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Abstract

The rapid development of Large Language
Models (LLMs) has led to a surge in appli-
cations that facilitate collaboration among mul-
tiple agents, assisting humans in their daily
tasks. However, a significant gap remains in
assessing to what extent LLM-powered appli-
cations genuinely enhance user experience and
task execution efficiency. This highlights the
need to verify utility of LLM-powered appli-
cations, particularly by ensuring alignment be-
tween the application’s functionality and end-
user needs. We introduce AgentEval, a novel
framework designed to simplify the utility ver-
ification process by automatically proposing
a set of criteria tailored to the unique pur-
pose of any given application. This allows
for a comprehensive assessment, quantifying
the utility of an application against the sug-
gested criteria. We present a comprehensive
analysis of the effectiveness and robustness
of AgentEval for two open source datasets
including Math Problem solving and ALF-
World House-hold related tasks. For repro-
ducibility purposes, we make the data, code
and all the logs publicly available at https:
//github.com/Narabzad/AgentEval/

1 Introduction

One of the long-lasting goals for intelligent
agents (Winograd, 1972) is for them to seamlessly
interact with humans in natural language and help
their end-users with their tasks, such as completing
household tasks, math tutoring, and so on. The
rapid development of open-source libraries (Wu
et al., 2023; Li et al., 2023a) helps that goal by sim-
plifying the development of LLM-powered agentic
applications for various user-centered tasks (Liang
et al., 2023b; Hong et al., 2023; Talebirad and
Nadiri, 2023; Arabzadeh et al., 2022; Mohanty
et al., 2024). To ensure that the application’s be-
havior meets the requirements of the application
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Figure 1: An overview of the AgentEval framework:
CriticAgent creates a set of criteria and suggested val-
ues; QuantifierAgent quantifies the criteria for a consid-
ered application; and VerifierAgent verifies the criteria
based on its robustness. The output of the QuantifierA-
gent is a multi-dimensional assessment of the utility of
the application based on a suggested list of criteria and
their evaluations.

developers, it is also crucial to assess its potential
utility to end users (Dibia et al., 2023; Nguyen
et al., 2016), as this can significantly impact its im-
provement journey. Taking into account a range of
applications, it is unrealistic to assume benchmark-
ing for every domain, including but not limited to
code generation (Liu et al., 2024), health care (An-
drew, 2024), and many others whose development
we witness every day (Wu et al., 2023). More-
over, directly evaluating agentic applications poses
challenges, as current approaches predominantly
rely on end-to-end success metrics i.e., whether
the application accomplishes tasks (Shridhar et al.,
2020b, 2019; Myers et al., 2023). However, under-
standing a user’s interactions with an application
involves much more than success alone (Kiseleva
et al., 2022a,b; Zhang et al., 2023). Consider math
problem solving, although it is important that the
application solves the problem correctly, its ability
to present and explain solutions based on various
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criteria, such as completeness, conciseness, and
clarity, is crucial. Furthermore, success is not al-
ways clearly defined for a task. Recognizing such
criteria and being able to quantify them is essen-
tial to assess whether developer requirements are
being satisfied and if the application brings utility
to the end-users. Given the objective of assessing
arbitrary applications, relying solely on end-to-end
success metrics is untenable, due to the expansive
range of tasks requiring automation. The question
is how to design a flexible methodology to assess
the task utility for diverse set of applications?

To bridge this gap, we introduce AgentEval, a
framework to gauge the utility of LLM-powered
applications. Its goal is to assess the utility by
providing application developers with insights into
how the current flow can be characterized. Agen-
tEval builds on recent work showing that LLMs
can be a scalable and cost-effective alternative to
human evaluation for open-ended tasks (Li et al.,
2023b). AgentEval as illustrated in Fig. 1, consists
of the three following agents, formally defined in
Sec. 3: (1) CriticAgent suggests the list of cri-
teria based on the task description and a pair of
solutions, where one is preferred over the other
one (e.g., successful and failed examples). For in-
stance, for math problems, the criteria could be
be Efficiency and Clarity of the proposed solution;
(2) QuantifierAgent quantifies how the solution
performs for each criterion and returns the utility
function, e.g. for math problems, if the ’ Clarity
is ‘not clear’, ‘moderately clear’, or ‘very clear’;
(3) VerifierAgent verifies the quality of the assess-
ment of the suggested criteria to make sure the
criteria are essential, robust, informative and have
high discriminative power.

In summary, our main contributions are C1 In-
troducing AgentEval, a novel framework that lever-
ages LLM-powered agents as a scalable and cost-
effective alternative to human evaluations, to pro-
duce task utility through the collaboration of Crit-
icAgent, QuantifierAgent and VerifierAgent; and
C2 An in-depth analysis of AgentEval robustness
for two applications across different solutions, that
can be replicated on an unseen domain.

2 Related Work

2.1 Evaluation of LLMs

Prior work (Guo et al., 2023; Ziyu et al., 2023;
Chang et al., 2023; Liang et al., 2023a; Arabzadeh
et al., 2024a) has extensively studied the evaluation

of LLMs on various fronts: how ethically sound
they are (Stahl and Eke, 2024), how they align to
human preferences (Hendrycks et al., 2021a; Köpf
et al., 2024), their robustness (Wang et al., 2023b;
Seifikar et al., 2023), and the knowledge, and rea-
soning capabilities they posses (Bian et al., 2023).
Recent work evaluates LLMs on more specialized
tasks, such as medical domain (Jin et al., 2019),
multi-modal tasks (Mialon et al., 2023; Bang et al.,
2023), or as agents in interactive environments (Liu
et al., 2023).

2.2 User satisfaction prediction

Studies suggest that users interacting with var-
ious systems operate with specific utility func-
tions in mind (Li et al., 2020; Azzopardi et al.,
2018; Ahmadvand et al., 2022). Traditionally, met-
rics defining user satisfaction were designed using
large-scale collected behavioral signals (Kiseleva
et al., 2014), and were tailored to specific applica-
tions, such as intelligent assistants (Kiseleva et al.,
2016a,b), web search engines (Williams et al.,
2016a,b; Williams and Zitouni, 2017; Arabzadeh
et al., 2023), dialogue systems (See et al., 2019),
multi-turn conversations (Li et al., 2021; Mohanty
et al., 2023) and general-purpose personal assis-
tants (Kiseleva and de Rijke, 2017). It was demon-
strated that assessing users’ satisfaction requires
goes beyond a single metric (Arabzadeh et al.,
2024b). As such, here, we propose a flexible frame-
work to assess user and developer requirements,
which can eventually be used to improve the appli-
cation flow.

2.3 Using LLMs as evaluators

More recently, there has been a growing trend
in utilizing LLMs as evaluators (Chiang and
Lee, 2023; Fu et al., 2023; Alaofi et al., 2024;
Arabzadeh and Clarke, 2024; Huo et al., 2023,?),
such as for qualitative research (Bano et al., 2023),
or summarization. Specifically, Jain et al. (2023)
studied the efficacy of few-shot prompted LLM
evaluators in evaluating summaries that were writ-
ten by other LLMs. Similarly, Wang et al. (2023a)
explore if ChatGPT itself can be used as an eval-
uator, by prompting it to score texts. Other
works (Tjuatja et al., 2023; Liu and Sun, 2023; Chi-
ang and Lee, 2023; Meng et al., 2024) look at how
LLMs can be used as proxies for human behavior,
or work with humans, such as CoEval (Li et al.,
2023b), which showed how LLMs can make hu-
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man evaluation easier. Pan et al. (2024) also show
how LLM evaluators can help build models that
increase performance on downstream task. Build-
ing on the above, a different line of works identify
weaknesses in single LLMs as direct evaluators
(Huang et al., 2023), and propose to improve them,
such as a multi-step calibration framework (Wang
et al., 2023c). Given these drawbacks, recent
work has looked at how multiple LLM agents can
be used as evaluators. Chan et al. (2023), pro-
posed ChatEval, a multi-agent team that discusses
and evaluates responses from agents on generation
tasks (debate-style), leading to text that aligns with
better human preferences. Similarly, Chern et al.
(2024) proposed a multiple agent-debate-assisted
meta-evaluation framework.
Building on these works, we propose an auto-
matic multi-agent assessment of utility for arbi-
trary LLM-powered applications, to provide deep
insights for developers. Our framework can un-
cover current flaws in these applications, and may
lead to improvements in them, particularly if the
application flow changes after it is applied, and
then it is re-used.

3 Task Utility

Fig. 2 outlines a taxonomy of target tasks for LLM-
powered applications, in terms of success metrics.
At a high level, these tasks can be categorized into:
1) Success is not clearly defined — Users use the
system in an assistive manner, seeking suggestions
from it, rather than expecting it to solve the task.
For example, a user can request the system to gen-
erate an email. The user usually uses the system’s
response as a template, which can later be edited.
Directly evaluating assistive tasks like these is hard,
particularly for online evaluation, or when deal-
ing with less well-defined tasks. One potential
approach is to directly ask users how useful the
help was, but this is not well-calibrated (Borisov
et al., 2018), hard to quantify (Sepliarskaia et al.,
2018), and expensive.
2) Success is clearly defined — It is clear whether
the system solved the task or not, for example,
assisting with household tasks, where success is
clear and measurable. This category can be further
divided into two subcategories:
• an optimal solution exists — only one successful

outcome is possible. For example, when asking
an assistant to turn on a light, success is clearly
defined, as there is only one way to do it.

Tasks for LLM-powered 
applications

Tasks where LLM-powered systems 
can assist the end user

Success is not 
clearly defined

When an agent assumes the role of 
an assistant, and success is not 

clearly defined

Success is clearly 
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When success is clearly defined, it is 
usually evaluated in a binary way

Optimal Solution 
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There is a clear path to a 
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Multiple trajectories are 
leading to success

Figure 2: The taxonomy of tasks assessment.

• multiple solutions exist — Increasingly, we ob-
serve situations where multiple trajectories of
agent behavior can lead to success. For example,
when asking an agent to suggest a food recipe,
success could be multiple cuisines tasting good,
but perhaps the recipe should not be expensive.

AgentEval is currently focused on tasks where suc-
cess is clearly defined and multiple successful so-
lutions may exist.

Previous research on assistive agents suggests
human pairwise preferences as one of the most
optimal assessments, i.e. when the annotator is pre-
sented with two agents side by side and asked for
their preferences (Kiseleva et al., 2022b). In this
setup of side-by-side pairwise comparison, humans
tend to suggest a list criteria, explaining why they
prefer one agent over the other. For instance,‘the
first agent was faster’ or ‘the second agent con-
verses more naturally’. This comparative setup can
guide humans to come up with a list of criteria that
helps to infer the utility of the task. With this in
mind, we designed AgentEval (Fig. 1), by employ-
ing LLMs to help us understand, verify, and assess
task utility, namely:
• CriticAgent: The goal of this agent is to suggest

a set of criteria that can be used to assess task util-
ity. The CriticAgent is given a task description,
as well as optionally several pairs of solutions,
where preferably some are preferred over the
other ones, for instance, successful and failed
examples. CriticAgent would return a set of cri-
teria C = {c1, . . . , cn}, where each criterion ci
is accompanied by a set of accepted values ω
as ci : {ωj}mj=1. For example, for solving math
problems, the CriticAgent generated accepted
values and criteria such as clarity, efficiency, and
more - see Tab. 1.

• QuantifierAgent: The goal of QuantifierAgent
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is to quantify each of the suggested criterion,
to access the task utility of the system Ut, for
the end user. We define the Utility for task t
as: Ut(s) = {Qi(s|ci)}ni=1. where s represents
the task sample and Q(s|ci.) is the quantifier
output for sample s based on the criterion ci.
For example, for math problem solving, given
the generated criteria shown in Tab. 1, the solu-
tion’s Accuracy could be quantified as “Incor-
rect”, “partially correct” or “correct”. Eligible
quantified values for quantification process are
shown in “Accepted values” column in Tab. 1

• VerifierAgent: There might be cases where not all
the criteria suggested by CriticAgent help assess
utility. Some criteria might be redundant, while
others may not aid in distinguishing performance.
VerifierAgent validates the quality of the criteria
in terms of robustness and their distinguishability
of noisy samples. Essentially, it checks (1) if the
criteria can be quantified robustly over repeated
samples, and (2) if QuantifierAgent can identify
the adversarial attacked targeted samples from
the original ones. If the sanity checks do not
pass, VerifierAgent will update the list of criteria,
to end up with a set of robust, stable, informative
and distinguishable criteria for assessment.

Finally, we note that AgentEval allows for incorpo-
rating a human in the loop in the role of a domain
expert. For instance, CriticAgent could be replaced
by a human expert who either comes up with the
relevant criteria or helps VerifierAgent verify the
useful criteria and filter out the unessential ones.

4 Datasets and Solutions

This section provides an overview of the datasets
utilized in our study i.e., Math problem solving
and ALFWorld household task. The math dataset
is chosen for its widespread usage and complex
problem-solving scenarios that are fundamental in
evaluating the effectiveness. ALFWorld dataset
offers a scenario involving multi-turn interactions
within a moderately approximated multi-modal en-
vironment. Each dataset plays a critical role in
evaluating different aspects of AgentEval’s capabil-
ities, from handling complex theoretical problems
to navigating real-world scenarios. In both tasks,
although success is clearly defined, multiple solu-
tions exist for accomplishing the objectives. An
example of Math problem solving and ALFWorld
task is shown in Appendix A.1. Due to space, we
report all experiments about Math problem solving

in the main paper and we keep all the experiments
related to ALFWorld dataset in the Appendix A.3.

4.1 MATH Problem Solving

Dataset: The MATH dataset is a substantial collec-
tion of 12,500 challenging mathematics problems
from high school competitions (Hendrycks et al.,
2021b). Each problem comes with a step-by-step
solution and is tagged by difficulty levels. Similar
to the math problem experimental setup in Wu et al.
(2023), we carry out evaluations on 120 problems
from level-5 by three different solutions. Due to
limited space, for more details about this dataset,
we refer readers to Appendix A.2

Solutions: In establishing solutions for this task to
assess, we draw inspiration from the experiments
showcased in (Wu et al., 2023). We evaluate the
proposed methodology by AutoGen (Wu et al.,
2023), as well as Langchain ReAct (Yao et al.,
2022) and a Vanilla solver that employs GPT-4 to
tackle the task. These solutions have previously
demonstrated promising and competitive perfor-
mance (Wu et al., 2023). In Sec. 5.2, we explore
how the measured performance with AgentEval
correlates with the ground truths.

4.2 ALFWorld Household Task

Dataset: ALFWorld presents a set of language-
based interactive decision-making tasks within sim-
ulated household environments (Shridhar et al.,
2020b). ALFWorld is the first interactive paral-
lel environment that aligns text descriptions and
commands with physically embodied robotic simu-
lation. Finally, the dataset’s inclusion of household
chores to more intricate problem-solving scenarios,
provides a comprehensive testbed for evaluating
the adaptability of multi-agent systems. For more
information about the dataset and examples of the
test cases, we refer the readers to Appendix A.3.1.

Solutions: As for the solutions to assess for ALF-
World Household tasks, similar to (Wu et al., 2023),
we consider ReAct (Yao et al., 2022) as well as Au-
toGen with two agents and AutoGen with three
agents (Wu et al., 2023). In Appendix A.3.2, we
discuss in more details the solutions under assess-
ment. We assess and compare the performance of
these three solutions using AgentEval.
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Figure 3: AgentEval assessment of three solutions on
math problems categorized by success and failed cases.

5 Experiments

5.1 Implementation Details

For all experiments, we use GPT-4 version 0613,
accessed through Azure OpenAI services, as the
LLM model and the temperature of 0. AgentEval
utilizes AutoGen (Wu et al., 2023) for implemen-
tation, since it provides a versatile environment
where agents can be finely tuned and customized
based on specific application needs. This is cru-
cial for maintaining the flexibility to handle a wide
range of applications. We tried to avoid much
prompt engineering and tried to keep each agent’s
instructions as if we are instructing human annota-
tors. Moreover, another advantages of using Au-
toGen for implementation of AgentEval is that it
has the flexibility to involve human in the loop.
Each agent could be replaced by a human annota-
tor. We further provide all the prompts used in our
experiments in our Git repository.

5.2 AgentEval for Math Problems

When executing the CriticAgent for Math problem
solving, we first obtain a set of criteria as presented
in Tab. 1. Then, the QuantifierAgent is tasked with
quantifying each criterion, based on the accepted
values. We present the outcome of QuantifierAgent
measuring performance of three solutions on this
task in Fig. 3. Notably, we see that Agenteval does
not quantify the three solutions as if they perform
equally well across the different criteria. For in-
stance, while all three solutions leverage GPT-4
as the underlying language model, Autogen out-
performs ReAct and Vanilla GPT-4 in terms of
accuracy. This observation, while confirmed by
previous studies (Wu et al., 2023), extends to solu-
tion completeness and efficiency as well.

As depicted in Fig. 3, the error analysis range
of quantified values differs from other metrics. We

Table 1: Verification Criteria for MathProblems

Criteria Description Accepted Values
Clarity The ease of understanding the steps,

explanations, and language used in the
solution.

– Not Clear (0)
– Moderately Clear (1)
– Very Clear (2)

Efficiency The use of optimal methods or
approaches to solve the math problem.

– Inefficient (0)
– Moderately Efficient (1)
– Efficient (2)

Error
Analysis

The identification and description of
possible errors or misconceptions in the
math problem-solving process.

– Not Addressed (0)
– Partially Addressed (1)
– Well Addressed (2)

Completeness Quality of code in terms of efficiency and
elegance

– Incomplete (0)
– Mostly Complete (1)
– Complete (2)

scrutinize the results by categorizing them into suc-
cessful and failed cases. AutoGen, Vanilla Solver
and ReAct solutions are each presented in orange,
blue and green respectively, where the darker bars
represent the performance on successful cases and
lighter bars represent the failed cases. The differ-
ence between the dark and light bar of each color,
verify AgentEval’s performance, as we expect that
each positive criteria should be quantified higher
for successful cases compared to their failed cases.
We observe that in most cases, the successful and
failed cases are distinguished, even with 95% inter-
val confidence on all the success and failed cases.

When examining the differences between suc-
cessful and failed cases among the three solutions,
we note that not all successful cases are assessed
identically, nor are all failed cases quantified with
the same performance. This can be interpreted to
mean that even though two solutions might both be
successful, one might perform better or worse in
certain criteria, such as clarity or efficiency. This
observation provides us with valuable additional
insights, especially for the developers of the pro-
posed solutions, and goes beyond reporting the
effectiveness of a application by one scalar value
e.g., success rate.

6 Robustness Analysis and Verification

In this section, we first analyze the robustness of
AgentEval, then further investigate how VerifierA-
gent can increase the stability of our assessment.

6.1 Diversity of Criteria

Here, our main goal is to study the diversity of the
suggested criteria. We investigate the extent inputs
to AgentEval (Fig. 1 such as ‘Task Description’ and
‘Successful/Failed Executions’) contribute to Crit-
icAgent for creating a more diverse set of criteria.
To do so, we use two distinct methods, with Crit-
icAgent generating (1) “task-based” criteria solely
from the task description, and (2) “solution-based”
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Figure 4: Task-based vs solution-based criteria for Math problems. Error bar show the 95% confidence interval.

criteria, derived from both the task and execution
examples. For example, a solution to a mathemati-
cal problem, might satisfy criteria such as ‘Accu-
racy’ and ‘Clarity’, independent of the solution.
However, when additional tools such as coding are
used to solve the problems, additional criteria like
‘Code Efficiency’ may be introduced to the set of
criteria. This makes sense, since the application
leveraged coding to solve math problems.

Fig. 4 displays the number of unique criteria ex-
tracted for mathematical problem solving in task-
based mode, and three different solution-based
approaches. To keep the balance between com-
putational costs and analyzing the robustness, we
conducted 50 runs of the CriticAgent with different
seeds. Subsequently, for N = 50 iterations, we
randomly select M ≤ 50 samples, as shown on
the x-axis of Fig. 4, and present the average num-
ber of unique extracted criteria, along with its 95%
confidence interval after repeating this process 50
times. We note that because the total pool of cri-
teria includes 50 iterations in total, the confidence
intervals become smaller when M get closer to the
maximum number of samples i.e., 50

To gain deeper insights into diversity of criteria,
we took a closer look at them to study if they are
truly unique or to what extent they have similarities.
This is important to determine if CriticAgent, when
continually generating criteria, will always pro-
duce new criteria, or if it will eventually converge
to a set. We noted that some criteria are similar but
worded differently. For example, ‘Problem Com-
plexity’ vs. ‘Problem Difficulty’ or ‘Time Taken’
vs. ‘Time to Completion’. Tab. 3 in the Appendix
lists such instances. To consolidate the similar cri-
teria and reduce noise in the number of unique cri-
teria and redundancy, inspired from previous work
(Liu et al., 2022; Vahtola et al., 2022; Reimers
and Gurevych, 2019), we employ a pre-trained

language model fine-tuned for paraphrasing1, to
measure the semantic similarity of criteria descrip-
tions. Using a threshold τ , we classify pairs with
cosine similarity greater than τ as semi-identical
ones and select one of them as the representative
of the pair. Fig. 4 illustrates the impact of different
τ values (0.7, 0.85, 1) on the diversity of criteria.
A threshold of 1 means no filtering occurs. This
analysis shows that the solution-based approach
has potential to produce more diverse criteria than
the task-based approach, although this varies by
the creativity of the model. For example, while the
AutoGen solution demonstrates the highest diver-
sity, task-based methods yield more unique criteria
than ReAct and Vanilla Solver. Another interesting
observation is that repeating the CriticAgent will
eventually lead to a convergence in the number of
criteria. This suggests that the CriticAgent’s ability
to create new criteria will diminish, converging to
an almost finite list of criteria, which will reduce
the cost as well.

6.2 Verification

As outlined in Sec. 3 and illustrated in Fig. 1, the
VerifierAgent’s primary role is to ensure the se-
lected criteria are effective toward evaluating the
utility for the end-user, while maintaining robust-
ness and high discriminative power. To achieve
this, the VerifierAgent undertakes two main actions:
(1) Criteria Stability: The criteria should be es-
sential and robust, meaning they should not be
redundant and we should be able to quantify them
stably if we repeatedly quantify it for an individual
solution, showing no divergence. As such, Veri-
fierAgent enhances the criteria by iterating over
the generation and quantification phases. It then
consolidates these criteria by identifying and elim-
inating redundancies, followed by evaluating the

1https://bit.ly/3UgsYOp
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dispersion of the distribution of the quantified cri-
teria. This step modifies the criteria, ensuring that
only the most robust criteria are retained.
(2) Discriminative Power: A reliable evaluation
should detect and withstand noise. To test that,
we propose to use adversarial examples and then
assess the system’s ability to differentiate between
these compromised examples and standard cases.
Should the system fail to distinguish effectively, it
indicates that the criteria are insufficient for reli-
able assessment under varied conditions.

We note that both steps involve a tunable thresh-
old that can be adapted based on application needs,
ensuring flexible criteria validation. The proposed
methodology for VerifierAgent is summarized in
Algorithm 1 in the Appendix.

6.2.1 Criteria Stability
Our goal here is to explore the stability of crite-
ria and robustness of the quantifier for having a
more essential, robust and stable set of criteria.
We specifically evaluate the QuantifierAgent’s ro-
bustness using criteria for mathematical problems
(Table 1), conducting 50 repeats of runs with dif-
ferent seeds on 120 problems (Section 4.1). Ideal
expected outcomes include consistent performance
across all criteria on all the repeats. Fig. 5 il-
lustrates the distribution of quantifier values for
both failed (dark blue) and successful cases (light
blue) across all criteria through box plots. The
more robust a criterion, the narrower the range of
quantified performance (narrower box plots). Also,
the less overlap between the successful and failed
boxes, the higher the distinguishability of the crite-
ria. We observe that all four criteria, except ‘error
analysis’ allow for easy differentiation between
successful and failed cases. Additionally, some cri-
teria prove to be more robust compared to others.
We believe that such an analysis of the quantifier
agent’s performance will yield valuable insights
for enhancing reliability, trustworthiness, and ex-
plainability in performance evaluation. A detailed
examination of the stability of each criterion, es-
pecially how they differentiate between successful
and failed cases, is provided in Appendix A.4.2.

Further, to refine and expand the criteria set with-
out redundancy, we operate the CriticAgent multi-
ple times i.e., we execute CriticAgent 50 times with
varied seeds. The criteria are then summarized into
one list of useful criteria using the LLM. Addi-
tionally, as explained in Section 6.1, we remove
similar and redundant criteria using pre-trained lan-

Figure 5: Distribution of QuantifierAgent output on
AutoGen results on successful (dark blue) and failed
(light blue) cases on different criteria.

guage models, thus obtaining a comprehensive list
of criteria. The refined criteria after 50 repeats are
detailed in Tab. 4 in the Appendix.

Now, we aim to determine the stability of these
criteria through repeated quantifications. Our goal
is to identify criteria that maintain consistent re-
sults without significant divergence, even when
quantified multiple times. Using this consolidated
list, we measure the dispersion of quantified results
using the coefficient of variation, a standardized
metric that facilitates comparison across various
test cases when QuantifierAgent quantifies them.
Given the consolidated list of criteria, we use the
QuantifierAgent to quantify various test cases and
report the coefficient of variation as a measure
of the dispersion of the QuantifierAgent’s outputs
with respect to each criterion across different seeds
and report the mean coefficient of variation across
all samples. we run QuantifierAgent with 50 seeds
and plot the change (∆) in the sum of mean co-
efficient of variation across all criteria against the
number of seeds, in Figure 6. For each criterion,
we compute the absolute difference with the mean
coefficient of variation calculated when using n−1
seeds, summing up the absolute differences across
all criteria. According to the plot, after approxi-
mately 18 seeds, the magnitude of mean coefficient
of variation stabilizes and becomes rather trivial. In
almost all cases, the mean coefficient of variation
is around or below 0.5, which is relatively small,
suggesting that QuantifierAgent is quite robust.

6.2.2 Discriminative Power
It is crucial to ensure the quality of quantification
of each criterion. Ideally, this validation would
involve comparisons with known pairwise samples,
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Figure 6: ∆ sum of mean coefficient of variation across
all criteria with increasing number of seeds.

where sample S+ is definitively superior to S− for
a given criterion. If the evaluator also confirms
superiority of S+ w.r.t S−, it has robust quantifi-
cation. However, due to rapid expansion of LLM-
powered applications, obtaining annotated data for
many tasks is often unfeasible. Therefore, we pro-
pose using synthetically altered versions of sam-
ples for verification. Let us assume we have an
alternative disturbed version of sample S, which
is called S′. Assuming sample S is more likely to
outperform its disturbed version S′, our assessment
should confirm this assumption by assigning better
quantified performance S in comparison to S′. In
experiments with mathematical problems, we intro-
duced random noise by removing portions of the
solution sentences from AutoGen, VanillaSolver,
and ReAct’s results respectively, expecting that cri-
teria like ‘Completeness’ or ‘Clarity’ would show
be higherin S than in S′. We disturbed solutions
by removing 25% of the sentences and assessed
the QuantifierAgent’s performance. As shown in
Fig. 7, criteria measuring aspects like ‘Clarity’ and
‘Completeness’ were lower in disturbed solutions
(lighter bars), confirming QuantifierAgent’s high
discriminative power and effectiveness.

We have already filtered out the criteria that were
unstable, i.e., those that had a high mean standard
deviation and dispersion when being quantified in
the previous section. We report the results of the
QuantifierAgent quantifying differences between
original and disturbed samples on the comprehen-
sive set of criteria shown in Appendix, as shown
in Fig. 13 for the math problem-solving. In most
cases, the QuantifierAgent quantifies the disturbed
output to be worse than the original task output.
We believe analyzing the QuantifierAgent’s perfor-
mance will enhance the reliability, trustworthiness,

Figure 7: Assessment of original and disturbed solu-
tions on Math dataset (discriminative power study).

and explainability in evaluations..

6.2.3 VerifierAgent
After modifying the list of criteria (Sec. 6.2.1), we
have developed a stable and robust list of crite-
ria that the QuantifierAgent can reliably quantify.
Further, we also proposed a method for assess-
ing whether the criteria can distinguish between
noise-adversarially attacked samples and the origi-
nal ones. These two tests will serve as input for the
VerifierAgent (described in Algorithm 1), which
can also have its threshold tuned for different ap-
plications. For instance, one might prioritize the
stability of the criteria, while another may value
the discriminative power of the AgentEval for spe-
cific applications. As such, the VerifierAgent will
modify and update the criteria based on to what
extend they pass the two tests, i.e., if the mean coef-
ficient of variation is below a specific threshold and
the percentage of adversarial testing it has passed.
The VerifierAgent will then update the criteria if
necessary. We believe that having a VerifierAgent
would help continuously updating the criteria as
needed because, by improving the systems, we
may require new criteria that were not previously
necessary for utility assessment.

7 Conclusions and Future Work

We introduced the AgentEval framework, designed
to swiftly gauge the utility of arbitrary LLM-
powered agentic applications. Our framework
leverages recent findings suggesting LLMs as a
scalable and cost-effective alternative to human
evaluations for open-ended tasks. AgentEval con-
sists of three agents: CriticAgent suggests crite-
ria based on task descriptions and executions of
the applications, QuantifierAgent quantifies how
well the application flow aligns with these crite-
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ria, and VerifierAgent modifies the list of criteria
if needed. This framework is customizable, adapt-
able, and can operate in various modes, employing
combinations of LLMs, human inputs, and tools.
We believe that suggested AgentEval’s utility ex-
tends beyond immediate performance. It can un-
cover new system capabilities over time and adapt
to changes in user needs tracked by developers.
AgentEval can also enable developers to assess
the alignment between application behavior and
suggested user requirements, providing them with
insights into areas for improvement. In summary,
our contributions include introducing the AgentE-
val framework, and conducting a robust analysis of
its performance across various datasets and base-
lines. AgentEval represents a significant step to-
wards assessing LLM-powered applications.

8 Limitations and Ethics

8.1 Limitations

Here, we discuss some limitations of the Agen-
tEval framework. Firstly, the performance of the
AgentEval is highly dependent on the quality of
the output logs of the applications. Flaws or limita-
tions in these outputs can significantly impact the
framework’s ability to accurately assess utility.

Secondly, our experiments were conducted ex-
clusively with closed-source LLMs, specifically
with GPT-4. This may limit the generalizability
of our findings. Plans to include a broader array
of LLMs, including open-source models, are con-
sidered for future studies to validate and possibly
enhance the robustness of our conclusions. Addi-
tionally, the tests conducted were limited to spe-
cific scenarios within math problem solving and
household tasks. Expanding the diversity of test
scenarios could help in understanding the broader
applicability of the framework.

Thirdly, while AgentEval employs a novel
methodology leveraging LLMs to estimate utility,
the absence of human evaluation in our validation
process could be viewed as a drawback. Human
evaluations provide unique insights, especially in
subjective aspects of utility that automated systems
might overlook. However, such evaluations are
often cost-prohibitive and logistically challenging,
restricting our ability to implement them within
this study. Especially do developers of agentic
LLM-powered applications who needs insights fast
as they go with the deployments.

Lastly, as LLM technologies evolve, the criteria

and metrics used for evaluation may need to be up-
dated or revised. What works for assessing current
LLMs may not hold as these models become more
advanced. Continuous updates to the evaluation
framework will be necessary to keep pace with
technological advancements.

8.2 Ethics
To the best of our knowledge, we did not violate
any code of ethics with the experiments done in this
paper. We reported technical details and results,
with details in the main paper, Appendix, and code
release. Our experimental results are an outcome
of a Machine Learning model.

Our AgentEval system has a variety of uses in
real world settings, such as improving applications
for end users or helping developers. However, we
caution that it must be used carefully, as the outputs
are from a ML model and can have real world
consequences, if used incorrectly.

These and many other related issues are impor-
tant aspects to consider when deploying a system
like AgentEval in the real world.
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A Appendix

A.1 Task Examples

In Fig. 8 and 9, we display examples of Math prob-
lems and ALFWorld house-holding tasks solved
with AutoGen.

A.2 Math Problem Solving Benchmark

For math problem solving, although success is
clearly defined, multiple solutions exist for accom-
plishing the objectives. The MATH dataset, orig-
inally is a substantial collection of 12,500 chal-
lenging mathematics problems from high school
competitions (Hendrycks et al., 2021b). Each prob-
lem comes with a step-by-step solution, enabling
models to learn how to generate both derivations
and explanations. The dataset covers a wide range
of mathematical subjects and is tagged by difficulty
levels, offering a nuanced measure of model per-
formance across various aspects of mathematical
problem-solving.

This dataset is particularly suitable for testing
multi-agent systems for several reason including:
(i) The problems in the MATH dataset are not sim-
ple computations but require a deep understanding
of mathematical concepts, heuristics, and problem–
solving strategies. (ii) Since the dataset includes
step-by-step solutions, it allows for the assessment
of an agent’s ability to learn and reason through a
problem, not just its ability to arrive at the correct
answer. (iii) The variety of subjects and difficulty
levels in the MATH dataset enables a comprehen-
sive evaluation of a system’s versatility and adapt-
ability in different mathematical domains which is
crucial for multi-agent systems that are expected
to operate across a range of scenarios.

Similar to math problem experimental setup in
Wu et al. (2023), we carry out two experimental
evaluations which involves 120 problems from the
most challenging category, and includes 20 prob-
lems each from six different categories, of number
theory, counting and probability, prealgebra, alge-
bra, intermediate algebra, and precalculus.

A.3 ALFWorld House-holding Task

A.3.1 ALFWorld Dataset
ALFWorld, presents a set of language-based in-
teractive decision-making tasks within simulated
household environments (Shridhar et al., 2020b).
This benchmark is distinguished by its diver-
sity of tasks, offering a comprehensive platform

Table 2: Verification Criteria for ALFWorld Houshold-
ing Tasks.

Criteria Description Accepted Values
Task Under-
standing

How well the participant was able to
comprehend the problem set and follow
the task instructions

– Excellent (4)
– Good (3)
– Average (2)
– Poor (1)
– Terrible (0)

Plan
Making

The ability of the participant to strategize
and make a plan for tackling the task.

– Excellent (4)
– Good (3)
– Average (2)
– Poor (1)
– Terrible (0)

Action
Decision

The participant’s decision-making skills
in choosing the right action to perform.

– Excellent (4)
– Good (3)
– Average (2)
– Poor (1)
– Terrible (0)

Action
Execution

How effectively the participant is able to
execute the chosen action.

– Excellent (4)
– Good (3)
– Average (2)
– Poor (1)
– Terrible (0)

Response to
Feedback

How well the participant adapts his/her
next steps based on the feedback from the
environment

– Excellent (4)
– Good (3)
– Average (2)
– Poor (1)
– Terrible (0)

Correctness
of Action

The correctness of the action performed
by the participant with respect to the
available actions and the current context

– Correct (1)
– Incorrect (0)

Use of
Terminate

Whether the participant uses the
’TERMINATE’ command appropriately

– Appropriate (1)
– Inappropriate (0)

for testing AI and multi-agent systems. This
benchmark is particularly suited for such evalu-
ations because first, ALFWorld is the first interac-
tive parallel environment that aligns text descrip-
tions and commands with physically embodied
robotic simulation. It extends two prior works:
TextWorld, an engine for interactive text-based
games, and ALFRED, a large-scale dataset for
vision-language instruction following in embod-
ied environments (Shridhar et al., 2020a; Côté
et al., 2019). The cross-modality framework of
this benchmark allows for a variety of embodied
tasks with corresponding text-based counterparts,
allowing agents to be trained and evaluated in both
the language and embodied world. In addition,
ALFWorld supports the development of agents that
can reason both abstractly and execute actions con-
cretely, mimicking human-like decision-making
processes in varying contexts. Finally, the dataset’s
inclusion of a wide range of tasks, from household
chores to more intricate problem-solving scenarios,
provides a comprehensive testbed for evaluating
the adaptability and problem-solving capabilities
of AI and multi-agent systems. In general, the
dataset allows agents to explore, interact, and learn
in an abstract language environment before dealing
with the complexities of an embodied environment.
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"problem": "How many positive and negative integers is 12 a multiple of?"
"level": "Level 5"
"type": "Prealgebra"
"response_with_ans":
"messages": [
{
"content": "How many positive and negative integers is 12 a multiple of?",
"role": "user"
},
{
"content": "To determine how many positive and negative integers 12 is a multiple of, we need to
find the divisors of 12. Then we will double the number of divisors, as each positive divisor has a
corresponding negative divisor. Let’s use a Python code snippet to find all the divisors of 12 and
count them.",

1 num = 12
2 divisors = [i for i in range(1, num + 1) if num \% i == 0]
3 positive_divisors_count = len(divisors)
4 negative_divisors_count = positive_divisors_count
5 total_divisors_count = positive_divisors_count +

↪→ negative_divisors_count
6 print(f"Positive divisors of 12: {divisors}")
7 divisors_negative = [-x for x in divisors]
8 print(f"Negative divisors of 12: {divisors_negative}")
9 print(f"Total divisors count: {total_divisors_count}")

Execute this code snippet to find the divisors of 12 and count how many positive and negative
integers 12 is a multiple of.
"role": "assistant"
}
],
"time": 17.360238790512085

Figure 8: An example of Math Problem solving sample with solution generated by AutoGen

A.3.2 Solutions for ALFWorld benchmark

As for the solutions to assess for ALFWorld House-
hold tasks, similar to (Wu et al., 2023), we con-
sider ReAct (Yao et al., 2022) as well as AutoGen
with two agents and AutoGen with three agents
(Wu et al., 2023). ReAct is an agent that oper-
ates within the ALFWorld environments and is
responsible for suggesting plans and executing ac-
tions. On the other hand, AutoGen Two-Agent
System consists of an LLM-backed assistant agent
responsible for suggesting plans, and an execu-
tor agent responsible for executing actions in the
ALFWorld environments. Both ReAct and this so-
lution occasionally struggles with leveraging basic
commonsense knowledge about the physical world,

which can lead to repetitive errors and getting stuck
in loops.In AutoGen with three agents, a ground-
ing agent is provided just for the sake of critical
common sense knowledge whenever the system
exhibits early signs of recurring errors.

A.3.3 AgentEval Results for ALFWorld
To study the generalizability of AgentEval, we re-
peat the experiments in 5.2 for AlfWorld, in which
real-world household environments are emulated
through textual interfaces (Shridhar et al., 2020b).
We provide the criteria created for this task as well
as the results for three solutions of this task in Tab.
2 and Fig. 10, respectively. Following the extrac-
tion of a set of criteria as detailed in Tab. 2, these
criteria are passed to the QuantifierAgent for quan-
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{
{ "content": "Perform actions and interact with a household to solve a task. At the beginning of

your interactions, you will be given the detailed description of the current environment and
your goal to accomplish. For each of your turn, you should choose from two actions: "think"
or "Action". If you choose "think", you should first think about the current condition
and plan for your future actions, and then output your action in this turn. Your output must
strictly follow this format:"think: your thoughts."

↪→
↪→
↪→
↪→
↪→
"Action: your next action\\n"; If you choose "ACTION", you should directly output the action in

this turn. Your output must strictly follow this format:"ACTION: your next action".↪→
After each of your turn, the environment will give you immediate feedback based on which you

should plan your next few steps. if the envrionment output "Nothing happened", that means the
previous action is invalid and you should try more options.

↪→
↪→
Reminder:
1. the action must be chosen from the given available actions. Any actions except provided

available actions will be regarded as illegal.↪→
2. Take the target household immediatly after you find it.
3. Reply 'TERMINATE' only under two circumstances: a). The task has given you clear instructions

to return 'TERMINATE' b). The task seems insolvable.\\n Here are two examples.\nYou are in
the middle of a room. Looking quickly around you, you see a cabinet 13, a cabinet 12, a
cabinet 11, a cabinet 10, a cabinet 9, a cabinet 8, a cabinet 7, a cabinet 6, a cabinet 5, a
cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a coffeemachine 1, a countertop 1, a
diningtable 1, a drawer 1, a fridge 1, a garbagecan 1, a microwave 1, a shelf 3, a shelf 2, a
shelf 1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1,
and a toaster 1.\nYour task is to: put a hot apple in fridge.\n",

↪→
↪→
↪→
↪→
↪→
↪→
↪→

"role": "user"},
{ "content": "THOUGHT: The task is to put a hot apple in fridge. So i need to first find an

apple and heat it. First I need to find an apple. An apple is more likely to appear in
diningtable (1), coffeetable (1), fridge (1), drawer (1), cabinet (1-13), garbagecan (1). I
can check one by one, starting with fridge 1.\n ACTION: go to diningtable 1\n",

↪→
↪→
↪→

"role": "assistant"},
{ "content": "On the diningtable 1, you see a apple 1, a bread 1, a fork 3, a fork 2, a fork 1,

a mug 2, a peppershaker 3, a plate 2, a pot 1, a soapbottle 3, a spatula 1, a spoon 3, a
spoon 2, a spoon 1, a winebottle 3, and a winebottle 2.\n",

↪→
↪→

"role": "user"},
{ "content": "ACTION: take apple 1 from diningtable 1\n",

"role": "assistant"},
{ "content": "You pick up the apple 1 from the diningtable 1.\n",

"role": "user"},
{ "content": "THOUGHT: I noticed that there is a microwave 1 in the room, i will use it to heat

the apple.\n ACTION: go to microwave 1\n",↪→
"role": "assistant"},

...

...

{ "content": "You open the microwave 1. The microwave 1 is open. In it, you see a egg 1.",
"role": "user"

},
{ "content": "ACTION: heat mug 2 with microwave 1",

"role": "assistant"},
{ "content": "You heat the mug 2 using the microwave 1.Task success, now reply TERMINATE\n",

"role": "user"},
{ "content": "TERMINATE",

"role": "assistant"},
{ "content": "TERMINATE",

"role": "user"}
}

Figure 9: An example of ALFWorld Householding task from “Pick, Heat, then Place” category.
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Figure 10: AgentEval assessment of three different solutions on ALFWorld house-holding Tasks categorized by
success and failed cases.

tification on each sample. Figure 10 presents the re-
sults for three introduced solutions: AutoGen with
two agents, AutoGen with three agents, and ReAct,
on the 134-test set from (Wu et al., 2023). Further,
we also verify the measured performance of Agen-
tEval, by comparing the failed/success cases in the
right plot of Figure 10. As confirmed here and in
math problem solving, AgentEval is clearly able to
distinguish between different solutions in terms of
different criterion.

We provide an example of AgentEval applied to
the ALFWorld house-holding task, as mentioned
in Sec. 5.2 in which real-world household envi-
ronments is emulated through textual interfaces
(Shridhar et al., 2020b). When running the Crit-
icAgent on this task, it identified specific criteria
such as “Task understanding”, “Plan making” and
“Response to Feedback” as outlined in Tab. 2. We
consulted researchers deeply involved with these
tasks, and their expertise confirmed that these cri-
teria are critically relevant and significant similar
to (Li et al., 2023b). For example, given that these
tasks are language-based and require interactive
decision-making, an agent in ALFWorld is tasked
with high-level objectives, such as placing a hot
apple in the fridge, and must navigate and interact
with a simulated household environment to achieve
these objectives. Therefore, criteria displayed in
Tab. 2 satisfy the assessment of this task. While
the criteria are pretty self-descriptive, about the
criterion “Use of TERMINATE” we note that the
agent is prompted to use the term “TERMINATE”
upon task completion, which is closely correlated

with task success.
Following the extraction of a set of criteria as

detailed in Tab 2, these criteria are passed to the
QuantifierAgent for quantification on each sample.
Figure 10 presents the results for three introduced
solutions: AutoGen with 2 agents, AutoGen with
3 agents, and ReAct, on the 134-test set from (Wu
et al., 2023). It is important to note that all crite-
ria, except “Use of TERMINATE” and “Correct-
ness of Action” employ a five-level grading system,
while these two criteria are binary. From this figure,
it is evident that ReACT performs notably worse
across all criteria, while AutoGen with 2 agents
and 3 agents demonstrate competitive performance.
We also categorizes the 134 games into groups of
failed and successful ones. Similar to Fig. 3, darker
colors represent performance in successful cases
for each solution, while lighter colors represent
performance in failed cases. AutoGen 3-agent, Au-
toGen 2-agent, and ReAct are represented by blue,
green, and orange, respectively. For most crite-
ria, the distinction between failed and successful
cases is clear, even within a 95% confidence inter-
val. However, for certain criteria, such as “Task
understanding” all solutions, whether they failed or
succeeded, exhibit very similar performance. This
could be interpreted as either (1) all solutions have
a good understanding of the task, even if they fail to
complete it, (2) this criterion may be redundant, as
it does not provide additional information among
these three solutions or (3) the QuantifierAgent is
unable to score the criterion in a meaningful way.
We refrain from concluding which criteria are most
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Figure 11: Quantifier Robustness on criteria of Math Problem Solving problem. Each bar represent the average
performance of success (dark blue "//") and failed (light blue “\\”) cases and 95% interval on each set is shaded
across the average point. The two plots are overlaid.

Table 3: Example pairs of similar criteria.

- Problem Difficulty: The complexity of the math problem that
has been solved.
- Problem Complexity: The level of difficulty of the problem.
- Innovativeness: The novelty and creativity in the approach to
solve the problem
- Innovation: The ability to solve a problem using a unique or
creative method not commonly known.
- Time Taken: The time taken to solve the problem.
- Time to Completion: The amount of time taken to solve the
problem completely
- Understandability: The clarity and ease of comprehension of the
solution provided.
- Readability: How easy it is to comprehend the provided solution.

suitable for this specific task. Instead, we empha-
size the importance of conducting a more in-depth
analysis of performance beyond success rates, tai-
lored to one’s goals and application requirements.
Later, we show that how using VerifierAgent could
be helpful in identifying criteria with higher dis-
criminative power and more robustness.

A.4 Robustness Analysis

A.4.1 Similar Criteria

As explained in Section 6.1, there might be cases
where some criteria are pointing to the same con-
cepts with different wordings. In these cases, we
need to merge the similar criteria to avoid having
redundant criteria. Table 3 shows some of these
examples.

A.4.2 Quantifier Robustness

To study the robustness of the QuantifierAgent, we
selected a specific subset of criteria related to math-
ematical problems, as detailed in Table 1, and con-
ducted 50 runs of the quantifier agent on the 120
problems described in Section 4.1. Our expectation
is to observe consistent quantified performance for
each of the criteria. In Fig. 11, we present the
distribution of quantified performance across 50
runs for both successful and failed cases, focusing
on the five selected criteria. A consistently horizon-
tal performance trend indicates greater robustness
in the quantifier, whereas more fluctuations in the
figure suggest less robustness and a noisier perfor-
mance of the agent.

As shown in the results, for four out of the five
generated criteria, we consistently observe steady
performance. Not only do the success cases consis-
tently outperform the failed cases, but their perfor-
mance also falls within a similar range across runs.
However, when it comes to the “error analysis” cri-
terion, we observe a more variable performance
of the quantifier. It does not consistently predict
one group (success or failed) to perform better than
the other, and the quantifier’s performance varies
across different runs. This suggests that the Agen-
tEval tool may not exhibit promising robustness
for this particular criterion. The underlying issues
could be either the criterion itself lacks clarity and
appropriateness for the task, or the QuantifierA-
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gent struggles to quantify this criterion effectively.
In either case, it is advisable to either modify or
eliminate this criterion to enhance trustworthiness
and reliability. We further show that VerifierAgent
is designed to take care of such criteria.

We recognize the importance of thoroughly in-
vestigating the robustness of each criterion in quan-
tification studies. This analysis is crucial as it sheds
light on the stability of each criterion. Moreover,
when ground truths are available, such as in cases
of success versus failure, they provide a bench-
mark to validate our assessments. Additionally, it
is important to acknowledge that not all criteria ex-
hibit the same level of robustness. This variability
demands careful consideration during evaluations,
especially given the non-deterministic nature of
LLMs. Such awareness is essential to ensure the
reliability and accuracy of our assessments in the
dynamic field of LLMs.

A.5 VerifierAgent

Algorithm 1 shows how VerifierAgent works. To
make VerifierAgent works, we need to study the
stability of proposed criteria as well as how robust
they are w.r.t the injected noise.

A.5.1 Criteria Robustness
we first report the full criteria list for Math prob-
lems solving and ALFWorld household tasks when
running the CriticAgent and QuantifierAgent for 50
times after consolidation (as described in section
6.1) in Tab 4 and 5. This process would exclude
criteria that have mean standard deviation above a
certain threshold and criteria that have a higher or
equivalent average score for adversarial task output
than the original task output. This does not neces-
sarily mean these criteria are bad criteria, but rather
suggests the QuantifierAgent may not be able to
reliably quantify these criteria and thus it might be
better to exclude them from the final score assigned
to a sample. As such, similar to Fig. 6, we report
the mean of coefficient variation for ALFWorld
task in Fig. 12. We note that having almost all
of the coefficient below 0.5 indicate high level of
robustness of QuantifierAgent on the verified set
of criteria by VerifierAgent on AlfWorld dataset.

A.5.2 Adversarial Attacks
We construct adversarial samples by randomly
dropping a portion of sentences in the LLM assis-
tant’s response from the original task output. We
verify the QuantifierAgent against the adversarial

Algorithm 1 VerifierAgent

1: for i = 1, 2, . . . , 50 do
2: Run CriticAgent with seed = i to obtain a

set of criteria Ci

3: end for
4: Obtain summarized_criteria by using another

LLM agent to summarize C1, C2, . . . , C50.
5: for i = 1, 2, . . . , 18 do
6: for all s in S do
7: Run QuantifierAgent with seed = i on

sample s
8: end for
9: end for

10: for all crit in summarized_criteria do
11: for all s in S do
12: Compute the coefficient of variation of

s’s quantified result with respect to crit across
all seed

13: end for
14: Compute mean coefficient of variation by

averaging all sample’s coefficient of variation
15: end for
16: final_criteria← []
17: for all crit in summarized_criteria do
18: if crit has a mean coefficient of variation

within a certain range, and crit has decent ad-
versarial testing performance then

19: Add crit to final_criteria
20: end if
21: end for
22: To evaluate future tasks, use final_criteria with

QuantifierAgent.

samples. We used three different benchmarks for
adversarial testing, namely AutoGen, ReAct and
Vanilla Solver. As shown in Fig. 13 for the ALF-
World dataset), in most cases the QuantifierAgent
quantifies the adversarial task output to be worse
off than the original task output. We believe that
such an analysis of the quantifier agent’s perfor-
mance will yield valuable insights for enhancing
reliability, trustworthiness, and explainability in
performance evaluation.

One interesting observation here is that there
maybe interdependence among some criteria. For
example level appropriatness is defined as "How
well-suited the solution provided by the system is
for the given problem’s level", which is dependent
on the criterion problem level. This observation
gives insight into potential future improvements
to the current pipeline. We may first extract some
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Figure 12: Evaluating the QuantifierAgent’s robustness on ALFWorld dataset: the mean coefficient of variation of
quantified results across n = 18 seeds.

Figure 13: QuantifierAgent Verification on original set of task solutions against the disturbed task solutions on
Math Problem Solving dataset.

characteristics of the task output, such as categor-
ical criteria like problem type and problem level,
and then potentially generate different criteria and
quantify the task output differently based on these
characteristics.
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Table 4: Comprehensive Verification Criteria for Math-
Problems.

Criteria Description Accepted Values
efficiency The conciseness of the solution and

the use of the most efficient method to
solve the problem.

– highly_efficient (2)
– moderately_efficient (1)
– inefficient (0)

accuracy The correctness of the solution
provided for the math problem.

– 100% - Completely correct (4)
– 75% - Almost correct (3)
– 50% - Mostly correct (2)
– 25% - Partially correct (1)
– 0% - Completely incorrect (0)

completeness The extent to which the solution
covers all aspects of the problem.

– 100% - Fully complete (4)
– 75% - Almost complete (3)
– 50% - Mostly complete (2)
– 25% - Partially complete (1)
– 0% - Not complete" (0)

clarity The ease with which the solution can
be understood by the target audience.

– 100% - Very clear (4)
– 75% - Mostly clear (3)
– 50% - Fairly clear (2)
– 25% - Somewhat clear (1)
– 0% - Not clear (0)

presentation The organization and presentation of
the solution, including proper use of
notation, symbols, and formatting.

– excellent (2)
– fair (1)
– poor (0)

steps
delineation

How well the solution breaks down
the problem-solving process into
smaller, manageable steps.

– 100% - All steps delineated (4)
– 75% - Most steps delineated (3)
– 50% - Some steps delineated (2)
– 25% - Few steps delineated (1)
– 0% - No steps delineated (0)

response
time

The time taken to provide the solution – >5 min (5) − 3-5 min (4)
– 1-3 min (3) − 31-60 sec (2)
– 16-30 sec (1) − 0-15 sec (0)

notations The notations used in the problem
solution are appropriate and
consistent.

– consistent (2)
– mostly consistent (1)
– inconsistent (0)

steps
explanation

The extent to which each step in the
solution is explained.

– all steps (4)
– most steps (3)
– half steps (2)
– some steps (1)
– none (0)

error
handling

How well the system identifies and
addresses possible errors in the
problem

– Handled all errors (4)
– Handled most errors (3)
– Handled some errors (2)
– Handled very few errors (1)
– Ignored all errors (0)

use of
methods

The use of relevant techniques and
concepts to address and solve the
math problem.

– Excellent use (2)
– Adequate use (1)
– Poor use (0)

level appro-
priateness

How well-suited the solution provided
by the system is for the given
problem’s level

– Highly appropriate (4)
– Appropriate (3)
– Moderately appropriate (2)
– Slightly appropriate (1)
– Not appropriate (0)

solution
depth

The depth of the solution provided in
terms of showing all steps and
important calculations

– Extremely detailed (3)
– Detailed (2)
– Moderate (1)
– Superficial (0)

terminology Correct and consistent use of
mathematical terminology in the
explanations

– Appropriate (2)
– Mostly appropriate (1)
– Inappropriate (0)

reliability The dependability of the
procedure/algorithm used in
providing the solution

– Distrusted (2)
– Mostly Trusted (1)
– Trusted (0)

calculation
error

Presence of any computational or
mathematical mistakes in the solution

– No errors (2)
– Minor errors (1)
– Major errors (0)

creativity Novel approach or method used in
providing the solution

– exceptionally novel (2)
– moderately novel (1)
– standard (0)

relevance The solution should focus on solving
the given problem and avoid irrelevant
information or steps.

– Highly relevant (2)
– Moderately Relevant (1)
– Irrelevant (0)

simplification The degree to which the solution
simplifies the problem while
maintaining accuracy

– Completely (3)
– Mostly (2)
– Partially (1)
– Not at all (0)

handling
constraints

The accuracy of the solution in
addressing given constraints

– Fully respected (2)
– Partially respected (1)
– Disregarded (0)

problem
type

The type of the math problem – Excellent (4) −Good (3)
– Average (2) −Poor (1)
– Terrible (0)

adaptability Adaptability refers to the ability of the
solution provided to be modified and
adjusted to alternative or related
problems.

– Other (11)
– Logic (10)
– Topology (9)
– Differential Equations (8)
– Linear Algebra (7)
– Number Theory (6)
– Combinatorics (5) −Statistics (4)
– Calculus (3) −Trigonometry (2)
– Geometry (1) −Algebra (0)

problem
level

The difficulty level of the math
problem

– Level 5 (4) −Level 4 (3)
– Level 3 (2) −Level 2 (1)
– Level 1 (0)

solution
approach

Appropriateness of the solution
approach used

– Appropriate (2)
– Questionable (1)
– Inappropriate (0)

correct
reasoning

The extent to which the systems
response demonstrates correct
mathematical reasoning.

– 100% (4)
– 75% (3)
– 50% (2)
– 25% (1)
– 0% (0)

Table 5: Comprehensive Verification Criteria for ALF-
World Housholding Tasks.

Criteria Description Accepted Values
task
completion

Degree to which the task is completed
successfully

– 100% (4)
– 75% (3)
– 50% (2)
– 25% (1)
– 0% (0)

action
validity

Actions must be chosen from the given
available actions, with illegitimate
actions taken into account

– all_legal (3)
– one_illegal (2)
– two_illegal (1)
– three_or_more_illegal (0)

thought
process

The quality of the thought process and
planning throughout the task

– excellent (3)
– good (2)
– fair (1)
– poor(0)

systematic
search

How systematically the player searched
for items and target locations

– excellent (3)
– good (2)
– moderate (1)
– poor (0)

interaction
flow

The smoothness and continuity of
interactions with the environment

– smooth (2)
– some_disruptions (1)
– frequent_disruptions (0)

task time The time taken to accomplish the task – very_fast (3)
– fast (2)
– average (1)
– slow (0)

planning
strategy

Quality of the devised plan for
completing the task

– excellent (3)
– good (2)
– fair (1)
– poor (0)

action
efficiency

Efficiency of the chosen actions in
solving the task

– very high (3)
– high (2)
– moderate (1)
– low (0)

response
format

Adherence to the required response
format

– correct (2)
– partially correct (1)
– incorrect (0)

adaptability
to feedback

Ability to adapt and modify the plan
based on the environment’s feedback

– very high (3)
– high (2)
– moderate (1)
– low (0)

termination
judgement

Proper judgment of when to reply with
’TERMINATE’

– correct (2)
– partially correct (1)
– incorrect (0)

efficiency Assesses the number of steps taken in
comparison to the minimum possible
steps required to complete the task

– optimal (3)
– near_optimal (2)
– average (1)
– below_average (0)

problem
solving

The ability to quickly identify and adapt
to changes in the environment during task
execution

– fast_adaptation (3)
– moderate_adaptation (2)
– slow_adaptation (1)
– no_adaptation (0)

target
handling

How well the player followed
instructions for handling the target
household

– excellent (3)
– good (2)
– moderate (1)
– poor (0)

environment
understand-
ing

The ability to understand the provided
environment description and identify
relevant objects

– excellent (3)
– good (2)
– fair (1)
– poor (0)

compliance
with
instructions

Adherence to specific rules and
instructions such as reply formatting and
termination conditions

– compliant (2)
– partially compliant (1)
– non-compliant (0)

legal actions Selecting actions from the given available
actions and avoiding illegal actions

– excellent (4)
– good (3)
– average (2)
– below_average (1)
– poor (0)

target
acquisition

Acquiring the target household object
immediately after finding it

– excellent (3)
– good (2)
– fair (1)
– poor (0)

format
adherence

The extent to which the output format is
strictly followed

– Correct format (2)
– Minor format issues (1)
– Incorrect format (0)

problem un-
derstanding

Understanding of the given task and
relevance of the environment

– 3 - Fully understood (3)
– 2 - Adequately understood (2)
– 1 - Partially understood (1)
– 0 - Not understood (0)

action
selection

Choosing the appropriate sequence and
type of actions

– 3 - Optimal selection (3)
– 2 - Good selection (2)
– 1 - Somewhat acceptable

selection (1)
– 0 - Poor selection (0)
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