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Abstract

Recent development of large language mod-
els (LLMs) for code like CodeX and CodeT5+
shows promise in achieving code intelligence.
Their ability of synthesizing program targeting
a pre-defined algorithmic coding task has been
intensively tested and verified on datasets in-
cluding HumanEval and MBPP. Yet, evaluation
of these LLMs from more perspectives (than
just program synthesis) is also anticipated, con-
sidering their broad scope of applications. In
this paper, we explore their ability of automatic
test cases generation. We show intriguing ob-
servations and reveal how the quality of their
generated test cases can be improved. Follow-
ing recent work which uses generated test cases
to enhance program synthesis, we further lever-
age our findings in improving the quality of
the synthesized programs and show +11.77%
and +4.22% higher code pass rates on Hu-
manEval+ comparing with the GPT-3.5-turbo
baseline and the recent state-of-the-art, respec-
tively. Our code is publicly available at https:
//github.com/asdasxzxcq/TestCaseGen.

1 Introduction

The community has witnessed a surge in the devel-
opment of large language models (LLMs), which
have achieved incredible ability in understanding
and generating not only texts but also code. LLMs
for code (CodeX (Chen et al., 2021), StarCoder (Li
et al., 2023b), CodeT5+ (Wang et al., 2023b), etc.)
have been widely adopted to a variety of applica-
tions to achieve code intelligence, and there is an
apparent arms race between these LLMs. However,
current evaluation of these LLMs mostly focuses
on program completion/synthesis, despite the mod-
els can also be utilized in other applications, e.g.,
automatic unit test case generation.

The ability of automatically generating proper
test cases is of great desire to software engineering,
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yet challenging. Traditional test case generation ef-
forts primarily focus on creating diverse test inputs
to identify faults in the code as much as possible via
maximizing their coverage, e.g., line coverage and
branch coverage (Fioraldi et al., 2020; Tufano et al.,
2022; Dinella et al., 2022; Lemieux et al., 2023;
Xia et al., 2023), and they lack the ability of deter-
mining whether the code adheres to the aim of the
function which is represented by input-output rela-
tionships. Yet, desired test cases should not only
show an high coverage but also present a correct
understanding of the “true” desired input-output
relationships in in the code being tested.

Being capable of synthesizing correct code im-
plementations given docstrings, machine learning
models and (especially) the recent LLMs for code
seem capable of understanding the desired input-
output relationship (described in natural language)
of a function. This strong capability enables LLMs
to generate unit test cases automatically and fulfill
the aforementioned aim (Chen et al., 2021). How-
ever, the ability of code LLMs to automatically gen-
erate diverse test inputs paired with their correct
test outputs, has not been systematically evaluated.
Chen et al. (2023) compared CodeX with two open-
source LLMs in a single setting and showed that the
quality of test cases is of importance to the success
of their method which improves program synthesis,
but GPT-3.5 and advanced open-source LLMs that
emerge afterwards are of course not evaluated. In
this paper, we systematically compare the ability
of recent LLMs for code in generating test cases
from perspectives focusing on their correctness and
diversity, considering that 1) program testing is of
great interest in software engineering and software
security as have been mentioned, 2) test cases can
further be adopted to improve the program under-
standing (Zhao et al., 2023; Huang et al., 2023) and
program synthesis performance (Chen et al., 2023),
and 3) the ability of these LLMs in generating test
cases has not yet been investigated systematically,
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despite the arms race.
Our analyses focus on algorithmic coding, based

on the 164 problems from HumanEval+ (Liu
et al., 2023a) and 427 sanitized problems from
MBPP (Austin et al., 2021). It is worth noting
that, in practice, the model may encounter various
scenarios when test cases are required to be gener-
ated. It may generate test cases when provided with
only natural language descriptions in a docstring
and without any specific program implementation
targeting an algorithmic coding task, or it could
generate test cases when given an “optimal” oracle
implementation. In other situations, it may need
to test its own imperfect generated program or the
program generated by other models. Therefore, in
contrast to Chen et al. (2023)’s work which focuses
on a single setting, we consider 4 different test-
case generation settings (i.e., the “self-generated”
setting that uses each LLM to test programs syn-
thesized by the LLM itself, the “cross-generated”
setting that lets all LLMs to test the same set of
programs synthesized by a group of four LLMs,
“oracle” which tests an oracle implementation, and
the “placeholder” (as shown in Figure 1), and we
consider a collection of 11 LLMs. We conducted
intensive experiments, from which intriguing take-
away messages are delivered.

As previously mentioned, several very recent pa-
pers (Shi et al., 2022; Li et al., 2023a; Chen et al.,
2023) have shown that appropriate usage of gener-
ated test cases can improve the quality of program
synthesis. Yet, the quality of generated test cases
largely impacts the performance of such methods.
Due to the lack of systematic evaluation of the test-
ing ability of LLMs for code, it is unclear how to
craft test cases that could be potentially more help-
ful to program synthesis. The studies in this paper
also shed light on this. We show that, substantially
improved program synthesis performance can be
gained by utilizing takeaway messages in our stud-
ies. Specifically, we can achieve +11.77% higher
code pass rate on HumanEval+, in comparison with
the GPT-3.5-turbo baseline. Compared with CodeT
which is a very recent state-of-the-art, our solution
gains +4.22% higher code pass rate.

2 Large Language Models for Code

In this section, we outline the evaluated models.
We use some “small” models whose numbers of pa-
rameters are around 1B (to be more specific, from
770M to 1.3B in our choices) and some larger mod-

els that achieve state-of-the-art performance in the
task of program synthesis.

For small models, we use InCoder (1.3B) (Fried
et al., 2023), CodeGen2 (1B) (Nijkamp et al.,
2023a), CodeT5+ (770M) (Wang et al., 2023b),
and SantaCoder (1.1B) (Allal et al., 2023).

As for larger models that achieve state-of-the-
art program synthesis performance, we use Code-
Gen2 (16B) (Nijkamp et al., 2023a), CodeGen-
Multi (16B) (Nijkamp et al., 2023b), CodeGen-
Mono (16B) (Nijkamp et al., 2023b), StarCoder
(15B) (Li et al., 2023b), WizardCoder (15B) (Luo
et al., 2023), CodeGeeX2 (6B) (Zheng et al., 2023),
and GPT-3.5-turbo. We tested pass@1 of all mod-
els except GPT-3.5-turbo whose result can be di-
rectly collected from Liu et al. (2023a)’s paper.
By sorting their pass@1 from high to low, they
are ranked as: GPT-3.5-turbo (61.7%), Wizard-
Coder (46.23%, 15B), CodeGeeX2 (29.97%, 6B),
StarCoder (27.9%, 15B), CodeGen-Mono (26.15%,
16B), CodeGen2 (19.33%, 16B), CodeGen-Multi
(15.35%, 16B). The ranks on the MBPP dataset are
similar. Refer to Appendix A.3 for more details.

3 Programs to be Tested

For evaluating the test case generation ability of
the LLMs, we need an oracle to express the ground-
truth functionality of the tested code. Fortunately,
HuamnEval (Chen et al., 2021) and MBPP (Austin
et al., 2021) provide such oracles. In our experi-
ments, we use an amended version of HumanEval
called HumanEval+ (Liu et al., 2023a), together
with sanitized version of MBPP. These datasets are
established to evaluate basic Python programming
performance of LLMs, and they contain 164 and
427 problems, respectively.

3.1 Imperfect Program Implementations

In order to simulate real-world scenarios where
the tested programs are often buggy, we first adopt
synthesized programs as the programs to be tested,
considering that the performance of state-of-the-art
LLMs is still imperfect. We evaluate the perfor-
mance of each LLM in testing the program that
was generated by itself (which is denoted as “Self-
generated”) and code in a set consisting of pro-
gram completion results of several different LLMs
(which is denoted by “Cross-generated”). That
said, the compared LLMs take different program
implementations when generating test cases for
each programming problem in the self-generated
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Figure 1: Testing (a) self-generated code, (b) cross-generated code, (c) an oracle, and (d) a placeholder.

setting. Whereas, in the cross-generated setting,
the same implementations are given to different
LLMs for generating test cases for comparison. In
experiments, we apply InCoder (1.3B), CodeGen2
(1B), CodeT5+ (770M), and SantaCoder (1.1B) to
construct the cross-generated set, while, in the self-
generated setting, each LLM first synthesize and
complete a program to fulfill the requirement of
each programming problem, and the LLM then gen-
erates test cases with the synthesized programs in
its prompts. The temperature is uniformly set to 0.2
when synthesizing the programs in both settings.
We obtain 100 program implementations for each
problem and we prompt each LLM to generate 3
test cases for every program in the self-generated
setting. We sampled 100 implementations from
the synthesis results of InCoder (1.3B), CodeGen2
(1B), CodeT5+ (770M), and SantaCoder (1.1B) to
form the cross-generated program set, i.e., we have
N = 100 for the two settings.

We follow the same way of generating programs
as introduced in the papers of these LLMs. For
models without instruction tuning, like InCoder
and CodeT5+, we synthesize programs using the
default prompt given by each programming prob-
lem in the test dataset, while, for models that have
applied instruction tuning, e.g., WizardCoder, we
use the prompt recommended in their papers.

3.2 Optimal Program Implementations
(Oracle)

As a reference, we also report the performance of
generating accurate and diverse test cases when the

programs are perfectly correct, which is achieved
by adopting the oracle implementation as the pro-
grams to be tested (and such a setting is denoted by
“Oracle”). As Liu et al. (2023a) have reported that
some oracle programs in the HumanEval dataset
can be incorrect, we adopt the amended oracle set
in HumanEval+ in this setting. We further used the
revised oracle program implementations instead of
the original ones in evaluating the pass rate of the
generated test cases (i.e., P ′ whose detailed intro-
duction is deferred to Appendix A.1). Considering
that the public datasets often only provide one ora-
cle implementation for each problem, and to keep
the uncertainty of evaluation results consistent, we
copy the oracle implementation by 100× and we
prompt to generate 3 test cases for each of these
copies. It can be regarded as letting N = 100, just
like in Section 3.1.

3.3 No Implementation (Placeholder)

In certain scenarios, we require test cases before
the function/program has been fully implemented,
thus we also evaluate in a setting where the main
body of a tested function/program is merely a place-
holder, as depicted in Figure 1(d). This scenario
often occurs when the main code has not yet been
implemented for a function/program or the test en-
gineer does not want to introduce implementation
bias to the LLM when generating test cases. We
denote such a setting as “Placeholder” in this pa-
per. We also let N = 100, as in the oracle setting
in Section 3.2.
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4 Main Results for Test Case Generation

The experiment results of small and large LLMs
on HumanEval+ can be found in Table 1. Table 2
shows the results on MBPP. The evaluation met-
rics are introduced in Appendix A.1, and how test
cases adhere to settings introduced in Section 3 are
obtained is carefully described in Appendix A.2.

There are several takeaway messages.

• First, the test cases generated by LLMs can
show a decent pass rate, and this pass rate is
even higher than the code pass rate on Hu-
manEval+, which holds for both large and
small LLMs. Such a result is consistent with
intuitions from previous work (Chen et al.,
2023) which rejects code that cannot pass the
generated tests to improve the quality of pro-
gram synthesis.

• Second, the correctness of the generated test
cases is positively correlated with the LLM’s
ability of generating programs (see Figure 2,
where each red cross represents the perfor-
mance of an LLM model), which means an
LLM showing the state-of-the-art program
synthesis performance is possibly also the
state-of-the-art LLM for program testing.

• Third, as can be seen in Tables 1 and 2, gen-
erating test cases using large LLMs with their
self-generated programs (in the prompts) of-
ten leads to a higher level of correctness, when
compared with the results using placeholders.
Such an observation is in fact unsurprising,
considering that generating programs first and
generating test case afterwards resemble the
chain-of-thought prompting (Wei et al., 2022)
(if adopting the placeholder is regarded as a
plain prompting), which is beneficial to rea-
soning. Moreover, the self-generated perfor-
mance of an LLM sometimes even outper-
forms its testing performance with an ora-
cle. We ascribe this to: 1) randomness in
the style of the oracles which are few in num-
ber and/or 2) less distribution shift between
self-generated programs in prompts and the
training code, for some powerful LLMs.

• Fourth, with only a few exceptions, test cases
obtained using the oracle programs exhibit
slightly higher code coverage, while the cov-
erage rate achieved in the other settings (i.e.,

the self-generated, cross-generated, and the
placeholder settings) is often slightly lower.

The above four takeaway messages can all be
inferred from Tables 1 and 2. In addition to all these
results, we conduct more experiments to further
achieve the following takeaway messages.

• Fifth, by analyzing the relationship between
the quality of program in prompts and the cor-
rectness of test, we found that correct program
implementation in the prompt often leads to
higher quality of test case generation than the
case when some incorrect program is given.
We conducted an experiment by first select-
ing programming problems in HumanEval+,
where the code pass rate of an LLM is nei-
ther 0% nor 100%. Then we separate its self-
generated programs into two groups, with one
group only contains programs that are con-
sidered as correct and the other only contains
incorrect programs. In Table 3, we compare
the performance of using these two sorts of
programs in the prompt, for generating test
cases using the same LLM. Apparently, the
quality of test cases obtained with correct
programs is obviously higher. We further
evaluate the overall testing performance of
LLMs with only correct self-generated pro-
grams, if there exists any, in their prompts.
Unlike in Table 3 where we do not take prob-
lems that can be 100% or 0% solved, we take
all given problems in this evaluation, except,
for every problem, we eliminate all incorrect
self-generated programs if there exist at least
one correct implementation synthesized by
the evaluated LLM. By doing so, we can ob-
serve substantially improved program testing
ability on HumanEval+ (i.e., 74.95% for GPT-
3.5-turbo, 56.87% for WizardCoder, 54.33%
for CodeGeeX2, and 53.24% for StarCoder),
comparing with the original self-generated re-
sults in Table 1. The same on MBPP.

• Sixth, by conducting an additional experi-
ment, we further compare the quality of test
cases collected from different positions in the
generation results. For every set of the three
generated test cases, we analyze the relation-
ship between their correctness and the order
when they are generated. The results are il-
lustrated in Figure 3. As can be seen in the
figure, the first generated test case often shows
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Model Size Oracle Self-generated Cross-generated Placeholder

InCoder 1.3B 21.31% (61.43%) 23.37% (59.36%) 22.72% (61.10%) 25.19% (62.75%)
CodeGen2 1B 31.63% (71.55%) 30.62% (69.38%) 30.93% (69.70%) 30.69% (69.00%)
CodeT5+ 770M 35.43% (71.45%) 32.34% (70.45%) 31.49% (69.75%) 32.67% (70.67%)

SantaCoder 1.1B 30.97% (71.46%) 30.43% (70.81%) 30.13% (70.55%) 30.78% (71.24%)

CodeGen-Multi 16B 43.88% (67.91%) 41.85% (69.30%) 40.38% (66.97%) 39.74% (68.28%)
CodeGen2 16B 46.34% (73.07%) 45.44% (73.17%) 42.00% (72.45%) 42.69% (72.86%)

CodeGen-Mono 16B 49.03% (74.82%) 45.73% (73.74%) 43.91% (73.66%) 44.92% (73.63%)
StarCoder 15B 55.07% (76.02%) 52.52% (72.45%) 48.20% (72.30%) 50.58% (74.52%)

CodeGeeX2 6B 57.03% (74.42%) 53.16% (73.55%) 49.28% (70.32%) 51.78% (73.08%)
WizardCoder 15B 53.89% (77.87%) 55.47% (76.07%) 48.02% (75.27%) 49.89% (75.12%)
GPT-3.5-turbo - 71.03% (77.85%) 72.45% (77.24%) 59.24% (74.99%) 66.28% (74.03%)

Table 1: The pass rates (and coverage rate) of the test cases generated on HumanEval+ in different settings.
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Figure 3: How the correctness of the test cases changes with their
order when being generated.

the best correctness and the latterly generated
ones are more incorrect. This may be due to
the fact that the model tends to first generate
content with a high level of confidence (which
is also more likely to be correct).

5 Improving Program Synthesis Using
the Generated Test Cases

High quality test cases are not only desired in pro-
gram analyses, but also helpful to program syn-
thesis. Previous methods have successfully used
generated test cases to improve the performance
of LLMs in synthesizing programs. For instance,
Li et al. (2023a) designed a special prompt which
involves the test cases as an preliminary, if they
are available, for generating programs. One step
further, Chen et al. (2023) proposed CodeT, which
leverages the LLM to obtain test cases first and
tests all synthesized programs with these test cases
by performing a dual execution agreement, and it
picks the programs in the largest consensus set (i.e.,
the consensus set with the most program implemen-
tations and test cases) as output to obtain state-of-
the-art program synthesis performance. We encour-
age interested reader to read the original paper.

In the previous section, we have obtained results
about many intriguing properties of the program
testing performance of LLMs for code. In this sec-
tion, we would like to drive the readers to think

whether it is possible to utilize these results to im-
prove the program synthesis performance, consid-
ering that the test cases (hand-crafted and given or
automatically generated in particular) are widely
and successfully used in program synthesis. We
will show that, by utilizing takeaway messages in
Section 4, program synthesis performance of previ-
ous methods can be improved significantly. Taking
CodeT as an example, the method uses a place-
holder to generate test cases and treats all the test
cases as equally correct as a prior. However, as dis-
cussed in our third takeaway message, using self-
generated programs helps to achieve more powerful
ability in generating correct test cases. Moreover,
if multiple test cases are provided in a single run
of generation given an LLM, the correctness of the
test cases decreases with their generation order, as
shown in our sixth point. Hence, to obtain supe-
rior program synthesis performance, we introduce
two simple modifications to it: 1) we employ the
“self-generated” setting instead of the “placeholder”
setting for generating test cases, which means we
used synthesize programs in prompts when gener-
ating test cases for each program, 2) we assign dif-
ferent weights to the generated test cases based on
their order in each generation result, which means
we used the rank of each generated test case to
re-weight its contribution to the consensus set it be-
longs to. Note that, inspired by the sixth takeaway
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Model Size Oracle Self-generated Cross-generated Placeholder

InCoder 1.3B 21.56% (46.81%) 17.98% (46.11%) 19.53% (46.45%) 22.58% (46.72%)
CodeGen2 1B 25.61% (54.26%) 21.85% (53.09%) 23.15% (50.43%) 22.81% (52.11%)
CodeT5+ 770M 29.02% (56.86%) 24.44% (52.31%) 24.84% (53.20%) 25.59% (55.81%)

SantaCoder 1.1B 32.37% (55.68%) 26.40% (52.38%) 26.20% (52.83%) 26.53% (53.86%)

CodeGen-Multi 16B 41.32% (60.63%) 35.96% (59.03%) 34.17%,(58.09%) 34.84% (58.92%)
CodeGen2 16B 45.30% (62.15%) 38.67% (60.16%) 36.77% (58.59%) 37.27% (59.16%)

CodeGen-Mono 16B 50.24% (64.39%) 43.94% (62.94%) 39.55% (61.99%) 42.41% (62.31%)
StarCoder 15B 54.84% (65.10%) 46.77% (63.60%) 42.80% (61.95%) 45.35% (62.66%)

CodeGeeX2 6B 52.45% (64.64%) 44.52% (63.72%) 41.72% (60.48%) 43.86%,(63.51%)
WizardCoder 15B 57.85% (66.68%) 46.56% (64.86%) 41.62% (60.72%) 47.45% (64.54%)
GPT-3.5-turbo - 74.30% (66.19%) 66.14% (65.30%) 49.56% (62.95%) 63.34% (64.72%)

Table 2: The pass rates (and coverage rate) of the test cases generated on MBPP.

Model Size w/ correct code w/ incorrect code #Problem

InCoder 1.3B 28.55% 27.39% 27
CodeGen2 1B 27.25% 25.74% 11
CodeT5+ 770M 40.19% 36.78% 27

SantaCoder 1.1B 37.45% 34.08% 24

CodeGen-Multi 16B 55.49% 50.06% 32
CodeGen2 16B 43.56% 39.31% 29

CodeGen-Mono 16B 45.18% 42.86% 56
StarCoder 15B 58.16% 57.08% 68

CodeGeeX2 6B 52.84% 48.63% 51
WizardCoder 15B 48.02% 45.12% 54
GPT-3.5-turbo - 75.39% 68.52% 126

Table 3: With the correct (self-generated) programs, the
LLMs show stronger ability of generating correct test
cases on HumanEval+ (evluated only on those problems
that can neither be 0% solved nor 100% solved), than
in the case where incorrect self-generated programs are
given in the prompts.

message, another possible modification that could
be explored in future work is to query LLMs more
than once for generating test cases for each pro-
gram, and generate fewer test cases in each query.
However, problems like higher number of times
for querying a LLM and higher possibility of test
case duplication across different queries should be
properly addressed when exploring this direction.

We test the effectiveness of using 1) the prompt
which involves self-generated (SG) programs as the
test cases generated in this setting show higher cor-
rectness than the baseline placeholder setting and
2) the rank-based re-weighted (RW) test cases, in
improving program synthesis performance on Hu-
manEval+. The details of our implementation are
shown in Appendix A.8. In addition to the LLMs
evaluated in Section 4, we have also included re-
sults for two more recent LLMs (Llama 3 and GPT-
4o) as of the date of preparing our camera-ready
submission. Llama 3 achieve 66.50% (75.03%),
71.08% (75.67%), 59.25% (74.05%), and 65.31%
(74.52%) on HumanEval+ in the oracle, self-
generated, cross-generated, and placeholder set-
tings, respectively, while GPT-4o achieve 76.40%
(77.31%), 86.94% (78.34%), 68.06% (75.47%),
and 73.47% (75.95%), comparing with the results
of other models in Table 1.

Table 4 shows the results. In the table, we com-
pare CodeT with CodeT+SG, CodeT+RW, and

Model Size Baseline CodeT + SG + RW + SG & RW

InCoder 1.3B 6.99% 9.85% 9.45% 10.26% 9.98%
CodeGen2 1B 9.19% 15.15% 14.89% 15.67% 15.35%
CodeT5+ 770M 12.95% 16.57% 16.28% 17.19% 16.98%

SantaCoder 1.1B 15.21% 18.43% 18.17% 18.75% 18.63%

CodeGen-Multi 16B 15.35% 24.50% 25.71% 25.72% 26.95%
CodeGen2 16B 19.33% 27.56% 28.51% 28.43% 29.63%

CodeGen-Mono 16B 26.15% 35.63% 36.69% 36.63% 37.95%
StarCoder 15B 27.90% 40.46% 41.21% 42.12% 43.15%

CodeGeeX2 6B 29.97% 44.16% 45.23% 44.92% 46.32%
WizardCoder 15B 46.23% 58.41% 60.13% 59.60% 61.45%

Llama 3 8B 62.20% 64.52% 67.39% 66.83% 70.61%
GPT-3.5-turbo - 61.70% 69.25% 72.45% 70.75% 73.47%

GPT-4o - 76.50% 78.24% 80.30% 79.45% 83.33%

Table 4: Program synthesis performance (Pass@1) of
LLMs can be significantly improved by using our take-
away messages in Section 4.

CodeT+SG+RW. For CodeT, we follow their of-
ficial implementation and generate 100 × 5 test
cases for each problem. For fair comparison, we
ensure that our solutions with SG and/or RW gen-
erate the same numbers of program implementa-
tions and test cases as CodeT does. Hence, for
each problem in HumanEval+, we synthesize a pro-
gram together with its 5 test cases for 100 times
when SG and/or RW are incorporated, i.e., we have
i ∈ {1, 2, 3, 4, 5}. It can be seen from the table
that both SG and WR improves the program syn-
thesis performance considerably on most LLMs,
except for Incoder, CodeGen2-1B, CodeT5+, and
SantaCoder for which the test cases generated in
the placeholder setting show similar or even higher
correctness than in the self-generated setting and
SG fails with them. For some LLMs, SG is more
powerful, while, on the other models including San-
taCoder and StarCoder, RW is more powerful. In
general, smaller models benefit more from RW than
from SG + RW, probably because smaller models
generate test cases with higher correctness rates in
the placeholder setting than in the self-generated
setting. By combining SG and RW, the program
synthesis performance of most powerful LLMs in
Table 4 improves, comparing to only using one of
the two. On GPT-3.5-turbo and WizardCoder, we
achieve +4.22% and +3.04% performance gains for
CodeT, respectively, with SG & RW, while on GPT-
4o and Llama 3, we achieve +5.09% and 6.09%.
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6 Conclusion

In this paper, we have performed thorough analyses
of recent LLMs (mostly LLMs for code) in gener-
ating test cases for programs. Through comprehen-
sive experiments with 11 LLMs on programming
benchmark datasets including HumanEval+ and
MBPP (the sanitized version), we have uncovered
a range of intriguing characteristics of these LLMs
for program testing. We have illustrated how the
capabilities of these LLMs in generating test cases
can be enhanced in comparing intensive empirical
results in four different settings. Based on our find-
ings, we are also able to improve the performance
of state-of-the-art LLMs in synthesizing programs
with test cases of higher quality. We believe our
work can provide new research insights and spark
new ideas in program synthesis, test-case genera-
tion, and LLM understanding, and we look forward
to future exploration in these directions.
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A Appendix

A.1 Evaluation Metrics

To make the evaluation reliable and comprehensive,
it is crucial to first introduce suitable metrics, like
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
and pass@k (Chen et al., 2021) for evaluating ma-
chine translation, text summarization, and program
synthesis, respectively. As will be specified, we
use two evaluation metrics, which are popular in
software engineering (Miller and Maloney, 1963;
Chen et al., 2023), for evaluating the correctness
and diversity of LLM-generated test cases.

In software engineering, we expect test cases to
represent some desired “ground-truth” functional-
ity of the tested program. In practice, such “ground-
truth” functionality can be described in the header
comments of a function (i.e., docstrings of the
function) and tested using the oracle implemen-
tation, as in HumanEval (Chen et al., 2021) and
MBPP (Austin et al., 2021). The oracle program
should be able to pass the test, if a generated test
case is correct. Therefore, we leverage the pass
rate of the oracle implementation provided in the
datasets as a measure to evaluate the correctness
of the generated test cases. Though such a choice
restricts our evaluation to datasets with such oracle
implementation provided, i.e., HumanEval (Chen
et al., 2021) and MBPP (Austin et al., 2021), it
makes the evaluation of correctness reliable. For
a fair comparison, we instruct each model to gen-
erate three test cases in the prompt, and, when a
model generates more than three test cases, we se-
lect the first three for evaluation. Assuming that
there are in total M programming problems in an
experimental dataset and, for each problem, we
have N program implementations to be generated
test cases for. Each model has only one chance to
generate these test cases for each program. Then,
we calculate the pass rate as:

P =
1

MN

M∑

i=1

N∑

j=1

pij
nij

, (1)

where nij is the number of test cases in Qij which
includes no more than three test cases generated
for the j-th program implementation of the i-th
problem by the evaluated LLM at once, i.e., Qij =
{(xijk, yijk)}k, and pij is the number of test cases
(in Qij) that do not fail the oracle.

The pass rate defined in Eq. (1) measures cor-
rectness of the generated test cases. However, as

can be seen in Figure 1, the model can generate du-
plicate test cases that are less helpful, even though
they are correct. To avoid such an evaluation bias,
we further advocate deduplication in the set of test
cases that are considered as correct, which leads to
computation of a deduplicated pass rate defined as
P ′ = 1

MN

∑∑
p′ij/n

′
ij , where we use ′ to denote

the numbers of unique test cases.
In addition to the above pass rates, we further

consider coverage rate as a metric for evaluating
the diversity of generated test cases. According to
its definition, coverge rate computes the degree to
which the program is executed, given a test case.
Since, for each program, we keep no more than
three test cases at once, we calculate how much
percentage of the control structure is covered given
these test cases. Similar to Eq. (1), we evaluate
the performance of testing all programs over all
M ×N times of generation, i.e., we calculate

C =
1

MN

M∑

i=1

N∑

j=1

cij , (2)

where cij is the per-test-case branch coverage rate.
We apply the pytest 1 library to evaluate the branch
coverage for all the three test cases for each pro-
gram and average the results for all programs and
all problems. Apparently, C ≤ 1, and a higher C
shows better testing ability of an LLM, since we
expect all parts of the programs to be executed to
find our all potential bugs.

While there are other metrics like the mutation
scores (mut) that could evaluate the test case qual-
ity, they are often more costly and are correlated
with the pass rate or the coverage rate according to
our experience and experiments, thus we stick with
the two metrics in this paper.

A.2 Test Case Generation
In this section, we introduce how test cases can
be generated, when the implementation of a func-
tion/program is given as described in Section 3.
In this paper, a desired test case is a pair of input
and its expected output for the function/program
defined in the context. As an example, Figure 1
demonstrates some test cases for the programming
problem of checking whether the two words satisfy
a specific rotation pattern. To generate test cases,
we use the LLMs introduced in Section 2.

We wrote extra prompts to instruct the LLMs to
generate three test cases for each given program

1https://pytest.org

31



which include docstrings that describe the purpose
of this function, as depicted in Figure 1. Our in-
struction commands the LLMs (1) to “check the
correctness of this function with three test” and (2)
to start writing test code with an “assert” state-
ment and the tested function, which specifies the
format of the test cases as input-output pairs that
can be parsed. For instance, given the example in
Figure 1, the extra prompt should be “# Check the
correctness of this function with three
test cases \n assert cycpattern_check”.

We then concatenate the extra prompt with the
code and feed the concatenation into each LLM, for
extracting test cases from the model output. When
using HumanEval+ and MBPP, we try removing
test cases in the docstrings of the function, if there
exist any, just to get rid of the broad hints from the
docstrings (Chen et al., 2023). The temperature for
generating test cases is kept as 0.2.

Once obtained, the generated test cases are then
compiled, and evaluated for their correctness and
diversity to report the pass rate P ′ and the coverage
rate C. When calculating, for each problem and
every set of completions generated, we create a
temporary folder.

A.3 Models for Code
InCoder is a unified generative model that can per-
form program synthesis as well as code editing, and
it combines the strengths of causal language mod-
eling and masked language modeling. The Code-
Gen2 model was trained on a deduplicated subset
of the Stack v1.1 dataset (Kocetkov et al., 2023),
and its training is formatted with a mixture of ob-
jectives for causal language modeling and span
corruption. CodeT5+ is an encoder-decoder model
trained on several pre-training tasks including span
denoising and two variants of causal language mod-
eling. SantaCoder was trained on the Python, Java,
and JavaScript code in the Stack dataset. The pass
rate (Chen et al., 2021) of programs generated by
these models is compared in Table 5. When eval-
uating the (program) pass rate, we let the model
generate 200 implementations for each problem,
and we set the temperature to 0.2, 0.6, and 0.8
for calculating pass@1, pass@10, and pass@100,
respectively.

CodeGen-Multi and CodeGen-Mono are two
large models from the first version of Code-
Gen. CodeGen-Multi was first trained on the
pile dataset (Gao et al., 2020) and then trained
on a subset of the publicly available BigQuery

Model Size Pass@1 Pass@10 Pass@100

InCoder 1.3B 6.99%/14.06% 14.20%/34.98% 23.76%/55.34%
CodeGen2 1B 9.19%/17.50% 16.06%/36.86% 25.90%/59.32%
CodeT5+ 770M 12.95%/28.02% 25.09%/47.69% 37.56%/65.26%

SantaCoder 1.1B 15.21%/29.42% 26.01%/51.30% 43.80%/69.10%

Table 5: Program synthesis performance of the small
LLMs (whose number of parameters is around 1 billion)
evaluated on HumanEval+ / MBPP (sanitized).

dataset which contains code written in C, C++,
Go, Java, JavaScript, and Python. Based on the
16B CodeGen-Multi model, CodeGen-Mono (16B)
was obtained by further tuning on a set of Python
code collected from GitHub. Given a base model
that was pre-trained on 1 trillion tokens from the
Stack dataset, the 15B StarCoder model was ob-
tained by training it on 35B tokens of Python code.
WizardCoder further empowers StarCoder with in-
struction tuning, following a similar instruction evo-
lution strategy as in WizardLM (Xu et al., 2023).
CodeGeeX2, the second generation of a multilin-
gual generative model for code, is implemented
based on the ChatGLM2 architecture and trained
on more code data. GPT-3.5-turbo is a very capable
commercial LLM developed by OpenAI and we
accessed it in August, 2023.

A.4 Further Analysis of Experimental Results
In this part, we provide further analysis of the ex-
perimental results in Section 4.

With regard to the situation where the test case
quality generated by SantaCoder is lower than that
generated by CodeT5+ on the HumanEval+ dataset,
we have explained that this is probably because
SantaCoder tends to generate longer and more com-
plex test cases. Here we further demonstrate that
SantaCoder is capable to generate more accuracy
output when given the same testing input as that
of CodeT5+’s. To show this, we first extract the
input part of the test cases (which includes testing
inputs paired with their corresponding outputs) gen-
erated by CodeT5+ in the oracle setting. We then
let SantaCoder to generate testing outputs given
these inputs, and assessed the accuracy of such test
cases. The results show that, given these testing
inputs already, SantaCoder and CodeT5+ obtain an
correctness of 41.67% and 40.34%, respectively,
showing that SantaCoder is indeed stronger, if the
same testing input is given and it does not have the
chance to yeild more complex testing inputs.

A.5 Analysis of Code Coverage
In the previous sections, when evaluating the code
coverage of test cases, we used standard code as
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Model Size Self-generated Cross-generated

InCoder 1.3B 54.38% 46.97%
CodeGen2 1B 56.79% 48.78%
CodeT5+ 770M 60.03% 54.16%

SantaCoder 1.1B 56.58% 54.42%

CodeGen-Multi 16B 53.09% 51.27%
CodeGen2 16B 55.66% 53.11%

CodeGen-Mono 16B 57.62% 58.05%
StarCoder 15B 60.29% 55.09%

WizardCoder 15B 71.57% 56.42%
GPT-3.5-turbo - 72.42% 62.91%

Table 6: The coverage rate of the test cases generated
on HumanEval+.

the reference. To further assess the code coverage
ability of test cases generated by the model, we sep-
arately measured the coverage of test cases for their
corresponding generated code. This involves mea-
suring the coverage of self-generated test cases for
self-generated programs and the coverage of cross-
generated test cases for cross-generated programs.
The results are shown in Table 6.

A.6 The Influence of Different Prompts

As mentioned in Section 5 in the paper, the prompt
for generating test cases are given by concatenating
the function definitions and docstrings (“def cycpat-
tern_check(a, b): \n \t ““‘...."), the program imple-
mentation (“c=a \n ....") or a placeholder (“pass"),
and a comment given to prompt test case genera-
tion (“# Check the correctness of this function with
three test cases..."). In our early experiments, we
found that modifying the final comment given to
prompt test case generation only has a relatively
small impact on the test case pass rate. We have
tried e.g., “# Verify if the function is accurate and
generate three test cases..." and “# Generate three
test data to verify the correctness of this function..."
and only observed less than 0.50% difference in
correctness of the obtained test cases.

A.7 Comparison between Human-written
Tests and LLM-generated Tests

In this part, we compare the human-written tests
and LLM-generated tests to provide a deeper anal-
ysis. We used the provided test cases in the Hu-
manEval dataset (not HumanEval+) which are writ-
ten by humans and directly took them into com-
parison. We analyzed these test cases from a code
coverage perspective, by using the same metric as
in the main paper, and we obtained an average code
coverage of 80.35%, which is indeed higher than
the result of GPT-3.5-turbo test cases. Considering
that these hand-crafted test cases are considered as

all correct, we reach the conclusion that they are
both more accurate and more diverse than the GPT
test cases. However, as the code LLMs continue
to evolve, we might see a more advanced LLM to
surpass human performance in a near future.

A.8 Experiment Implementation Details

Following Chen et al. (2023), we used a tempera-
ture of 0.8 to generate programs and self-generated
test cases. After obtaining the consensus set, we re-
weight test case by pi−1 with i being its order in the
model output, and we let p = 0.8. That is, instead
of directly using their counting numbers, we use
the sum of pi−1 and the final score of a consensus
set is then the sum of a)

∑
pi−1 and b) the number

of program implementations in the consensus set,
and program implementations in the consensus set
with the highest score are considered as the best
solutions.

A.9 Related Work

Testing via program analysis. Testing pro-
grams automatically is a long standing problem
in the software engineering community. Various
program analysis techniques have been developed.
Typical automatic testing techniques and tools in-
clude fuzzing (Fioraldi et al., 2020), symbolic exe-
cution (Cadar and Sen, 2013), dynamic execution
guided by a fitness function (Harman et al., 2015),
Pynguin (Lukasczyk et al., 2023), EvoSuite (Fraser
and Arcuri, 2011), etc. They focus on whether the
program executes properly rather than whether the
input-output relationship of the whole program is
correct, i.e., such testing are more concerned with
crashes and hangs caused by specific input rather
than whether the output of a programs incorrectly
reflects the desire of implementation specified, for
example, in docstrings.

Test case generation via deep learning. The
invention of transformer and self-supervised pre-
training have brought a breakthrough to program-
ming language processing and program testing (Tu-
fano et al., 2022; Dinella et al., 2022). There also
exist several work (Lemieux et al., 2023; Xia et al.,
2023; Xie et al., 2023) which utilize LLMs like
CodeX or GPT-3.5 to provide test cases directly,
for different purposes though. Though LLMs can
be possible tools for generating input-output pairs
for program testing, there still lack and require in-
depth analyses and comparisons of different closed-
source and open-source LLMs in generating such
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test cases, considering that powerful LLMs emerge
continuously. The recent WizardCoder (Luo et al.,
2023) exhibits an obvious superiority over other
open-source LLMs in our experiments, and it even
shows the potential to surpass GPT-3.5 sometimes.

Benchmarking LLMs. Recently, LLMs have
incited substantial interest in both academia and
industry. To evaluate the capabilities of large lan-
guage models, a variety of effort have been devoted
from the perspectives of language processing accu-
racy, robustness, ethics, biases, and trustworthiness,
etc. For instance, PromptBench (Zhu et al., 2023)
shows that current LLMs are sensitive to adver-
sarial prompts, and careful prompt engineering is
necessary for achieving decent performance with
them. DecodingTrust (Wang et al., 2023a), as an-
other example, offers a multifaceted exploration of
trustworthiness of the GPT models, especially GPT-
3.5 and GPT-4. The evaluation expands beyond
the typical trustworthiness concerns to include sev-
eral new critical aspects. Agentbench (Liu et al.,
2023b) evaluates LLM as agents on challenging
tasks. Their experimental results show that, while
top commercial LLMs present a strong ability of
acting as agents in complex environments, there
is a significant disparity in performance between
them and their open-source competitors. Despite
the effort, few work focuses on benchmarking the
program testing ability of LLMs.
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