AUTOGEN STUDIO: A No-Code Developer Tool for Building and
Debugging Multi-Agent Systems

Victor Dibia, Jingya Chen, Gagan Bansal, Suff Syed,
Adam Fourney, Erkang Zhu, Chi Wang, Saleema Amershi
Microsoft Research, Redmond, United States
{victordibia, jingyachen, gaganbansal, suffsyed, adam.fourney,
erkang.zhu, chiw, samershi}@microsoft.com

Abstract

Multi-agent systems, where multiple agents
(generative Al models + tools) collaborate, are
emerging as an effective pattern for solving
long-running, complex tasks in numerous do-
mains. However, specifying their parameters
(such as models, tools, and orchestration mech-
anisms etc,.) and debugging them remains chal-
lenging for most developers. To address this
challenge, we present AUTOGEN STUDIO, a
no-code developer tool for rapidly prototyping,
debugging, and evaluating multi-agent work-
flows built upon the AUTOGEN framework.
AUTOGEN STUDIO offers a web interface and
a Python API for representing LLM-enabled
agents using a declarative (JSON-based) speci-
fication. It provides an intuitive drag-and-drop
UI for agent workflow specification, interactive
evaluation and debugging of workflows, and
a gallery of reusable agent components. We
highlight four design principles for no-code
multi-agent developer tools and contribute an
open-source implementation.

1 Introduction

When combined with the ability to act (e.g., using
tools), Generative Al models function as agents, en-
abling complex problem-solving capabilities. Im-
portantly, recent research has shown that transi-
tioning from prescribed (fixed) agent pipelines to a
multi-agent setup with autonomous capabilities can
result in desirable behaviors such as improved fac-
tuality and reasoning (Du et al., 2023), as well as
divergent thinking (Liang et al., 2023). These obser-
vations have driven the development of application
frameworks such as AutoGen (Wu et al., 2023),
CAMEL (Li et al., 2024), and TaskWeaver (Qiao
et al., 2023), which simplify the process of crafting
multi-agent applications expressed as Python code.
However, while multi-agent applications advance

1https ://github.com/microsoft/autogen/tree/
autogenstudio/samples/apps/autogen-studio

72

Agent A Agent B
[initiator | B Book generation group chat manager
Plan and generate book content including text and images.
B Userproxy

Represent user, execute co.

Code executor \

[Web search

B Image Agent

Generate images

) Content Agent

Generate content for each.

© GPT 4 Turbo

B GPT 4 Turbo

Image generator

R
w

B QA Agent

Verify the content meet par.

Drag to add a model

Drag to add a skill

Figure 1: AUTOGEN STUDIO provides a drag-n-drop
UI where models, skills/tools, memory components can
be defined, attached to agents and agents attached to
workflows.

our capacity to solve complex problems, they also
introduce new challenges. For example, developers
must now configure a large number of parameters
for these systems including defining agents (e.g.,
the model to use, prompts, tools or skills available
to the agent, number of action steps an agent can
take, task termination conditions etc.), communica-
tion and orchestration mechanisms - i.e., the order
or sequence in which agents act as they collabo-
rate on a task. Additionally, developers need to
debug and make sense of complex agent interac-
tions to extract signals for system improvement.
All of these factors can create significant barriers
to entry and make the multi-agent design process
tedious and error-prone. To address these chal-
lenges, we have developed AUTOGEN STUDIO, a
tool for rapidly prototyping, debugging, and evalu-
ating MULTI-AGENT workflows. Our contributions
are highlighted as follows:

* AUTOGEN STUDIO - a developer-focused tool
(UI and backend Web and Python API) for
declaratively specifying and debugging (human-
in-the-loop and non-interactive) MULTI-AGENT
workflows. AUTOGEN STUDIO provides a novel

Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
System Demonstrations, pages 72—79
November 12-16, 2024 ©2024 Association for Computational Linguistics

https://github.com/microsoft/autogen/tree/autogenstudio/samples/apps/autogen-studio
https://github.com/microsoft/autogen/tree/autogenstudio/samples/apps/autogen-studio

drag-and-drop experience (Figure 1) for rapidly
authoring complex MULTI-AGENT agent work-
flows, tools for profiling/debugging agent ses-
sions, and a gallery of reusable/shareable MULTI-
AGENT components.

We introduce profiling capabilities with visual-
izations of messages/actions by agents and met-
rics (costs, tool invocations, and tool output sta-
tus) for debugging MULTI-AGENT workflows.

Based on our experience building and supporting
AUTOGEN STUDIO as an open-source tool with
a significant user base (over 200K downloads
within a 5-month period), we outline emerg-
ing design patterns for MULTI-AGENT developer
tooling and future research directions.

To the best of our knowledge, AUTOGEN STU-
DIO is the first open-source project to explore a
no-code interface for autonomous MULTI-AGENT
application development, providing a suitable plat-
form for research and practice in MULTI-AGENT
developer tooling.

2 Related Work

2.1 Agents (LLMs + Tools)

Generative Al models face limitations, including
hallucination — generating content not grounded
in fact — and limited performance on reasoning
tasks or novel out-of-distribution problems. To
address these issues, practice has shifted towards
agentic implementations where models are given
access to tools to act and augment their perfor-
mance (Mialon et al., 2023). Agentic implemen-
tations, such as React (Yao et al., 2022), explore
a Reason and Act paradigm that uses LLMs to
generate both reasoning traces and task-specific
actions in an interleaved manner. As part of this
process, developers have explored frameworks that
build prescriptive pipelines interleaving models and
tools (e.g., LIDA (Dibia, 2023), LangChain (Chase,
2022)). However, as tasks become more complex,
requiring lengthy context and the ability to inde-
pendently adapt to dynamic problem spaces, pre-
defined pipelines demonstrate limited performance
(Liu et al., 2024). This limitation has led to the
exploration of more flexible and adaptive agent
architectures.

2.2 MULTI-AGENT Frameworks

Several frameworks have been proposed to provide
abstractions for creating such applications. Au-

73

toGen (Wu et al., 2023) is an open-source exten-
sible framework that allows developers to build
large MULTI-AGENT applications. CAMEL (Li
et al., 2024) is designed to facilitate autonomous
cooperation among communicative agents through
role-playing, using inception prompting to guide
chat agents toward task completion while align-
ing with human intentions. OS-Copilot (Wu et al.,
2024) introduces a framework for building general-
ist agents capable of interfacing with comprehen-
sive elements in an operating system, including the
web, code terminals, files, multimedia, and various
third-party applications. It explores the use of a
dedicated planner module, a configurator, and an
executor, as well as the concept of tools (Python
functions or calls to API endpoints) or skills (tools
that can be learned and reused on the fly).

Multi-Agent Core Concepts
. Model: Generative Al model used to
drive core agent behaviors.

Skills/Tools: Code or APIs used to ad-
dress specific tasks.

. Memory: Short term (e.g., lists) or long
term (vector databases) used for to save
and recall information.

Agent: A configuration that ties together
the model, skills, memory components
and behaviors.

Workflow: A configuration of a set of
agents and how they interact to address
tasks (e.g., order or sequence in which
agents act, task planning, termination
conditions etc.).

Collectively, these tools support a set of core
capabilities - definition of agent parameters - such
as generative Al models, skills / tools or memory,
and agent workflows - specifications of how these
agents can collaborate. However, most of these
frameworks primarily support a code-first represen-
tation of agent workflows, which presents a high
barrier to entry and rapid prototyping. They also
do not provide tools or metrics for agent debugging
and evaluation. Additionally, they lack structured
reusable templates to bootstrap or accelerate the
agent workflow creation process. AUTOGEN STU-
DIO addresses these limitations by providing a vi-

https://www.pepy.tech/projects/autogenstudio

sual interface to declaratively define and visualize
agent workflows, test and evaluate these workflows,
and offer templates for common MULTI-AGENT
tasks to streamline development. While this work
is built on the AUTOGEN open source library (Wu
et al., 2023) and inherits the core abstractions for
representing agents, the proposed design patterns
on no-code developer tools are intended to apply
to all MULTI-AGENT frameworks.

3 Design Goals

AUTOGEN STUDIO is designed to enhance the
MULTI-AGENT developer experience by focusing
on three core objectives:

Rapid Prototyping: Provide a playground where
developers can quickly specify agent configura-
tions and compose these agents into effective multi-
agent workflows.

Developer Tooling: Offer tools designed to help
developers understand and debug agent behaviors,
facilitating the improvement of multi-agent sys-
tems.

Reusable Templates: Present a gallery of reusable,
shareable templates to bootstrap agent workflow
creation. This approach aims to establish shared
standards and best practices for MULTI-AGENT sys-
tem development, promoting wider adoption and
implementation of MULTI-AGENT solutions.

4 System Design

AUTOGEN STUDIO is implemented across two
high-level components: a frontend user interface
(UI) and a backend API (web, python and com-
mand line). It can be installed via the PyPI package
manager (listing 1).

pip install autogenstudio
autogenstudio ui --port 8081

listing 1: AUTOGEN STUDIO can be installed from
PyPI (pip) and the UI launched from the command line.

4.1 User Interface

The frontend web interface in AUTOGEN STU-
DIO is built using React and implements three
main views that support several key functionalities.
The build view enables users to author (define-and-
compose) multi-agent workflows. The playground
view allows for interactive task execution and work-
flow debugging, with options to export and deploy.

74

The gallery view facilitates the reuse and sharing
of agent artifact templates.

4.1.1 Building Workflows

The build view in the Ul (see Figure 1) offers a
define-and-compose experience, allowing develop-
ers to declaratively define low-level components
and iteratively compose them into a workflow. For
instance, users can define configurations for mod-
els, skills/tools (represented as Python functions
addressing specific tasks), or memory stores (e.g.,
documents organized in a vector database). Each
entity is saved in a database for use across inter-
face interactions. Subsequently, they can define
an agent, attaching models, skills, and memory to
it. Several agent default templates are provided
following AUTOGEN abstractions - a UserProxy
agent (has a code execution tool by default), an
AssistantAgent (has a generative Al model default),
and a GroupChat agent (an abstraction container
for defining a list of agents, and how they interact).
Finally, workflows can be defined, with existing
agents attached to these workflows. The default
workflow patterns supported are autonomous chat
(agents exchange messages and actions across con-
versation turns until a termination condition is met)
and sequential chat (a sequence of agents defined,
each agent processes its input in order and passes
on a summary of their output to the next agent).
The workflow composition process is further en-
hanced by supporting a drag-and-drop interaction
e.g., skills/models can be dragged to agents and
agents into workflows.

4.1.2 Testing and Debugging Workflows

Workflows can be tested in-situ in the build view,
or more systematically explored within the play-
ground view. The playground view allows users
create sessions, attach workflows to the session,
and run tasks (single shot or multi-turn). Sessions
can be shared (to illustrate workflow performance)
and multiple sessions can be compared. AUTOGEN
STUDIO provides two features to support debug-
ging. First, it provides an observe view where as
tasks progress, messages and actions performed by
agents are streamed to the interface, and all gen-
erated artifacts are displayed (e.g., files such as
images, code, documents etc). Second a post-hoc
profiler view is provided where a set of metrics are
visualized for each task addressed by a workflow -
total number of messages exchanged, costs (gener-
ative Al model tokens consumed and dollar costs),

Backend API o

Frontend Web Ul API o

autogenstudio.web.app

H Web API | -p
88 Playground
REST + Socket endpoints S, Build
for Ul
& Gallery

v

autogenstudio.worflowmanager

)

H Python API

‘3 AutoGen Studio

B Book generation
e

W

Recent sessions > @ Observe Agents

Agentmessages Profiler
create a childrens pdf book with 4 pages, each describing the weather —_
in seattle. Each page should have extensive descripitions with images of
the weather. Create the images first, then create the text, then the pdf.

Cost

Tokens

Agent

Groupchat manager 12012 0152

The children's PDF book titled "Weather in Seattle” has been
successfully created with descriptions and images for each weather
condition. The book should now be available as
“Seattle_Weather_Childrens_Book.pdf" on your system

You can open and view the PDF to ensure that it meets your
expectations and contains all the pages with the appropriate images
and descriptions.

If everything looks good, that completes our task. If you need any
further assistance or modifications, please let me know.

(© Agents have completed the task

Content 10812 0122

Userproxy 2012 0022

Image Generator 0012

Quality Assurance 0.009

Message

Hydrate workflow
specifications into AutoGen
agents and run tasks

Results (7 files)

autogenstudio.cli

U Command Line

CLI Utilities
% Feedback

autogenstudio ui —-port 8081 B Document

. @ Guest user
autogenstudio serve -

workflow=workflow.json 1< Close sidebar

Seattle_Weather_Childrens_Book.pdf

@ What would you like to do?

Total messages

vseprory D
Groupchat mansoer D
Coreer: D
Quality Assurance [IID
b

Image Generator

Tool call Success @ Failure

Userproxy

Groupchat mansger [N
Content N
image Generator [N
QuatyAssrorce D ‘ ‘
0 05 i s 2

®s

Figure 2: AUTOGEN STUDIO provides a backend api (web, python, cli) and a UI which implements a playground
(shown), build and gallery view. In the playground view, users can run tasks in a session based on a workflow. Users
can also observe actions taken by agents, reviewing agent messages and metrics based on a profiler module.

how often agents use tools and the status of tool
use (success or failure), for each agent.

4.1.3 Deploying Workflows

AUTOGEN STUDIO enables users to export work-
flows as a JSON configuration file. An exported
workflow can be seamlessly integrated into any
Python application (listing 2), executed as an API
endpoint using the AUTOGEN STUDIO command
line interface (figure 2a), or wrapped in a Docker
container for large-scale deployment on various
platforms (Azure, GCP, Amazon, etc.).

7

from autogenstudio
WorkflowManager

WorkflowManager ("workflow.
json")

wm.run(message="What is the
height of the Eiffel Tower")

import

wm

listing 2: Workflows can be imported in python apps.

4.1.4 Template Gallery

The UI also features a gallery view - a repository
of components (skills, models, agents, workflows)
that users can import, extend, and reuse in their own
workflows. Since each component specification is

75

declarative (JSON), users can also easily export,
version and reshare them.

4.2 Backend API - Web, Python, and
Command Line

The backend API comprises three main compo-
nents: a web API, a Python API, and a command-
line interface. The web API consists of REST
endpoints built using the FastAPI library?, sup-
porting HTTP GET, POST, and DELETE methods.
These endpoints interact with several key classes:
A DBM anager performs CRUD (Create, Read,
Update, Delete) operations on various entities such
as skills, models, agents, memory, workflows, and
sessions. The Work flow M anager class handles
the ingestion of declarative agent workflows, con-
verts them into AUTOGEN agent objects, and exe-
cutes tasks (see listing 2). A Profiler class parses
agent messages to compute metrics. When a user
initiates a task within a session, the system retrieves
the session history, instantiates agents based on
their serialized representations from the database,
executes the task, streams intermediate messages to
the UI via websocket, and returns the final results.
AUTOGEN STUDIO also provides a command-line
interface with utilities for launching the bundled UI
and running exported workflows as API endpoints.

2FastAPI: https://fastapi.tiangolo.com/

5 Usage and Evaluation

In this project, we have adopted an in-situ, iterative
evaluation approach. Since its release on GitHub
(5 months), the AUTOGEN STUDIO package has
been installed over 200K times and has been itera-
tively improved based on feedback from usage (>
135 GitHub issues). Issues highlighted several user
pain points that were subsequently addressed in-
cluding: (a) challenges in defining, persisting, and
reusing components, resolved by implementing a
database layer; (b) difficulties in authoring compo-
nents, resolved by supporting automated tool gener-
ation from descriptions and integrating an IDE for
editing tools; (c) frustrations caused by components
failing during end-to-end tests, addressed by incor-
porating a test button for components (e.g.,models)
and workflows in the build view. Figure 3 displays
a plot of all AUTOGEN STUDIO issues. Each point
represents an issue, based on an embedding of its
text (title + body) using OpenAl’s text-embedding-
3-large model. The embeddings were reduced to
two dimensions using UMAP, clustered with K-
Means (k = 8), and cluster labels generated using
GPT-4 (grounded on 10 samples from its centroid).
Finally, in Appendix A, we demonstrate how AU-
TOGEN STUDIO can effectively be used to support
an engineer persona in rapidly prototyping, testing,
and iteratively debugging a MULTI-AGENT work-
flow, and deploying it as an API endpoint to address
a concrete task (generating books).

6 Emerging Design Patterns and
Research Directions

In the following section, we outline some of the
high-level emerging patterns which we hope can
help inform the design of no-code interfaces for
building next-generation multi-agent applications.

6.1 Define-and-Compose Workflows

Allow users to author workflows by
defining components and composing
them (via drag-and-drop actions) into
multi-agent workflows.

A multi-agent system can have a wide array of
parameters to configure. We have found that select-
ing the right visual presentation of the workflow to
helping users understand what parameters to config-
ure (discovery), and how to configure them. Specif-
ically, we have found that a define-and-compose

76

AutoGen Studio GitHub Issue Visualization (UMAP)

Issues with AutoGen
Studio: Dockeraccess,
validation errors, and
compatibility (17)

*

*

AutoGen Studio 2
Compatibility, APl
Issues, and Documentation
Update;s (10)

* Issues with Group Chat
Workflow, Agent Creation,
and Model Changes (18)

Figure 3: Plot of GitHub issues (n = 8 clusters) from
the AUTOGEN STUDIO repo. User feedback ranged
from support with workflow authoring tools (e.g., the
ability configure and test models) to general installation.

workflow, where entities are first defined and per-
sisted independently, and then composed ultimately
into multi-agent workflows, provides a good de-
veloper experience. This includes providing tools
to support authoring entities e.g., the ability de-
fine and test models, an IDE for generating/editing
tools (code), and a a canvas-based visual layout
of workflows with drag-and-drop interaction for
associating entities in the workflow.

6.2 Debugging and Sensemaking Tools

Provide robust tools to help users debug,
interpret, and rationalize the behavior and
outputs of multi-agent systems.

Multi-agent workflows can be brittle and fail for
multiple reasons, ranging from improperly config-
ured models to poor instructions for agents, im-
proper tool configuration for agents or termination
conditions. A critical request has been for tools
to help users debug and make sense of agent re-
sponses.

6.3 Export and Deployment

Enable seamless export and deployment
of multi-agent workflows to various plat-
forms and environments.

‘While a no-code tool like AUTOGEN STUDIO

https://www.pepy.tech/projects/autogenstudio
https://github.com/microsoft/autogen/issues?q=is%3Aissue+label%3Astudio
https://platform.openai.com/docs/guides/embeddings
https://platform.openai.com/docs/guides/embeddings

enables rapid iteration and demonstration of work-
flows, the natural progression for most use cases
is that developers want to replicate the same out-
comes but integrated as parts of their core appli-
cations. This stage requires seamless export and
deployment of multi-agent workflows to various
platforms and environments.

6.4 Collaboration and Sharing

Facilitate user collaboration on multi-
agent workflow development and allow
easy sharing of creations within the com-
munity.

Collaboration and sharing are key to accelerat-
ing innovation and improving multi-agent systems.
By enabling users to collaborate on workflow de-
velopment, share their creations, and build upon
each other’s work, a more dynamic and innova-
tive development environment can be cultivated.
Tools and features that support real-time collab-
oration, version control, and seamless sharing of
workflows and components are essential to foster
a community-driven approach. Additionally, offer-
ing a repository or gallery where users can publish
and share their workflows, skills, and agents pro-
motes communal learning and innovation.

7 Future Research Directions

While we have explored early implementations
of the design requirements mentioned above, our
efforts in building AUTOGEN STUDIO have also
identified two important future research areas and
associated research questions.

* Offline Evaluation Tools: This encompasses
questions such as how can we measure the per-
formance, reliability, and reusability of agents
across tasks? How can we better understand
their strengths and limitations? How can we ex-
plore alternative scenarios and outcomes? And
how can we compare different agent architec-
tures and collaboration protocols?

Understanding and quantifying the impact
of multi-agent system design decisions: These
questions include determining the optimal num-
ber and composition of agents for a given prob-
lem, the best way to distribute responsibilities
and coordinate actions among agents, and the
trade-offs between centralized and decentralized

77

control or between homogeneous and heteroge-
neous agents.

Optimizing of multi-agent systems: Research
directions here include the dynamic generation
of agents based on task requirements and avail-
able resources, tuning workflow configurations
to achieve the best performance, and adapting
agent teams to changing environments and user
preferences. Furthermore, how can we leverage
human oversight and feedback to improve agent
reliability, task performance and safety?

8 Conclusion

This paper introduced AUTOGEN STUDIO, a no-
code developer tool for rapidly prototyping, debug-
ging, and evaluating multi-agent workflows. Key
features include a drag-and-drop interface for agent
workflow composition, interactive debugging capa-
bilities, and a gallery of reusable agent components.
Through widespread adoption, we identified emerg-
ing design patterns for multi-agent developer tool-
ing - a define and compose approach to authoring
workflows, debugging tools to make sense of agent
behaviors, tools to enable deployment and collabo-
rative sharing features. AUTOGEN STUDIO lowers
the barrier to entry for multi-agent application de-
velopment, potentially accelerating innovation in
the field. Finally we outline future research direc-
tions including developing offline evaluation tools,
ablation studies to quantify the impact of MULTI-
AGENT systems design decisions and methods for
optimizing multi-agent systems.

9 Ethics Statement

AUTOGEN STUDIO is designed to provide a no-
code environment for rapidly prototyping and test-
ing multi-agent workflows. Our goal is to responsi-
bly advance research and practice in solving prob-
lems with multiple agents and to develop tools that
contribute to human well-being. Along with AU-
TOGEN, AUTOGEN STUDIO is committed to im-
plementing features that promote safe and reliable
outcomes. For example, AUTOGEN STUDIO of-
fers profiling tools to make sense of agent actions
and safeguards, such as support for Docker envi-
ronments for code execution. This feature helps
ensure that agents operate within controlled and se-
cure environments, reducing the risk of unintended
or harmful actions. For more information on our
approach to responsible Al in AutoGen, please re-
fer to transparency FAQS here. Finally, AUTOGEN

https://github.com/microsoft/autogen/blob/main/TRANSPARENCY_FAQS.md

STUDIO is not production ready i.e., it does not
focus on implementing authentication and other
security measures that are required for production
ready deployments.

Acknowledgements

We would like to thank members of the open-source
software (OSS) community and the Al Frontiers
organization at Microsoft Research for discussions
and feedback along the way. Specifically, we would
like to thank Piali Choudhury, Ahmed Awadallah,
Robin Moeur, Jack Gerrits, Robert Barber, Grace
Proebsting, Michel Pahud, Qingyun Wu, Harsha
Nori and others for feedback and comments.

References
Harrison Chase. 2022. LangChain. Github.

Victor Dibia. 2023. Lida: A tool for automatic gener-
ation of grammar-agnostic visualizations and info-
graphics using large language models. arXiv preprint
arXiv:2303.02927.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-
baum, and Igor Mordatch. 2023. Improving factual-
ity and reasoning in language models through multia-
gent debate. arXiv preprint arXiv:2305.14325.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii
Khizbullin, and Bernard Ghanem. 2024. Camel:
Communicative agents for" mind" exploration of
large language model society. Advances in Neural
Information Processing Systems, 36.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, and
Shuming Shi. 2023. Encouraging divergent thinking
in large language models through multi-agent debate.
arXiv preprint arXiv:2305.19118.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157-173.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christo-
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu,
Asli Celikyilmaz, et al. 2023. Augmented language
models: a survey. arXiv preprint arXiv:2302.07842.

Bo Qiao, Liqun Li, Xu Zhang, Shilin He, Yu Kang,
Chaoyun Zhang, Fangkai Yang, Hang Dong, Jue
Zhang, Lu Wang, et al. 2023. Taskweaver:
A code-first agent framework. arXiv preprint
arXiv:2311.17541.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,

78

Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadal-
lah, Ryen W White, Doug Burger, and Chi Wang.
2023. Autogen: Enabling next-gen llm applications
via multi-agent conversation framework. arxiv.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin
Weng, Zhoumianze Liu, Shunyu Yao, Tao Yu, and
Lingpeng Kong. 2024. Os-copilot: Towards gener-
alist computer agents with self-improvement. arXiv
preprint arXiv:2402.07456.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. arXiv preprint arXiv:2210.03629.

https://github.com/langchain-ai/langchain
https://arxiv.org/abs/2308.08155
https://arxiv.org/abs/2308.08155

A Jack the Software Engineer Persona
Use Case

Jack is a junior software engineer who has recently
joined SoftwareCon. As part of his tasks, he is
required to create an application that can generate a
variety of short books. The initial version should fo-
cus on generating children’s books (age 5 -8 years
old) based on a given query (e.g., create a book for
kids on how the sun works) with the expectation
of being generalized to support other generic tasks.
Jack has heard about a MULTI-AGENT approach to
building systems that can address a variety of tasks
through autonomous collaboration between agents.
To explore this approach, he begins by perusing
the AUTOGEN STUDIO documentation, installs it,
launches the UI, and performs the following steps:

A.1 Step 1: Define and Compose a Workflow

Jack starts with the Build view, where he reviews
the default skills that come with AUTOGEN STU-
DIO. He sees that there are two relevant skills
generate_pdfs and generate_images. He veri-
fies that he has the appropriate API keys for the
generate_tmage skill. Next, he creates a GPT3.5
model and adds an API key.

Following best practices, Jack knows that the
basic agent team with AUTOGEN consists of a
UserProxyAgent that can execute code and an As-
sistantAgent that can solve tasks as well as write
code or call available tools/skills. He creates both
of these agents; for his AssistantAgent, he ensures
that he attaches the GPT4 model he created previ-
ously and also attaches both skills. Jack moves on
to the workflow tab and creates a new autonomous
chat workflow where he specifies the UserProxyA-
gent as the initiator and his AssistantAgent as the
receiver.

A.2 Step 2: Test and Iterate

Within the workflow tab, Jack tests the workflow
immediately and quickly observes a few issues. Us-
ing the profiler tool and visualization of messages
exchanged by the agents, he notices that there seem
to be quality issues with the content of the book -
namely, the AssistantAgent seems to generate very
short messages and hence the book pages contains
only 2 sentences per page whereas the requirements
state that the kids are slightly older and can read
much longer text.

To remedy these issues, Jack takes two actions.
First, he attempts to extend the base instructions

79

of his AssistantAgent, but still doesn’t get pages
with more than 3 sentences across interactive tests.
He recalls that using more agents can help sep-
arate focus and improve task performance. He
then switches to creating 4 agents: a UserProxy,
a ContentAssistant with detailed instructions on
generating the content for each page, a QualityAs-
suranceAssistant to verify the pages meet parame-
ters, and an ImageGeneratorAssistant focused on
generating images for the book. He then creates a
GroupChat agent and adds his list of agents to it.
Next, he creates a new workflow where the receiver
is the GroupChat agent and tests the application
across a few tries. Jack is satisfied with the results
as full-page stories are now generated correctly.
In addition, Jack is concerned about costs but can
easily use the observe message button to explore
duration, tokens used by agents, tool/skill use and
LLM dollar costs for each task run.

A.3 Step 3: Export and Share

At this point, Jack has two final tasks: he wants to
share his work with colleagues for feedback and
then provide an API they can prototype with. AU-
TOGEN STUDIO makes sharing easy; First, Jack
can simply export and share a link to successful ses-
sions. Second, he can also download his workflow
and share it with colleagues, saving it in a version
control system like Git. Third, he can spin up an
API endpoint where the agents can respond to task
requests using cli commands ‘autogenstudio serve
—port 8000°. He can also spin up a docker container
using the AUTOGEN STUDIO serve command and
scale it on any platform of his choice (Azure, AWS,
GCP, Hugging Face).

