
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
System Demonstrations, pages 280–290

November 12-16, 2024 ©2024 Association for Computational Linguistics

KMatrix: A Flexible Heterogeneous Knowledge Enhancement Toolkit for
Large Language Model

Shun Wu1, Di Wu1, Kun Luo1,2, XueYou Zhang1, Jun Zhao1,2, Kang Liu1,2,3*

1The Key Laboratory of Cognition and Decision Intelligence for Complex Systems
Institute of Automation, Chinese Academy of Sciences

2School of Artificial Intelligence, University of Chinese Academy of Sciences
3Shanghai Artificial Intelligence Laboratory

{shun.wu, jzhao, kliu}@nlpr.ia.ac.cn
{di.wu, xueyou.zhang}@ia.ac.cn, {luokun695}@gmail.com

Abstract
Knowledge-Enhanced Large Language Models
(K-LLMs) system enhances Large Language
Models (LLMs) abilities using external knowl-
edge. Existing K-LLMs toolkits mainly fo-
cus on free-textual knowledge, lacking sup-
port for heterogeneous knowledge like tables
and knowledge graphs, and fall short in com-
prehensive datasets, models, and user-friendly
experience. To address this gap, we intro-
duce KMatrix: a flexible heterogeneous knowl-
edge enhancement toolkit for LLMs including
verbalizing-retrieval and parsing-query meth-
ods. Our modularity and control-logic flow
diagram design flexibly supports the entire life-
cycle of various complex K-LLMs systems, in-
cluding training, evaluation, and deployment.
To assist K-LLMs system research, a series of
related knowledge, datasets, and models are
integrated into our toolkit, along with perfor-
mance analyses of K-LLMs systems enhanced
by different types of knowledge. Using our
toolkit, developers can rapidly build, evaluate,
and deploy their own K-LLMs systems. Our
toolkit and resources are available at here.1

1 Introduction

Knowledge-Enhanced Large Language Models (K-
LLMs) system uses external knowledge to en-
hance the capabilities of Large Language Models
(LLMs) (Hu et al. (2023)), which alleviates the is-
sues of hallucination and weak reasoning abilities
for knowledge-intensive natural language process-
ing tasks (Bang et al. (2023), Sasaki et al. (2024),
Lewis et al. (2020)). Recently, K-LLMs have be-
come a popular research topic and extensive works
have been conducted from various dimensions such
as knowledge, models, and enhancement methods
(Gao et al. (2023)).

Early K-LLMs works primarily focused on
free-textual knowledge enhancement (Karpukhin

*Corresponding author
1https://github.com/NLPerWS/KMatrix

et al. (2020), Qu et al. (2020)), which led to the
emergence of the Retrieval-Augmented Generation
(RAG) research branch. Recent studies have ex-
plored methods for jointly enhancing LLMs with
heterogeneous knowledge (like tables, knowledge
graphs, etc) using unified retrieval (Oguz et al.
(2020), Ma et al. (2022)) or selective query (Jiang
et al. (2023), Li et al. (2023)). Meanwhile, in-
creasing attention is being directed towards adap-
tive enhancement methods research (Wang et al.
(2023b), Asai et al. (2023)), which autonomously
control the interaction between generation and re-
trieval (Gao et al. (2023)) to achieve better per-
formance. Moreover, with the development of K-
LLMs, there is a need for an easy-to-use toolkit to
flexibly implement K-LLMs works and compare
different approaches under the same conditions. In
recent years, many K-LLMs related toolkits (Chase
(2022), Hoshi et al. (2023), Pietsch et al. (2019),
Izsak et al. (2023)) have emerged, but they still have
the following shortcomings: 1) Lacking support
for joint enhancement with heterogeneous knowl-
edge sources. The existing representative K-LLMs
toolkits (Chase (2022), Hoshi et al. (2023), Jin et al.
(2024)) predominantly focus on textual knowledge
enhancement. 2) Lacking systematic support for
various adaptive enhancement methods. Coze2 and
RALLE (Hoshi et al. (2023)) enabled the construc-
tion of naive K-LLMs (retrieval and generation) by
selecting components, but they lacked support for
building complex adaptive K-LLMs. FlashRAG
(Jin et al. (2024)) implemented adaptive enhance-
ment by simply integrating code of some existing
K-LLMs works, lacking systematic integration of
adaptive enhancement methods from different di-
mensions, like retrieval timing determination and
retrieval source selection. 3) Not highly customiz-
able or easily combinable, and lacking compre-
hensive support for training, evaluation, and de-
ployment of K-LLMs systems. LangChain (Chase

2https://www.coze.com/store/plugin

280

https://github.com/NLPerWS/KMatrix
https://www.coze.com/store/plugin


Figure 1: A overview framework of the KMatrix toolkit

(2022)) and Haystack (Pietsch et al. (2019)) are
two fundamental K-LLMs toolkits which lacked in-
tegration of existing representative K-LLMs works,
and did not provide sufficient flexibility for cus-
tomization. FastRAG (Izsak et al. (2023)) and
FlashRAG (Jin et al. (2024)) utilized customizable
component design and integrate extensive exist-
ing datasets, knowledge, and models. However,
they define component relations using hard-coding
methods, which is not easily combinable. Compar-
ison of existing representative K-LLMs toolkits is
shown in Table 1.

To address the aforementioned shortcomings,
we introduce KMatrix: a flexible heterogeneous
knowledge enhancement toolkit for LLMs. Our
toolkit uses both verbalizing-retrieval (Ma et al.
(2022)) and parsing-query (Jiang et al. (2023))
methods to support unified enhancement of hetero-
geneous knowledge (like free-textual knowledge,
tables, knowledge graphs, etc). And we system-
atically integrate adaptive enhancement methods
from two aspects: retrieval timing judgment (Asai
et al. (2023)) and knowledge source selection (Li
et al. (2023)). To achieve high customizability and
easy combinability, we deploy modular component
definition and control-logic flow diagram design to
flexibly construct components and their relations.
In summary, our main contributions are:

1. We propose a K-LLMs toolkit that supports
unified enhancement of heterogeneous knowledge
to enhance the capabilities of LLMs.

2. KMatrix offers comprehensive adaptive en-
hancement methods including retrieval timing judg-
ment and knowledge source selection.

3. We design modular component and control-
logic flow diagram using graphical patterns, and

integrate 22 training/evaluation datasets and 11 rep-
resentative knowledge bases. This allows one-click
support for training, evaluation, and deployment in
K-LLMs system lifecycle.

4. Using our constructed toolkit, we implement
representative K-LLMs works and provide compar-
ative evaluation results on multiple datasets. Exten-
sive experimental results show that KMatrix can
effectively support flexible implementation, multi-
dimensional evaluation, and improvement of K-
LLMs system.

2 KMatrix Toolkit

As shown in Figure 1, our toolkit contains seven
stages to complete knowledge-enhanced generation
task. Knowledge Access, Knowledge Preprocess-
ing, and Knowledge Integration are respectively
used for the access, preprocessing, and unified
fusion of heterogeneous knowledge. Knowledge
Retrieval retrieves knowledge from a unified tex-
tual knowledge base and Query Parsing generates
query statements for a unified querier. Adaptive En-
hancement autonomously controls the interaction
between generation and retrieval/query. Genera-
tion stage receives task inputs and generates out-
puts with knowledge enhancement. All stages are
implemented based on our modular component def-
initions. Meanwhile, we design a control-logic flow
diagram to combine components. Next, we will
introduce the seven stages of KMatrix and present
our modular design approach & toolkit usage.

2.1 Heterogeneous Knowledge Access
KMatrix designs a Knowledge Uploader compo-
nent to support the access of heterogeneous knowl-
edge, which contains textual knowledge (like Word,

281



Toolkit Knowledge
Type

Dataset/Model Support Stage Complex
System

Customization Usability

Haystack Text Few Deployment Good Poor Good

Langchain Text Few Evaluation
Deployment Good Poor Fair

RALLE Text Moderate Deployment Poor Fair Fair
Coze Text Few Deployment Poor Fair Good

GraphRAG Text Moderate Evaluation
Deployment Good Fair Fair

FastRAG Text Moderate Evaluation
Deployment Good Fair Good

FlashRAG Text Rich Evaluation
Deployment Good Good Fair

KMatrix
Text
Table

Knowledge Graph
Rich

Training
Evaluation

Deployment
Good Good Good

Table 1: Comparison of existing representative K-LLMs toolkits. Knowledge Type refers to knowledge types
supported by toolkits. Dataset/Model refers to the number of specific datasets, knowledge and models accessed
by toolkits. Support Stage refers to the stages of K-LLMs system construction supported by toolkits: Training,
Evaluation, and Deployment, indicating support for system training, evaluation, and deployment, respectively.
Complex System refers to toolkit capability support for the construction of complex K-LLMs systems. Customization
refers to the flexibility of user-defined modules or systems. Usability refers to the ease of use of toolkits.

PDF, QA pairs, search engine results, and encyclo-
pedias), table knowledge (like Excel and relational
databases) and knowledge graph (in the form of
triples). Meanwhile, KMatrix supports two types
of knowledge access: local knowledge and online
interface, representing local knowledge data and
online knowledge query interfaces, respectively.

2.2 Knowledge Preprocessing & Integration

KMatrix implements the unified enhancement
of heterogeneous knowledge using two meth-
ods: verbalizing-retrieval and parsing-query.
Verbalizing-retrieval method converts different
types of local knowledge (such as tables and knowl-
edge graphs) into unified text fragments (Ma et al.
(2021)), which will be retrieved by a Retriever
uniformly. Parsing-query method integrates dif-
ferent types of knowledge interfaces into a Uni-
fied Querier, which receives queries generated by
a Query Parser (Li et al. (2023)) and returns the
query results. The flow diagram of the above two
methods can be found in Appendix A.1.

For verbalizing-retrieval method, we design a
Knowledge Preprocessor component containing
three types of Convertors to implement format pro-
cessing of local heterogeneous knowledge. We
develop a Unified Verbalizer component to con-
vert various types of local heterogeneous knowl-
edge(such as text, tables and knowledge graphs)
into unified text for local knowledge integration,
which is trained based on the model framework in
Ma et al. (2021).

For parsing-query method, we develop a Knowl-
edge Preprocessor component containing Inter-
facer and Path_storer to support online heteroge-
neous knowledge interface design and standardiza-
tion. We design a Unified Querier component to
flexibly incorporate different types of knowledge
query interfaces (like Wikipedia3, Wikidata4) for
online knowledge integration.

2.3 Knowledge Retrieval/Query Parsing
KMatrix retrieves knowledge from a unified textual
knowledge base converted by a Unified Verbalizer,
which is implemented by a Retriever component.
For sparse retriever, we integrate BM25 and TF-
IDF, using the rank-bm255 and scikit-learn6 library.
For dense retriever, we integrate three BERT-based
retrieval models, including Contriever (Izacard et al.
(2021)), DPR (Karpukhin et al. (2020)), and BGE
(Xiao et al. (2023)), as well as a LLM-based re-
trieval model: E5-7b (Wang et al. (2023a)).

We also design a Query Parser component to im-
plement parsing process, which receives query con-
tents and generates query statements specifically
tailored for the Unified Querier to obtain queried
knowledge. KMatrix integrates two types of Query
Parser components to support diverse query pars-
ing tasks: 1) NL Parser : A natural language query
generator based on ChatGPT7, 2) Sparql Parser: A

3https://www.wikipedia.org/
4https://query.wikidata.org/
5https://pypi.org/project/rank-bm25/
6https://pypi.org/project/scikit-learn/
7https://openai.com/index/

282

https://www.wikipedia.org/
https://query.wikidata.org/
https://pypi.org/project/rank-bm25/
https://pypi.org/project/scikit-learn/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/


SPARQL query generator built by Xu et al. (2023).

2.4 Adaptive Enhancement

Adaptive Enhancement autonomously controls the
interaction between generation and retrieval/query.
KMatrix integrates existing adaptive enhancement
methods from two aspects: retrieval timing judg-
ment and knowledge source selection.

Retrieval Timing Judgment: judging whether
knowledge retrieval is necessary and how many
times to retrieve knowledge. KMatrix achieves this
goal by: 1) integrating the special tokens control
method based on Self-RAG (Asai et al. (2023)),
which uses LLM-generated special tokens to con-
trol retrieval timing. For example, [Retrieval] rep-
resents continuing to retrieve, while [No Retrieval]
represents stopping the retrieval process. 2) in-
tegrating the self-consistency method (Wang et al.
(2022)), which judges retrieval is needed when the
consistency score of multiple responses to the ques-
tion falls below a threshold.

Knowledge Source Selection: adaptively se-
lecting which knowledge source to retrieve. We
integrate two methods to achieve this target. 1)
Knowledge sources are automatically selected by
retrieving the unified textual knowledge base ver-
balized across multiple knowledge sources (Ma
et al. (2021)). 2) We also integrate an active knowl-
edge source selection method, which is inspired by
COK (Li et al. (2023)). It deploys LLMs to select
knowledge sources relevant to the question using
demonstration learning based on correlation exam-
ples between questions and knowledge sources.

2.5 Generation

To meet the needs of different K-LLMs generation
scenarios, KMatrix integrates: 1) a representative
closed-source general Generator: ChatGPT, 2) two
open-source general Generators: Baichuan-2-7b
(Yang et al. (2023)) and Llama-2-7b (Touvron et al.
(2023)), and 3) a retrieval instructions-enhanced
Generator: SelfRAG (Asai et al. (2023)) for better
adaptive enhancement.

2.6 Modular Design Approach & Toolkit
Usage

Modular Design Approach: KMatrix deploys
modular design approach to construct K-LLMs sys-
tems using two stages: modular component defini-
tion and control-logic flow diagram design.

introducing-chatgpt-and-whisper-apis/

Modular component definition: KMatrix compo-
nent is an functional unit of K-LLMs system. We
unify datasets, knowledge, and models involved in
K-LLMs as components. To implement the pro-
cesses in Figure 1, KMatrix defines 16 types of
components, like Retriever, Query Parser, Gener-
ator, etc. And users can define their own compo-
nents according to predefined formats.

Control-logic flow diagram design: We develop
a control-logic flow diagram design method based
on easy-flow8 and Haystack (Pietsch et al. (2019))
framework to flexibly organize components for K-
LLMs system construction. Flow diagram exam-
ple can be found in Appendix A.2. For K-LLMs
system with complex process (including multifari-
ous arithmetic operations and logical judgments),
we can use control flow diagram to design system
process using Python programming. For K-LLMs
system with concise process (like linear, branch-
ing, looping, and conditional structures), we can
employ logic flow diagram to directly connect com-
ponents with edges. By jointly using control and
logic flow diagram, KMatrix flexibly supports com-
mon K-LLMs patterns using naive, iterative, and
adaptive enhancement methods (Gao et al. (2023)).

Toolkit Usage: Users can select or customize
components, and construct K-LLMs systems using
control-logic flow diagram. Appendix A.3 shows
K-LLMs training, evaluation and deployment flow
diagram illustration. The K-LLMs system deploy-
ment interface with multiple knowledge bases and
multiple queries is shown in figure 2. The left
side of the interface displays system details, includ-
ing system components, knowledge interfaces and
query methods. The middle section contains the
question and answer box. The right side shows
the intermediate chains of system execution, illus-
trating multiple queries and corrections steps to
generate the correct answer.

3 Experimental Settings

In this section, we evaluate the performance of K-
LLMs constructed by KMatrix to demonstrate the
entire lifecycle capabilities of our toolkit.

3.1 Knowledge and Datesets

KMatrix designs two ways of knowledge access:
local knowledge and online interface. As shown
in Table 2, for local knowledge, we integrate pub-
lic Wikipedia (Chen et al. (2017), textual knowl-

8https://gitee.com/xiaoka2017/easy-flow

283

https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://openai.com/index/introducing-chatgpt-and-whisper-apis/
https://gitee.com/xiaoka2017/easy-flow


Figure 2: Deployment interface of KMatrix toolkit

edge), Wikidata (Vrandečić and Krötzsch (2014),
knowledge graph) and Wikitable (Ma et al. (2022),
table knowledge). For online interface, we inte-
grate two general knowledge interfaces (Wikipedia
and Wikidata query APIs) and six domain knowl-
edge interfaces (APIs including Uptodate, CK12,
etc). Details of online interfaces can be found in
Appendix A.4.

Knowledge
Access Way

Knowledge
Name

Knowledge
Scale

local knowledge
Wikipedia 21000k
Wikidata 5790k
Wikitable 6860k

online interface

Wikipedia /
Wikidata /
Uptodate /
Flashcard 33553

BioScienceqa 1062
CK12 /

PhyScienceqa 780
Physicsclassroom /

Table 2: Knowledge components integrated by KMatrix

As shown in Table 3, KMatrix provides three
classes of datasets to support evaluation of K-
LLMs system. We provide RETRIEVE_EVAL
to evaluate knowledge access performance of Re-
triever components, which contains eight retrieval
datasets from the MTEB9 benchmark. We provides
ODQA_EVAL and ODQA_EVAL_Simplified to
evaluate knowledge enhancement performance
of K-LLMs system under two ways of knowl-
edge access: local knowledge and online inter-

9https://github.com/embeddings-benchmark/mteb

face respectively. ODQA_EVAL contains six
open domain question answering (OODA) datasets:
2Wikiqa (Ho et al. (2020)), HotpotQA (Yang
et al. (2018)), NQ (Kwiatkowski et al. (2019)),
PopQA (Mallen et al. (2022)), TriviaQA (Joshi
et al. (2017)), and WebQA (Berant et al. (2013)).
ODQA_EVAL_Simplified contains four simplified
ODQA datasets similar to COK (Li et al. (2023)).

Dataset Class Dataset Name Dataset Scale
MSMARCO 510k
NFCorpus 3237
NQ 3452

RETRIEVE_EVAL Quora 15k
ArguAna 1401
FiQA2018 6648
HotpotQA 97852
SciFact 1109
2Wikiqa 12576
Hotpotqa 7405

ODQA_EVAL NQ 3610
Popqa 1399
Triviaqa 7313
Webqa 2032
Hotpotqa 308

ODQA_EVAL_Simplified Medmcqa 146
MMLU_bio 454
MMLU_phy 253

Table 3: Evaluation Datasets privided by KMatrix

3.2 Task Settings

To evaluate K-LLMs systems constructed by our
toolkit, two task types are employed as follow:
Knowledge access performance evaluation: we
use RETRIEVE_EVAL dataset to evaluate three
BERT-based Retrievers, including Contriever (Izac-
ard et al. (2021)), DPR (Karpukhin et al. (2020)),
and BGE (Xiao et al. (2023)), as well as a LLM-

284

https://github.com/embeddings-benchmark/mteb


ArguAna FiQA2018 HotpotQA MSMARCO

map@100 r@100 map@100 r@100 map@100 r@100 map@100 r@100
BERT 6.87% 34.48% 0.04% 0.71% 0.07% 0.5% 0.0% 0.02%

Contriever 24.59% 97.36% 27.38% 65.25% 55.27% 77.76% 21.90% 25.97%
DPR 21.33% 89.94% 11.75% 38.48% 31.25% 57.83% 16.00% 58.13%
BGE 28.4% 96.79% 37.55% 75.42% 48.58% 64.89% 36.28% 88.73%
E5-7b 30.50% 99.22% 41.80% 79.52% 39.04% 71.03% 21.99% 78.27%

NFCorpus NQ Quora SciFact

map@100 r@100 map@100 r@100 map@100 r@100 map@100 r@100
BERT 0.28% 3.22% 0.03% 0.30% 41.26% 67.85% 1.56% 14.26%

Contriever 15.33% 29.93% 43.23% 92.71% 83.06% 99.35% 62.88% 94.20%
DPR 6.79% 17.90% 22.29% 73.00% 78.47% 97.78% 29.95% 70.23%
BGE 18.00% 33.94% 44.66% 93.39% 86.15% 99.70% 69.04% 97.17%
E5-7b 11.42% 27.19% 10.28% 41.22% 85.57% 99.65% 70.40% 96.00%

Table 4: Comparative knowledge access performance of Retrievers

Methods Knowledge PopQA TriviaqaQA NQ Hotpotqa 2Wikiqa WebQA

Naive-GEN Without 14.44% 35.00% 8.53% 11.45% 17.57% 17.03%
Wikipedia (Text) 27.51% 54.63% 33.77% 20.39% 22.07% 31.74%

Wikipedia (Text) + Wikidata (KG) 42.82% 54.18% 33.68% 20.73% 23.19% 31.10%Naive-RAG
Wikipedia (Text) + Wikidata (KG) + Wikitable (Table) 42.89% 54.68% 34.13% 20.47% 23.43% 31.05%

Wikipedia (Text) 25.80% 39.6% 24.96% 14.7% 18.03% 22.74%
Wikipedia (Text) + Wikidata (KG) 41.03% 47.12% 25.01% 16.38% 18.26% 23.23%Interleave

Wikipedia (Text) + Wikidata (KG) + Wikitable (Table) 41.17% 46.27% 25.43% 16.22% 22.1% 23.47%
Wikipedia (Text) 41.95% 58.38% 29.28% 25.80% 29.34% 34.69%

Wikipedia (Text) + Wikidata (KG) 61.37% 58.23% 28.92% 25.91% 29.99% 34.30%Self-RAG
Wikipedia (Text) + Wikidata (KG) + Wikitable (Table) 61.37% 58.57% 29.25% 25.71% 30.12% 34.84%

Table 5: Single vs. multi-knowledge bases enhancement evaluation using local knowledge access way

Factual Domain Medical Domain Physics Domain Biology Domain
Methods Knowledge Hotpotqa Medmcqa MMLU_phy MMLU_bio
COT Without 37.99% 40.41% 45.85% 78.63%
COK-DE
Selective Query 40.58% 46.58% 50.2% 78.63%

COK-DE
Fixed Query

Four domains, eight
knowledge interfaces
(Text, KG, Table) 38.96% 44.52% 49.8% 77.97%

Table 6: Single vs. multi-knowledge bases enhancement evaluation using online interface knowledge access way

based Retriever: E5-7b (Wang et al. (2023a)) using
MAP@100 and Recall@100 metrics.

Single vs. Multi-knowledge bases enhancement
evaluation: 1) We use ODQA_EVAL dataset to
evaluate K-LLMs systems performance using sin-
gle vs. multi-knowledge bases enhancement un-
der local knowledge access way. We compare
four K-LLMs systems: Naive-GEN(answer gen-
eration without knowledge), Naive-RAG(naive K-
LLMs), Interleave (Shao et al. (2023), iterative
K-LLMs) and Self-RAG (Asai et al. (2023), adap-
tive K-LLMs). We employ the local knowledge
shown in Table 2 as heterogeneous knowledge
bases, and choose Contriever (Izacard et al. (2021))
as Retriever. The number of retrieval is uni-
formly set to 3. We use LLaMA2-7b (Touvron

et al. (2023)) as Generator except Self-RAG, which
uses a retrieval-instructed Generator. 2) We use
ODQA_EVAL_Simplified dataset to evaluate K-
LLMs systems performance using single vs. multi-
knowledge bases enhancement under online inter-
face knowledge access way. We compare two K-
LLMs systems: COT ((Wei et al. (2022)), answer
generation without knowledge) and COK-DE (K-
LLMs system actively querying multiple knowl-
edge interfaces, with main idea derived from COK
(Li et al. (2023))). We employ the online interfaces
shown in Table 2 as knowledge sources, which
contains two general knowledge interfaces and six
domain knowledge interfaces. We choose Chat-
GPT as Generator and adopt accuracy as metric for
performance of K-LLMs systems.

285



4 Experimental Results

We report experimental results from two aspects:
Knowledge access performance evaluation: Ta-

ble 4 shows the knowledge access performance of
five Retrievers. Compared to BERT model, the
three improved Retrievers based on BERT, namely
Contriever, DPR, and BGE, have significant per-
formance advantages. Among them, BGE has a
significant advantage on most datasets. The E5-7b
Retriever based on LLM achieves best performance
on the vast majority of datasets, demonstrating the
research potential of LLM-based Retrievers.

Single vs. Multi-knowledge bases enhance-
ment evaluation: Table 5 shows single vs. multi-
knowledge bases enhancement evaluation results
using local knowledge access way. From the per-
spective of quantity of knowledge base types, com-
pared to a single text knowledge, increasing the
types of knowledge bases usually results in better
performance. However, the joint enhancement per-
formance of text, tables, and knowledge graphs is
inferior to that of tables and knowledge graphs on
a few datasets, which may be caused by noise of
tables. The experimental results confirm the conclu-
sion that joint enhancement using multi-knowledge
bases can improve the performance of K-LLMs sys-
tems. From the perspective of enhancement meth-
ods, compared to Naive-GEN without knowledge
enhancement, the three methods that use knowl-
edge enhancement achieve significant performance
improvements. Meanwhile, compared to Interac-
tive (iterative K-LLMs), Naive-RAG has a perfor-
mance advantage, and the reason may be that itera-
tive retrieval is not suitable for factual question an-
swer tasks. Self-RAG (adaptive K-LLMs) achieve
best performance on most datasets, demonstrating
enormous potential of adaptive K-LLMs research.

Table 6 shows single vs. multi-knowledge bases
enhancement evaluation results using online inter-
face access way. Compared to the COT method
without knowledge enhancement, COK-DE with
active knowledge query achieves performance im-
provements on most datasets, highlighting the
importance of external knowledge enhancemant.
Meanwhile, for the COK-DE method, we com-
pare two experimental settings: selective query
across multiple-domain knowledge interfaces vs.
fixed query on single-domain knowledge interface.
We find that allow LLMs to autonomously select
knowledge can achieve better performance, which
indicates that solutions of most tasks require inte-

gration of multi-domain knowledge.

5 Conclusions

We introduce KMatrix tootkit to facilitate the con-
struction of adaptive heterogeneous K-LLMs sys-
tem, which enables one-click support for training,
evaluation, and deployment procedures. Mean-
while, we integrate a rich collection of represen-
tative K-LLMs knowledge, datasets, and methods,
and provide performance analysis of heterogeneous
knowledge enhancement, which can offer assis-
tance for future works. Overall, KMatrix is par-
ticularly useful for K-LLMs practitioners without
extensive expertise, and we hope KMatrix will con-
tribute to the development of K-LLMs.

Limitations

KMatrix currently has some limitations, which we
will gradually improve in the future. 1) Although
we have integrated several representative Retriever
components and achieved relatively good retrieval
accuracy, the efficiency is low due to the exces-
sively large knowledge base. We need to specifi-
cally optimize the performance of the retriever to
improve retrieval speed. 2) We have found that
the Wikitable knowledge integrated into our toolkit
contains lots of noise, which directly affects the
performance of knowledge enhancement. Next, we
will conduct knowledge denoising. 3) Adaptive
K-LLMs have become a hot research topic and a
large number of new methods are being proposed.
In the future, KMatrix will continue to integrate
more adaptive K-LLMs methods.

Acknowledgements

This work was supported by the National Key
R&D Program of China (No. 2022ZD0160503)
and Beijing Natural Science Foundation (L243006).
This work was also sponsored by CCF-BaiChuan-
Ebtech Foundation Model Fund.

References
Akari Asai, Zeqiu Wu, Yizhong Wang, Avirup Sil, and

Hannaneh Hajishirzi. 2023. Self-rag: Learning to re-
trieve, generate, and critique through self-reflection.

Yejin Bang, Samuel Cahyawijaya, Nayeon Lee, Wen-
liang Dai, Dan Su, Bryan Wilie, Holy Lovenia, Ziwei
Ji, Tiezheng Yu, Willy Chung, et al. 2023. A multi-
task, multilingual, multimodal evaluation of chatgpt
on reasoning, hallucination, and interactivity. arXiv
preprint arXiv:2302.04023.

286

http://arxiv.org/abs/2310.11511
http://arxiv.org/abs/2310.11511


Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
conference on empirical methods in natural language
processing, pages 1533–1544.

Harrison Chase. 2022. Langchain, october 2022. URL
https://github.com/langchain-ai/langchain.

Danqi Chen, Adam Fisch, Jason Weston, and Antoine
Bordes. 2017. Reading wikipedia to answer open-
domain questions. arXiv preprint arXiv:1704.00051.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara,
and Akiko Aizawa. 2020. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning
steps. arXiv preprint arXiv:2011.01060.

Yasuto Hoshi, Daisuke Miyashita, Youyang Ng, Kento
Tatsuno, Yasuhiro Morioka, Osamu Torii, and Jun
Deguchi. 2023. Ralle: A framework for developing
and evaluating retrieval-augmented large language
models. arXiv preprint arXiv:2308.10633.

Linmei Hu, Zeyi Liu, Ziwang Zhao, Lei Hou, Liqiang
Nie, and Juanzi Li. 2023. A survey of knowledge
enhanced pre-trained language models. IEEE Trans-
actions on Knowledge and Data Engineering.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-
bastian Riedel, Piotr Bojanowski, Armand Joulin,
and Edouard Grave. 2021. Unsupervised dense in-
formation retrieval with contrastive learning. arXiv
preprint arXiv:2112.09118.

Peter Izsak, Moshe Berchansky, Daniel Fleischer, and
Ronen Laperdon. 2023. fastrag: Efficient retrieval
augmentation and generation framework.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Struct-
gpt: A general framework for large language model
to reason over structured data. arXiv preprint
arXiv:2305.09645.

Jiajie Jin, Yutao Zhu, Xinyu Yang, Chenghao Zhang,
and Zhicheng Dou. 2024. Flashrag: A modular
toolkit for efficient retrieval-augmented generation
research. arXiv preprint arXiv:2405.13576.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke
Zettlemoyer. 2017. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. arXiv preprint arXiv:1705.03551.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, et al. 2019. Natural questions: a benchmark
for question answering research. Transactions of the
Association for Computational Linguistics, 7:453–
466.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459–9474.

Xingxuan Li, Ruochen Zhao, Yew Ken Chia, Bosheng
Ding, Lidong Bing, Shafiq Joty, and Soujanya Poria.
2023. Chain of knowledge: A framework for ground-
ing large language models with structured knowledge
bases. arXiv preprint arXiv:2305.13269, 3.

Kaixin Ma, Hao Cheng, Xiaodong Liu, Eric Nyberg,
and Jianfeng Gao. 2021. Open domain question an-
swering with a unified knowledge interface. arXiv
preprint arXiv:2110.08417.

Kaixin Ma, Hao Cheng, Xiaodong Liu, Eric Nyberg,
and Jianfeng Gao. 2022. Open-domain question an-
swering via chain of reasoning over heterogeneous
knowledge. arXiv preprint arXiv:2210.12338.

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,
Daniel Khashabi, and Hannaneh Hajishirzi. 2022.
When not to trust language models: Investigating
effectiveness of parametric and non-parametric mem-
ories. arXiv preprint arXiv:2212.10511.

Barlas Oguz, Xilun Chen, Vladimir Karpukhin, Stan
Peshterliev, Dmytro Okhonko, Michael Schlichtkrull,
Sonal Gupta, Yashar Mehdad, and Scott Yih. 2020.
Unik-qa: Unified representations of structured and
unstructured knowledge for open-domain question
answering. arXiv preprint arXiv:2012.14610.

Malte Pietsch, Timo Möller, Bogdan Kostic, Julian
Risch, Massimiliano Pippi, Mayank Jobanputra, Sara
Zanzottera, Silvano Cerza, Vladimir Blagojevic,
Thomas Stadelmann, et al. 2019. Haystack: the end-
to-end nlp framework for pragmatic builders. and
denny zhou. 2022b. chain-of-thought prompting elic-
its reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–
24837.

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang
Ren, Wayne Xin Zhao, Daxiang Dong, Hua Wu,
and Haifeng Wang. 2020. Rocketqa: An opti-
mized training approach to dense passage retrieval
for open-domain question answering. arXiv preprint
arXiv:2010.08191.

Miyu Sasaki, Natsumi Watanabe, and Tsukihito Ko-
manaka. 2024. Enhancing contextual understanding
of mistral llm with external knowledge bases.

287



Zhihong Shao, Yeyun Gong, Yelong Shen, Minlie
Huang, Nan Duan, and Weizhu Chen. 2023. Enhanc-
ing retrieval-augmented large language models with
iterative retrieval-generation synergy. arXiv preprint
arXiv:2305.15294.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Communi-
cations of the ACM, 57(10).

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang,
Rangan Majumder, and Furu Wei. 2023a. Improving
text embeddings with large language models. arXiv
preprint arXiv:2401.00368.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Yile Wang, Peng Li, Maosong Sun, and Yang Liu.
2023b. Self-knowledge guided retrieval augmen-
tation for large language models. arXiv preprint
arXiv:2310.05002.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas
Muennighof. 2023. C-pack: Packaged resources to
advance general chinese embedding. arXiv preprint
arXiv:2309.07597.

Silei Xu, Shicheng Liu, Theo Culhane, Elizaveta Pert-
seva, Meng-Hsi Wu, Sina J Semnani, and Mon-
ica S Lam. 2023. Fine-tuned llms know more, hal-
lucinate less with few-shot sequence-to-sequence
semantic parsing over wikidata. arXiv preprint
arXiv:2305.14202.

Aiyuan Yang, Bin Xiao, Bingning Wang, Borong Zhang,
Ce Bian, Chao Yin, Chenxu Lv, Da Pan, Dian Wang,
Dong Yan, et al. 2023. Baichuan 2: Open large-scale
language models. arXiv preprint arXiv:2309.10305.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

288



A Appendix

A.1 The Unified Enhancement of Heterogeneous Knowledge

A.1.1 Verbalizing-Retrieval Method

Figure 3: Verbalizing-Retrieval Method Flow Diagram. We develop a Unified Verbalizer component to convert
various types of local heterogeneous knowledge (such as text, tables and knowledge graphs) into unified text
fragments for local knowledge integration.

A.1.2 Parsing-Query Method

Figure 4: Parsing-Query Method Flow Diagram. We design a Unified Querier component to flexibly incorporate
different types of knowledge query interfaces (like Wikipedia, Wikidata) for online knowledge integration.

A.2 Control-Logic Flow Diagram Example

A.2.1 Control Flow Diagram Example

Figure 5: Control Flow Diagram Example. For K-LLMs system with complex process (including multifarious
arithmetic operations and logical judgments), users can employ control flow diagram to design system process,
which contains three steps: selecting components, configuring components parameters, as shown in left side, and
designing system logics using Python programming, as shown in right side.

289



A.2.2 Logic Flow Diagram Example

Figure 6: Logic Flow Diagram Example. For K-LLMs system with concise process (like linear, branching, looping,
and conditional structures), Users can employ logic flow diagram to directly connect components with edges for
K-LLMs system construction, which can achieve the transfer of data from task input to output on the flow diagram.

A.3 Toolkit Usage: Training, Evaluation, Deployment

Figure 7: Toolkit Usage: Training, Evaluation, Deployment. For component training and evaluation, users can
simply connect the Dataset component with the component to be trained/evaluated. For end-to-end evaluation of the
K-LLMs system, users can employ the Evaluator component to connect Dataset component with K-LLMs system,
and the Evaluator component will manage evaluation process. For K-LLMs system deployment, users can map the
task inputs to the Multiplexer, and connect the task outputs to the OutputBuilder on the basis of original system
flow diagram. After constructing system flow diagram, you can run it. Additonal details are available in our toolkit
documentation.

A.4 Online Interfaces Integration
KMatrix integrates a total of eight knowledge query interfaces, which contain two general knowledge
interfaces: Wikipedia10 (textual knowledge interface) and Wikidata11 (knowledge graph interface), as
well as six domain textual knowledge interfaces: Uptodate12, Flashcard13, BioScienceQA14, CK1215,
PhyScienceQA16, and PhysicsClassroom17.

A.5 The Screencast Video of KMatrix
The screencast video of our toolkit are available at here18.

10https://www.wikipedia.org/
11https://query.wikidata.org/
12https://www.wolterskluwer.com/en/solutions/uptodate
13https://geekymedics.com/medicine-flashcard-collection/
14https://huggingface.co/datasets/veggiebird/biology-scienceqa
15https://www.ck12.org/book/ck-12-biology/
16https://huggingface.co/datasets/veggiebird/physics-scienceqa
17https://www.physicsclassroom.com/
18https://youtu.be/VL-zY2pphwI

290

https://www.wikipedia.org/
https://query.wikidata.org/
https://www.wolterskluwer.com/en/solutions/uptodate
https://geekymedics.com/medicine-flashcard-collection/
https://huggingface.co/datasets/veggiebird/biology-scienceqa
https://www.ck12.org/book/ck-12-biology/
https://huggingface.co/datasets/veggiebird/physics-scienceqa
https://www.physicsclassroom.com/
https://youtu.be/VL-zY2pphwI

