
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pages 18724–18741
November 12-16, 2024 ©2024 Association for Computational Linguistics

Transformers are Multi-State RNNs

Matanel Oren∗∗,H Michael Hassid∗,H,M Nir YardenH

Yossi AdiH,M Roy SchwartzH

HThe Hebrew University of Jerusalem MFAIR, AI at Meta

{matanel.oren,michael.hassid}@mail.huji.ac.il

Abstract

Transformers are considered conceptually dif-
ferent from the previous generation of state-
of-the-art NLP models—recurrent neural net-
works (RNNs). In this work, we demon-
strate that decoder-only transformers can in
fact be conceptualized as unbounded multi-
state RNNs—an RNN variant with unlimited
hidden state size. We further show that trans-
formers can be converted into bounded multi-
state RNNs by fixing the size of their hid-
den state, effectively compressing their key-
value cache. We introduce a novel, training-
free compression policy—Token Omission Via
Attention (TOVA).1 Our experiments with four
long range tasks and several LLMs show that
TOVA outperforms several baseline compres-
sion policies. Particularly, our results are nearly
on par with the full model, using in some cases
only 1/8 of the original cache size, which trans-
lates to 4.8X higher throughput. Our results
shed light on the connection between transform-
ers and RNNs, and help mitigate one of LLMs’
most painful computational bottlenecks—the
size of their key-value cache.2

1 Introduction

Not so long ago, transformers (Vaswani et al., 2017)
replaced recurrent neural networks (RNNs; Elman,
1990) as the go-to architecture for NLP. Trans-
formers are considered conceptually different than
RNNs; they have direct access to each token rep-
resentation in the sequence, while RNNs maintain
a recurring state of previous inputs. Recently, de-
coders became a dominant transformer variant for
large language models (LLMs; Brown et al., 2020;
Touvron et al., 2023a; Jiang et al., 2023). These typ-
ically generate their output autoregressively—the
generation of each token representation depends on

∗Equal contribuation
1Literally “good” in Hebrew.
2https://github.com/schwartz-lab-NLP/TOVA
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Figure 1: Top: transformers can be thought of as un-
bounded multi-state RNNs (MSRNNs), with the key-
value vectors corresponding to a multi-state that dy-
namically grows infinitely (green elements). Bottom:
transformers can be converted to bounded MSRNNs,
which keep a fixed-size multi-state (here of size 2), by
dropping one state (red elements) at each decoding step.

the key and value computation of previous tokens.3

In this work, we demonstrate that the autoregres-
sivity of transformers aligns with the core principle
of RNNs—preserving a state from one step to the
other. We formally redefine decoder-only trans-
formers as multi-state RNNs (MSRNN)—a gener-
alized version of RNNs with multiple states, each
corresponding to a history token. Importantly, as
the number of tokens grows with each decoding
step, transformers correspond to MSRNNs with an
unbounded number of states (Fig. 1, top).

We then show that transformers can be com-
pressed into bounded MSRNNs by limiting their
number of states (Fig. 1, bottom). This process re-
quires a compression policy for selecting the states
to retain. While existing methods, e.g., windowed
attention (Wang et al., 2019), can be cast as such
policies, we propose a novel policy, TOVA, which
retains the states with the highest attention scores.

We experiment with four long range tasks, sev-

3These previous computations are often cached for effi-
ciency purposes, referred to as KV caching (Radford et al.,
2019; Pope et al., 2023). We note that the arguments we make
in this work apply similarly to non-cached implementations.
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eral leading LLMs, and a few baseline compression
policies. Our results show that TOVA outperforms
all baselines in all setups. Further, using TOVA can
match the performance of the full (uncompressed)
model using as little as 1/8 of the full model multi-
state, which leads to a throughput increase of up
to 4.8X. Finally, TOVA allows running on dramati-
cally longer contexts, up to 70K tokens.

We finish by analyzing the states kept in mem-
ory by TOVA, and the tokens they correspond to.
Unlike previous work (Xiao et al., 2024; Zhang
et al., 2023), we observe that not all recent tokens
are important to retain, and some may be safely
dropped. We also show the importance of keeping
the very first token in the sequence, as well as other,
perhaps surprising tokens like possessive endings.

Our findings shed light on the connection be-
tween transformers and RNNs. They also help mit-
igate the LLM memory bottleneck during decoding,
which directly translates to higher throughput.

2 Background

2.1 RNNs

Recurrent Neural Networks (RNNs; Elman, 1990)
process sequential data recurrently. In the most
general form, each layer l (often called a cell) is
modeled as a function f l

RNN that receives at time
t two inputs: xlt, a representation of the current
token, and hlt−1, the hidden state from the previous
step. It then outputs two values: xl+1

t , an updated
token representation, and hlt, a new hidden state:

xl+1
t , hlt = f l

RNN(x
l
t, h

l
t−1) (1)

hlt is used for the recurrent computation over the
next token xlt+1, while xl+1

t is used as input to the
next layer. It is common, though not necessary,
to set xl+1

t := hlt, i.e., the input for the following
layer and the hidden state are the same.

2.2 Transformers

Transformers (Vaswani et al., 2017) process se-
quential data non-recurrently. A transformer layer
f l

TRANS takes as input a sequence of token representa-
tions of hidden size d: X l = (xl1, ..., x

l
t)
T ∈ Rt×d

and returns a transformed representation:

X l+1 = f l
TRANS(X

l) = FFl
(
SelfAttnl(X l)

)
(2)

Each transformer layer consists of two main
components: self-attention (SelfAttnl) and Feed-

Forward (FFl).4 The former operates over the entire
sequence, while the latter on each token individ-
ually. Self-attention projects the input into three
matrices: Ql,K l, V l ∈ Rt×d, and computes:

X l
attn = Attn(Ql,K l, V l) (3)

= Softmax
(
Ql · (K l)T

)
︸ ︷︷ ︸

Al

· V (4)

where Al ∈ Rt×t, the attention matrix, computes
the interactions between tokens within a sequence.

In this work we focus on transformer decoders,
which mask the upper triangular part of the atten-
tion matrix to perform next-token prediction. Dur-
ing decoding, it is common to cache the K,V ma-
trices to avoid recomputing previous tokens.

3 Transformers as Multi-State RNNs

We start by formally defining a new RNN variant,
Multi-State RNN (MSRNN; Sec. 3.1). We then
show that transformers can be viewed as MSRNNs
with an unbounded number of states (Sec. 3.2),
and that their number of states can be bounded by
applying a compression policy (Sec. 3.3). We finish
by discussing LLMs as MSRNNs (Sec. 3.4).

3.1 Multi-State RNNs

We define an MSRNN as an RNN with a state ma-
trix instead of a vector: H l

t ∈ Rg(t)×d. The
MSRNN equation corresponding to Eq. (1) is:

xl+1
t , H l

t = f l
MSRNN(x

l
t, H

l
t−1) (5)

We can interpret each row of H l
t as a single-state,

allowing us to think of H l
t as a multi-state matrix.5

The size of H l
t is parameterized by a function

g. Setting g(t) = 1 for all t reduces an MSRNN
to a standard (single-state) RNN. Setting g(t) ≤ k
for a constant k restricts it to a bounded memory
capacity. If g is unbounded in t, the MSRNN state
can have unbounded capacity.

3.2 Transformers are Unbounded MSRNNs

Consider the case where g(t) = t, i.e., the num-
ber of states equals the number of input tokens in
the current time-step. In this setup, we can view

4Layer normalization, skip connections, and multiple at-
tention heads are omitted for brevity.

5We could unroll the matrix and define it as a single vector
in Rg(t)·d and use the traditional RNN terminology, but we
find it more convenient to think of it as a matrix.
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a transformer as an unbounded MSRNN, where
H l

t = (K l
t, V

l
t ) and the layer computation is:

(K l
t, V

l
t ) =

((
Kl

t−1

klt

)
,
(
V l
t−1

vlt

))
(6)

xl+1
t = FFl

(
Attnl(qlt,K

l
t, V

l
t )
)

(7)

where qlt, k
l
t, v

l
t are the self-attention projections

of xlt, and each state of (K l
t, V

l
t ) corresponds to

a specific token. Combined, we get the MSRNN
equation for transformers:

xl+1
t , (K l

t, V
l
t ) = f l

TRANS

(
xlt, (K

l
t−1, V

l
t−1)

)
(8)

3.3 Converting Transformers into Bounded
MSRNNs

Transformers can be converted into bounded
MSRNNs by setting g(t) = min(t, k) for some k.
When t exceeds k, a compression policy should
be applied in order to fit the multi-state to into the
bounded memory.

Interestingly, several existing KV cache com-
pression methods, e.g., windowed attention (Wang
et al., 2019) and H2O (Zhang et al., 2023), can be
seen as such compression policies, see Sec. 5.1.

3.4 LLMs as MSRNNs
LLMs are generally built as transformer decoders.
As such, they are, on the one hand, unbounded
MSRNNs (Sec. 3.2). On the other, they are
trained with a fixed context length, and often strug-
gle at extrapolating beyond it (Press et al., 2022),
and thus may be considered bounded.

We argue that LLMs are indeed unbounded: At
inference time, they can process any number of to-
kens, and are limited only by the available memory.
In addition, both at training and inference time,
they accumulate token representations into their
multi-state without dropping any from their mem-
ory. Thus, as memory compression is the funda-
mental feature of bounded MSRNNs, LLMs should
be conceptualized as unbounded. Interestingly, we
later show that despite their unbounded capacity,
they often act in practice as bounded MSRNNs.

4 TOVA: Token Omission Via Attention

Converting an unbounded MSRNN to a bounded
one requires a state-compression policy (Sec. 3.3).
We introduce TOVA—a novel, training-free policy
for doing so (Fig. 2). After the multi-state reaches
the capacity limit, TOVA drops at each decoding
step the token with the lowest attention score. For-
mally, when t > k and assuming j is the state with
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Figure 2: The TOVA policy keeps a fixed-size multi-
state (green cells). At each decoding step (different
rows), the state with the lowest attention score is omit-
ted (red cells, which become transparent in subsequent
steps).

the lowest attention score, TOVA applies the fol-
lowing over the multi-state (K l

t, V
l
t ) from Eq. (6):

(K l
t, V

l
t ) =

((
Kl

0:j−1

Kl
j+1:k

)
,
(
V l
0:j−1

V l
j+1:k

))
(9)

TOVA computes the attention scores of each
head separately, and can thus retain different tokens
at different heads. In practice, preliminary results
show that averaging the attention scores across the
heads of a given layer is superior to considering
each head individually (App. A). See Alg. 1 for a
torch-like implementation of TOVA.

5 Experimental Setup

We aim to check whether transformer LLMs con-
verted into bounded MSRNNs can match the perfor-
mance of the full model (an unbounded MSRNN;
Sec. 3.4). Below we describe our baseline compres-
sion policies (Sec. 5.1), the datasets (Sec. 5.2), and
the LLMs we experiment with (Sec. 5.3).

5.1 Baseline Compression Policies
Below we describe previously proposed compres-
sion policies. We note that, to the best of our knowl-
edge, we are the first to make the connection be-
tween these policies and RNNs. As our focus is on
the capacity of off-the-shelf models, we only con-
sider baseline policies that operate on pretrained
LLMs and require no additional training. Section 8
discusses approaches that do require training.

Window This policy (Wang et al., 2019) imple-
ments a First In First Out (FIFO) strategy. When
the multi-state reaches its capacity, the oldest
state (i.e., the earliest token state) is discarded, such
that only the most recent states are kept.
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Alg. 1 A torch-like implementation of TOVA. Batch size=1 is assumed for simplicity.
def TOVA(attn_weights, k_cache, v_cache, cache_max_size):

# k_cache.shape and v_cache.shape are [attn_heads, num_kv, hidden_dim]
attn_heads, num_q, num_kv = attn_weights.shape
if num_kv <= cache_max_size:

return
# Average last query attention weights across heads:
mean_attn_weights = mean(attn_weights[:,-1,:], dim=0)
minimal_idx = argmin(mean_attn_weights) # get the index to drop
k_cache = concat([k_cache[:, :minimal_idx], k_cache[:, minimal_idx+1:]], dim=1)
v_cache = concat([v_cache[:, :minimal_idx], v_cache[:, minimal_idx+1:]], dim=1)

Window+i This policy uses a fixed window, but
also retains the first i states, for some constant i.
Previous work (Xiao et al., 2024; Han et al., 2024)
has shown that Window+i strongly outperforms
Window using as few as 1–4 early states.

H2O Much like Window+i, this policy (Zhang
et al., 2023) keeps a fixed window of recent to-
kens, as well as additional earlier tokens. Unlike
Window+i, it dynamically selects the non-window
tokens by aggregating the attention scores through-
out the sequence, and keeping the ones with the
highest aggregated scores. The number of non-
window tokens is typically set as half of the multi-
state size. Like TOVA, H2O can operate head-wise
or layer-wise. Preliminary results (App. A) indicate
that both variants perform similarly, so we follow
Zhang et al. (2023) and use the head-wise version.

Full model (topline) We use the full (un-
bounded) model as our topline. Pretrained trans-
formers struggle with sequences longer than their
pretrained sequence length (Press et al., 2022). In
order to make the most fair comparison, we feed
the model with the full training sequence length of
the particular LLMs we use, and use smaller multi-
state sizes for the different compression policies.6

We note that the all baseline policies presented
above introduce strong inductive biases; e.g., de-
voting a substantial part of the state towards the
most recent tokens, and preferring tokens appearing
early in the sequence.7 In contrast, TOVA makes
fewer assumptions: it neither fixes a window of
recent token-states, nor favors early ones.

5.2 Long Range Evaluation
To trigger the different policies, we focus on long
range evaluation. We employ three types of long-

6In Sec. 7.2 we also report extrapolation experiments.
7Note that H2O aggregates the attention weights, which

favors initial tokens, as they accumulate more attention scores
as the sequence progresses.

range evaluation: language modeling, long-range
understanding, and text generation. See App. B for
the prompts used for the different tasks.

Language modeling We report perplexity on
the PG-19 test set (Rae et al., 2020), a widely
used benchmark for evaluating long range language
models (So et al., 2024; Hutchins et al., 2022; Chen
et al., 2023). PG-19 is composed of 100 full-length
books of average length of 70k tokens.

Long range understanding We consider two
tasks from ZeroSCROLLS (Shaham et al., 2023),
each focusing on a different aspect of long range
understanding: (a) SQuALITY (Wang et al., 2022),
a question focused summarization dataset; and (b)
QASPER (Dasigi et al., 2021), a QA dataset based
on the S2ORC dataset (Lo et al., 2020). QASPER
can be considered a retrieval task, as answering its
questions requires retrieving specific details from
long texts. For SQaULITY, we report the geometric
mean of ROUGE-1/2/L scores (based on the gold
summary, see Shaham et al., 2023). For QASPER,
we follow Dasigi et al. (2021) and report F1 score.

Text generation We prompt the models to gener-
ate a long story. We sample 100 unique stories from
each version of the model, using different seeds.
As comparing between stories is hard, we employ
GPT-4 as an evaluator (Chiang et al., 2023; Zhou
et al., 2023). For each seed, we compare the two
generated stories by asking GPT-4 which is better,
reporting the average win rate for each approach.
For further implementation details, see App. C.

5.3 Models

For language modeling, we experiment with three
leading transformer decoder LLMs families, each
offering a ∼7B parameter version: LLaMA-2 (Tou-
vron et al., 2023b), Mistral (Jiang et al., 2023) and
Yi (Young et al., 2024). For long range under-
standing tasks, we consider three fine-tuned LLMs,
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Figure 3: Perplexity results for the PG-19 test set. TOVA outperforms all other policies in all multi-state sizes, while
maintaining comparable results to the full context topline using 1/8 of the context size.
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Figure 4: Geometric mean of ROUGE-1/2/L for SQuALITY. TOVA achieves within one point of the topline using
1/8 − 1/4 of the multi-state size, while outperforming all other policies.
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Figure 5: F1 score over QASPER benchmark. TOVA outperforms both baselines, but requires a half of the full
multi-state size for obtaining comparable results to the topline.

which have been shown to excel in instruction tasks:
LLaMA-2-chat (Touvron et al., 2023b), Mistral-
Instruct (Jiang et al., 2023) and neural-chat (Lv
et al., 2023). For text generation, we use Mytho-
Logic (Padar, 2023), a LLaMA-2-13B version fine-
tuned for story generation.

For all models and tasks, we use the full training
sequence length of 4,096 tokens. For language
modeling, we split the texts into chunks of length
4,096, and apply efficient masking (see App. D).
For the language understanding tasks, we truncate
the end of the example (excluding prompt) if it
exceeds 4,096 tokens, as in Shaham et al. (2023).

6 Results: Pretrained Transformers
Often Act as Bounded MSRNNs

6.1 Language Modeling

We evaluate our base models over the language
modeling task using the following policies: Win-

dow, Window+4, H2O and our TOVA policy.8 As
an additional baseline, we run the models with
a smaller sequence length, while not applying
compression, which corresponds to an unbounded
MSRNN with a shorter sequence length. We exam-
ine multi-state sizes in exponential scales of 2j for
j ∈ {6, 7, . . . , 12} (212=4,096).

Figure 3 shows the perplexity results on PG-19.
In all cases, TOVA performs within 0.4 points of
the topline using one eighth of the full context
length. Our results are consistently better than all
baselines, which require at least half of the full con-
text length to reach the full model results. Based on
our results, we consider two policies for the other
tasks: TOVA and Window+4, our best baseline.

6.2 Long Range Understanding
We evaluate instruction-tuned LLMs on SQuAL-
ITY and QASPER.9 As an additional baseline, we

8We ablate other policies in App. A.
9Base LLMs numbers are reported in App. E.
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Figure 6: GPT-4 preference over stories generated by
the full model and using TOVA.

present the model with a truncated version of the
example according to the MSRNN capacity. E.g.,
for a multi-state of size k, the example is truncated
to k tokens (including the prompt). As multi-state
sizes, we consider 2j for j ∈ {8, 9, . . . , 12}.

Results for SQuALITY are shown in Fig. 4.
TOVA consistently outperforms all baselines across
all setups. As in language modeling, TOVA re-
quires a quarter (Mistral and Yi) or even one
eighth (LLaMA-2) of the full context to reach
within one point of the topline.

Figure 5 shows the QASPER results. The gap
between TOVA and the baselines is large, in some
cases reaching beyond 5 F1 points. Nonetheless,
here TOVA needs half of the full context to perform
within one F1 point of the topline.

6.3 Text Generation
We compare TOVA to the topline on text generation.
We first note that limiting the multi-state size makes
the generated text shorter: the average story length
for the full model is 1,566 tokens. This value is kept
for a multi-state size of 1,024, but drops to 1,503
with 512 tokens and to 1,361 with 256 tokens.

Figure 6 shows the evaluation results of the sto-
ries using GPT-4. Using 256 tokens our policy
losses to the topline in 47% of cases, while win-
ning or tying in the remaining cases. This loss rate
decreases substantially to 19% with 512 tokens and
further to only 6% with 1,024 tokens. Importantly,
our policy is also preferred over the topline in 5–
10% of the cases in all multi-state sizes considered.

6.4 Discussion
Our results indicate that transformer decoder LLMs
often behave empirically as bounded MSRNN: in
2/4 tasks, using TOVA with as little as 1/8–1/4 of
the multi-state size yields comparable results to the

Multi- 256 512 1,024 2,048 4,096
state size (full)

Memory (Gig.) 0.15 0.28 0.56 1.11 2.18

Maximal batch 139 70 35 17 8
Rel. throughput 8.5 4.8 3.1 1.7 1

Table 1: TOVA substantially reduces memory require-
ments (first row), and accordingly allows for increased
batch size (second) and throughput (third row). The first
row is with a batch size of 1; the second row shows the
maximal batch size for decoding the same number of
tokens on a single V100 machine. The last row is the
overall decoding throughput when the maximum batch
size is employed, relative to a full multi-state size.

topline. The other two tasks, text generation and re-
trieval QA, seem to require larger multi-state sizes,
though still maintain comparable performance us-
ing half of the full multi-state. This suggests that
the conversion of a transformer into an RNN rein-
troduces the inherent challenges associated with
RNNs, as they encounter difficulties with retrieving
distant information (Hochreiter and Schmidhuber,
1997; Arjovsky et al., 2016; Jelassi et al., 2024).

7 Analysis

We analyze TOVA in terms of memory and through-
put efficiency (Sec. 7.1), extrapolation (Sec. 7.2),
and the tokens frequently kept by it (Sec. 7.3).
Throughout the section we use LLaMA-2-7B.

7.1 TOVA is Time- and Memory-Efficient

As discussed in Sec. 2.2, caching the K,V matrices
in transformer autoregressive decoding is common
in current frameworks. When employing TOVA, or
any similar cache compression policy, these matri-
ces are compressed, which leads to a proportional
reduction in memory requirements (Tab. 1, first
row). Importantly, beyond the the KV cache, the
LLM decoding memory consumption is determined
by two additional factors: the model size (e.g., num-
ber of layers, hidden size), and the batch size. As
the former is fixed, caching effectively limits the
inference batch-size. Table 1 presents the maxi-
mum batch size that can be used in our setup for
decoding sequences of length 4,096, along with the
corresponding throughput (tokens/sec) while de-
coding 512 sequences (totaling 2M tokens). TOVA
with a multi-state of 512, which performs compara-
bly to the full (4,096) model (Sec. 6), allows almost
a 9X increase in batch size, and a corresponding
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speedup of 4.8X compared to the full model.

7.2 Extrapolation with TOVA

We further test the ability of bounded MSRNNs in
handling longer texts, i.e., beyond the training se-
quence length. Using TOVA, this requires adapting
the positional encoding of cached tokens to avoid
values unseen during training. To do so, we com-
press the gap g between adjacent token represen-
tations to be ln(ln(g)),10 while keeping g fixed if
g ≤ 10 to retain local sensitivity. E.g., for adjacent
tokens with positions (i, i+ g), the new positions
will be (i, i+ ln(ln(g))), or (i, i+ g) if g ≤ 10.

We report the average perplexity on the first 70K
tokens of all PG-19 books with at least that number
of tokens (52 books in total). We use a multi-state
size of 512. As models struggle to extrapolate
to such long contexts, we only compare TOVA
with Window+4, which has been shown to support
such contexts (Xiao et al., 2024; Han et al., 2024).
Our results (Fig. 7) show that TOVA extrapolates
well up to 70K tokens with a similar performance
to the shorter contexts (less than 0.5 PPL points
difference), while outperforming Window+4.

7.3 Which Tokens Matter?

Our results indicate that most token representa-
tions may be dropped from memory as generation
progresses. We characterize the tokens frequently
dropped by running TOVA on 31 PG-19 instances.

Recency is not all you need Much like most
compression policies (Sec. 5.1), TOVA preserves
recent tokens. Figure 8 illustrates the tokens kept

10Preliminary experiments with other compression func-
tions, e.g., ln(g) and sqrt(g) showed inferior results.
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Figure 8: The tokens kept by TOVA in the final layer of
LLaMA-2-7B on one PG-19 example. Rows represent
decoding steps, while columns represent the attended
tokens. The diagonal pattern corresponds to recent to-
kens, and the vertical lines match older tokens that are
retained across steps.

by TOVA in the final layer for one PG-19 example,
using a multi-state size of 512.11 We see a clear
window trend, indicating the importance of recent
tokens. Nonetheless, we also observe that many
older tokens are kept. To quantify this, we compute
the proportion of recent tokens of all tokens kept in
the multi-state, averaged across examples, layers,
and positions. We find that only 73–76% of the
tokens are recent. This suggests that while recent
tokens are important, they are far from sufficient.
Importantly, unlike existing policies that handcraft
the recent window (Xiao et al., 2024; Zhang et al.,
2023), TOVA identifies it automatically. We turn
to study which early tokens tend to be kept, consid-
ering two dimensions: position and content.

The first token matters Figure 9 shows the num-
ber of decoding steps each of the first 25 tokens
is kept (averaged across layers and examples). As
previously observed (Han et al., 2024; Xiao et al.,
2024), we find that the first token is kept until the
end of the sequence across all multi-state sizes.
However, other early tokens are dropped far faster.

Not all tokens are equally kept As indicated
by Fig. 8, some tokens last much longer than others.
To further study it, we map each token to its part-
of-speech tag using NLTK (Bird et al., 2009), and
plot the tags that last longest in Tab. 2. Our results
show that, as observed by previous work (Clark
et al., 2019; Zhang et al., 2023; Ge et al., 2024),
punctuation and other special symbols tend to be

11See App. F for the illustrations of all layers.
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Figure 9: The average number of steps a token is kept
in the multi-state when applying TOVA as a function of
token position. Different lines are different multi-state
sizes. The very first token is kept through the entire
context, while next tokens are dropped far earlier.

Tag

Multi-state
size 256 512 1024 2048

Avg. 249 481 897 1537

POS 1134 1393 1736 2061
” 845 1101 1413 1774
$ 329 724 1276 2123
) 379 670 1161 1558
. 350 645 1117 1677
NNPS 321 578 1042 1671
\n 303 550 969 1538

Table 2: Mean number of steps tokens are kept in the
multi-state with TOVA, grouped by part-of-speech tags.
Columns represent the multi-state size. Here we report
the tokens kept the longest, see full table in App. G.

kept. However, we also identify other tokens that
tend to stay longer, e.g., possessive endings (POS)
and proper nouns (NNPS). Studying the role of
these tokens is an important direction for future
work.

8 Related Work

Transformers and RNNs Several works have
tried to bridge the gap between RNNs and trans-
formers. Hutchins et al. (2022) employed a hybrid
approach that attends both to recent tokens and to
further hidden states. Sun et al. (2023) substituted
the self-attention layer with a convolution layer that
can be applied recurrently. Peng et al. (2023) ad-
justed the self-attention layer to perform recurrence
at inference. So et al. (2024) proposed a model with
repeated layers to perform recurrent computations
over the signal, rather than over time.

Most related to this work are Katharopoulos et al.

(2020) and Peng et al. (2022). The former sug-
gested that transformers can be used in a recur-
rent manner, and proposed a linear transformer for
doing so. The latter presented transformers with
bounded memory, showing that several transformer
variants such as Linformer (Wang et al., 2020) and
window attention can be interpreted as instances
of their framework. Unlike us, these works treat
the memory as a single state, without an explicit
mapping from tokens to states. Moreover, unlike
our approach, the works above require a dedicated
training, and cannot operate on existing LLMs.

Limited KV cache Window attention (Wang
et al., 2019; Beltagy et al., 2020; Zaheer et al.,
2020) and its variants (e.g., H2O, Zhang et al.,
2023; SCISSORHANDS, Liu et al., 2024) are sim-
ple ways of limiting the cache size in transformers.
A recent followup work (Ge et al., 2024) showed
that manually caching specific tokens like “.” and
“,” further boosts H2O performance. We showed
that TOVA does so without manually selecting to-
kens (Sec. 7.3). Anagnostidis et al. (2023) intro-
duced a learned approach over LLMs that limits
the cache consumption of transformers. Yun et al.
(2023) and Berchansky et al. (2023) proposed token
pruning and token combining.

Concurrent to our work, Ren and Zhu (2024)
suggested robustness measures to choose which
states to drop; Brandon et al. (2024) showed that
KV cache can be shared across layers; Yang et al.
(2024) proposed a pyramid structure across layers
to reduce cache size; Li et al. (2024) and Zandieh
et al. (2024) suggested clustering the KV cache,
and Kang et al. (2024) proposed to quantize and
approximate it. None of these works drew a con-
nection between RNNs and transformers.

New RNN variants Recent work aimed to revive
RNNs in NLP. S4 (Gu et al., 2022) and its succes-
sors (Gupta et al., 2022; Mehta et al., 2023; Gu
and Dao, 2023) elevate state spaces to form linear
RNNs. Other work introduced RNN variants that
train efficiently (Merity, 2019; Orvieto et al., 2023;
Yang et al., 2023; Beck et al., 2024).

Simplifying transformers Previous work has
shown that many transformer attention heads can
be pruned (Michel et al., 2019; Li et al., 2021) or
replaced with static weights (Hassid et al., 2022).
Several works replaced the attention mechanism
in transformers with efficient variants (Peng et al.,
2021; Choromanski et al., 2021; Liu et al., 2021;
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Lee-Thorp et al., 2022). We show that transformer
decoders can be reduced to bounded MSRNNs.

9 Conclusion

In this work, we redefined decoder transformers
as a form of multi-state RNNs (MSRNN) with an
unbounded multi-state size. We then showed that
they can be compressed to bounded MSRNNs by
limiting the number of tokens they can handle at
each decoding step.

We introduced TOVA, a conceptually simple
compression method that selects which tokens to
keep using their attention scores. We showed that
TOVA is superior compared to existing compres-
sion policies; in many cases, TOVA performs com-
parably to the full (unbounded) model, while re-
quiring 1/8–1/4 of the multi-state size. TOVA also
allows processing long inputs, up to 70K tokens.

Our findings shed light on the inter-working
of transformers, and their connections to RNNs.
They also have practical value—they can reduce
the LLM cache size by up to 88% and increase
throughput by 4.8X.

Limitations

Evaluating models on long text generation is com-
putationally expensive and might limit others from
reproducing our results. Further, the evaluation of
such task is extremely complicated, even for hu-
mans. We therefore resort to GPT-4 to compare
the output of our TOVA policy compared to the
topline model (Sec. 6.3). We recognize that this is
far from perfect, and will most likely not catch the
full breadth of evaluating text quality. Finally, our
evaluation framework focuses on English tasks. It
is not unlikely that languages with more flexible
word order will make different use of the atten-
tion mechanism, and thus might require a larger
multi-state size.

Ethics Statement

Our work has the potential to dramatically re-
duce the memory footprint of transformer LLMs,
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This work does not collect any new data, and
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lected by other sources.
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A Policy Ablation

We ablate all policies presented in Sec. 5.1 and
several TOVA variants with the language mod-
eling task. Specifically we examine: Window,
Window+i for i ∈ {1, 4}, H2O for both per layer
and per head approaches and our TOVA policy for
both per layer and per head approaches. We also
combine TOVA with additionally fixing the first
i tokens using i ∈ {1, 4}. We consider the same
baseline policy as in Sec. 6.1. We use the LLaMA-
2-7B as the backbone model.

Our results are presented in Tab. 3. As shown
in Sec. 6.1 the Window policy fails, while the
Window+1 and Window+4 policies maintain
much better results (with Window+4 performing
slightly better). The two H2O policies (head/layer)
produce similar results. Regarding our TOVA poli-
cies, the head version performs worse than former
policies in most multi-state sizes, while the layer
version outperforms all other policies. We attribute
this difference to the more robust selection mecha-
nism employed by the layer version, which requires
agreement among all heads to determine the impor-
tance of specific tokens. Lastly, when we enhance
our TOVA policy with the explicit preservation
of i initial tokens, the results remain relatively un-
changed, implying that our policy inherently retains
the crucial tokens.

B Prompts

The prompts used for the different evaluations
through this work are presented in Tab. 4.

C Details of Generation Evaluation

To evaluate the generated texts, using GPT-4, we
use the gpt-4-0613 version. We drop cases where
the model stops generating before reaching the
memory limit, as both stories are identical. To
account for GPT-4’s positional bias (Wang et al.,
2024), we present each pair of stories twice, alter-
nating their positions, and only consider a win if
the same approach is preferred in both cases.

D Experimental Details

All experiments are done using bfloat16 floating-
point precision over Nvidia V100 GPUs. To effec-
tively parallelize the language modeling task for
all tokens in the sequence, we modify the attention
mask to incorporate the different MSRNN policies
presented in Sec. 3. Specifically, for Window and

Window+i policies, we apply a static masking, as
the reduced tokens are independent with respect to
the attention computation. For H2O and TOVA, we
adjust the mask according to the attention weights
of the relevant layer.

E Long Range Understanding with Base
Models

Figures 10 and 11 show the results for base LLMs
over the SQuALITY and QASPER benchmarks,
respectively.

F Illustration of the Tokens Retained by
TOVA

Figures 12 and 13 show illustrations of the tokens
retained (X axis) at each step (Y axis) for every
layer of LLaMA-2-7B, when applying TOVA over
one PG-19 example. We use a multi-state size of
512.

G Full Part-of-Speech Tag Analysis

The full version of Tab. 2 is presented in Tab. 5.
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Policy

Multi-state
size 64 128 256 512 1024 2048 4096

Baseline 17.65 12.97 10.39 8.92 8.04 7.50 7.16
Window 4812.27 4025.01 3275.58 2184.62 1001.29 240.17 7.16

Window+1 10.20 8.97 8.22 7.76 7.50 7.33 7.16
Window+4 10.28 8.98 8.19 7.73 7.46 7.30 7.16
H2O-head 10.22 8.97 8.21 7.75 7.49 7.32 7.16
H2O-layer 10.20 8.97 8.22 7.76 7.50 7.33 7.16

TOVA-head 11.13 9.55 8.69 7.90 7.52 7.27 7.16
TOVA-layer 9.53 8.32 7.71 7.41 7.25 7.17 7.16

TOVA-layer+1 9.53 8.31 7.71 7.41 7.25 7.17 7.16
TOVA-layer+4 9.63 8.33 7.72 7.41 7.25 7.17 7.16

Table 3: Perplexity over the PG-19 set using varying multi-state sizes (maximal number of states used), while
ablating several dimensions such as the number of recent tokens in Window+i policies and head vs. layer selection
in H2O and TOVA. Our TOVA policy dominates the table in all multi-state sizes.
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Figure 10: Geometric mean of ROUGE-1/2/L for SQuALITY using the base LLMs.
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Figure 11: F1 scores over the QASPER benchmark using base LLMs.
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Task Prompt

SQuALITY {Story}

Answer the question in a paragraph.

Question:

{Question}

Answer:

QASPER {Article}

Answer the question as concisely as you can, using a single phrase or sentence
if possible. If the question cannot be answered based on the information in
the article, write “unanswerable”. If the question is a yes/no question, answer
“yes”, “no”, or “unanswerable”.

Question:

{Question}

Answer:

Story Generation ### Instruction:
Write a very long story (at least 4,000 words). The story should include at least
20 named characters, spans 3 countries and 9 cities, at least 10 chapters and
should have a lot of plot twists.

### Response:

GPT- Evaluation Help me decide which response is better given the prompt:
{Prompt body for story generation}
Which of the following responses is better (the responses are separated by
’————————’):

Response (A):
{First Response}

————————

Response (B):
{Second Response}

Comparing these two responses, which response is better (A), (B) or (C) for
equal quality? please select one and only one option, be as concisely as you
can, using a single phrase.

Table 4: Prompts used for our experiments.
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Figure 12: The full illustration corresponding to Fig. 8 of the tokens kept by TOVA for all layers of LLaMA-2-7B
on one PG-19 example. Each row represents a decoding step, and each column is a token attended to. Layers 0–19.
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Figure 13: Continuation of Fig. 12 for layers 20–31.
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Tag

Multi-state
size 256 512 1024 2048

Avg. 249 481 897 1537

POS 1134 1393 1736 2061
” 845 1101 1413 1774
$ 329 724 1276 2123
) 379 670 1161 1558
. 350 645 1117 1677
NNPS 321 578 1042 1671
\n 303 550 969 1538
WP$ 255 539 1121 1920
CD 301 537 940 1557
NN 270 527 983 1628
NNS 270 526 978 1618
NNP 270 517 951 1613
FW 253 511 903 1444
: 243 492 940 1570
JJ 240 480 918 1598
VBP 244 478 882 1504
JJS 220 475 953 1689
UH 233 474 870 1412
SYM 231 471 893 1482
WDT 223 462 903 1604
VBN 230 462 887 1549
EX 244 461 847 1461
RB 223 459 892 1566
, 236 453 840 1454
VBG 221 445 858 1523
RBS 210 441 878 1645
VBZ 219 440 844 1492
CC 217 437 862 1546
VBD 217 432 827 1493
VB 214 426 817 1457
PRP 217 424 794 1432
RP 207 417 811 1485
WRB 207 415 800 1502
WP 199 405 803 1506
JJR 195 403 782 1413
RBR 183 397 821 1566
PDT 181 391 756 1362
IN 190 385 760 1408
PRP$ 189 383 745 1386
DT 190 379 734 1363
MD 177 378 754 1392
TO 182 368 734 1363

Table 5: Mean number of steps a token lasts, grouped
by part-of-speech tags.
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