downstream per-
formance, also poses considerable challenges. In-
ference with these LLMs has become increasingly
resource-intensive, often confronting users with
capacity limits (OpenAI, 2023). With the rise of
“language model as a service” (Sun et al., 2022b),
improving inference efficiency has become a key
focus to accommodate these growing model sizes.

∗Corresponding authors.

To explore efficient inference for LLMs, the com-
munity has mainly focused on model-centric or
algorithm-centric approaches (Wan et al., 2023).
Model-centric approaches, including quantiza-
tion (Bhandare et al., 2019) and knowledge dis-
tillation (Hinton et al., 2015), aim to compress
LLMs into smaller models while retaining the
capabilities of the vanilla models. In contrast,
algorithm-centric approaches, such as speculative
decoding (Leviathan et al., 2023) and KV-Cache
optimization (Zhang et al., 2023), aim to reduce
latency and memory usage in sequence generation
tasks. However, when processing batch queries in a
single forward pass, these methods generally result
in a significant increase in computational load, e.g.,
FLOPs, linear with the number of inputs.

The Multi-input Multi-output (MIMO) architec-
ture (Ramé et al., 2021; Havasi et al., 2021; Mu-
rahari et al., 2022) has emerged as an effective
approach for predicting multiple samples simulta-
neously in a single forward pass, incurring the com-
putational cost of only a single input. This archi-
tecture requires jointly training a multiplexer and
a demultiplexer alongside the entire base model:
the multiplexer combines multiple inputs into one,
and the demultiplexer separates the base model’s
outputs back into individual ones. Subsequent re-
search (Murahari et al., 2023) applied MIMO-style
training to enhance inference with LLMs, exem-
plified by BERT (Devlin et al., 2019). However,
this method not only necessitates training the multi-
plexer and demultiplexer during pre-training phase
but also requires fine-tuning the entire model, in-
cluding BERT’s parameters, thereby limiting its ap-
plicability to increasingly larger language models.
Moreover, updating the backbone model’s parame-
ters necessitates maintaining multiple copies of the
backbone model to accommodate dynamic infer-
ence budgets, further constraining its scalability.

In this paper, we explore MIMO training on a
fixed LLM to improve its inference efficiency with-
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Figure 1: Illustration of our proposed RevMUX in comparison to traditional mini-batch processing and DataMUX.

out additional pre-training. A major challenge in
implementing MIMO for fixed LLMs is to trace
and preserve the uniqueness of each input, as the
fixed LLMs can struggle to differentiate individual
instances within the consolidated inputs, resulting
in performance degradation (Murahari et al., 2023).
Inspired by Reversible Neural Networks (Gomez
et al., 2017; Behrmann et al., 2019), which split the
input into two halves for parallel processing and
enable reconstruction of lower-layer inputs from
upper-layer outputs, we propose reversible adapters
to achieve data multiplexing, dubbed RevMUX.
The reversible multiplexer leans to map different
samples into distinct feature spaces and the map-
ping function is shared with the demultiplexer to
perform a reverse operation that dis-aggregates the
output from the LLM for classification. We train
these reversible adapters in a parameter-efficient
manner (Lester et al., 2021) on downstream tasks
and then apply them for batch inference.

Through extensive experiments on four datasets
and three types of LLM backbones, we demonstrate
the effectiveness of RevMUX in enhancing LLM
inference efficiency while maintaining satisfactory
classification performance. Notably, our RevMUX
method, which freezes the entire backbone LLM,
achieves performance comparable to or surpassing
that of two fine-tuned baselines on BERTBASE.
We also extended our method to encoder-decoder
architectures such as T5 and decoder-only archi-
tectures like LLaMA3-8B (Dubey et al., 2024). Re-
sults on all three architectures across five scales
consistently show that the proposed reversible
adapters significantly contribute to performance

retention during data multiplexing. Moreover, the
combined use of reversible adapters in both the mul-
tiplexing and demultiplexing processes creates a
synergistic effect, amplifying performance benefits
beyond those achieved by individual components.

2 Related Work

2.1 Efficient Inference for LLMs

The majority of recent efforts to enhance LLM
inference efficiency have focused on either model-
centric or algorithm-centric approaches.

Model-centric methods, also known as model
compression techniques, aim to train smaller mod-
els that enable efficient inference while retaining
the capabilities of the original, larger models. As
summarized by Wan et al. (2023), recent model
compression techniques for LLMs can be grouped
into the following categories: (1) Quantization,
which converts model weights and/or activations
of high-precision data types (e.g., float32) into low-
precision data types (e.g., int8) (Dettmers et al.,
2023; Xiao et al., 2023; Shao et al., 2024); (2) Pa-
rameter Pruning, which removes redundant LLM
weights (Ma et al., 2023; Frantar and Alistarh,
2023); and (3) Knowledge Distillation, which in-
volves training a small student model to mimic the
behavior of a large teacher model (Gu et al., 2024;
Liu et al., 2024).

In contrast, algorithm-centric methods focus on
optimizing the inference process through the design
of time- or memory-efficient algorithms. For exam-
ple, speculative decoding supports parallel token
computation for autoregressive language models,
thereby speeding up the decoding stage (Leviathan
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et al., 2023; Santilli et al., 2023). Additionally,
KV-Cache optimization, which reuses cached KV
pairs, can reduce the computational cost of decod-
ing (Zhang et al., 2023; Ge et al., 2024).

The above methods either compress the models
or optimize the inference process but do not lever-
age data-specific strategies. When applied to batch
queries in a single forward pass, they typically re-
sult in a significantly increased computational load,
often proportional to the number of inputs. In con-
trast, our approach enhances inference efficiency
through a data-centric strategy. We focus on data
multiplexing techniques instead of modifying mod-
els or algorithms, allowing the model to perform
batch inference with significantly reduced compu-
tational costs.

2.2 Multi-Input Multi-Output Training

To reduce both training and inference costs in en-
semble models, the concept of Multi-Input Multi-
Output (MIMO) (Havasi et al., 2021) has been in-
troduced. MIMO enables the training of multiple
independent subnetworks within a single network,
thereby enhancing prediction robustness. This
mechanism allows for multiple output predictions
through a single forward pass, effectively simulat-
ing the ensemble process while conserving com-
putational resources (Ramé et al., 2021; Sun et al.,
2022a, 2024). Although previous MIMO works
primarily focus on enhancing ensemble efficiency,
their findings crucially substantiate the ability of
deep neural networks to process multiple inputs in
a single forward pass, laying the ground for subse-
quent works on data multiplexing.

Recent works have lent MIMO-style training to
improve the batch inference efficiency of LLMs.
Murahari et al. (2022) propose a data mixer to
amalgamate multiple inputs and a corresponding
demixer to disaggregate the combined output into
individual ones. Specifically, within a batch of
N×M instances, a multiplexing layer consolidates
these N ×M representations into M consolidated
representations. Subsequently, the demultiplexing
layer interprets these M outputs to generate predic-
tions for the entire set of N ×M instances. This
approach, embodied in MIMONets (Menet et al.,
2023), incorporates a distinctive key mechanism
that serves not only to bind the inputs together but
also facilitates their separation. Building upon this
concept, MUX-PLMs (Murahari et al., 2023) have
advanced the field by pre-training language models

that leverage a contextual multiplexer coupled with
an RSA demultiplexer, marking a significant step
forward in the efficient inference on PLMs.

However, existing MIMO-style frameworks for
LLM batch inference typically require end-to-end
training, where the base model is trained alongside
the data mixer and demixer. This would become
impractical for large-scale language models due
to their substantial size and complexity. Conse-
quently, this paper focuses on scenarios where the
backbone model is already trained and fixed, ex-
ploring strategies for effective data multiplexing
without any additional pre-training.

3 Methodology

3.1 Overview of RevMUX
Given an input instance x and a LLM f(·), most
existing LLM applications can be summarized as:

ŷ = f(x), (1)

where ŷ is the prediction. During the inference
stage, take Figure 1 as an example, traditional mini-
batch processing extends input vector into tensors
to improve the throughput. DataMUX (Murahari
et al., 2022) introduce a multiplexer to combine 32
input samples into 16 vectors and a demultiplexer
to decompose 16 outputs to 32 labels, which saves
the computational load because the LLM only in-
fer “16 samples”. Due to the challenge of fixing
backbone LLM, the main difference between our
proposed RevMUX and DataMUX are two folds:

Prefilling: The mixture of input samples may
lead to a distribution shift (Navarro et al., 2024),
which makes the gap on latent representation space
between the backbone language model and the mul-
tiplexed input samples. Hereby the decision to
tine-tune the backbone language model versus not
fine-tuning it represents two distinct methodologi-
cal approaches. Fine-tuning adapts the backbone
language model to new tasks by mixing multiple
input samples and learning their ralational repre-
sentations. In contrast, not fine-tuning corresponds
to learn how to mix the input samples by bridging
the gap between different representation space. To
tackle this problem, we use prefilling for transform-
ing the feature space, to ensure the feature space
becoming more similar to the feature space seen
during pre-training.

Reversible Multiplex Adapter and Reverse
Demultiplex Adapter: While combining feature
vectors of multiple samples into a single vector can
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reduce the computational load, such processing
can result in significant information loss and model
confusion. To preserve the distinction between dif-
ferent samples, it is essential to incorporate a trace-
able module. Such as module should effectively
revert and separate the combine features, ensur-
ing that each sample’s unique characteristics are
retained for accurate classification. Drawing inspi-
ration from Reversible Neural Networks (Gomez
et al., 2017; Behrmann et al., 2019), which divide
the input into two halves to facilitate the reconstruc-
tion of lower layer activations from the upper layer
outputs, we introduce reversible adapters to mix
and demix different samples within a batch. These
adapters are trained in a parameter-efficient man-
ner on downstream tasks and are then employed
for batch inference. In Section 3.2, we introduce
our RevMUX pipeline when N = 2. Details of
multiplexing layer and demultiplexing layer when
N > 2 can be found in Appendix A.

3.2 The RevMUX Pipeline

3.2.1 Task-specific Backbone

Our work aims to address the problem where users,
having a large language model already in place for
their target task, seek to accelerate inference. In the
initial step, it is crucial to have a backbone model
capable of addressing the target task. In this paper,
we selected T5 (Raffel et al., 2020) as the backbone
to experimentally validate the effectiveness of our
approach. Additionally, for comparison purposes,
we also utilized BERT (Devlin et al., 2019) as the
backbone in our comparative experiments. For
T5, we fix the language model and use prompt
tuning (Liu et al., 2022) to train a soft prompt,
which simulates the scenarios that we cannot train
a task-specific large language model. For BERT,
we simply add a classfier and fine-tune the BERT
to learn the task-specific backbone. For LLaMA3-
8B (Dubey et al., 2024), we are not able to train the
backbone, hereby we assume that the backbone is
well trained and can be directly transferred to our
classification tasks.

3.2.2 Prefilling

As shown in Section 3.1, the first step of RevMUX
pipeline is prefilling. In this step, we convert the
input instances x1, x2, · · · , xN to dense represen-
tations, ensuring the feature space becoming more
similar to the feature space seen during the back-

bone pre-training:

hl
k = Encoder0:l(Xk), (2)

where l indicates that we use the first l encoder
layers of the pre-trained language model for pre-
filling. For BERT and LLaMA, Xk = xk. For T5,
Xk = concat[p0;xk] where p0 is a pre-trained
task-specific soft prompt.

3.2.3 Multiplexing Layer
With prefilling, we obtain N representations for N
instances. Then we have a multiplexing layer g :
RN×d → Rd to mix instances together, where d is
the dimension of the backbone language model. As
shown in Figure 1c, our multiplexing layer includes
down projection and reversible multiplexer.

Down Projection Since the dimension of back-
bone language model is d and the representations of
instances are under the space of RN×d, we firstly
employ a linear layer fdown : Rd → R

d
N as the

down projection function:

ilk = fdown(h
l
k). (3)

Reversible Multiplexer Motivated by Re-
versible Neural Network (Gomez et al., 2017) that
the layers’ activations can be reconstructed from
the next layers, we employ a reversible multiplexer
to combine the multiple input instances, which the
demultiplexing layer can reconstruct.

As illustrated in Figure 2 when N = 2, we have:

ol1 = il1 + F(il2), (4)

ol2 = il2 + G(ol1),
ol = concat[ol1,o

l
2],

where F(·) and G(·) are learnable 2-layer MLP.

3.2.4 Language Modeling with Batched
Instances

With the multiplexing layer, we obtain ol that con-
tains the representation of all batched instances. Af-
ter that, we pass the batched representation through-
out the backbone language model:

ô = Decoder
(
Encoderl+1:L(o

l)
)
, (5)

where L is the number of encoder layers. Spe-
cially, for encoder-only backbone such as BERT,
Decoder(x) = x.
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Figure 2: Illustration of the reversible multiplexer and reverse demultiplexer when N = 2.

3.2.5 Demultiplexing Layer
From Eq (5), we obtain the outputs of the language
model. To demix the outputs, we have a demulti-
plexing layer h : Rd → RN×d. Similar to the mul-
tiplexing layer mentioned in Section 3.2.3, our de-
multiplexing layer includes reverse demultiplexer
and up projection.

Reverse Demultiplexer Given the necessity to
decompose the language model’s output to restore
the outputs of the original samples, we employ
a reversible multiplexer during the input content
assembly process. Therefore, we use the reverse
demultiplexer to decompose the output. Take N =
2 as an example, we have:

[ô1, ô2] = ô, (6)

î2 = ô2 − G(ô1),
î1 = ô1 −F (̂i2),

where F(·) and G(·) share the same parameters
with that in Eq (4).

Up Projection Considering that we obtain a d
N -

dimensional sample representation through the re-
verse demultiplexer, it is necessary to employ an
up projection to restore this representation to the
original d-dimensional space for further processing
by the backbone language model:

ĥk = fup(̂ik), (7)

where k ∈ {1, 2, · · · , N} that indicates the output
of the k-th instance, fup : R

d
N → Rd is a linear

layer for up projection.

3.2.6 Prediction
The last step of RevMUX is prediction, which con-
verts the output from the demultiplexing layer to
target labels. For BERT, the encoder-only back-
bone, we reuse the trained task-specific classifier
layer:

ŷk = softmax(Wcĥk), (8)

where Wc is the task-specific parameter matrix
trained in Section 3.2.1.

For T5 and LLaMA, we reuse the language
model head to decode the target token and then
use a verbalizer V to convert the target token to the
target label:

ŷk = V(LM_Head(ĥk)). (9)

In summary, the overall framework can be ab-
stracted as:

ŷ1, ŷ2, · · · , ŷN = h
(
f
(
g(x1, x2, · · · , xN )

))
,

(10)

where N indicates the number of mixed samples,
f(·) indicates the backbone LLM, g : RN×d → Rd

indicates the multiplexing layer, and h : Rd →
RN×d indicates the demultiplexing layer. It is
notably that traditional mini-batch processing of
Eq (1) is a special case of Eq (10) under the condi-
tion of N = 1 and g(x) = h(x) = x.

3.3 Training Objectives
In this subsection, we will briefly introduce our
training objectives.

Gold Label The first objective function is a task-
specific loss function from gold label. In this paper,
we use cross-entropy loss as:

Lce = −
1

N

N∑

i=1

C∑

c=1

yi,c log(ŷi,c), (11)

where C is the number of labels.

InfoNCE On the other hand, considering the
need to reconstruct the outputs of the original sam-
ples, the second objective function must impose
constraints to ensure that the results obtained from
multiplexed batch inference closely match those
from the original one-by-one forward propagation.
This ensures that the remaining components of
the backbone language model function correctly.
To address this problem, we employ Information
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Noise-Contrastive Estimation (InfoNCE) (Oord
et al., 2018) as the second objective function. In-
foNCE is a loss function used in contrastive learn-
ing to maximize the mutual information between
positive pairs of samples while minimizing it be-
tween negative pairs.

During the training stage, we compute the output
representation by twice: one from the multiplexed
batch inference, and the other from the original
one-by-one forward pass. Within the same batch,
we treat the output pairs corresponding to the same
sample as positive examples and the remaining out-
put pairs as negative examples. Hereby we compute
the loss by:

Linfo =
N∑

k=1

InfoNCE(ĥk,hk), (12)

=

N∑

k=1

−E[log exp(ĥk · hk)

exp(ĥk · hk) +
∑N

j 6=k exp(ĥk · hj)
]

where hk = LLM(Xk) is the output of one-by-one
forward pass and ĥk is defined in Eq (7).

Thus, the overall objective is:

L = Lce + λLinfo, (13)

where λ is the weight to control the importance of
cross-entropy loss and the InfoNCE loss.

4 Experiments

4.1 Datasets and Evaluation Settings

We conduct experiments on four datasets across
three tasks. For the sentiment classification task,
we use SST-2 (Socher et al., 2013). For the para-
phrase detection task, we use MRPC (Dolan and
Brockett, 2005). For the natural language infer-
ence task, we use RTE (Wang et al., 2019) and
QNLI (Wang et al., 2019). For fair comparisons
with baseline methods, we use BERTBASE as the
backbone. We further examined RevMUX on T5
across three different scales.

To better simulate real-world randomness, we
conduct 10 tests for each model. In each test, we be-
gin by dividing the samples into N distinct subsets.
From each subset, we randomly select a sample
to create a batch. This batch is then processed by
the model. Given these testing parameters, it is
possible for the same sample to yield varying pre-
diction results across different tests. To account for
this variability, we calculate the average of these

multiple tests to serve as our final evaluation met-
ric. This averaged metric is intended to represent
the expected accuracy of the overall sample set in
real-world inference scenarios. More details can
be found in Appendix C.1.

4.2 Baselines
We consider the following baselines:

DataMUX (Murahari et al., 2022). A MIMO-
style learning framework that trains a multiplexing
layer to combine a group of N data samples into
a single representation and a demultiplexing layer
to separate this into N representations for classifi-
cation. The two layers are typically linear layers
trained together with the entire base model.

MUX-PLM (Murahari et al., 2023). Also a
MIMO-style learning framework, particularly de-
signed for enhancing the throughput for a pre-
trained LLM. MUX-PLM requires training the mul-
tiplexing and demultiplexing layers during the pre-
training stage for BERTBASE to learn the new task
of “combining multiple input samples”. In the
experiment section, we use MUX-BERTBASE to
indicate this baseline for clarity.

Vanilla Adapters It directly applies a vanilla
three-layer Multilayer Perception (MLP) for mul-
tiplexing and demultiplexing respectively, akin to
DataMUX. This baseline examines the effective-
ness of the reversible design in RevMUX.

Only Multiplexer Reversible It keeps the re-
versible multiplexer of RevMUX but replaces its
demultiplexer with a vanilla three-layer MLP. This
baseline empirically examines whether the demul-
tiplexer of RevMUX can restore individual inputs.

5 Results and Analysis

5.1 Comparison with Baselines
For a fair comparison with previous methods that
involve fine-tuning the backbone model, we first
experiment on BERTBASE (110M) and also report
the fine-tuned results, as shown in Table 1.
(1) RevMUX retains performance stably: Over-
all, RevMUX ( ) consistently outperforms MUX-
BERTBASE ( ) (p = 0.015) and DataMUX ( )
(p = 0.02) across all four datasets. More impor-
tantly, our RevMUX ( ), which freezes the entire
backbone LLM, achieves comparable or superior
performance to the two fine-tuned baselines, albeit
with some sacrifice in inference efficiency. Notably,
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Model N ↗ Tuned Params SST-2 MRPC RTE QNLI Avg. Score

Backbones BERTBASE (Devlin et al., 2019) 1 - 110M 92.20 87.01 62.96 90.55 83.18
MUX-BERTBASE (Murahari et al., 2023) 1 100% 112M 91.74 87.75 63.18 90.54 83.30

Baselines DataMUX (Murahari et al., 2022) 2 180% 166M 90.50 85.05 60.87 88.39 81.20
MUX-BERTBASE (Murahari et al., 2023) 2 201% 112M 90.62 83.77 58.19 88.17 80.19

Ours

Vanilla Adapters 2 156% 16.53M 90.42 84.78 60.06 88.19 80.86
Only Multiplexer Reversible 2 161% 20.07M 90.65 84.60 60.41 88.14 80.95
RevMUX ( ) 2 154% 9.45M 90.85 85.06 60.72 88.25 81.22
RevMUX ( ) 2 154% 120M 91.21 85.78 61.41 88.72 81.78

Table 1: Model comparison using BERTBASE as backbone model. “ ” indicates fine-tune the BERT, “ ”
indicates freeze the BERT as feature extraction only. “Params” is the number of learnable parameters. Best results
in bold and the second-best in underline. Inference speedups (↗) are reported against the N = 1 setting.

RevMUX ( ) outperforms MUX-BERTBASE ( )
which requires an additional pre-training stage
(p = 0.166). These results highlight RevMUX’s
advantage in retaining classification performance
during data multiplexing.

(2) No fine-tune scenario is significantly more
challenging: Comparing RevMUX ( ) with
RevMUX ( ), it is clear that finetuning the back-
bone LLM significantly enhances performance
across all the datasets (p < 0.01). As the task
is very challenging, fine-tuning LLMs proves to
bring limited gains.

(3) Components in RevMUX are effective:
Moreover, RevMUX ( ) surpasses Vanilla
Adapters ( ), highlighting the effectiveness of
reversible design in boosting accuracy. Vanilla
Adapters ( ) performed similarly to Only Mul-
tiplexer Reversible ( ), suggesting that the re-
versible multiplexer alone offers limited benefits.
The effectiveness of RevMUX ( ) lies in the syn-
ergy between the reversible multiplexer and reverse
demultiplexer, as shown by comparing RevMUX
( ) against Only Multiplexer Reversible ( ).

(4) The trade-off between efficiency and accu-
racy: Apart from accuracy, we also measure the
total number of FLOPS required for each model to
infer all four validation sets. For a fair comparison,
we fix the batch size as 32 and the sequence length
as 128. We compute the speedups (↗) against
the baseline MUX-BERTBASE(N = 1), reported
in the column ↗ in Table 1. We observe that
MUX-BERTBASE(N = 2), halved the FLOPs
consumption, achieving a speedup of 201% while
our RevMUX achieved speedups ranging between
154% and 161%, demonstrating a trade-off be-
tween model accuracy and efficiency. We present
the results in Figure 3, where the blue line indi-

cates that the baseline model accuracy decreases
as efficiency increases. For a given efficiency tar-
get, RevMUX ( ) and DataMUX ( ) are clearly
above the blue line but RevMUX ( ) results in
higher accuracy, indicating that reversibility can
help preserve the classification performance.
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Figure 3: Trade-off between inference efficiency and
model accuracy.

5.2 Scalability Tests on Larger Models
5.2.1 Encoder-Decoder Architecture
In this section, we focus on evaluating our pro-
posed parameter-efficient RevMUX ( ) on larger
language models, specifically on T5. We conduct
experiments on T5 with three model sizes: T5Small

(60M), T5Base (220M), and T5Large (770M). For
each task, we use prompt tuning (Lester et al.,
2021) to adapt each model to the task domain in
advance and then train RevMUX for inference ac-
celeration. The results are presented in Table 2, and
we highlight the following observations:
(1) RevMUX retains performance stably while
improving efficiency: We use the result of fine-
tuning the entire backbone on each dataset and
inference with a single input (N = 1) as the ref-
erence point. When inference with two inputs si-
multaneously (N = 2), RevMUX achieves about
45% speedups across all scales, while at the same
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Backbone Model N Tuned ↗ SST-2 MRPC RTE QNLI Avg. Score

T5Small

Task-specific Backbone 1 100% 90.34 84.31 64.62 89.34 82.15
Vanilla Adapters 2 138% 89.00 81.72 57.22 85.36 78.33
Only Multiplexer Reversible 2 146% 89.04 82.30 57.51 85.44 78.57
RevMUX 2 145% 89.14 82.45 60.22 85.63 79.36

T5Base

Task-specific Backbone 1 100% 94.56 87.50 82.31 92.93 89.33
Vanilla Adapters 2 140% 92.36 82.94 63.28 87.58 81.54
Only Multiplexer Reversible 2 144% 92.54 83.19 64.01 88.14 81.98
RevMUX 2 144% 92.70 83.80 64.73 88.65 82.47

T5Large

Task-specific Backbone 1 100% 95.96 90.44 87.36 93.94 91.93
Vanilla Adapters 2 141% 92.58 83.16 64.22 88.42 82.10
Only Multiplexer Reversible 2 143% 92.67 83.46 64.43 88.56 82.28
RevMUX 2 143% 92.81 83.86 65.01 88.89 82.64

Table 2: T5 results on the four datasets of GLUE benchmark. “ ” indicates parameter-efficient fine-tune the T5,
“ ” indicates freeze the whole backbone while training the adapters.

time, maintaining a satisfactory classification ac-
curacy. This observation holds across the datasets
and model scales, demonstrating the generalizabil-
ity and scalability of RevMUX.
(2) Both the reversible multiplexer and reverse
demultiplexer are effective: The findings with the
batch inference results (N = 2) are consistent with
those on BERTBASE. The comparisons between
RevMUX and Vanilla Adapters provide strong em-
pirical evidence for the effectiveness of the re-
versible design in retaining performance. Further-
more, RevMUX consistently surpasses the Only
Multiplexer Reversible method in all scenarios,
highlighting the synergistic effect of the reversible
multiplexer and the reverse demultiplexer.
(3) The efficiency-performance trade-off is
more pronounced for larger backbones: The
efficiency-performance trade-off is a well-known
challenge in the community. Our experiments
across various backbone sizes provide empirical
evidence that, with a data multiplexing approach,
larger backbones experience greater performance
compromises in exchange for improved efficiency.
Apart from QNLI, the amount of performance
degradation on the other datasets follows the trend:
T5Large > T5Base > T5Small.

5.2.2 Decoder-Only Architecture
We now shift our focus to evaluating RevMUX ( )
on larger decoder-only language models, specif-
ically LLaMA3-8B. Unlike our previous study
with T5, we do not pre-adapt LLaMA3 using
prompt tuning. Instead, we focus on zero-shot
inference, which is commonly employed in billion-
scale LLMs. In this study, we assess how RevMUX

enhances inference efficiency in a zero-shot con-
text. For each task, we curate a manual prompt
and directly train RevMUX on top of LLaMA3 for
inference. Additional details can be found in Ap-
pendix D. Based on the results presented in Table 3,
we draw the following key observations:
(1) RevMUX is scalable to billion-scale decoder-
only LLMs: Similar to the outcomes observed
with BERTBASE and three T5 models, both the re-
versible multiplexer and the reverse demultiplexer
demonstrate significant effectiveness when applied
to LLaMA3-8B.
(2) RevMUX significantly enhances both perfor-
mance and inference efficiency: Compared to
Zero-Shot Prompting, RevMUX demonstrates a
twofold increase in inference efficiency and im-
proves accuracies by approximately 2% − 10%
across the four datasets. Unlike the previous ex-
periment, which established a strong baseline by
training soft prompts for task domain adaptation,
this study employs a manual prompt with a frozen
LLaMA3 and demonstrates a clear overall perfor-
mance gain brought by RevMUX. Our results sug-
gest that during the training of reversible adapters,
RevMUX also effectively learns to preserve the
discriminative information that is helpful for clas-
sification tasks.

5.3 Model Analysis and More Studies

We analyze the performance and inference effi-
ciency of RevMUX ( ) by varying the number
of prefilling layers l, the batch size N , and the im-
pact of InfoNCE loss λ. We use BERTBASE and
report accuracy on MRPC and RTE in Figure 4 and
speedups (↗) on SST-2 in Table 4.
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Figure 4: Results of different l and N on BERTBASE.

Backbone Model N SST-2 MRPC RTE QNLI Avg. Score

Llama3-8B

Zero-Shot Prompting 1 92.64 70.10 72.92 76.99 78.16
Vanilla Adapters 2 94.01 80.96 82.72 85.99 85.92
Only Multiplexer Reversible 2 94.09 81.08 82.82 86.24 86.06
RevMUX 2 94.38 81.30 83.18 86.53 86.35

Table 3: Llama3-8B results on the four datasets of GLUE benchmark.

l 0 1 2 3 6

↗ 207% 198% 189% 181% 154%

Table 4: Inference efficiency improvement with differ-
ent prefilling layers on SST-2 with BERTBASE.

The impact ofN and l on performance: Figure 4
shows a clear downward trend in classification ac-
curacy as N increases. This is anticipated, as mix-
ing more samples in a batch makes it more difficult
for RevMUX to preserve the individual distinctive-
ness given the limited capacity of the reversible
modules, F and G. However, with a sufficient num-
ber of prefilling layers (e.g., l = 6), the model can
maintain relatively high accuracy even when N is
increased to 16. This suggests that increasing the
number of prefilling layers is an effective strategy
to enhance model performance, allowing it to sus-
tain accuracy despite largerN values. More studies
can be found in Table 10 in the Appendix.

The impact of prefilling on efficiency: While Fig-
ure 4 indicates that increasing the number of pre-
filling layers enhances classification accuracy, it
also raises a concern about inference efficiency. As
shown in Table 4, increasing the number of pre-
filling layers to 6 can reduce the speedup by 50%
compared to not using any prefilling. However, as
higher layers in LLMs typically provide a better
representation space that may help in distinguish-
ing different samples, choosing the optimal number
of prefilling layers remains a trade-off to balance
accuracy and efficiency.

6 Conclusion

In this paper, we introduce RevMUX, a parameter-
efficient data multiplexing framework designed to
enhance the batch inference efficiency of LLMs.
RevMUX features a reversible multiplexer that
combines multiple samples, allowing the demulti-
plexer to reverse this process and restore individ-
ual outputs for classification. We train RevMUX
on downstream tasks while keeping the backbone
LLM frozen, and apply it for batch inference. Ex-
tensive experiments on BERT-base, T5 across three
scales, and LLaMA3-8B demonstrate the effective-
ness of RevMUX in enhancing both accuracy and
efficiency. Ablation studies confirm the synergis-
tic function of the reversible multiplexer and the
reverse demultiplexer.

Acknowledgements

This research is supported, in part, by the Joint
NTU-WeBank Research Centre on Fintech (Award
No. NWJ-2020-007), Nanyang Technological Uni-
versity, Singapore. This research is also sup-
ported, in part, by the National Research Foun-
dation, Prime Minister’s Office, Singapore un-
der its NRF Investigatorship Programme (NRFI
Award No. NRF-NRFI05-2019-0002). Xu Guo
thanks Wallenberg-NTU Presidential Postdoctoral
Fellowship. Zhiwei Zeng thanks the support from
the Gopalakrishnan-NTU Presidential Postdoctoral
Fellowship. Any opinions, findings and conclu-
sions or recommendations expressed in this mate-
rial are those of the authors and do not reflect the
views of National Research Foundation, Singapore.

22080



Limitations

While RevMUX presents a promising step forward
in improving LLM inference efficiency, several
limitations need to be acknowledged.
Inference efficiency-performance trade-offs:
Although RevMUX effectively improves inference
efficiency, there is an inherent trade-off with
potential loss in inference performance. While
our experiments show that RevMUX can largely
retain a satisfactory classification performance
in the majority of scenarios, the performance
compromises could vary with different datasets or
tasks. For instance, we observe that the efficiency-
performance trade-off is more pronounced on
the RTE dataset with T5Large and T5Base. This
may be attributed to the inherent complexity and
nuances of the RTE dataset, and the underlying
causes warrant further investigation.
Potential for bias and fairness issues: As with
many other AI and ML methods, there is a risk that
the multiplexing strategy could inadvertently am-
plify existing biases in the data. Proper handling of
fairness and bias relation issues in data multiplex-
ing remains an area requiring further investigation.
Further empirical evidence on scalability:
While RevMUX shows promise in enhancing ef-
ficiency, its scalability for extremely large-scale
deployments or real-time applications needs thor-
ough evaluation. Our experimental results suggest
that larger backbones tend to experience greater
performance compromises to gain efficiency. Un-
derstanding how RevMUX scales with even larger
model sizes and deployment contexts is critical for
broader applications.
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Appendix

A RevMUX (N > 2)

Similar with the RevMUX pipeline when N = 2,
the pipeline of RevMUX (N > 2) has a slightly
different multiplexer and demultiplexer to adapt
the condition of N .

A.1 Reversible Multiplexer
In order to keep the reversible design, whenN > 2,
we can expand the Eq (4) as:

ol1 = il1 + F1(i
l
N ), (14)

ol2 = il2 + F2(o
l
1),

ol3 = il3 + F3(o
l
2),

· · ·
olN = ilN + FN (olN−1),

ol = concat[ol1,o
l
2,o

l
3, · · · ,olN ].

It is notably that F(·) and G(·) in Eq. (4) is the
same as F1(·) and F2(·) in Eq (14).
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Dataset # Labels # Train samples # Evaluation samples

SST-2 2 67,349 872
MRPC 2 3,668 408
QNLI 2 104,743 5,463
RTE 2 2,490 277

Table 5: Summary statistics of four datasets from
GLUE benchmark. We evaluate all models on the de-
velopment set of all datasets.

A.2 Reverse Demultiplexer
Similar with Eq (14), we expand the Eq (6) when
N > 2 as:

[ô1, ô2, ô3, · · · , ôN ] = ô, (15)

îN = ôN −FN (ôN−1),

îN−1 = ôN−1 −FN−1(ôN−2),

· · ·
î1 = ô1 −F1(̂iN ).

In summary, Eq (4) and Eq (6) are the special case
(N = 2) of Eq (14) and Eq (15), respectively.

B Datasets

The detailed statistics of the datasets is shown in
Table 5. We used four datasets from the GLUE
benchmark to evaluate our models. The SST-2
dataset, with 67,349 training samples and 872 eval-
uation samples, is used for binary sentiment clas-
sification, labelling sentences as either positive or
negative. The MRPC dataset consists of 3,668 train-
ing samples and 408 evaluation samples, involving
sentence pairs labelled to indicate whether they are
paraphrases of each other. The QNLI dataset in-
cludes 104,743 training samples and 5,463 eval-
uation samples, where the task is to determine
if a given sentence correctly answers a question,
derived from the Stanford Question Answering
Dataset (SQuAD). Lastly, the RTE dataset, with
2,490 training samples and 277 evaluation samples,
involves binary classification to determine whether
one sentence entails another.

C Performance Testing

C.1 Testing Rounds
It is important to note that RevMUX does not
adhere to the commutative property. For in-
stance, RevMUX(x1, x2) is not necessarily equal
to RevMUX(x2, x1). Unlike conventional mini-
batch processing pipelines that eliminate random-
ness during inference, RevMUX is sensitive to the

Dataset SST-2 MRPC RTE QNLI

T -statistic −2.833 −3.712 −73.688 −5.603
p-value 0.011 < 0.005 < 0.0001 < 0.0001

Table 6: T-statistic and the p-value of RevMUX ( )
outperforms RevMUX ( ).

order of inputs. As a result, the same input in-
stance can yield different predictions depending
on the testing order. Therefore, to achieve a more
robust and accurate evaluation, it is essential to
assess RevMUX across multiple rounds, with vary-
ing input sequences (e.g., [x1, x2, x3, x4] versus
[x1, x4, x3, x2]).

To empirically explore the appropriate number
of testing rounds, we fixed a RevMUX config-
uration and evaluated the model across multiple
rounds, recording the cumulative distribution func-
tion (CDF) of accuracy. As illustrated in Figure 5,
we observe that as the number of testing rounds, t,
increases, the distribution of the model evaluation
accuracy becomes smoother. Our analysis suggests
that t = 100 provides a sufficiently robust evalu-
ation. However, it is notable that the CDF curve
for t = 10 closely approximates that of t = 100.
Therefore, we selected t = 10 for our evaluations
to achieve a balance between efficiency and accu-
racy.

C.2 The Effect of Fine-tuning on
Performance during Data Multiplexing

To assess the impact of fine-tuning versus not fine-
tuning the BERTBASE backbone on the perfor-
mance, we conducted a t-test to evaluate the sig-
nificance of fine-tuning (RevMUX ) versus not
fine-tuning (RevMUX ). As shown in Table 6, the
results indicate significant performance improve-
ments with fine-tuning the backbone model across
all datasets. For SST-2 and MRPC, the p-values
(0.011 and < 0.005, respectively) and negative t-
statistics (−2.833 and −3.712) demonstrate that
fine-tuning yields superior accuracy. The RTE
dataset shows an exceptionally high t-statistic of
−73.688 with a p-value <0.0001, highlighting a
dramatic performance boost with fine-tuning. Sim-
ilarly, for QNLI, the strong negative t-statistic of
-5.603 and a p-value <0.0001 confirm the advan-
tages of fine-tuning.
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Figure 5: CDF of testing times t.

Dataset Template

SST-2
User: You are require to predict the sentiment (positive or negative) to
the following sentence. You should response positive or negative, only
one token is accepted.
User: <|start of the sentence|>: <sentence> <|end of the sentence|>.
Assistant: ?

RTE, MRPC, QNLI

User: You are require to predict the two following sentences are entailment
or not (yes or no). You should response yes or no, only one token is
accepted.
User: <|start of the sentence1|>: <sentence1> <|end of the sentence1|>
User: <|start of the sentence2|>: <sentence2> <|end of the sentence2|>
Assistant: ?

Table 7: Chat template for LLaMA3-8B-Instruct. Here “<sentence>” indicates single-sentence classification,
“<sentence1>” and “<sentence2>” indicate the pair-wised sentence classification.

D Scalability Test

D.1 Scaling to Larger Model Size
D.1.1 Backbone Selection
To evaluate the effectiveness of RevMUX on larger
backbone models, we selected the recently released
and well-known open-source LLM, LLaMA3. Due
to limited computational resources, we opted for
the 8B model variant, which can be trained on a
V100 GPU with 32GB of memory. To maintain
consistency with the pre-training scenarios, we em-
ployed a chat template. Based on these consid-
erations, we selected LLaMA3-8B-Instruct as the
backbone for our experiments.

D.1.2 Implemtation Details
Given that SST-2 is a single-sentence classification
task, while RTE, MRPC, and QNLI are pairwise
sentence classification tasks, we utilized two dif-

ferent chat templates, as illustrated in Table 7. To
simplify the verbalizer for answer prediction, we
imposed a constraint that “only one token is ac-
cepted” and selected the language head prediction
of the final token as the prediction for LLaMA. By
applying this chat template for zero-shot transfer,
the results presented in Table 3 validate the effec-
tiveness of our approach.

D.2 Scaling to Larger N

To explore the scalability of RevMUX with varying
values of N , we conduct a comparative experiment
against MUX-PLM using the BERTBASE back-
bone. The results, presented in Table 10, lead to
the following key observations:
(1) RevMUX outperforms MUX-PLM when
N = 2: Under a fair comparison, RevMUX
achieves an average score of 81.22 when N = 2,
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SST-2 MRPC RTE QNLI Avg. Score

With InfoNCE 89.14 82.45 60.22 85.63 79.36
w.o. InfoNCE 89.03 82.11 58.45 85.40 78.75

Table 8: Ablation study results on with vs without In-
foNCE loss on T5Small.

SST-2 MRPC RTE QNLI Avg. Score

With InfoNCE 90.85 85.06 60.72 88.25 81.22
w.o. InfoNCE 90.58 84.04 58.59 87.85 80.27

Table 9: Ablation results about with vs without In-
foNCE loss on BERTBASE.

surpassing the 80.19 score of MUX-PLM.
(2) RevMUX maintains comparable or superior
performance with larger N values: Notably, as
N increases, RevMUX continues to demonstrate
its scalability. For instance, the average score of
RevMUX withN = 8 (77.78) is comparable to that
of MUX-PLM with N = 5 (77.92). Furthermore,
RevMUX with N = 16 achieves a higher aver-
age score (75.72) than MUX-PLM with N = 10
(75.61), highlighting the effectiveness and scalabil-
ity potential of RevMUX.

E Hyperparameter Analysis

E.1 Impacts of λ for InfoNCE Loss
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Figure 6: The impact of different λ for InfoNCE loss
under the BERTBASE backbone.

Impacts of InfoNCE Loss: In order to explore
the effectiveness of InfoNCE in our framework,
we conduct ablation studies about with and with-
out InfoNCE Loss with BERTBASE backbone. As
shown in Table 9, the InfoNCE loss improves the
average score from 80.27 to 81.22, demonstrates
the effectiveness of the objective. More detailed

analysis of the InfoNCE loss can be found in Ap-
pendix E.1.

In this section, we extend our experiments to
further investigate the impact of the InfoNCE loss.

As shown in Table 8, we observe that incorporat-
ing the InfoNCE loss leads to improvements across
all four datasets using the T5Small backbone. This
aligns with the findings from the BERTBASE back-
bone discussed in Section 5.3, demonstrating the
consistent effectiveness of the InfoNCE loss.

To gain deeper insights, we also conduct exper-
iments varying the value of λ in Eq (13). As il-
lustrated in Figure 6, we find that a value around
0.5 yields the best performance, and we adopt this
setting for the subsequent experiments.

F Inference Efficiency Comparison

To compare inference efficiency, we report the
FLOPs required for validation set inference. For a
fair comparison, we set the batch size to 32 and the
sequence length to 128, following the methodology
of (Murahari et al., 2023). The efficiency improve-
ment, denoted in column ↗, is calculated based
on the average FLOPs used across all four datasets.
The results are presented in Table 11 and Table 12.

Based on the inference efficiency results pre-
sented in Table 11, we evaluated various models
using BERTBASE as the backbone. RevMUX
( ), despite achieving comparable efficiency,
shows slightly higher average FLOPs (33.713 T)
compared to DataMUX (28.799 T) and MUX-
BERTBASE (25.834 T).

Based on the inference efficiency results pre-
sented in Table 12, using T5 as the backbone model,
RevMUX achieves about 45% speedups across all
scales. RevMUX shows average FLOPs of 8.188
T, 34.532 T, and 119.588 T on T5Small, T5Base,
and T5Large, respectively. The speed-up percent-
ages on different T5 backbones are roughly around
140%, ranging from 138% to 144%.
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Model N Tuned SST-2 MRPC RTE QNLI Avg. Score

MUX-PLM 1 91.74 87.75 63.18 90.54 83.30

RevMUX 2 90.85 85.06 60.72 88.25 81.22
MUX-PLM 2 90.62 83.77 58.19 88.17 80.19

RevMUX 4 90.28 82.57 59.46 86.48 79.70
MUX-PLM 5 86.88 80.10 59.13 85.58 77.92
RevMUX 8 88.30 78.97 58.66 85.17 77.78
MUX-PLM 10 83.44 78.63 58.27 82.08 75.61
RevMUX 16 85.50 75.17 58.13 84.08 75.72

Table 10: Model comparison of RevMUX and MUX-PLM (Murahari et al., 2023) using BERTBASE as backbone
model with different N .

Model N ↗ Tuned SST-2 MRPC RTE QNLI Avg. FLOPs

Backbones MUX-BERTBASE (Murahari et al., 2023) 1 100% 25.824 11.477 7.651 162.593 51.886

Baselines DataMUX (Murahari et al., 2022) 2 180% 13.866 6.400 4.267 90.664 28.799
MUX-BERTBASE (Murahari et al., 2023) 2 201% 12.439 5.741 3.827 81.330 25.834

Ours

Vanilla Adapters 2 156% 16.545 7.741 5.263 103.663 33.303
Only Multiplexer Reversible 2 161% 16.019 7.495 5.096 100.363 32.243
RevMUX 2 154% 16.749 7.837 5.328 104.938 33.713

Table 11: Inference efficiency comparison using BERTBASE as backbone model. (Unit: T FLOPs)

Backbone Model N Tuned ↗ SST-2 MRPC RTE QNLI Avg. FLOPs

T5Small

Task-specific Backbone 1 100% 5.919 2.770 1.880 37.084 11.913
Vanilla Adapters 2 138% 4.293 2.008 1.366 26.891 8.640
Only Multiplexer Reversible 2 146% 4.058 1.899 1.291 25.424 8.168
RevMUX 2 145% 4.068 1.903 1.294 25.487 8.188

T5Base

Task-specific Backbone 1 100% 24.689 11.552 7.843 154.677 49.690
Vanilla Adapters 2 140% 17.660 8.263 5.618 110.644 35.546
Only Multiplexer Reversible 2 144% 17.133 8.016 5.451 107.344 34.486
RevMUX 2 144% 17.156 8.027 5.458 107.486 34.532

T5Large

Task-specific Backbone 1 100% 84.782 39.668 26.932 531.149 170.633
Vanilla Adapters 2 141% 60.308 28.218 19.187 377.854 121.392
Only Multiplexer Reversible 2 143% 59.372 27.777 18.888 371.987 119.506
RevMUX 2 143% 59.412 27.798 18.901 372.239 119.588

Table 12: Inference efficiency comparison using T5 as backbone model. (Unit: T FLOPs)

22087


