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Abstract

Text written by humans makes up the vast ma-
jority of the data used to pre-train and fine-
tune large language models (LLMs). Many
sources of this data—like code, forum posts,
personal websites, and books—are easily at-
tributed to one or a few “users”. In this pa-
per, we ask if it is possible to infer if any of
a user’s data was used to train an LLM. Not
only would this constitute a breach of privacy,
but it would also enable users to detect when
their data was used for training. We develop
the first effective attacks for user inference—
at times, with near-perfect success—against
LLMs. Our attacks are easy to employ, re-
quiring only black-box access to an LLM and
a few samples from the user, which need not
be the ones that were trained on. We find,
both theoretically and empirically, that cer-
tain properties make users more susceptible to
user inference: being an outlier, having highly
correlated examples, and contributing a larger
fraction of data. Based on these findings, we
identify several methods for mitigating user in-
ference including training with example-level
differential privacy, removing within-user du-
plicate examples, and reducing a user’s contri-
bution to the training data. Though these pro-
vide partial mitigation, our work highlights the
need to develop methods to fully protect LLMs
from user inference.

1 Introduction

LLMs like GPT-4 (OpenAI, 2023) and Gem-
ini (Team et al., 2023) have achieved phenomenal
success. Yet, the datasets used to train LLMs are
often comprised of user-written data. This raises
an important question: can we detect (or, infer) if
a user’s data was used to train a model? If so, this
would enable data-owners to detect usage of their
data. More concerningly, this would also consti-
tute a breach of user privacy. In this paper, we
investigate the latter privacy concern.

To do this, we focus on the setting of fine-tuning
on domain-specific data, one of the most widely
used methods for applying LLMs to real-world
problems (Liu et al., 2022; Mosbach et al., 2023),
with several commerical products deployed today
using this approach, e.g., GitHub Copilot (Chen
et al., 2021), Gmail Smart Compose (Chen et al.,
2019), and GBoard (Xu et al., 2023). In this set-
ting, it is not uncommon for fine-tuning data to
include potentially sensitive user data.

In this work, we show that user inference (Fig-
ure 1) is a realistic privacy attack for LLMs fine-
tuned on user data by constructing a simple and
practical attack to determine if a user participated
in fine-tuning. Our attack involves computing a
likelihood ratio test statistic normalized relative to
a reference model (§3), which can be performed
efficiently even at the LLM scale. We empirically
study its effectiveness on the GPT-Neo family of
LLMs (Black et al., 2021) when fine-tuned on di-
verse data domains, including emails, social me-
dia comments, and news articles (§4.2). This study
gives insight into the various parameters that affect
vulnerability to user inference—such as unique-
ness of a user’s data distribution, amount of fine-
tuning data contributed by a user, and amount of
attacker knowledge about a user.

Notably, our attack requires only a few fresh
samples from a user, i.e., not necessarily ones used
in model training. This significantly improves on
the assumptions of other attacks, like membership
inference, in which the attacker is assumed to al-
ready have a set of samples that includes some
training data (Mireshghallah et al., 2022; Mattern
et al., 2023; Niu et al., 2023). Beyond this, our at-
tacks also allow us to estimate the privacy leakage
of a collection of samples written by a single user
that may share characteristics (e.g., writing style,
topic, etc.). This can not be quantified by LLM
privacy attacks like membership inference or ex-
traction attacks (Carlini et al., 2021; Lukas et al.,
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Figure 1: The user inference threat model. An LLM is fine-tuned on user-stratified data. The adversary can query
the fine-tuned model to compute likelihoods. The adversary can access samples from a user’s distribution (different
than the user training samples) to compute a likelihood score to determine if the user participated in training.

2023; Carlini et al., 2023), as they make no as-
sumptions about the data’s origin.

Additionally, we evaluate the attack on synthet-
ically generated canary users to characterize the
privacy leakage for worst-case users (§4.3). We
show that canary users constructed via minimal
modifications to the real users’ data increase the
attack’s effectiveness (in AUROC) by up to 40%.
This construction indicates that simple features
shared across a user’s samples like an email sig-
nature or a characteristic phrase, can greatly exac-
erbate the risk of user inference.

Finally, we evaluate strategies for mitigating
user inference, such as limiting the number of
samples contributed by each user, removing dupli-
cates within a user’s samples, early stopping, gra-
dient clipping, and example-level differential pri-
vacy (DP). Our results show that duplicates within
a user’s examples can exacerbate the risk of user
inference, but are not necessary for a successful
attack. Limiting a user’s contribution to the fine-
tuning set can be effective but is only feasible
for data-rich applications with a large number of
users. Finally, example-level DP provides some
defense but is ultimately designed to protect the
privacy of individual examples, rather than users
that contribute multiple examples. These results
highlight the importance of future work on scal-
able user-level DP algorithms that can provably
mitigate user inference (McMahan et al., 2018;
Asher et al., 2021; Charles et al., 2024). Over-
all, we are the first to study user inference against
LLMs and provide key insights to inform future
deployments of LLMs fine-tuned on user data.

2 Related Work

There are many different ML privacy attacks with
different objectives (Oprea and Vassilev, 2023):

membership inference attacks determine if a par-
ticular data sample was part of a model’s training
set (Shokri et al., 2017; Yeom et al., 2018; Carlini
et al., 2022; Ye et al., 2022; Watson et al., 2022;
Choquette-Choo et al., 2021); data reconstruction
aims to exactly reconstruct the training data of a
model, typically for a discriminative model (Haim
et al., 2022); and data extraction attacks aim to
extract training data from generative models like
LLMs (Carlini et al., 2021; Lukas et al., 2023; Ip-
polito et al., 2023; Anil et al., 2023; Kudugunta
et al., 2023; Nasr et al., 2023).

Membership inference attacks on LLMs.
Mireshghallah et al. (2022) introduce a likelihood
ratio-based attack on LLMs, designed for masked
language models, such as BERT. Mattern et al.
(2023) compare the likelihood of a sample against
the average likelihood of a set of neighboring
samples, and eliminate the assumption of at-
tacker knowledge of the training distribution
used in prior works. Debenedetti et al. (2023)
study how systems built on LLMs may amplify
membership inference. Carlini et al. (2021) use
a perplexity-based membership inference attack
to extract training data from GPT-2. Their attack
prompts the LLM to generate sequences of text,
and then uses membership inference to identify
sequences copied from the training set. Note that
membership inference requires access to exact
training samples while user inference does not.

Extraction attacks. Memorization in LLMs re-
ceived much attention (Carlini et al., 2021; Zhang
et al., 2023; Tirumala et al., 2022; Biderman et al.,
2023; Ippolito et al., 2023; Anil et al., 2023).
These works found that memorization scales with
model size (Carlini et al., 2023) and data repetition
(Kandpal et al., 2022), may eventually be forgot-
ten (Jagielski et al., 2023), and can exist even on
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models trained for restricted use-cases like transla-
tion (Kudugunta et al., 2023). Lukas et al. (2023)
develop techniques to extract PII information from
LLMs and (Inan et al., 2021) design metrics to
measure the leakage of user’s confidential data by
the LLM. Once a user’s participation is identified
by user inference, these techniques can be used to
estimate the amount of privacy leakage.

User-level membership inference. Much work
on inferring a user’s participation in training
makes the stronger assumption that the attacker
has access to the user’s exact training samples. We
call this user-level membership inference (to con-
trast with user inference which does not require
the exact training samples). Song and Shmatikov
(2019) gave the first attack of this kind for genera-
tive text models. However, their attack trains mul-
tiple shadow models and does not scale to LLMs.
Shejwalkar et al. (2021) study this threat model
for text classification via reduction to membership
inference.

User inference. This threat model was consid-
ered for speech recognition (Miao et al., 2021),
representation learning (Li et al., 2022) and face
recognition (Chen et al., 2023). Hartmann et al.
(2023) formally define user inference for classi-
fication and regression but call it distributional
membership inference. These attacks are domain-
specific or require shadow models, and do not ap-
ply or scale to LLMs. Instead, we design an ef-
ficient user inference attack that scales to LLMs
and illustrate the user-level privacy risks posed by
fine-tuning on user data. See Appendix C for fur-
ther discussion of other related threat models such
as property inference and authorship attribution.

3 User Inference Attacks

An autoregressive language model pθ defines a
distribution pθ(xt|x<t) over the next token xt in
continuation of a prefix x<t

.
= (x1, . . . , xt−1).

We focus on fine-tuning, where a pre-trained
LLM pθ0 (with initial parameters θ0) is trained
on a dataset DFT sampled i.i.d. from a dis-
tribution Dtask. The canonical objective is
to minimize the cross entropy of predicting
each next token xt given the context x<t for
each fine-tuning sample x ∈ DFT. Thus,
the fine-tuned model pθ is trained to maxi-
mize the log-likelihood

∑
x∈DFT

log pθ(x) =

∑
x∈DFT

∑|x|
t=1 log pθ(xt|x<t) of the datasetDFT.

Fine-tuning with user-stratified data. Much of
the data used to fine-tune LLMs has a user-level
structure. For example, emails, messages, and
blog posts can reflect the specific characteristics
of their author. Two text samples from the same
user are more likely to be similar to each other
than samples across users in terms of language
use, vocabulary, context, and topics. To capture
user stratification, we model the fine-tuning distri-
bution Dtask as a mixture

Dtask =
∑n

u=1 αuDu (1)

of n user data distributions D1, . . . ,Dn with non-
negative weights α1, . . . , αn that sum to one. One
can sample from Dtask by first sampling a user u
with probability αu and then sampling a document
x ∼ Du from the user’s data distribution. We note
that the fine-tuning process of the LLM is oblivi-
ous to user stratification of the data.

The user inference threat model. The task of
membership inference assumes that an attacker
has access to a text sample x and must deter-
mine whether x was a part of the fine-tuning
data (Shokri et al., 2017; Yeom et al., 2018; Car-
lini et al., 2022). The user inference threat model
relaxes the stringent assumption that the attacker
has access to samples from the fine-tuning data.

The attacker aims to determine if any data from
user uwas involved in fine-tuning the model pθ us-
ingm i.i.d. samples x(1:m) := (x(1), . . . ,x(m)) ∼
Dmu from user u’s distribution. Crucially, we al-
low x(i) /∈ DFT, i.e., the attacker is not assumed
to have access to the exact samples of user u that
were a part of the fine-tuning set. For instance,
if an LLM is fine-tuned on user emails, the at-
tacker can reasonably be assumed to have access
to some emails from a user, but not necessarily the
ones used to fine-tune the model. This is a realistic
threat model for LLMs as it does not require exact
knowledge of a user’s training set samples, as in
membership inference attacks.

We adopt the black-box threat model (Salem
et al., 2023; Jia et al., 2019) and assume that the
attacker can only query the model’s likelihood
on a sequence of tokens, but may not know ei-
ther the model architecture or parameters.1 Fol-
lowing standard practice in membership infer-

1This differs from the API-only threat model in that we
require the model’s likelihoods; our use of the term black-
box is consistent with the membership inference literature.
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ence (Mireshghallah et al., 2022; Watson et al.,
2022), we allow the attacker access to a reference
model pref that is similar to the target model pθ but
has not been fine-tuned on user u’s data. This can
be the pre-trained model pθ0 or another LLM.

Attack strategy. The attacker’s task can be for-
mulated as a statistical hypothesis test. Letting Pu
denote the set of models trained on user u’s data,
the attacker aims to test:

H0 : pθ /∈ Pu, H1 : pθ ∈ Pu . (2)

There is generally no prescribed recipe to test
for such a composite hypothesis. Typical at-
tack strategies involve training multiple “shadow”
models (Shokri et al., 2017); see §B. This, how-
ever, is infeasible at LLM scale.

The likelihood under the fine-tuned model pθ is
a natural test statistic: we might expect pθ(x(i))
to be high if H1 is true and low otherwise. Un-
fortunately, this is not always true, even for mem-
bership inference. Indeed, pθ(x) can be large for
x /∈ DFT for easy-to-predict text sequence x (e.g.,
generic text using common words), while pθ(x)
can be small even if x ∈ DFT for hard-to-predict
x. This necessitates calibrating the test using a ref-
erence model (Mireshghallah et al., 2022; Watson
et al., 2022).

We overcome this difficulty by replacing the at-
tacker’s task with surrogate hypotheses that are
easier to test efficiently:

H ′0 : x(1:m) ∼ pmref , H ′1 : x(1:m) ∼ pmθ . (3)

By construction, H ′0 is always false since pref
is not fine-tuned on user u’s data. However, H ′1
is more likely to be true if the user u participates
in training and the samples contributed by u to
the fine-tuning dataset DFT are similar to the sam-
ples x(1:m) known to the attacker even if they are
not identical. In this case, the attacker rejects H ′0.
Conversely, if user u did not participate in fine-
tuning and no samples from DFT are similar to
x(1:m), then the attacker finds both H ′0 and H ′1 to
be equally (im)plausible, and fails to rejectH ′0. In-
tuitively, to faithfully test H0 vs. H1 using H ′0 vs.
H ′1, we require that x,x′ ∼ Du are closer on av-
erage than x ∼ Du and x′′ ∼ Du′ for any u′ 6= u.

The Neyman-Pearson lemma tells us that the
likelihood ratio test is the most powerful for test-
ing H ′0 vs. H ′1, i.e., it achieves the best true posi-
tive rate at any given false positive rate (Lehmann

et al., 1986, Thm. 3.2.1). This involves construct-
ing a test statistic using the log-likelihood ratio

T
(
x(1), . . . ,x(m)

)
:= log

(
pθ(x

(1), . . . ,x(m))

pref(x(1), . . . ,x(m))

)

=
m∑

i=1

log

(
pθ(x

(i))

pref(x(i))

)
, (4)

where the last equality follows from the indepen-
dence of each x(i), which we assume. Although
independence may be violated in some domains
(e.g. email threads), it makes the problem more
computationally tractable. As we shall see, this
already gives us relatively strong attacks.

Given a threshold τ , the attacker rejects the null
hypothesis and declares that u has participated in
fine-tuning if T (x(1), . . . ,x(m)) > τ . In prac-
tice, the number of samples m available to the at-
tacker might vary for each user, so we normalize
the statistic by m. Thus, our final attack statistic is
T̂ (x(1), . . . ,x(m)) = 1

m T (x(1), . . . ,x(m)).
For m = 1, our test statistic reduces to

T̂ (x) = log(pθ(x)/pref(x)), which is a common
test statistic for membership inference of the sam-
ple x (Carlini et al., 2021). Thus, our test statis-
tic T̂ (x(1), . . . ,x(m)) can be interpreted as aver-
aging the membership inference statistic over the
m samples x(1), . . . ,x(m).

Analysis. We analyze this attack statistic in a sim-
plified setting to gain some intuition. In the large
sample limit as m → ∞, the mean statistic T̂ ap-
proximates the population average

T̄ (Du) := Ex∼Du

[
log

(
pθ(x)

pref(x)

)]
. (5)

We will analyze this test statistic for the choice
pref = D−u ∝

∑
u′ 6=u αu′Du′ , which is the fine-

tuning mixture distribution excluding the data of
user u. This is motivated by the results of Watson
et al. (2022) and Sablayrolles et al. (2019), who
show that using a reference model trained on the
whole dataset excluding a single sample approx-
imates the optimal membership inference classi-
fier. Let KL(·‖·) and χ2(·‖·) denote the Kull-
back–Leibler and χ2 divergences. We establish a
bound (proved in §A) assuming pθ, pref perfectly
capture their target distributions.
Proposition 1. Assume pθ = Dtask and pref =
D−u for some user u ∈ [n]. Then, we have

T̄ (Du) ≤ αu χ2(Du‖D−u) , and

T̄ (Du) > log (αu) + KL(Du ‖ D−u) .
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Dataset User Field #Users #Examples Percentiles of Examples/User

P0 P25 P50 P75 P100

Reddit Comments User Name 5194 1002K 100 116 144 199 1921

CC News Domain Name 2839 660K 30 50 87 192 24480

Enron Emails Sender’s Email Address 136 91K 28 107 279 604 4280

Table 1: Evaluation dataset summary statistics: The three evaluation datasets vary in their notion of “user” (a Reddit
comment belongs to the poster’s username whereas a CC News article belongs to the its web domain). Additionally, these
datasets span multiple orders of magnitude in terms of number of users and number of examples contributed per user.

This suggests the attacker may more easily infer:
(a) users who contribute more data (large αu), or
(b) users who contribute unique data (so

KL(Du‖D−u) and χ2(Du‖D−u) are large).
Conversely, if neither holds, then a user’s partici-
pation in fine-tuning cannot be reliably detected.
Our experiments corroborate these and we use
them to design potential mitigation strategies.

4 Experiments

In this section, we empirically study the suscepti-
bility of models to user inference attacks, the fac-
tors that affect attack performance, and potential
mitigation strategies. For this, we fine-tune LLMs
on our user data as this enables us to rigorously
test the leakage and because fine-tuning is a com-
mon strategy for adapting to user data(see Sec-
tion 1). We believe our results would extend even
to models pre-trained on user data but leave such
an evaluation to future work.

4.1 Experimental Setup

Datasets. We evaluate user inference on 3 user-
stratified text datasets: Reddit Comments (Baum-
gartner et al., 2020) for social media content, CC
News2 (Hamborg et al., 2017) for news articles,
and Enron Emails (Klimt and Yang, 2004) for user
emails. These datasets are diverse in their domain,
notion of a user, number of users, and data per user
(Table 1). We also report results for the ArXiv Ab-
stracts dataset (Clement et al., 2019) in §E.

To make these datasets suitable for evaluating
user inference, we split them into a held-in set
of users to fine-tune models, and a held-out set
of users to evaluate attacks. Additionally, we set
aside 10% of each user’s samples as the samples
used by the attacker to run user inference attacks;
these samples are not used for fine-tuning. For

2While CC News does not strictly have user data, it is
made up of non-identical groups based on the web domain.
We treat each group as a “user” as in Charles et al. (2023).

more details on the dataset preprocessing, see §D.

Models. We evaluate user inference attacks on
the 125M and 1.3B parameter decoder-only LLMs
from the GPT-Neo (Black et al., 2021) model
suite. These models were pre-trained on The Pile
dataset (Gao et al., 2020), an 825 GB diverse text
corpus, and use the same architecture and pre-
training objectives as the GPT-2/GPT-3 models.
Further details on the fine-tuning are given in §D.

Attack and Evaluation. We implement the user
inference attack of Section 3 using the pre-trained
GPT-Neo models as the reference pref . Follow-
ing the membership inference literature, we evalu-
ate the aggregate attack success using the Receiver
Operating Characteristic (ROC) curve across held-
in and held-out users; this is a plot of the true posi-
tive rate (TPR) and false positive rate (FPR) of the
attack across all possible thresholds. We use the
area under this curve (AUROC) as a scalar sum-
mary. We also report the TPR at small FPR (e.g.,
1%) (Carlini et al., 2022).

4.2 User Inference: Results and Properties

We examine how user inference is impacted by
factors such as the amount of user data and at-
tacker knowledge, the model scale, as well as the
connection to overfitting.

Attack Performance. We attack GPT-Neo 125M
fine-tuned on each of the three fine-tuning datasets
and evaluate the attack performance. We see from
Figure 2 that the user inference attacks on all three
datasets achieve non-trivial performance, with the
attack AUROC varying between 88% (Enron) to
66% (CC News) and 56% (Reddit).

The disparity in performance between the three
datasets can be explained in part by the intuition
from Proposition 1, which points out two factors.
First, a larger fraction of data contributed by a user
makes user inference easier. The Enron dataset has
fewer users, each of whom contributes a signifi-
cant fraction of the fine-tuning data (cf. Table 1),
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while, the Reddit dataset has a large number of
users, each with few datapoints. Second, distinct
user data makes user inference easier. Emails are
more distinct due to identifying information such
as names (in salutations and signatures) and ad-
dresses, while news articles or social media com-
ments from a particular user may share more sub-
tle features like topic or writing style.

User Inference and User-level Overfitting. It
is well-established that overfitting to the training
data is sufficient for successful membership infer-
ence (Yeom et al., 2018). We find that a simi-
lar phenomenon holds for user inference, which
is enabled by user-level overfitting, i.e., the model
overfits not to the training samples themselves, but

rather the distributions of the training users.

We see from Figure 3 that the validation loss
of held-in users continues to decrease for all 3
datasets, while the loss of held-out users increases.
These curves display a textbook example of over-
fitting, not to the training data (since both curves
are computed using validation data), but to the dis-
tributions of the training users. Note that the attack
AUROC improves with the widening generaliza-
tion gap between these two curves. Indeed, the
Spearman correlation between the generalization
gap and the attack AUROC is at least 99.4% for
all datasets. This demonstrates the close relation
between user-level overfitting and user inference.

Attack Performance and Model Scale. Next, we
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Figure 5: Canary experiments. Left two: Comparison of attack performance on the natural distribution of users (“Real
Users”) and attack performance on synthetic canary users (each with 100 fine-tuning documents) as the shared substring in a
canary’s documents varies in length. Right two: Attack performance on canary users (each with a 10-token shared substring)
decreases as their contribution to the fine-tuning set decreases. The shaded region denotes std over 100 bootstrap samples.

investigate the role of model scale in user infer-
ence using the GPT-Neo 125M and 1.3B on the
CC News dataset. We find in Figure 4 that the
attack AUROC is nearly identical for the 1.3B
model (65.3%) and 125M model (65.8%). While
the larger model achieves better validation loss on
both held-in users (2.24 vs. 2.64) and held-out
users (2.81 vs. 3.20), the generalization gap is
nearly the same for both models (0.57 vs. 0.53).
This highlights a qualitative difference between
user and membership inference, where attack per-
formance reliably increases with model size in the
latter (Carlini et al., 2023; Tirumala et al., 2022;
Kandpal et al., 2022; Mireshghallah et al., 2022).

Effect of the Attacker Knowledge. We examine
the effect of the attacker knowledge (the amount
of user data used by the attacker to compute the
test statistic) in Figure 10 of §E. First, we find
that more attacker knowledge leads to higher at-
tack AUROC and lower variance in the attack suc-
cess. For CC News, the AUROC increases from
62.0 ± 3.3% when the attacker has only one doc-
ument to 68.1 ± 0.6% at 50 documents. The user
inference attack already leads to non-trivial re-
sults with an attacker knowledge of one document
per user for CC News (AUROC 62.0%) and En-
ron Emails (AUROC 73.2%). Overall, the results
show that an attacker does not need much data to
mount a strong attack, and more data only helps.

4.3 User Inference in the Worst-Case

The disproportionately large downside to privacy
leakage necessitates looking beyond the average-
case privacy risk to worst-case settings. Thus, we
analyze attack performance on datasets contain-
ing synthetically generated users, known as ca-
naries. There is a trade-off between making the
canary users realistic and worsening their privacy
risk. We err on the side of making them realistic

to illustrate the potential risks of user inference.
To construct a canary user, we first sample a real

user from the dataset and insert a particular sub-
string into each of that user’s examples. The sub-
string shared between all of the user’s examples
is a contiguous substring randomly sampled from
one of their documents (for more details, see §D).
We construct 180 canary users with shared sub-
strings ranging from 1-100 tokens in length and
inject these users into the Reddit and CC News
datasets. We do not experiment with synthetic ca-
naries in Enron Emails, as the attack AUROC al-
ready exceeds 88% for real users.

Figure 5 (left) shows that the attack is more ef-
fective on canaries than real users, and increases
with the length of the shared substring. A short
shared substring is enough to increase the attack
AUROC from 63% to 69% (5 tokens) for CC
News and 56% to 65% for Reddit (10 tokens).

4.4 Mitigation Strategies

We investigate several heursitics for limiting the
influence of individual examples or users on fine-
tuning as methods for mitigating user inference.

Early Stopping. The connection between user in-
ference and user-level overfitting from §4.2 sug-
gests that early stopping, a common heuristic used
to prevent overfitting (Caruana et al., 2000), could
potentially mitigate user inference. Unfortunately,
we find that 95% of the final AUROC is obtained
quite early in training: 15K steps (5% of the fine-
tuning) for CC News and 90K steps (18% of the
fine-tuning) for Reddit, see Figure 3. Typically,
the overall validation loss still decreases far after
this point. This suggests an explicit tradeoff be-
tween model utility (e.g., in validation loss) and
privacy risks from user inference.

Data Limits Per User. To mitigate user inference,
we consider limiting the amount of fine-tuning
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data per user. Figure 5 (right two) show that this
can be effective. For CC News, the AUROC for
canary users reduces from 77% at 100 documents
per user to almost random chance at 5 documents
per user. A similar trend also holds for Reddit.

Data Deduplication. Since data deduplication
can mitigate membership inference (Lee et al.,
2022; Kandpal et al., 2022), we evaluate it for user
inference. CC News is the only dataset in our
suite with within-user duplicates (Reddit and En-
ron are deduplicated in the preprocessing; see Ap-
pendix D.1), so we use it for this experiment.3 The
deduplication reduces the attack AUROC from
65.7% to 59.1%. The attack ROC curve of the
deduplicated version is also uniformly lower, even
at extremely small FPRs (Figure 13 of §E).

Thus, data repetition can exacerbate user in-
ference. However, results on Reddit and Enron
Emails (no duplicates) suggest that deduplication
is insufficient to fully mitigate user inference.

Example-level Differential Privacy (DP).
DP (Dwork et al., 2006) gives provable bounds on
privacy leakage. We study how example-level DP,
which protects the privacy of individual examples,
impacts user inference. We train the 125M model
on Enron Emails using DP-Adam, a variant of
Adam that clips per-example gradients and adds
noise calibrated to the privacy budget ε. We
find next that example-level DP can somewhat
mitigate user inference while incurring increased
compute cost and a degraded model utility.

Obtaining good utility with DP requires large
batches and more epochs (Ponomareva et al.,
2023), so we use a batch size of 1024, tune the
learning rate, and train the model for 50 epochs
(1.2K updates), so that each job runs in 24h (in
comparison, non-private training takes 1.5h for 7
epochs); details of the tuning are given in §D.4.

Table 2 shows a severe degradation in the vali-
dation loss under DP. For instance, a loss of 2.67
at the weak guarantee of ε = 32 is surpassed af-
ter just 1/3rd of an epoch of non-private training;
this loss continues to reduce to 2.43 after 3 epochs.
In terms of attack effectiveness, example-level DP
reduces the attack AUROC and the TPR at FPR
= 5%, while the TPR at FPR = 1% remains the
same or gets worse. Indeed, while example-level

3Although each article of CC News from HuggingFace
Datasets has a unique URL, the text of 11% of the articles
has exact duplicates from the same domain. See §D.5 for
examples.

DP protects individual examples, it can fail to pro-
tect the privacy of users who contribute many ex-
amples. This highlights the need for scalable al-
gorithms and software for fine-tuning LLMs with
DP at the user-level. Currently, user-level DP al-
gorithms have been designed for small models in
federated learning, but do not yet scale to LLMs.

Metric ε = 2 ε = 8 ε = 32 Non-private

Val. Loss 2.77 2.71 2.67 2.43

Attack AUROC 64.7% 66.7% 67.9% 88.1%

TPR @ FPR= 1% 8.8% 8.8% 10.3% 4.4%

TPR @ FPR= 5% 11.8% 10.3% 10.3% 27.9%

Table 2: Example-level differential privacy: Training a
model on Enron Emails under (ε, 10−6)-DP at the example-
level (smaller ε implies a higher level of privacy).

Gradient Clipping. To avoid the degradation in
performance with DP, we ask if it suffices to clip
the gradients (without adding noise as in DP),
at the example-level or the batch-level (Pascanu
et al., 2013). The results are given in Figure 12 of
§E: the left plot shows that neither batch nor per-
example gradient clipping affect user inference.
The right plot tells us why: canary examples do
not have large outlying gradients and clipping af-
fects real and canary data similarly. Thus, gradient
clipping is an ineffective mitigation strategy.

Summary. Our results show that user inference
is hard to mitigate with common heuristics. Care-
ful deduplication is necessary to ensure that data
repetition does not exacerbate user inference. En-
forcing data limits per user can be inexpensive to
implement and effective to mitigate user inference
but only works for applications with a large num-
ber of users. Example-level DP can offer some
mitigation at the cost of degraded model utility
and greatly increased computation cost. Develop-
ing a feasible and effective mitigation strategy that
also works efficiently in data-scarce applications
remains an open problem.

5 Discussion, Limitations, Future Work

Fine-tuning LLMs on user data is a natural choice
because these data typically resemble the types
of inputs an LLM will encounter in deployment.
We show this also exposes new risks for privacy
leakage, making it easy to infer if a user’s data
was used for fine-tuning. Our proposed user infer-
ence attack achieves this by aggregating statistics
across a user’s data that leverage correlations be-
tween texts. We find that this attack can reliably

18245



detect a user’s presence in the fine-tuning data,
even without access to their contributed training
data. Our work underscores the need for scaling
user-aware training pipelines, such as user-level
DP, to handle large datasets and models. We now
discuss the limitations of our work and point out
promising avenues for future research.

Overlap in Pre-Training and Fine-Tuning Data.
The threat model studied in this paper aims to
compromise user privacy when an LLM is fine-
tuned on user-stratified data. However, due to
the rapidly increasing size of commonly used pre-
training datasets, the fine-tuning domains studied
in this work, and often the specific fine-tuning
datasets, are also present in LLMs’ pre-training
data. In particular, each of the fine-tuning datasets
used in our experiments is also present to some
extent in The Pile dataset (Gao et al., 2020) used
to pre-train the GPT-Neo family of models (Black
et al., 2021). Thus, one limitation of this work is
that it only evaluates the user inference attack on
fine-tuning datasets that, at least partially, overlap
with the target LLM’s pre-training data.

Despite this limitation, we believe that our setup
still faithfully evaluates the effectiveness of user
inference attacks. First, the overlapping fine-
tuning data constitutes only a tiny fraction of the
pre-training dataset. Second, our attacks are likely
weakened (and thus, underestimate the true risk)
in this setup because data from both held-in and
held-out users are seen during pre-training. The
inclusion of held-out users’ data in pre-training
should only reduce the model’s loss on these sam-
ples, making the difference in loss after fine-tuning
between held-in and held-out users smaller.

Furthermore, evaluating using fine-tuning
datasets that overlap with pre-training data may
actually be realistic for the way that some LLMs
are trained today. Past work has shown that
dataset contamination, where downstream evalua-
tion datasets are found to be present in pre-training
datasets, plagues many modern LLM pre-training
datasets (Sainz et al., 2023; Oren et al., 2024;
Dodge et al., 2021). Thus, unbeknownst to
practitioners, fine-tuning datasets could be present
in pre-training datasets, mirroring the evaluation
setup in this paper. Recent work on pre-training
has also shown that intentionally including typical
fine-tuning data in the late stages of pre-training
is beneficial (Hu et al., 2024).

Fine-tuning versus Pre-Training. Our results fo-

cus exclusively on models fine-tuned with user
data. While this is a common setup deployed
even in production models (cf. §1), pre-training
datasets can also include user data. We leave a rig-
orous evaluation in this setup to future work, and
note that this setting may be more difficult than the
fine-tuning setting (Duan et al., 2024).

Other Threat Models. Our black-box threat
model assumes that the likelihood (or equivalently,
its loss) of a sequence under the model can be
queried. However, some LLMs are only accessi-
ble via an API; it is interesting to consider user
inference attacks in this setting. Some APIs ex-
pose the model’s logits (or log-probabilities) from
which likelihoods can be reconstructed (Finlayson
et al., 2024); this allows for a variant of our user
inference attack to be mounted.

Designing user inference attacks for APIs that
do not expose model likelihoods/losses is an
open question. In fact, defining membership in-
ference attacks in this setting, or defining the
equivalent of label-only membership inference at-
tacks (Choquette-Choo et al., 2021) for LLMs are
also open questions. Our work provides a recipe to
lift future progress on such membership inference
attacks to user inference: if T (x) is a member-
ship inference test statistic for a sequence x, then
T̂ (x(1), . . . ,x(m)) = (1/m)

∑m
i=1 T (x(i)) can be

used a user inference test statistic; see §3. We
leave this as a promising direction for future work.

Mitigating Attacks with User-Level DP. User-
level DP is the gold standard defense against pri-
vacy attacks that aim to expose user participa-
tion in training. Implementing user-level DP as
a defense in our experimental setup presents many
challenges, ranging from fundamental dataset size
limitations, software/systems challenges to allow
user-level DP training to scale to LLMs, and a lack
of understanding of the empirical tradeoffs needed
to train performant user-level DP models. For a
more thorough discussion of user-level DP and the
challenges preventing its use in this setting, see
Appendix F. The follow-up works of Charles et al.
(2024) and Chua et al. (2024) show some promis-
ing progress on this front.

Finally, leveraging user inference attacks to au-
dit user-level DP, like membership inference at-
tacks for example-level DP (Jagielski et al., 2020;
Pillutla et al., 2023; Steinke et al., 2023), is a
promising future direction.
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Kumar, and Hugh Brendan McMahan. 2021. Adap-
tive Federated Optimization. In ICLR.

Alexandre Sablayrolles, Matthijs Douze, Cordelia
Schmid, Yann Ollivier, and Hervé Jégou. 2019.
White-box vs black-box: Bayes optimal strategies
for membership inference. In ICML.

Chakaveh Saedi and Mark Dras. 2021. Siamese Net-
works for Large-Scale Author Identification. Com-
put. Speech Lang., 70:101241.

Oscar Sainz, Jon Ander Campos, Iker García-
Ferrero, Julen Etxaniz, and Eneko Agirre.
2023. Did ChatGPT Cheat on Your Test?
https://hitz-zentroa.github.io/
lm-contamination/blog/.

Ahmed Salem, Giovanni Cherubin, David Evans,
Boris Köpf, Andrew Paverd, Anshuman Suri, Shruti
Tople, and Santiago Zanella Béguelin. 2023. SoK:
Let the Privacy Games Begin! A Unified Treatment
of Data Inference Privacy in Machine Learning. In
IEEE Symposium on Security and Privacy, pages
327–345.

Virat Shejwalkar, Huseyin A Inan, Amir Houmansadr,
and Robert Sim. 2021. Membership Inference
Attacks Against NLP Classification Models. In
NeurIPS 2021 Workshop Privacy in Machine Learn-
ing.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov.
2017. Membership inference attacks against ma-
chine learning models. In IEEE Symposium on Se-
curity and Privacy.

Congzheng Song and Vitaly Shmatikov. 2019. Au-
diting data provenance in text-generation models.
In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining.

Mengkai Song, Zhibo Wang, Zhifei Zhang, Yang Song,
Qian Wang, Ju Ren, and Hairong Qi. 2020. Ana-
lyzing User-Level Privacy Attack Against Federated
Learning. IEEE Journal on Selected Areas in Com-
munications, 38(10):2430–2444.

Thomas Steinke, Milad Nasr, and Matthew Jagielski.
2023. Privacy Auditing with One (1) Training Run.
Advances in Neural Information Processing Sys-
tems, 36.

Anshuman Suri and David Evans. 2021. Formalizing
and estimating distribution inference risks. arXiv
Preprint.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of highly
capable multimodal models. arXiv Preprint.

Kushal Tirumala, Aram Markosyan, Luke Zettlemoyer,
and Armen Aghajanyan. 2022. Memorization with-
out overfitting: Analyzing the training dynamics of
large language models. In NeurIPS.

Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song,
Qian Wang, and Hairong Qi. 2019. Beyond In-
ferring Class Representatives: User-Level Privacy
Leakage From Federated Learning. In IEEE INFO-
COM 2019 - IEEE Conference on Computer Com-
munications, page 2512–2520.

Lauren Watson, Chuan Guo, Graham Cormode, and
Alexandre Sablayrolles. 2022. On the importance
of difficulty calibration in membership inference at-
tacks. In ICLR.

Zheng Xu, Yanxiang Zhang, Galen Andrew, Christo-
pher Choquette, Peter Kairouz, Brendan Mcmahan,
Jesse Rosenstock, and Yuanbo Zhang. 2023. Feder-
ated learning of gboard language models with differ-
ential privacy. In ACL.

Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda,
Vincent Bindschaedler, and Reza Shokri. 2022. En-
hanced membership inference attacks against ma-
chine learning models. In Proceedings of the ACM
SIGSAC Conference on Computer and Communica-
tions Security.

Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and
Somesh Jha. 2018. Privacy risk in machine learning:
Analyzing the connection to overfitting. In IEEE
Computer Security Foundations Symposium.

Chiyuan Zhang, Daphne Ippolito, Katherine Lee,
Matthew Jagielski, Florian Tramèr, and Nicholas
Carlini. 2023. Counterfactual memorization in neu-
ral language models. In NeurIPS.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor
Mihaylov, Myle Ott, Sam Shleifer, Kurt Shuster,
Daniel Simig, Punit Singh Koura, Anjali Sridhar,
Tianlu Wang, and Luke Zettlemoyer. 2022. OPT:
Open Pre-trained Transformer Language Models.
arXiv Preprint.

18250

https://hitz-zentroa.github.io/lm-contamination/blog/
https://hitz-zentroa.github.io/lm-contamination/blog/


Appendix
The outline of the appendix is as follows:

• Appendix A: Proof of the analysis of the attack statistic (Proposition 1).
• Appendix B: Alternate approaches to solving user inference (e.g. if the computational cost was not

a limiting factor).
• Appendix C: Further details on related work.
• Appendix D: Detailed experimental setup (datasets, models, hyperparameters).
• Appendix E: Additional experimental results.
• Appendix F: A discussion of user-level DP, its promises, and challenges.

A Theoretical Analysis of the Attack Statistic

We prove Proposition 1 here.

Recall of definitions. The KL and χ2 divergences are defined respectively as

KL(P‖Q) =
∑

x

P (x) log

(
P (x)

Q(x)

)
and χ2(P‖Q) =

∑

x

P (x)2

Q(x)
− 1 .

Recall that we also defined

pref(x) = D−u(x) =

∑
u′ 6=u αu′Du′∑
u′ 6=u αu′

=

∑
u′ 6=u αu′Du′
1− αu

, and

pθ(x) =

n∑

u′=1

αu′Du′(x) = αuDu(x) + (1− αu)D−u(x) .

Proof of the upper bound. Using the inequality log(1 + t) ≤ t we get,

T̄ (Du) = Ex∼Du

[
log

(
pθ(x)

pref(x)

)]

= Ex∼Du

[
log

(
αuDu(x) + (1− αu)D−u(x)

D−u(x)

)]

= Ex∼Du
[
log
(

1 + αu

(
Du(x)
D−u(x) − 1

))]

≤ αu Ex∼Du

[ Du(x)

D−u(x)
− 1

]
= αu χ

2 (Du‖D−u) .

Proof of the lower bound. Using log(1 + t) > log(t), we get

T̄ (Du) = Ex∼Du

[
log

(
pθ(x)

pref(x)

)]

= Ex∼Du

[
log

(
αuDu(x) + (1− αu)D−u(x)

D−u(x)

)]

= log(1− αu) + Ex∼Du

[
log

(
αuDu(x)

(1− αu)D−u(x)
+ 1

)]

> log(1− αu) + Ex∼Du

[
log

(
αuDu(x)

(1− αu)D−u(x)

)]

= log(αu) + Ex∼Du

[
log

( Du(x)

D−u(x)

)]
= log(αu) + KL(Du‖D−u) .
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B Alternate Approaches to User Inference

We consider some alternate approaches to user inference that are inspired by the existing literature on
membership inference. As we shall see, these approaches are impractical for the LLM user inference
setting where exact samples from the fine-tuning data are not known to the attacker and models are
costly to train.

A common approach for membership inference is to train “shadow models”, models trained in a
similar fashion and on similar data to the model being attacked (Shokri et al., 2017). Once many shadow
models have been trained, one can construct a classifier that identifies whether the target model has been
trained on a particular example. Typically, this classifier takes as input a model’s loss on the example in
question and is learned based on the shadow models’ losses on examples that were (or were not) a part
of their training data. This approach could in principle be adapted to user inference on LLMs.

First, we would need to assume that the attacker has enough data from user u to fine-tune shadow
models on datasets containing user u’s data as well as an additional set of samples used to compute
u’s likelihood under the shadow models. Thus, we assume the attacker has n samples x

(1:n)
train :=

(x(1), . . . ,x(n)) ∼ Dnu used for shadow model training and m samples x(1:m) := (x(1), . . . ,x(m)) ∼
Dmu used to compute likelihoods.

Next, the attacker trains many shadow models on data similar to the target model’s fine-tuning data,
including x

(1:n)
train in half of the shadow models’ fine-tuning data. This repeated training yields samples

from two distributions: the distribution of models trained with user u’s data P and the distribution of
models trained without user u’s data Q. The goal of the user inference attack is to determine which
distribution the target model is more likely sampled from.

However, since we assume the attacker has only black-box access to the target model, they must
instead perform a different hypothesis test based on the likelihood of x(1:m) under the target model. To
this end, the attacker must evaluate the shadow models on x(1:m) to draw samples from:

P ′ : pθ(x) where θ ∼ P,x ∼ Du , Q′ : pθ(x) where θ ∼ Q,x ∼ Du . (6)

Finally, the attacker can classify user u as being part (or not part) of the target model’s fine-tuning data
based on whether the likelihood values of the target model on x(1:m) are more likely under P ′ or Q′.

While this is the ideal approach to performing user inference with no computational constraints, it is
infeasible due to the cost of repeatedly training shadow LLMs and the assumption that the attacker has
enough data from user u to both train and evaluate shadow models.

C Further Details on Related Work

There are several papers investigating the risks of user-level privacy attacks, that either study threat
models that differ in key ways from user inference or propose user inference attacks that are not practical
for or applicable to LLMs.

User-level Membership Inference. We refer to the problem of identifying a user’s participation in train-
ing when given the exact training samples from that user as user-level membership inference. Song and
Shmatikov (2019) propose a user-level membership inference attack for language models. Their attack
involves training multiple shadow models on subsets of multiple users’ training data and a meta-classifier
to distinguish users who participating in training from those who did not. This approach of training many
shadow models and a meta-classifier based does not scale to LLMs due to the computational cost of train-
ing even a single LLM. Moreover, the notion of a “user” in their experiments is a random i.i.d. subset
of the training dataset; this experimental setup is not suitable for the more realistic threat model of user
inference, in which an attack can leverage the similarity between the target user’s training samples and
the samples available to the attacker.

Shejwalkar et al. (2021) also assume that the attacker knows the training samples contributed by each
target user. They perform user-level membership inference for NLP classification models by aggregating
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the results of membership inference for each sample of the target user.

User Inference. In the context of classification and regression, Hartmann et al. (2023) define distribu-
tional membership inference, with the goal of identifying if a user participated in the training set of a
model without knowledge of the exact training samples. This coincides with our definition of user infer-
ence. Hartmann et al. (2023) use existing shadow model-based attacks for distribution inference, as their
main goal is to analyze sources of leakage and evaluate defenses. As discussed in Appendix B, attacks
that require training shadow models do not scale to LLMs.

User inference attacks have been also studied in other applications domains, such as embedding learn-
ing for vision (Li et al., 2022) and speech recognition for IoT devices (Miao et al., 2021). Chen et al.
(2023) design a black-box user-level auditing procedure on face recognition systems in which an auditor
has access to images of a particular user that are not part of the training set. In federated learning, Wang
et al. (2019) and Song et al. (2020) analyze the risk of user inference by a malicious server.

Property Inference. We note that user inference is a special case of a more general threat model known
as property inference (Ateniese et al., 2015), where an attacker aims to infer a global property of the
training data (e.g., the proportion of data having a specific attribute or belonging to a particular class).
The property inference attack from Ateniese et al. (2015) was later extended to fully-connected neural
networks by Ganju et al. (2018) and formalized as a cryptographic game by Suri and Evans (2021).
User inference can be viewed as a special case of property inference, where the property of interest is
the proportion of training data from a particular target user. Whereas past work on property inference
has focused on distinguishing between models where the target property is quite different (e.g., is the
proportion of females in the training data 0.2 or 0.7), this work focuses on distinguishing between models
with nearly identical training data properties (e.g., is the proportion of training examples from the target
user 0 or ∼ 0.01) since each individual user contributes a relatively small proportion of the total training
dataset.

Authorship Attribution. User inference on text models is related to, but distinct from authorship attri-
bution, the task of identifying authors from a user population given access to multiple writing samples.
We define authorship attribution and discuss its similarities and differences with user inference below.

The goal of authorship attribution is to find which, if any, user from a given population of users wrote
a particular text. For user inference, on the other hand, the goal is to figure out if any data from a
particular user was used to train a given model. Note the key distinction here: there is no model in the
problem statement of authorship attribution. Indeed, for this reason user inference cannot be reduced
to authorship attribution. Solving authorship attribution does not solve user inference because it fails to
factor in how a user’s data impacts an LLM, which is absent from the problem statement of authorship
attribution altogether.

That being said there are a number of interesting approaches to authorship attribution that could po-
tentially inform future work on user inference. For instance, some existing work on authorship attri-
bution (e.g., Luyckx and Daelemans, 2008, 2010) casts the problem as a classification task with one
class per user. Interestingly, Luyckx and Daelemans (2010) identified that the number of authors and
the amount of training data per author are important factors for success of authorship attribution, also
reflected in our findings when analyzing user inference attack success. However, this approach scales
poorly to a large number of users and requires that all users are known a priori, which is not an assump-
tion in the user inference threat model. A more scalable approach frames authorship attribution as a
text similarity task rather than a classification task (Koppel et al., 2011; Saedi and Dras, 2021). These
approaches scale to a greater number of users and can be applied without knowing the full set of users a
priori. Connecting authorship attribution with privacy attacks on LLMs could be a topic of future work.

LLM Phenomena Related to User Inference Numerous other works, studying the connection be-
tween an LLM’s behavior and the contents of that LLM’s training data, observe phenomena that are
consistent with our findings that the behavior of an LLM (i.e., its perplexity on different samples) can
leak information about the type of data, rather than the exact samples, it was trained on. For instance
many studies have shown that the number of times a particular piece of information, such as a substring
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Figure 6: Histogram of number of documents per user for each dataset.

(Kandpal et al., 2022), an arithmetic operand (Razeghi et al., 2022), a fact (Kandpal et al., 2023), or an
instance of a task (McCoy et al., 2023), appear in the training data can be inferred by inspecting a trained
LLM. Similarly, studies on data contamination show that LLMs pre-trained on large corpora behave dif-
ferently on in-domain tasks that may have been part of their training data than on out-of-domain text
known not to be in the training (e.g., text from the Dark Web) (Magar and Schwartz, 2022; Ranaldi et al.,
2023). This type of overfitting, not to specific examples, but rather to large-scale patterns dictated by
the training distribution, are likely related to user inference, in which a model does not overfit to a user’s
samples, but rather to patterns like a user’s style or writing content.

D Experimental Setup

In this section, we give the following details:
• Appendix D.1: Full details of the datasets, their preprocessing, the models used, and the evaluation

of the attack.
• Appendix D.2: Pseudocode of the canary construction algorithm.
• Appendix D.3: Precise definitions of mitigation strategies.
• Appendix D.4: Details of hyperparameter tuning for example-level DP.
• Appendix D.5: Analysis of the duplicates present in CC News.
• Appendix D.6: Details of the computational budget and resources used to run experiments.

D.1 Datasets, Models, Evaluation

We evaluate user inference attacks on four user-stratified datasets. Here, we describe the datasets, the
notion of a “‘user”’ in each dataset, and any initial filtering steps applied. Figure 6 gives a histogram of
data per user (see also Tables 1 and 3).

• Reddit Comments4 (Baumgartner et al., 2020) : Each example is a comment posted on Reddit,
most of which are in English. We define a user associated with a comment to be the username that
posted the comment.

The raw comment dump contains about 1.8 billion comments posted over a four-year span between
2012 and 2016. To make the dataset suitable for experiments on user inference, we take the follow-
ing preprocessing steps:

– To reduce the size of the dataset, we initially filter to comments made during a six-month period
between September 2015 and February 2016, resulting in a smaller dataset of 331 million
comments.

– As a heuristic for filtering automated Reddit bot and moderator accounts from the dataset, we
remove any comments posted by users with the substring “bot” or “mod” in their name and
users with over 2000 comments in the dataset.

– We filter out low-information comments that are shorter than 250 tokens in length.
– Finally, we retain users with at least 100 comments for the user inference task, leading to

around 5K users.
4https://huggingface.co/datasets/fddemarco/pushshift-reddit-comments
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Reddit Small. We also create a smaller version of this dataset with 4 months’ data (the rest of the
preprocessing pipeline remains the same). This gives us a dataset which is roughly half the size of
the original one after filtering — we denote this as “Reddit Comments (Small)” in Table 3.

Although the unprocessed version of the small 4-month dataset is a subset of the unprocessed 6-
month dataset, this is not longer the case after processing. After processing, 2626 users of the
original 2774 users in the 4 month dataset were retained in the 6 month dataset. The other 148 users
went over the 2000 comment threshold due to the additional 2 months of data and were filtered
out as a part of the bot-filtering heuristic. Note also that the held-in and held-out split between
the two Reddit datasets is different (of the 1324 users in the 4-month training set, only 618 are in
the 6-month training set). Still, we believe that a comparison between these two datasets gives a
reasonable approximation how user inference changes with the scale of the dataset due to the larger
number of users. These results are given in Appendix E.3.

• CC News5 (Hamborg et al., 2017): Each example is an English-language news article published
on the Internet between January 2017 and December 2019. We define a user associated with an
article to be the web domain where the article was found (e.g., nytimes.com). While CC News
is not user-generated data (such as emails or posts used for the other datasets), it is a large group-
partitioned dataset and has been used as a public benchmark for user-stratified federated learning ap-
plications (Charles et al., 2023). We note that this practice is common with other group-partitioned
web datasets such as Stack Overflow (Reddi et al., 2021).

• Enron Emails6 (Klimt and Yang, 2004): Each example is an English-language email found in the
account of employees of the Enron corporation prior to its collapse. We define the user associated
with an email to be the email address that sent an email.

The original dataset contains a dump of emails in various folders of each user, e.g., “inbox”, “sent”,
“calendar”, “notes”, “deleted items”, etc. Thus, it contains a set of emails sent and received by
each user. In some cases, each user also has multiple email addresses. Thus we take the following
preprocessing steps for each user:

– We list all the candidate sender’s email address values on emails for a given user.
– We filter and keep candidate email addresses that contain the last name of the user, as inferred

from the user name (assuming the user name is <last name>-<first initial>), also
appears in the email.7

– We associate the most frequently appearing sender’s email address from the remaining candi-
dates.

– Finally, this dataset contains duplicates (e.g. the same email appears in the “inbox” and “cal-
endar” folders). We then explicitly deduplicate all emails sent by this email address to remove
exact duplicates. This gives the final set of examples for each user.

We verified that each of the remaining 138 users had their unique email addresses.

• ArXiv Abstracts8 (Clement et al., 2019): Each example is an English-language scientific abstract
posted to the ArXiv pre-print server through the end of 2021. We define the user associated with
an abstract to be the first author of the paper. Note that this notion of author may not always reflect
who actually wrote the abstract in case of collaborative papers. As we do not have access to perfect
ground truth in this case, there is a possibility that the user labeling might have some errors (e.g.
a non-first author wrote an abstract or multiple users collaborated on the same abstract). Thus, we

5https://huggingface.co/datasets/cc_news
6https://www.cs.cmu.edu/~enron/
7This processing omits some users. For instance, the most frequently appearing sender’s email of the user “crandell-s” with

inferred last name “crandell” is sean.crandall@enron.com. It is thus omitted by the preprocessing.
8https://huggingface.co/datasets/gfissore/arxiv-abstracts-2021
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Dataset User Field #Users #Examples Percentiles of Examples/User

P0 P25 P50 P75 P100

ArXiv Abstracts Submitter 16511 625K 20 24 30 41 3204

Reddit Comments (Small) User Name 2774 537K 100 115 141 194 1662

Table 3: Summary statistics for additional datasets.

postpone the results for the ArXiv Abstracts dataset to Appendix E. See Table 3 for statistics of the
ArXiv dataset.

Despite the imperfect ground truth labeling of the ArXiv datasets, we believe that evaluating the pro-
posed user inference attack reveals the risk of privacy leakage in fine-tuned LLMs for two reasons. First,
the fact that we have significant privacy leakage despite imperfect user labeling suggests that the attack
will only get stronger if we had perfect ground truth user labeling and non-overlapping users. This is
because mixing distributions only brings them closer, as shown in Proposition 2 below. Second, our
experiments on canary users are not impacted at all by the possible overlap in user labeling, since we
create our own synthetically-generated canaries to evaluate worst-case privacy leakage.

Proposition 2 (Mixing Distributions Brings Them Closer). Let P,Q be two user distributions over text.
Suppose mislabeling leads to the respective mixture distributions of P ′ = λP + (1 − λ)Q and Q′ =
µQ+ (1− µ)P for some λ, µ ∈ [0, 1]. Then, we have, KL(P ′‖Q′) ≤ KL(P‖Q).

Proof. The proof follows from the convexity of the KL divergence in both its arguments. Indeed, we
have,

KL(P‖µQ+ (1− µ)P ) ≤ µKL(P |Q) + (1− µ) KL(P‖P ) ≤ KL(P |Q) ,

since 0 ≤ µ ≤ 1 and KL(P‖P ) = 0. A similar reasoning for the first argument of the KL divergence
completes the proof.

Preprocessing. Before fine-tuning models on these datasets we perform the following preprocessing
steps to make them suitable for evaluating user inference.

1. We filter out users with fewer than a minimum number of samples (20, 100, 30, and 150 samples
for ArXiv, Reddit, CC News, and Enron respectively). These thresholds were selected prior to
any experiments to balance the following considerations: (1) each user must have enough data to
provide the attacker with enough samples to make user inference feasible and (2) the filtering should
not remove so many users that the fine-tuning dataset becomes too small. The summary statistics of
each dataset after filtering are shown in Table 1.

2. We reserve 10% of the data for validation and test sets

3. We split the remaining 90% of samples into a held-in set and held-out set, each containing half
of the users. The held-in set is used for fine-tuning models and the held-out set is used for attack
evaluation.

4. For each user in the held-in and held-out sets, we reserve 10% of the samples as the attacker’s
knowledge about each user. These samples are never used for fine-tuning.

Target Models. We evaluate user inference attacks on the 125M and 1.3B parameter models from the
GPT-Neo (Black et al., 2021) model suite. For each experiment, we fine-tune all parameters of these
models for 10 epochs. We use the the Adam optimizer (Kingma and Ba, 2015) with a learning rate of
5× 10−5, a linearly decaying learning rate schedule with a warmup period of 200 steps, and a batch size
of 8. After training, we select the checkpoint achieving the minimum loss on validation data from the
users held in to training, and use this checkpoint to evaluate user inference attacks.

Attack Evaluation. We evaluate attacks by computing the attack statistic from Section 3 for each held-in
user that contributed data to the fine-tuning dataset, as well as the remaining held-out set of users. With
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these user-level statistics, we compute a Receiver Operating Characteristic (ROC) curve and report the
area under this curve (AUROC) as our metric of attack performance. This metric has been used recently
to evaluate the performance of membership inference attacks Carlini et al. (2022), and it provides a full
spectrum of the attack effectiveness (True Positive Rates at fixed False Positive Rates). By reporting the
AUROC, we do not need to select a threshold τ for our attack statistic, but rather we report the aggregate
performance of the attack across all possible thresholds.

D.2 Canary User Construction

We evaluate worst-case risk of user inference by injecting synthetic canary users into the fine-tuning data
from CC News, ArXiv Abstracts, and Reddit Comments. These canaries were constructed by taking
real users and replicating a shared substring in all of that user’s examples. This construction is meant
to create canary users that are both realistic (i.e. not substantially outlying compared to the true user
population) but also easy to perform user inference on. The algorithm used to construct canaries is
shown in Algorithm 1.

Algorithm 1 Synthetic canary user construction

Input: Substring lengths L = [l1, . . . ln], canaries per substring length N , set of real users UR
Output: Set of canary users UC
UC ← ∅
for l in L do

for i up to N do
Uniformly sample user u from UR
Uniformly sample example x from u’s data
Uniformly sample l-token substring s from x
uc ← ∅ . Initialize canary user with no data
for x in u do

xc ← InsertSubstringAtRandomLocation(x, s)
Add example xc to user uc

Add user uc to UC
Remove user u from UR

D.3 Mitigation Definitions

In Section 4.2 we explore heuristics for mitigating privacy attacks. We give precise definitions of the
batch and per-example gradient clipping.

Batch gradient clipping restricts the norm of a single batch gradient to be at most C:

ĝt =
min(C, ‖∇θt l(x)‖)
‖∇θt l(x)‖ ∇θt l(x) .

Per-example gradient clipping restricts the norm of a single example’s gradient to be at most C before
aggregating the gradients into a batch gradient:

ĝt =
n∑

i=1

min(C, ‖∇θt l(x(i))‖)
‖∇θt l(x(i))‖ ∇θt l(x(i)) .

The batch or per-example clipped gradient ĝt, is then passed to the optimizer as if it were the true
gradient.

For all experiments involving gradient clipping, we selected the clipping norm, C, by recording the
gradient norms during a standard training run and setting C to the minimum gradient norm. In practice
this resulted in clipping nearly all batch/per-example gradients during training.
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Figure 7: Tuning the parameters for example-level DP on the Enron dataset.

D.4 Example-Level Differential Privacy: Hyperparameter Tuning

We now describe the hyperparameter tuning strategy for the example-level DP experiments reported in
Table 2. Broadly, we follow the guidelines outlined by Ponomareva et al. (2023). Specifically, the tuning
procedure is as follows:

• The Enron dataset has n = 41000 examples from held-in users used for training. The Non-private
training of reaches its best validation loss in about 3 epochs or T = 15K steps. We keep this fixed
for the batch size tuning.

• Tuning the batch size: For each privacy budget ε and batch size b, we obtain the noise multiplier
σ such that the private sum

∑b
i=1 gi +N (0, σ2) repeated T times (one for each step of training) is

(ε, δ)-DP, assuming that each ‖gi‖2 ≤ 1. The noise scale per average gradient is then σ/b. This is
the inverse signal-to-noise ratio and is plotted in Figure 7a.
We fix a batch size of 1024 as the curves flatten out by this point for all the values of ε considered.
See also (Ponomareva et al., 2023, Fig. 1).

• Tuning the number of steps: Now that we fixed the batch size, we train for as many steps as
possible in a 24 hour time limit (this is 12× more expensive than non-private training). Note that
DP training is slower due to the need to calculate per-example gradients. This turns out to be around
50 epochs or 1200 steps.

• Tuning the learning rate: We tune the learning rate while keeping the gradient clipping norm at
C = 1.0 (note that non-private training is not sensitive to the value of gradient clip norm). We
experiment with different learning rate and pick 3× 10−4 as it has the best validation loss for ε = 8
(see Figure 7b). We use this learning rate for all values of ε.

D.5 Analysis of Duplicates in CC News

The CC News dataset from HuggingFace Datasets has 708241 examples, each of which has the following
fields: web domain (i.e., the “user”), the text (i.e. the body of the article), the date of publishing, the
article title, and the URL. Each example has a unique URL. However, the text of the articles from a given
domain are not all unique. In fact, there only 628801 articles (i.e., 88.8% of the original dataset) after
removing exact text duplicates from a given domain. While all of the duplicates have unique URLs, 43K
out of the identified 80K duplicates have unique article titles).

We list some examples of exact duplicates below:

• which.co.uk: “We always recommend that before selecting or making any important decisions
about a care home you take the time to check that it is right for your or your relative’s particular
circumstances. Any description and indication of services and facilities on this page have been
provided to us by the relevant care home and we cannot take any responsibility for any errors or
other inaccuracies. However, please email us on the address you will find on our About us page if
you think any of the information on this page is missing and / or incorrect.” has 3K duplicates.
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Figure 8: Histogram of number of duplicates in CC News. The right side of the plot shows a small number of unique articles
have a large number of repetitions.

• amarujala.com: “Read the latest and breaking Hindi news on amarujala.com. Get live Hindi
news about India and the World from politics, sports, bollywood, business, cities, lifestyle, astrol-
ogy, spirituality, jobs and much more. Register with amarujala.com to get all the latest Hindi news
updates as they happen.” has 2.2K duplicates.

• saucey.com: “Thank you for submitting a review! Your input is very much appreciated. Share it
with your friends so they can enjoy it too!” has 1K duplicates.

• fox.com: “Get the new app. Now including FX, National Geographic, and hundreds of movies
on all your devices.” has 0.6K duplicates.

• slideshare.net: “We use your LinkedIn profile and activity data to personalize ads and to
show you more relevant ads. You can change your ad preferences anytime.” has 0.5K duplicates.

• ft.com: “$11.77 per week * Purchase a Newspaper + Premium Digital subscription for $11.77
per week. You will be billed $66.30 per month after the trial ends” has 200 duplicates.

• uk.reuters.com: “Bank of America to lay off more workers (June 15): Bank of America Corp
has begun laying off employees in its operations and technology division, part of the second-largest
U.S. bank’s plan to cut costs.” has 52 copies.

As shown in Figure 8, a small fraction of examples account for a large number of duplicates (the right
end of the plot). Most of such examples are typically web scraping errors. Some of the web domains
have legitimate news article repetitions, such as the last example above. In general, these experiments
suggest that exact or approximate deduplication for the data contributed by each deduplication is a low
cost preprocessing step that can moderately reduce the privacy risks posed by user inference.

D.6 Computational Budget and Resources
All experiments reported in this paper were run on servers with one NVIDIA A100 GPU and 256 GB of
CPU memory. Each fine-tuning run took approximately 16 hours to complete for GPT-Neo 125M and
100 hours for GPT-Neo 1.3B. When training with example-level DP, training runs took approximately
24 hours to complete for GPT-Neo 125M. In total, the experiments reported in this paper required ap-
proximately 400 A100 GPU hours.

E Additional Experimental Results

We give full results on the ArXiv Abstracts dataset, provide further results for example-level DP, and run
additional ablations. Specifically, the outline of the section is:

• Appendix E.1: Additional experimental results showing user inference on the ArXiv dataset.
• Appendix E.2: Additional experiments on the effect of increasing the amount of attacker knowledge.
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Figure 9: Results on the ArXiv Abstracts dataset.

• Appendix E.3: Additional experiments on the effect of increasing the dataset size.
• Appendix E.4: Tables of TPR statistics at particular values of small FPR.
• Appendix E.5: Results and visualization of gradient clipping as a heuristic defense.
• Appendix E.6: ROC curves for an experiment performing within-user data deduplication on CC-

News.
• Appendix E.7: ROC curves corresponding to the example-level DP experiment (Table 2).
• Appendix E.8: Additional ablations on the aggregation function and reference model.

E.1 Results on the ArXiv Abstracts Dataset

Figure 9 shows the results for the ArXiv Abstracts dataset. Broadly, we find that the results are qualita-
tively similar to those of Reddit Comments and CC News.

Quantitatively, the attack AUROC is 57%, in between Reddit (56%) and CC News (66%). Figure 9b
shows the user-level generalization and attack performance for the ArXiv dataset. The Spearman rank
correlation between the user-level generalization gap and the attack AUROC is at least 99.8%, which is
higher than the 99.4% of CC News (although the trend is not as clear visually). This reiterates the close
relation between user-level overfitting and user inference. Finally, the results of Figure 9c are also nearly
identical to those of Figure 5, reiterating their conclusions.

E.2 Effect of Increasing the Amount of Attacker Knowledge

Figure 10 shows the effect of increasing the amount of attacker knowledge about the target user (i.e.,
the number of samples available to the attacker). We find that more attacker knowledge leads to higher
attack AUROC and a lower variance in the attack success over different random draws of the attacker
examples.

E.3 Effect of Increasing the Dataset Size: Reddit

We now compare the effect increasing the size of the dataset has on user inference. To be precise, we
compare the full Reddit dataset that contains 6 months of scraped comments with a smaller version that
uses 4 months of data (see Appendix D.1 and Figure 11a for details).

We find in Figure 11b that increasing the size of the dataset leads to a uniformly smaller ROC curve,
including a reduction in AUROC (60% to 56%) and a smaller TPR at various FPR values.
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FPR % TPR%

Reddit CC News Enron ArXiv

0.1 0.28 1.18 N/A 0.38

0.5 0.67 2.76 N/A 1.31

1 1.47 4.33 4.41 2.24

5 7.05 11.02 27.94 8.44

10 15.45 18.27 57.35 15.77

Table 4: Attack TPR at small FPR values corresponding to Figure 2.

E.4 Attack TPR at low FPR

We give some numerical values of the attack TPR and specific low FPR values.

Main experiment. While Figure 2 summarizes the attack performance with the AUROC, we give the
attack TPR at particular FPR values in Table 4. This result shows that while Enron’s AUROC is large, its
TPR at FPR= 1% at 4.41% is comparable to the 4.41% of CC News. However, for FPR= 5%, the TPR
for Enron jumps to nearly 28%, which is much larger than the 11% of CC News.

CC News Deduplication. The TPR statistics at low FPR are given in Table 5.
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Figure 10: Attack performance vs. attacker knowledge: As we increase the number of examples given to the attacker,
the attack performance increases across all three datasets. The shaded area denotes the std over 100 random draws of attacker
examples.
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Figure 11: Effect of increasing the fraction of data contributed by each user: Since Reddit Full (6 Months)
contains more users than Reddit Small (4 Months), each user contributes a smaller fraction of the total fine-tuning
dataset. As a result, the user inference attack on Reddit Full is less successful, which agrees with the intuition from
Proposition 1.
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CC News Variant AUROC % TPR% at FPR =

0.1% 0.5% 1% 5% 10%

Original 65.73 1.18 2.76 4.33 11.02 18.27
Deduplicated 59.08 0.58 1.00 1.75 7.32 11.31

Table 5: Effect of within-user deduplication: Attack TPR at small FPR values corresponding to Figure 13.
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Figure 12: Mitigation with gradient clipping. Left: Attack effectiveness for canaries with different shared substring lengths
with gradient clipping (125M model, CC News). Right: The distribution of gradient norms for canary examples and real
examples.

E.5 Attack Success with Gradient Clipping

We explore the use of gradient clipping at the batch or per-example level as a mitigation for user in-
ference. In particular, we fine-tune the 125M parameter model on CC-News with no gradient clipping,
batch gradient clipping, and per-example gradient clipping, and compare the attack effectiveness on ca-
nary users. Figure 12 (left) demonstrates that gradient clipping at both the batch and per-example level
is insufficient for defending against user inference. This is likely because the training gradients from ca-
nary users’ training examples are sufficiently similar in magnitude to real users’ gradients (see Figure 12
right).

E.6 ROC Curves for Within-User Data Deduplication

Figure 13 shows the effect of deduplicating within each user’s set of fine-tuning examples. We fine-tune
two models on CC-News, one with within-user deduplication and one without deduplication, and find
that the attack ROC curve is uniformly lower with deduplication. However, based on non-trivial attack
success on deduplicated CC-News, as well as on the Reddit and Enron Emails dataset, deduplication is
not sufficient for fully mitigating user inference.

E.7 ROC Curves for Example-Level Differential Privacy

The ROC curves corresponding to the example-level differential privacy is given in Figure 14. The ROC
curves reveal that while example-level differential privacy (DP) reduces the attack AUROC, we find that
the TPR at low FPR remains unchanged. In particular, for FPR = 3%, we have TPR = 6% for the
non-private version but TPR = 10% for ε = 32. This shows that example-level DP is ineffective at fully
thwarting the risk of user inference.

E.8 Additional Ablations

The user inference attacks implemented in the main paper use the pre-trained LLM as a reference model
and compute the attack statistic as a mean of log-likelihood ratios described in Section 3. In this section,
we study different choices of reference model and different methods of aggregating example-level log-
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Figure 14: ROC curves (linear and log scale) for the example-level differential privacy on the Enron Emails
dataset.

likelihood ratios. For each of the attack evaluation datasets, we test different choices of reference model
and aggregation function for performing user inference on a fine-tuned GPT-Neo 125M model.

In Table 6 we test three methods of aggregating example-level statistics and find that averaging the
log-likelihood ratio outperforms using the minimum or maximum per-example ratio. Additionally, in
Table 7 we find that using the pre-trained GPT-Neo model as the reference model outperforms using
an independently trained model of equivalent size, such as OPT (Zhang et al., 2022) or GPT-2 (Radford
et al., 2019). However, in the case that an attacker does not know or have access to the pre-trained model,
using an independently trained LLM as a reference still yields strong attack performance.

Attack Statistic
Aggregation

Reddit Comments ArXiv Abstracts CC News Enron Emails

Mean 56.0± 0.7 57.2± 0.4 65.7± 1.1 87.3± 3.3

Max 54.5± 0.8 56.7± 0.4 62.1± 1.1 71.1± 4.0

Min 54.6± 0.8 55.3± 0.4 63.3± 1.0 57.9± 4.0

Table 6: Attack statistic design: We compare the default mean aggregation of per-document statistics
log(pθ(x

(i))/pref(x
(i))) in the attack statistic (Section 3) with the min/max over documents i = 1, . . . ,m. We show the

mean and std AUROC over 100 bootstrap samples of the held-in and held-out users.
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Reference Model ArXiv Abstracts CC News Enron Emails
GPT-Neo 125M∗ 57.2± 0.4 65.8± 1.1 87.8± 3.5

GPT-2 124M 53.1± 0.5 65.7± 1.2 74.1± 4.5

OPT 125M 53.7± 0.5 62.0± 1.2 77.9± 4.2

Table 7: Effect of the reference model: We show the user inference attack AUROC (%) for different choices of the reference
model pref , including the pretrained model pθ0 (GPT-Neo 125M, denoted by ∗). We show the mean and std AUROC over 100
bootstrap samples of the held-in and held-out users.

F Discussion on User-Level DP

Differential privacy (DP) at the user-level gives quantitative and provable guarantees that the presence or
absence of one user’s data is indistinguishable. Concretely, a training procedure is (ε, δ)-DP at the user
level if the model pθ trained on the data from set U of users and a model pθ,u trained on data from users
U ∪ {u} satisfies

P(pθ ∈ A) ≤ exp(ε)P(pθ,u ∈ A) + δ , (7)

and analogously with pθ, pθ,u interchanged, for any outcome set A of models, any user u and any U of
users. Here, ε is known as the privacy budget and a smaller value of ε denotes greater privacy.

In practice, this involves “clipping” the user-level contribution and adding noise calibrated to the
privacy level (McMahan et al., 2018).

The promise of user-level DP. User-level DP is the strongest form of protection against user inference.
For instance, suppose we take

A =

{
θ :

1

m

m∑

i=1

log

(
pθ(x

(i))

pref(x(i))

)
≤ τ

}

to be set of all models whose test statistic calculated on x(1:m) ∼ Dmu is at most some threshold τ . Then,
the user-level DP guarantee (7) says that the test statistic between pθ and pθ,u are nearly indistinguishable
(in the sense of (7)). In other words, the attack AUROC is provably bounded as function of the parameters
(ε, δ) (Kairouz et al., 2015).

User-level DP has successfully been deployed on industrial applications with user data (Ramaswamy
et al., 2020; Xu et al., 2023). However, these applications are in the context of federated learning with
small on-device models.

The challenges of user-level DP. While user-level DP is a natural solution to mitigate user inference,
it involves several challenges, including fundamental dataset sizes, software/systems challenges, and a
lack of understanding of empirical tradeoffs.

First, user-level DP can lead to a major drop in performance, especially if the number of users in
the fine-tuning dataset is not very large. For instance, the Enron dataset with O(150) users is definitely
too small while CC news with O(3000) users is still on the smaller side. It is common for studies on
user-level DP to use datasets with O(100K) users. For instance, the Stack Overflow dataset, previously
used in the user-level DP literature, has around 350K users (Kairouz et al., 2021; Choquette-Choo et al.,
2024).

Second, user-aware training schemes including user-level DP and user-level clipping, require sophis-
ticated user-sampling schemes. For instance, we may require operations of the form “sample 4 users
and return 2 samples from each”. On the software side, this requires fast per-user data loaders (see e.g.
Charles et al., 2023). Such utilities are not supported by standard training workflows, which are oblivious
to the user-level structure in the data.

Third, user-level DP also requires careful accounting of user contributions per round and balancing
user contributions per-round and the number of user participations over all rounds. The trade-offs in-
volved here are not well-studied, and require a detailed investigation.

Finally, existing approaches require the datasets to be partitioned into disjoint user data subsets. Un-
fortunately, this is not always true in applications such as email threads (where multiple users contribute
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to the same thread) or collaborative documents. The ArXiv Abstracts dataset suffers from this latter issue
as well. This is a promising direction for future work.

Summary. In summary, the experimental results we presented make a strong case for user-level DP at
the LLM scale. Indeed, our results motivate the separate future research question on how to effectively
apply user-level DP given accuracy and compute constraints. The follow-up works (Charles et al., 2024;
Chua et al., 2024) make some promising preliminary progress in this direction.
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